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ABSTRACT

In' this report application of Frolog in Symbolic
Calculus is discussed with special reference to -
integration and differentiation. Frolog has been
becoming more popular as Artificial Intelligence
applications such as expert systems, symbolic
computation, natural language processing,  natural

language interfaces to databases,"deductive databases

and automatic programming.

Symbolic Calculus program solves eleventary
symbolic problems, that is, indefinite integrals and
differentiation problems. The domain of symboliec

integration is restricted to few types of problems -
like standard integrals, constant and a function, S
and difference of integrals, integration by parts and
some other integrals. Most of the design effort has been
spent on integration by parts. Frogram can be subdivided
into  two modules, one . is t he integration &
gifferentiation, which determines the integﬁl/derivative
of a given expression and other is the' simpiification
module, which simplifies the intégarated/diffarentiated
expression. Symbolic Calculus program was\ wiritten in
Froleg and runs interpretively on the SUNRAY Systewm at R

& D Centre, CMC Ltd., Secunderabad.



1. INTRODUCTION

Frograms for solving elementary symbaolic
integration were written in 1980s as Al applications.
The first major progran was James Slagle’s SAINT
(Symbolic Automatic INTegrator) written as a 1961
doctoral dissertation at M™MIT. The program solves
elementary symbolic integration; problems — wmainly
indefinite integrals at about the level of a good
college fresthiman. SAINT was written inm LISF and run
interpretively on the IBM 7030 compufer. A second
important symbolic integrator program, SIN (Symbolic
INtegrator) was wﬁitten by Joel Moses in 1367, also as a
doctoral dissertation at MIT. Whereas Slagle had
compared the behavior of SAINT to that of freshman
calculus students, Moses aimed at behaviour comparables
to expert performance. It may be noted here that both of

the above programs were coded in LISF.
i. 1 AI LANGURGES

AI erogramming languages have had a central role

in the history of Artificial Intelligence, serving two

important fuctions. First, they allow convenieant
implementation and modification of pregrams t hat
demonstrate and test Al ideas. Second, they provide

vehicles of thoughtst Rs with other khighlevel languages,



they allow the user to concentrate on higher level
concepts. Freguently, new ideas ivn Al are accompanied by
a new language in which it is natural to apply these
ideas. Some Al prograwning languages are IFL, LISE,
PLANNER, CONNIVER, QLIéD, FOF-2, SAIL, FUZZY, PROLOSG,

etc.
1.1.1 LISP & PROLOG

The most established AI language is- LISk,
invented at MIT by John MecCarthy in the 1950s. LISF 1is
movre convenient for Al work than conventional data-
oriented languages. One reason is that it allows fthe
direct reﬁresentation of symwmbolic concepts and the
relationships bethEﬂ thewm 1n the form of data
st ructures called ligsts — infact lists are the only data
structures i1in LISP. Ancther convenience of LISE is that
it does not reguire the data types of each variable and
the allocation of memory to each +type to be specified
at the begimming of the program; instead data types are
determivied at run  time, and memecry 1s  allocated

flexibly according to reguirements.

Besides its use of list stfuctures as its
primitive(and only) data types, LISEF probably differs
from other programming languages in its style of
describing computations. Instead of fuctions defined in

a - rather mathewatical format. Each function call 1%



represented as a list, the value of whose first element
is the name of the function and the values of whose
other elements are the arguments. Even though LISF is
more suitable for Al work than conventional data-—

oriented languages, it has some drawbacks. They are

Ugly syntax: A common complaint about the list-
st ructure format of LISF programs is that it makes them
difficult to read. The only ;yntactic items are
separators, such as spaces and parentﬁeses, which
provide most of the structure. This way of representing
structures is convenient for machine to read, but

inconvenient for humans.

Lack of lénguage standard: Unlike FORTRAN and other
well HKrnown programming languages, there has never been
an attempt to agree on a standardized LISF. The absence
of a language standard and the proliferation of
incompatible versions make LISP badly suited to be a
production language, and in Al research work there are
severe difficulties in tramnsporting LISH prograss to

machines running a different LISP.

The other alternative to LLISF suited to AI and
symbolic cowmputing developed by Alan Colmeraur in Europe
in the 1970s is FROLOG. Frolog originated as an attewnpt
to design a language which would allow.the programver to

specify the obgectives of a task interms of symbolic



logic. A -major advantage of Frolog is that the expert
systems concept of an inference engine Qovking‘agaiﬂst a
knowledge base, and'seeking to satisfy assigned goals by
fixing rules, maps very directly onto the language; in a
sense any PPOlog program can be seen as a sort of expért

Systém.

A LISP program of a series of commands that
manipulate symbols while a PROLOG program consists of
statements of facts and rules. The powerful pattern

matching capability and an automatic backtracking

facility in PROLOG are an added advantage over LISP.
FROLLOG procedures are also flexible in the sense that
the input and output parameters are vnot predetermined

but may wvary frowm call to call.
1.1.2 PROLOG Vs CONVENTIONAL LANGUAGES

PROLOG differs from the conventional languages in
many aspects. A  PROLOG program is predowminantly
"DECLARATIVE" in that it is concerned with stating WHAT
has to bE'doné, in the form of rules(logic) and facts,
while a conventional program is more "FPROCEDURAL™ and
concerned with HDw the task should be done. The
conventional languages have similar data and program
st ructures such as arrays, if_then_eise and loops. There
are no such constructs in Frolog. In conventional

languages the programmer must specify step by'étep how a



regsult is to be computed. In constrast, in Frolog we
describe what the relationships are among the entities.
Prolog extensively uses récursioﬁ and a unigue
backtracking mechanism. Frolog variables do not
represent storage locations. This wmeans that all values
assigned to vafiables»are temporary for instantiation
purposes and kept only for the duration of a specific
execution of the clause. The programmer carmot increment
a variable wvalue as for example, #N = N+1 is done in
conventional languages. Q. Prolog procedure is a
collection of rules rather than a single closed wmodule

of a subroutine.



2. INTRODUCTION TO THE PROJECT

SymSOIic CAlculus Frogram (in subsequent sections,
it is referred as SCAP, in brief) is a rule based
program  which identifies the input expression and
evaluates the integral/derivative of the given
expression. SCAF can be subdivided into th modules,
integration & differentiation module and simplifiction

module.

For a given input expression SCAF responds to it
by performing following Fantions:
1. It invokes the integration/differentiation
module.

2. It classifies the given input expression to one
of the types and evaluates the integral/
differential of the input expression.

3. The integrated/differentiated expression is

simplified, if neccessary.

Integration & differentiation wmodule consists of
two subtasks, namely integration and differentiation.
The integration problems that SCAP conld handle have
only elewentary fuctions as_integrals. The domain of
symbolic integration consists of following four types aof
problems:

1. Standard integrals - there are about 20

standard integrals. A typcial one indicated
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that if the integrand has the formAa“x dx, the
form of the solution i1s In(a)™(=1)*a™x.
Constant and a function - integral of a
constant and a fuction is constant and an
integral of a function. This function can
recursively be of any of the four types again.
Typically; integral of (a*¥cos{x)Idx is
a¥sin(x), where ’a’ is a constant with respect

to x.

Integral of sum or difference of functions -
that 1s, decomposing integral of suwm/difference
of functions into sum/difference of integrals.
Here again each function can recursively be of
any of the four types. Typically, integal of
(x+e™x)dx is 2”(~i)*x“i+e“x.

broduct of integrals or integration by parts -
that is, given product of fuctions (ot her than
'27) which can be inéegrable, its solution is
evaluated. by integration by parts, 1.@.,
integral of Ux¥V dx is U*integraldex)—iﬂtegral(
differential (W) *integral (Vdx)dx). It wmay he
noted here that differential of the first
function has to be evaluated for integration by
parts. This wmeans to say that whenever the
problem of integration by parts is encountered,
differential routine ié invoked and the

respective function is differentiated. Typical



example is integral of {x¥*¥cos (x))dx is

X¥sin(x)+cos(x).

It may be roted here that wmost of the design effort has
been spent on integration by parts and the description
of the program is in next chapter. The whole symwbolic
integration problewm i.e., abové four types can be

visualized as a tree shown in fig Z.1.

The program starts with the original problem as a
goal, specified as an integrand and & variable of
integration. For any particular goal, the strategy is to
classify 1t as any one of the four types of integration,
if it is in standard form then the solution is
innediate, if it is not, it can be constant and a
function; where function is & mew goal to which the same
strategy 1s applied, if it is rwot constant éﬂd a
function, then it can be sum/difference of integrals,
where two argurents of operaters 7+7/7-7 are again
treated as two new goals and the same strategy is
applied, if it is not sun/difference of inmtegrals, it
caﬁ be product of integrals and solution obtained and if
1t 1s neither of the above four types the program simply

cannot integrate.

The differentiation routine of SCARP gives the
derivative of the given expression. The problem of

differentiation is wmuch simpler when compared to



integration as differentiation is much more systemat{c
in nmature than integration. Due to the systematic nature
of the problem, theré is only one type of rule in
differentiatiog namely,' |
d(Exp, X, Result):
| d - gives the derivative of expression
(Epr with respect to X as Result.
Exp — expression whose derivative is to
be evaluated.
X — variable of differentiation.

Result — derivative of the given expn.

Listing of the above type of. rule can be found in page
p. 19 Here unlike integration the control for the
selection of the type of differentiation is included in
the differentiation routine itself, meaning to say that
there 1is no separate search strategy to classify to

particular type of differentiation.

Simplification wodule in  SCARF consists of

different routines, each applicable for a particular

type of simplification, which is encountered in
integration/differentiation. While runming the SCAR
different simplification routines are invdked at
different levels of integration/dffferentiation

according to their need in the execution.
Two major rule types used in simplification are as

follows:
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RULE I
symtyl (Expn, Sexpn)
symtyl - this is a predicate ﬂame.Fof
different types of
simplifications having two
arguments Expn & Sexpn.
Simplification routines of this
.type are simp ssimp & sp.
Expn — expression t; be simplified.
Sexpn — simplified expression.

Listing of these rules are given in pages p.l-Z,p.6-8.

RULE ITI

symtyZ (Expn, Var, Sexpn):

BymtyZ — this is & predicate name for

different types of

. ' simplifications having three
arguments, namely Expr, Var &

Sexprn. Simplification routines
of this type are
simpl, trig_simp.

Expn — expression to be simplified.
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Var - variable of integration/
differentiation used in
simplification routines to

determine constants in the given
expression.
Sexpn — simplified expression.

Listing of these rules are given in pages p.3—-6, and

explanation is in next chapter.



Standard integrals —c;
Constant and a funct'lon..c2 caxf(x)

sum/difference of integrals —c;: (x) 2 g(x)

product of integrals_c :uxv

Expn.

,v C ¢, axflx) Cf(x)eglx) ¢ UXv

/ \ |

C, C2 C’j ¢ cC 2 3CA C'l C2C3 CA'

fig 2.1

——
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S. DESCRIPTION OF THE PROGRAM

3.1 INTEGRATION & DIFFERENTIATION

As explained in the previous chapter, given
an expression how the integration module will‘ classify
it into one of the four types of integration. This
classification to particular type of integration is done
by check_int(Expﬂ,X,Result) routine. This routine checks
the expression(Expn) for the type of integration and
integrates the given expression with variable of
integration as X to give integfal as Result. Refer to
page p.9 for listing of this routine.

Rules for the four types of integration are represented

as shown below:

typ_int (Expn, Var, Result):
typ_int - denotes predicate nawe for

type of integration, namely,

stand_int - standard integral
const_and_int — constant and ari
integral
sum_of_ints
- sum/difference of
diff_of_ints integrals -

int_by parts - integration by parts
Expn — given integrand
Var - variable of integration

Result — integral of Expn
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The above four types of integration rules are explained

in detail below, each separately.
Standard integrals:

There are about 25 standard integrals each

represented as follows

int (Stdingd, Var, Int) :
int - predicate nave to indicate
integral of
Stdingd - standard integrand whose
integral is imwediately known
Var - variable of integration

Int - integral of standard integrand

For example
int (x™3, %, 6" (—1) *¥x™4) .

Listing of this type of rules are given in pages p.79-10.
Constant and an integral:

In this routive i.e. const _and_int, integral of
the given expression is determined only if the given
expression i1s product of two terms and the left handside
term (or the first term) is a constant with respect to
variable of integration and right hand term (or the
second term) is again matched to either omne of the
three types, namely, stand_int, const_and_int,

sum_of_ints or diff_ofﬂints; The boundary condition for
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this routine to succeed is that the second term is &
standard integrand. It is to be noted here that user is
always requested to give the input expression in the
camonical form

i.e. [humbersloperatorfconstantsloperatorif(x)]

so that the order of the terms in the expression is
maintained throughout integration/differentiation. Refer

to page p.11 for listing of this routine.

Typical example,

const _and_int (Z¥x™(-1), x,2*In(x))
Sum/difference of integrals:

In this routine 1i.e. sum_of _ints/diff_of_ints,
given expression is examined if it is sum/difference of
two terms. These two terms are treated as two subgoals
which can again recursively be of any one of the four

types of integration.

For example,
diff_of_ints(cos(2%¥x)-—e ™, x, 27 (-1)%¥sin(Z¥x) e x).

suw_of _ints(sec (k) "E+Z%x™E, x, tan{ix) +Z*IT (-1 ) ®»x"3).

Refer to page p. 11 for listing of this routine.
Integration by parte:

In this routine i.e. int_by_parts, if the given
expression is product of two terms, 1. e. cther than &

constant and a function, then it is treated as a problem
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of integration by parts and accordingly its integral is

evaluated.

For an expression U*VY to be integrated by the
method of integration by parts, first and foremost

criteria is to select the order UV, such that

(1) integral of V be siwple

(ii) integral of du/dx be simple

The routine, select_the_order (UxV, X,R) selects the
order of the expression UxV and instantiates the ordered
expression to variable R. The method for ordering the

expression is as follows

If { U= sin(Y¥) or cos{¥) or tani{¥) or cot(¥) o
sec (YY) or coéec(Y) > OR
{ U =e™ or a“Yiwhere "a’ is a constant w.r.to
x) and V = X*Z } OR
{ U = sec(Y)"Z or cosec{¥)™Z » OR
{ VvV = In(Y) > OR
£V = In(¥Y)"N ¥ OR

{ V = e™Y and U \= X*Z ¥
then

select _the order (UxV, X, V*U)
else

select _the_order (UxV, X, LUxV),

Listing of this routine can be found in page p.12.
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Now.the ordered expréssion is to be integrated and
this 1is done by eval_int (Expn, X, Result) routine and the
value of the Result is passed on to siwmplification
routine ssimpkE,R) (this routine 1is explained in
simplification wmodule in next sectiorm) and the result

'R is the integral of the given expression.

The eval_int (UxV, X,Result) procedure approach the
preblem of integration in two different ways depanding

upon two conditions, they are

(1) V 1s a standard integrand
(1i) V is not a sfaﬂdard integrand
i.e. here we consider certain problems 1ike
e"x¥(tani{x)—-1In{cos({x)),
e "Xx¥((l+sin(x))/ (1+zos(x)),
e x*¥((x—=1)/(x+1)"3),

etc.,

where 'V’ is not a standard integrand.

Firgt consider the second case,

heve prablems are
of the type
integral (e™x*# (f(x)+f" (x)) = e x*xf(x).

The method for this type of problems is. follows

(1) Check 1f the first termU) 1in the expressionUxV) s
e x
(1i) if yes, check if the second termiV) is directly of

the form ")+ GO, 1f yes, f(x) is passed e
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and the integral of the given expression is

e x*f (x).

The routine test_argl_arg2(V,X,R) will test if the
second arguvent (f'(x)) of V is the derivative of
the first argument ‘(f(x)) or vice versa and if it

succeeds then R is instantiated to f(x).

Typically
test_argl_arg2(sin({x)+cos(x), x,sin(x)).

Refer to page p.16 for listing of this routine.

(iii) if V is not directly of the form "fOO+f? G0)",
then if possible, it is transformed to this

particular form and its integral is evaluated.

Typically,

(1+sin(x)) / (1+cos (x))

— {1 +2%sin(x/2).cos(x/2))Y/2.cos(x/2)Y ™2
=) 1/Z2.seci{x /2y "Z+tan(x/2)
(x—1) /7 {x+1)y"3 —=> {x+1-2)/ (%2123

=) (x+1) =2 = Z. (x+1) =3

For example

eval _int(e"x*¥{((l+sin(x))/(1+cos(x)) x, e *x¥tan (2™ (-1) ¥x))

The above procedure is coded in the last three claunses
of the eval_int routine and listed in pages p. 13—-14. In
this routine trig_simp(Expn, X, Sexpn) procedure is used

to simplify the trigrnometric functions Expn (encountered
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in the above type of problems) to Sexpn (This procedure
is explained in detail in sfmplification module in next

saction).

Now consider the first case where in 7V’ i a
standard integrand.

We know that

Il

Int (UxV)dx UkInt (Vdx)— Int (U ®#Int (Vdx)dx)

—— e e e e i i b o e St it A o

U*V1 — Int(U1*Vidx)
i | |

o~ o~

R1 R2
In this casé El is easily evaluated to RIi, R1 ié stored
in a list, say Oldlist and E2 is evaluated to RzZ. As ane
can notice, RZ is again a problem of integration by
parts, which is recursive, so a new routine test2_int is
used which will append all R1’s of RZ with Qldlist to

form Newlist.
The format of the rule is as follows

testZ_int (NE, X, 0E, 0L, NL) ¢

NE - mew expression which is to be

[N

integrated i.e. R
X — variable of integration
OF - original expression i.e. UxV
OL - oldlist i.e. [R1] here

NL - mew 1list formed by appending



20

oldlist with R1’s obtained from NE

The boundary conditions for this recursive routine are

i. NE isveither a constant and a function or a standard
integrand

2. NE is equivalent to 0OE or
if NME = Constant * NE1 then NE1 is equivalenf to OE
here [Constantl]l is appended with, R1’s to form Newlist
This is particularly useful for integrands like,
e"x#*cos(x), a~x*¥sin(x), etc.
If NE = -NEI1, then [-]1 is appended with Oldlist to
form Newlist. Refer to page p.14 for listing of this

routine.

For example

testZ_int (S¥x"~Z#sin(x), x, x"3*cos(x), [x"3I*sin(x) ],
[x™3#sin(x), —3%¥x"2%¥cos(x), —, E¥x*sin(x),
~&¥cos{x)])

testZ_int (e™x¥sin(x), x, e “x*¥cos(x), le"r¥sini{x) ],

fe x*¥sin(x), —e™x¥cos(x),—,11)

Consider

Int (UxVdx) = UxInt(Vdx) ~ Int (U *#Int (Vdx)dx)

It is to be noted here that the negative operator 7=’ is
not an element in the Newlist, s0 when evaluating the
list this negation must be considered. The order of the

elements in the above list is reversed for evaluating

the list. The eval_list(List, X,R) evaluates the reversed
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list (List) to give the result as R. The head and tail
list of the list(List) is obtained and the tail list Iis
checked for four conditions givén below by
check_tail_eval routine and depending on the conditions
satisfied , integral is evaluated which is passed onto

eval_list routine.

Rule type
check _tail_eval(T,X,H,R):
check_tail_eval - checks the tail list
and accordingly
evalqates the list to
give result as R
T — tail list of the origihal list
X - variable of integration used here to
determine constants
H - old result of the list

R — final result of the original list
Refer to pages p. 15—1& for listing of this routine.

Let T be the tail list and H be the head of the
griginal list again T1 and H1l be the tail and the head

of the list T.

(i) if H is not a constant, Hl \== '~ T1 is an empty

list then evaluated result of the original list iﬁ\%wm%

. ~
boundary condition for check_tail_eval routine. A?g;‘ﬁ%
5 &4 S, )
(ii) if H is a constant and XX \ “3\\ k%gﬁ %3
At
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(a) if T1 is an empty list , thenm R = H1l, OR

(b) if H1 is equivalent to - r-ry then
eval _list(T1,X,R), OR

() if H1I is not equivalént to -, t hen
eval _ligt(T,X,R} and simplify (1+H)*(-1) and
instantiate it to a variable(Const), then final
result of list is Const*R.

(iii) if HI is not eqdivaient to -7, Tt is not an empty_
list, themn R = sgimplified H1I - H and again
evaluate the reMainiﬂg tail list T1 until it - is
empty by check_tail_eval(Ti,X,R,Result) routine to
give final result as Result.

tiv) if H1 is equivalent to "=, then R is equal to —(H)

and again evaluate the ramaining tail list T1 until

it is empty by check_tail_eval(Ti,X,R,Result) *to

give final result as Result.

For exawmple .

eval_list ([~&*cos(x), E¥x¥sin(x), —, ~I¥x"I*cos K],
KTIHSIM(K) T, X, X"I¥sin (X)) = (-T¥x"Ekcos (x}—
(E¥x%xsin(x)—(—E¥cos(x))))).

evai_list([l,—, —e x*cos{x),e " x¥sin(x), x,

ZF=1) ¥ (e x¥sin (X))~ (~e™x¥cos (X)) ) ).

The result obtained above is simplified by ssimp routine
and gives the integral of the given expression,
i.e.

int_by_ _parts(x"3%cos (x), x, x"I¥sin(x)+3I3*¥x " T%cos (x)
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—~GEX*¥Sin(x) —6%c0s (X) ). '

int _by_parts(e™x*cos(x), x, 2°(—-1) ¥ (e~x¥sin(x)+e™x*cos (X))

Differentiation rout ine of SCAR gives the
derivative of the given expression and the type of the
rule for this routive is already explained in the

previous chapter.

Typically ;
d{In{x), x,x™(=1)) - derivative of In(x) is x™~(~-1) with

respect to x.

- 3.2 SIMPLIFICATION

In SCAR, simplification module contains different
routines each applicable for a paraticular  type of
simplifiction. Before proceeding to describe these
routines, let us consider a procedure const<(Y, X) whiéh
determines if Y’ is a constant with respect to ’X’..’Y’
is a constant with respect te X’ if ¥ does not
centain  ? X7, Refer to page p.1l for listing of this

procedure.

The routine simp(Expn, Sexpn) simplifies t he
expression Expn to simplified form Sexpn. In this
routine, separate rules (& facts) are written for

eleventary simplifications, like

(i) O%*0 = O
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(ii) X#1 = X, X*1 = X, X¥X = X2, etc.
(iii) X+0 = X, X+X = 2x¥X, etc.
(iv) X-0 = X, 0-X = —-X, X-X = 0, etc.
(v) (X~MY~N = X™ (M*N)

and so on.
In this routine, given expression is exawined if it
matches into any one of the elenentary
siviplifications(like those listed ;Eove) and if it does,
then the expression is immediately simplified. Otherwise
given expression is split into main operator(according
to precedence of operators) & argumnents and
recursively for each arguwent the simp routine is
applied and the simplified expression of the original

expression is obtained.

For example

sSimp(X*x™2 + %0, x"3+1)
Listing of this type of routine is found in pages p.1-Z.

The routine, trig simp tramsforms trignometric
furnctions such as sin(Y)™(-N), cos (Y) ™~ (-N), eto. to
cosec(Y)”N, sec{VY) "N, efc. and vice versa. This type of
trignometric ftransformations are used in some problems

involving integration by parts in SCAP.
For example

trig_simp(sin(x)™(-1),x,cosec(x)).



25

Refer to page p.3 for listing of this routine.

.

The routine, simpl(E,X,SimpE) simplifies product
of expressions E to SimpE, which is in the cannonical
form,

1. €. Inumbersi*lconstantsI*[f (x) 1]

In this roﬂtine given expression is split into three
lists, namely numberlist, cdnstantlist (excluding
numbers) and non constarntlist. Each element in these
lists is again a list consisting of two elements, first
element is the base and the second element is  the
exponent. Once the three lists are formed, each list is
evaluated individually and the final simplified form of

the given expression will be

value of nuvberlist * evaluated constantlist *

evaluated non comstantlist

To evaluate the number list, pach element’ sli.ae.

o=
o
W
vt

consisting of two elevents) value is evaluated and
the oproduct of all the elevents values 1vn the Aumbe v

fezt will bhe the value of Lthe number liat

Far example
consider a nuwber list be of the form
Crz, 13, 02,21, 09,113

]

value of each elewent i 1 = Z

8]
—
|
|
L
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and the value of the rnuwber list is

2X9%9 = 162
Procedure to evaluate constantlist and rnon constantlist:

First element of the list is taken. This element
is a 1list consisting of two eleméﬂts bhl-base and el-
exponent i.e. [bil,ell. Now all the elewents having bl as
the base are taken and simplified: to bl“(el+e2+e$+...)
and the remaining elements are stored in a newlist. Same
procedure 1is applied for newlist and it will continue

until the newlist is empty.

For example

consider constant list consisting of following elements
[L3,al, [a, 2], [3,b], La,4l]

First consider the first element of the list i.e. "%

b

take all elewents having base as 37, they are
| [3,al and [3, bl

and its value ig I™(a+h)

vNow t he ﬂewligt is {[Lla,21.[a, 433

base of the firtst element is *a’.

k
7

consider aii elements having base as *a they are
La,21 and (a, 4l

and its value is a™(2+4) = a™t

now the mnewlist is empty

so the simplified form of the evaluated constant list is

I~ (a+b)*a™6. Rules corresponding to the above method for



simpl routive are listed in pages p.3-6.

Example,
Let the given expression be
LR Z2ExTEESIN () ¥ATERLIN(Q) ¥ (1)

three lists formed are as follows

Number list - [Cfz,13, L4, 211
Constant list - [fa,21, lintal), 1]1
Non constant list - [Ix,21,[sin(x),13,[x,—-111]

Numberlist:

[ ]

value of each element is 21 =

4~ = 16
value of number list is Z*1& = 32
Constant list:

all elements having base as *a’ = [a, 2]

its value is a2

new list is [[1ln(a), 111

all elements having base as In(a) = [1In(a), 1]

its value is Inta)™1 = Inda)

new list is ewmpty

Simplified form of the cvonstant list is a™Z*1In(a)
Non constant list:

7

all elements having base as %' are [x,2] and I[x,-11
its value is x™(2+(-1)) = x™1 = x
new list is [[sin(x),11]

all elements having base as “sini(x)’ = [sin{x),1]

its value is sin(x)™1 = sin(x)
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newlist is empty
Simplified form of the Nonconstant list is x*sin(x)
Simplified form of the given expression is

J2¥at2¥In(a) ¥x¥sin(x)

The routine ssinp(Expn, Sexpn) simplifies the
signed expression Expn to Sexpn, with special reference
to sign simplification encountereg in integration by.
parts. First the given expression is simplifyed faor
Unary neggtion and for the principal negative operator.
This negative sign simplification is done by nssimp
routine. Output of this routine is an expression
consisting of principal operator as plus. Now the pssimp
roﬁtine is invoked which Simpli%ies the  outputed

e

expression from nssimp routive to give the final

simplified expregsion.

For examnple
SSimp (" I*sin (X)) —(=3*¥x"Z*cos (1) —(-Exx*sin(x)
—(—(E¥cos (X)) ))) x"I*sin(x)+Tkx"E¥0es (X)) —6¥x*¥511 (X)

+E¥cos(x) ).



integrate, integ

chegk_int

stand_int

int
const_and_int
sum_of_ints
diff_of_ints
int_by_parts
select_the_order
eval_int
testZ_int
eval_lis£
check_tail_eval
test_argl_argZ

differentiate,differ,
diff - ,d
readfile

const

simp

trig_simp

simpl

ss1mp

page (s)
p.?

p.?2

p.3-10

p.11

p.11

29
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4. LIKELY IMPROVEMENTS

SCAP has the flexibility to irncorporate other
methods of integration not considered here, like,
integration by substitution, integration by partial
fractiens, etc. %or this, SCAP has to be enhanced with

following routines. They are

(1) New simplification routines:
New siwvplification routines are to be incorporated
in the siMplification module which will simplify &
transform the given expression according to the type
of integration to which it has been classified by
classification routine. Typically, if the given
expression has been classified as a problew of
integration by partial fractions, simplification
-routines are to be invoked which will transform the
express ion to partial fractions for direct
integration.
{(i1) Classification routine:
This routine will identify and classify the given

expression to ore of the wmethods of integration.

Consider cos{x)™Z

integral of cos(x)™Z cannot be evaluated directly, so

t he ne@ éimplification routine should - transform or
substitute cos(x)™2 to

cos(Z*¥x)/2+1/2
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row this transformed expression can directly he |,

integrated to give the integral of cos(x)™z.



2. LISTING OF THE PROGRAM



ol o e s ane ot s o i i e s e et o S o s . i e et e e e S S S o S e S S8 e R . S o o T 2 o o o o S o o * .
const(V,X):i— atomic(Xi,atomic(¥), (==Y ;! ,faill,
const{H,Ky:=1 Fail. '
const{E,®%):—- E=..[_,Z2],},cons tLg,f).

const{E,x):- rg 1, LE, Lefty, tyconstileft ), arg(2,E,Right),!,

¢
, net (quh ,n).
consti

P e e e #
AEkkdk simp(E,SimpEr: simplifies expression(E) to Simpk kb s

simp(E,E)Yi1— atomic(El,!. :
simplE,SimpE)i— E—..[D,;].gxmp 2,21y SimpE=. . [0,211,1!.
simp(E,SimpEl - E=..[0,L,R] numberLLﬁgnumber(R),

(O==** , nameiR,[45]T111,Tiv==[],L==1,L\==0,

{ .

namellL,[451T2YyynamelP  T1),name(Q, T2},
Z is P72,

(integer{Z},SimpE = Q"R;SimpE = -0"R)

Ji

SimpE = E

3
3;
SimpE is E
Iyt
simp {MAGHNK R~
{
{(number (M), number (M), K iz M+NI;
{number (M), simp (MHN K1
(rnumber (M) ,simp(NHM KDY 3
simp MHR KD

1,
simp (KAX Ry, 1.

simp (MEG Mk Ry -

=

Cnumber (M) ynumber (N3 K i MM
(number (M), simp (M-N,K) )
{number (M), simp(MN-M,K11;
simp(M-M K
Yy, . .
simp{ XX R, 1.



simpCHE+EY , SRy 1~ (V=0 ,R=5;x=0,R=Y¥=Y,R=2%X),simp(R,5R),!.
simpX=~Y,8R)1— ({{¥V=0,R=Ki¥=0,R= =) ,simp(R SR} ;=Y ,8R=0),!.
simpp(HAdY 0y~ {(X=03%=0}),1.
Simp{XdY BRI 1— (¥=1,R=x;X
simp (X 3, 1),
simp{{=¥3*{-Y1,Ry:— simp(X&Yy,R},!
simp(=314Y ,R)s— simp (&Y ,Pl) R = —Rl.!.
simp(X*{-v),R):~ simp(¥4Y,R1),R = -R1,
simp(E“U,lﬁ-—'. ,

simp (™1, )1,

simp (O NY Ry -

1, R=Y;x=Y,R=X"2) ,simp (R, 5R)

{number (M) ,K is M+1);
simp {1, KD

L

H
implx~K,RY,!.

=imp(v+ﬁ“N Fre~- simp{X*NAX Ry, !
simp (RMAMN L RY 1 -

¢ .
{number (MY ,number (N1, K is MN+M);
tnumber (M) simp(MEN,K) ) 3
(number (MY, simp (MM, K3 )3
simp (PN, KD
3y
simpixtEK,RY,!
simp{ (X M3 MR 1=
i ¢ »
{number (M) jnumber {MNY K 1s MEND;

i
lnumbﬁr(H).dlmp(HkH Kﬁ:;
Coumber (MY, simp N, K1)
simpﬁM*N,F)

E]

A
simp ok ,Ry, !,

simp( (EFYINLRY:
(
(==Y, simp( { 2%X) "M, Piﬁ-
{simp (&Y 300 B = HORAEY N
fsimp(X*Y.P},zimpiP“H Foai
Yol
simp(E,SimpE):~ E=..[0O,L,R], ﬁfumlLfL},dTNMIFle,SlmpE =k,
=1mp(E SimpE):— E=..[0,L,R}l,simp{L,5L),simp(R,SR),
TlmpE—..[ﬂ,bL,aF},
{
[Lw==51; P*——dR),
:1mp!T1mpE SimpE};SimpE=TimpE
R :

simpl(E,E}.



P o o e e e e et

Shk%k trigq_simpiE,X,SimpE): simplifies trignometric ewxpression
(E} to SimpE #hhs ,

trig_simp(E,X,SimpE):-

E=..[*,L,R},canst{bL,x],
trig_simp(R,%X,%impR1l),
SimpE=..[*,L,5impR11].

trig_simp(E,* ,SimpE} -

E=,.0",L,R1),number{R1l},
L=..[F,Al,

#

L

(F==sin,RZ=..[cosec,al);
(F==cos,RzZ=..[sec,Al};
{F==tan,R2Z=..[cot&]);
{(F==cot,R2=,.[tan,Al); '
(F==cec,R2=,..[co=s,m1);
{F==cosec,RZ=..[sin,A]]

Ty
SimpE=..[",R2,M].

K e e e e ————————— *

Shdd 2impl(E, <, SimpE): simplifies product of expressionsiE)
to SimpE which is in the cannonical form
i.e., [numbersl*lconstantsl®[f(x)] *&k-

Eimpl{E,E,R}:- simpiE,SimpE),simplliSimpE,®,R).
simpll{-E,X,-R):- =impll{E,¥,R),!.
simpllCE,®x, R~

E =..[*,E1,E2],

formliste(EL %, [1,Mlistdl,[7,01i=td,[],
' : MCli=tll,

formlists(EZ,x,[,Mlist2,[],Clist2,[],

append(Mlistl MNli=zt2,Nlist), :

appendi{Clistl ,Clist2,Clist),

append(MNClis=tl ,NClist2,NClist),

evgl MlistiMlist,MN},.

eval _0listi{Clist,C},

eval Olist(PMClist,NC),

¥o= ML, simp (Y SimpYy,

SimpyANC,

ot

-
L
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simp{Z,R}.
simpll(E,®E):= 1|,

FhdE formlists(E, X, 0 ML ,M_ML,0_CL,N_CL,0_MNCLMN_MNCL):
splite the expression E into three lists:
Mumberlist (ML), ,Constantlist{CL), Nonconstantlist(MNCL).,
0 & N represents Old & Mew lists ks

Formlists{P*Q,X,0ld_Nlist,New Nlist,01d Clist,MNew Clist,
' Old_MClist,New MClist):-

formlists(F,®,0ld_Nlist,New _MNlistF,
Oid_Clist, MNew ClistP,01d MClist,

Mew_MClistP),

formlists{Q,*,[],Maw _MlistQ,[],Mew_Clistl,
[1.,MNew MNClistQ),

append{Mew_MlistP MNew _Mlistl,MNew _MNlist),
appendiMew ClistP,MNew_ClistQ,Meww_Clist},
appendi{Mew_MClistP MNMew _MClistld,Mew NClist},
| ‘

formlists(E,x®,0ld_Nlist,Mew _Mli=st,01ld_Clist,Mew_Clist,
Old_MClist ,New MClist):-

{ }

(rumber(E),
append{0ld_MNlist,[E],MNew_Mlist));

(€ =..[",P,01,
number {F) ,number (0,
(P==1iP==0iname(Q,[_I1T1),T==[1),R is E,
appendi0ld Mlist,[R],Mew_RMlisti}

3y :

appendi{ld_Clist,[[1,1]] ,Meww_Clist],

appendi{0ld_MClist,[[1,11],New_MNClist),!.

formliste(E,¥,0ld _MNlist,New _Mlis=t,01ld_Clist,Mew_Clist,
Old_MClist ,Mew MNClist):-

,
(E =..[",P,Q],
const(P,®{),const{Q,x),
appendi{0ld_Clist,[[P,Q]],Mew_Cli=t));
{const(E,X),append(0ld Clist, [[E,111],
Mew Clistid
1y
append(0ld_Mlist , [1],Mew MNlist],
append(0ld MNClist,[[1,11],New_NClist),!.

formlists(E,x,01d _Nlist,Mew_Nlist,0ld_Clist,New_Clist,
0ld MClist,Mew MNClist)i-



ps

not const(E,X),
{ .
(E =..[",P,01,
append(0ld MNClist, [[P,Q1],Mew_MNClist));
append(0ld NClist ,[[E,1]1]1,New MNClist)
Iy .
append(0ld_Mlist, [1],New_Nlist),
appendi{0ld_Clist,[[1,1]] MNew_Clist),!.

Hhdck eugl Mlist(L,R): evalustes the numbsr list L to
give result as R Ahks

eval Mlise{[],10:— !.
eval Mlist{[H|T],Result):i— tezttzil_ evalMlist{T,H,Result}.

Shkk testtail_evalMlist(L,IR,FR): tests the tail of the
list({L} and svalustes to give final result FR fraom
the initial result IR #4#&&/

testtail_evaliMlist([],H,Hy:— 1,

testtail evalMlist([H1|T1],H,Result):-

MewH is H&H1,
testtail _ewalMlizt(Tl MNewH,Resultl.

Shkdh oewsl Olist({L,R}): evalustes the other lists
i.e.,Constant & MNonconst lists to give result as R #&ks

evsl Olist{[},lr:— 1. -
ewal Olisti{lList,Result):~ evaleachE_withnextE{List,1,Result)..

evaleachE_withnextE([],R,RY):— I,
evamlegchE_withnextE(List,IResult ,FResylt}:i-
first_two_F=_of(List,RList,EY, E2),
equal_base_ test{El . E2,RLicst,[],Mawlizst,
Result},
simp{lResult¥*Re=zult ,Resultl},

evgleachE_withnestEiMNewlist,Resultl,
FResult).

firset_two_FEs_of(list,Mlist,P,0):-

first_E_ofi{lizt,MNLicstl, F),
first_E_of(MListl MList, L.

firet E_of ([1,01,010:— 1.
firet_E_of ([H{TI,T,Hy:— !.

equal_base_test([Bsl,Expl],[1,[],01dlist,0ldlist R):—



p-é

simp(BEsl"Expl,R),!.

equal_base_test([Bsl,Expl],[Bs2,Exp2],RList,0ldlizt,
Mewlist,Resulti-

atomic(Expl),atomic(Expa
name(Expl,[943|T11),TiN==
name(Exp2 JJ421T23 1, T2==
(

Dy
==[],
==[]
{number (Expl),number(ExpZ},

Exp is Expl+Exp21;
simp{Expl+Exp2 Expl
2y
number (Bel) ,numbsr(Bs2),Bs is Bel¥*BeZ,
firset_E of{RList,MewRList,E3),
equal_base_ test{{Bs,Expl,E3,MewRlizt,
Qldlist Mewlist,Resultl.

equal_bsse_test{[Bsl,Expl],[Bsl,Exp2],RLi=t,0ldlist,
Mewliet,Resulty:e-

simp{Expl+Exp2, Expl,
first_E _of(RList ,MewRList,E3),
equal _base_test{[B=sl,Expl,E2,NewRLi=st,
’ Oldlist,Mewlist,Result).

equal_base_testi{El ,E2,RList,0ldlist ,Newlist,Resulty:-

append{0ldlist,[E2],01ldlistl),

firet_E_ofi(RList,NewRList,E3),

equal_base_test(El,E3,MewRList,0ldlistl,
Mewlist,Result}.

append([],L,L}.
append({¥X}L1],L2,[®]L23]y:— append{lLl,Lz2,L3).

functor(C,—,_J,
arg(l,EEl),arg(2,E,EZ2},

check numfEl Mumberl ,Atoml),

check _num(EZ,Mumber 2. &tomz),

Mumber i=s Mumberl-HumberZ,

Atom = Atoml—AtomZ,simpi{Atom,Shatom),
SimpE = Mumber+Sdatom,simp(SimpE,R).

sp{E,E):—1.



check_num{E,E,00:~ number(E), .

check _num(E,0,E)i- stomic{E),!.
check_numiE,Mumber 58 tom) 1 -

functor{E,+,_),
arg{l,E,P),arq(2,E,0},

check _num({ P, MHumberP ,AtomP),
check_num(QMumberQ,&tomil),

Mumber is MNumberP+Number(,

Atom = AtomPratoml,simp{&tom, SAtom) .

check _num(E Mumber ,S&tom) -

functori{E,-,_1},

argi{l E,P},argi{2,E,4),

check_num{F MNMumbesrP,AtomF),

check num{l,NumberQ Atoml) ,

Murmber is NumberP-Mumber(,

fAtom = AtomP-Atoml,simpi{dtom,S5A8tom) .

Fhkk ssimp(E,SE): simplifies the signed expression
E to ZE *&*%7

S
=

simp (P40, 5P*8Q) 1~ =simp{P,5P),=ssimp(0Q,504).
simplExp ,8E2p)i— nss

nesimp{E«p ) ,,pessimpiX,5Exp).

nesimp (-0, ULFR Y - nssimpl U, ULy, nesimpl (-, V1),
nesimp (Wl ,R).
nesimp(~CUH Y L ULHRY = nssimpli-U,Ul) ,nssimpl{~,V1),
nesimpil R,
nesimp(—{-U-t) , Ul+R1:- nesimpl{U,Ul},nesimpl (&, W12,
nesimp(Ul,R).
nesimpl=(U~-3 UI+RY i~ nesimpli-U,Ul),nesimpl{V U1y,
nesimpi{W1,R).

P

nesimp(U-L, UI+RY :— nessimpl (U, ULy, nesimpl {1} ,nesimp (V1R .

nesimp{U,U):— 1,

nesimpl{—-{-U),R):— nssimpl{U,R2,!,
nesimpl{-(Uy,-Uy:—
nesimpl{U,Ur:— I,

pesimp(tH{-UWHN) R - pssimp(U-UHH R,
pesimp iU+ (AWM Ry i~ pesimpCUVHN L, RY .,
pesimp (- U=y =- 1,
pssimp(+(+HUy M- 1,
pssimp(+(-U),-Uy:—- 1,



pesimp iUy Uy~ 1,
pesimpi{l,Ur:i— |,



R o e o e ot i e e o e
integrate :- tell{t3),readfile(file},
repeat,
integ,nl,nl,
printi Do vou want to integrate another expression?
readiAns ),
nl,
Lfén=\==3 s, truel;faily.
integ 1- nl,
print(“Give the expression to be integrated : 7},
read{E),yY =..[check_int,E,%,Result],
callcy),nl,nl,
print{ “Integral of‘ ),tabi{3),
print(" " 3,print{E)y,print ("""},
tab(2),print(’ iz = ) ,tak{2),
print{Result),!.
R et
Fhhk check _int{Exp,®,R): checks the expressioni{Exp) and

integrate Exp w.r.to ¥ to give R #hkk/

check_int(-E,X,R):- check_int(E,%,R1},k = -R1.

check _int{llA/V M RY e~ simp{l (-1 ,Er,check_inti{E,® Ry,

check_int{E,x,R}):-
stand int(E,F,P),
const_and_int(E, X, Fy;
Eum_ﬂf_lnt (B, R 1
diff _of intsi{E,x,R});
int_bv_partslE,%,R]

e e s e s o s s e e s ....._.._.-...._....______._..._.._..._.................__.._......_._

Shdek stand_int(Exp,¥,R): expression(Exp) iz = standard
integrand 1ntegral aof Exp w.r.to X is R %kds

stand_int(E, ¥Ryt~ int{E,X,R1),simpl{R1,<,R),

Fhdk int{Exp,¥,R): gives integral of expression(Exp)
WLt to X oas ROodhRS o

int{a,X, A% i—- const(d,xy,!.

1nt’Y“( =13 Xy In{¥y— b

intiH,X,Pii— intd{x"1,X,P),

intie~d ,X,a™X1:1- 1,

int{e U, ,Py:- zntte“u L RY,Diff LU, Ul ,const UL XD, !,

-k

-
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F = Ul~{-1)*%F.
intCE N, MY ~13%"M) i~ constilN,X),

(number (M) ,M is N+1,!;M = MN+L1D.
int{AK, X, ln{ar (-11%8"¥) 1~ cons tfﬁ,“,,..
int(AMIEY X Pii— const{Aa,X),int{a"U,U,R),diff (U, %, Ul),

const{ULl, X, ,P = U1™{ ~1)*R.,

int(-T,<,-Fy:— int{T,x,F).
intisin{(X) ,X,~cos(X)):~ 1.
intf{ocos(x), %, inf“3)'— !.
intisec(X)*2,X,tan{¥)y:— 1.
intf{sec(W)"2,X,R):- 1nf(¢ec(U)*2,U,R1),diff{L,E,Ul),

const{Ul,x<),R = Ul~{-12%R1,!
inf(rocec(H}“E,,, —cotixir:- !. .
int{cosec(Uy*2,¥ Rt~ intf{coseci)™2 ,U,R1}, dlffo./.th

const{Ul,Xy,R = ULI~{~-13%R1,

int{sec(Xi*tan(X) , X,—sec(X11:- 1,
inticoseci{Xibocot{X) ¥, ~cosec(X) )i~ |.
1nthan’¥,,e,lntdec{%fj}.
int(tani{X),¥,-ln{cos(¥121:-1,

inticath),,,lnf=1nL L3120

int{ootix),®,~ln{cosec{X)}))i~1.

intisec(¥), = ,ln(sec{%}+tani¥3)):—!.

int{cosec(X), ¥, lnl{coseci{X¥)~cot (X3 1:-1.

int{E,®x,RY:- E =..[D,U}.DE==3—‘.UH——&,E,inth H,R13,
JifFCU,%,01),const(Ul,X), ! R = UL4(-1)*R1.

int{U0-13 ,5,Py:i— 1nfLU*l-l)._,P) dlff(U. JHL) yconst{UL XY 0,
F o= W14 (-1)14R,
int{U N K, PY- numberLN,,..lntLU H u, P},diff(U,K,Ul},
const (UL =y, F = Hl g ~131%R,
intfCl-x"2x (-2 -L1)1,x,arcsin(¥})) .
int{ (& 2-="21" 0 -(2°(-1212y,¥,Fi:— 1nteqertﬁ,,
P = drc=1n(’*(A) =132

S

-l arctan(H) ) -

Y -lyMyarctan(Xy) -

TEIMC=1) ¥ FPli- inteqger (A,

F o= arcfantykh’f 1\Aﬁ*f- 1.
int{{A"2+" 23 (=17, X, Pys— int{ (X "2+A"23" (-1, ,P).
int (MM2+8) (-2 ~ lﬁﬂJ‘X,lnf HACH 2HHY (2401212021~
integer({a),

=133, K Py int{ (¥ 2+A0 (2701200 Py,

(=233, 5, ln{+ " 2-A)"(2(~-1) )~
integeri{f}.

int{(1+x"2
int{ (X241
int{ (X" 2+4

int{ (a2~
intf{x"2-81"({-(2"
int({x"2-A"2)"(~-131,X,Py:— integer{&),5 is %A,

F = S%¢-1x*1ln{(X-& I*rV+A) -1,
int{{Aa"2-X"2)"(-11,5,Pi:— integerif),5 is ZkH,

F o= ““i*lﬁi’n((ﬁ+V)*Lé—X)“f-13)-

A e e e e e e e et e e ot e e e e e e o S s e e o e e e e e de S

ShEh conet_and_int{(Exp,®,R): expression{Exp) i= of the form
(constant)*(expression) %iks



p-lt

const_and_int(E,x,Result):-

E =..[*%,P,EL],
consti{P,xX3,!,
test_int(El,®x,R1},
R P&RL,
simpliR ¥ ;Result).

il

test_intiE,¥,R):
stand_dint{E,x,R);
const_and_inti{E,x,R);
sum_of _ints(E,X,R);
diff_of _ints{E X,R).

A e e e e *

Ahkk zum_of _ints{Exp,X,R}: expression(Exp) is of the form
{expltexp) i.2.,5um of [dintegrals A&ES

sum_of _ints(U+V, X, UL+ 2~

testl int(4,Xx,V1),
testl int(U,X,Ul).

Shkd diff_of_ints(Exp,%,R): expression(Exp) is of the form
{expl-exp2) i.e.,difference of integrale %k

diff_of_ints{U-4,%,U1-U1) ;-

testl_int(d,%,V1),
testl_int(U,X,U1).

testl_int{U,%, U1y~

Ll = [‘}’(F‘QEI] ]
simpl O™ (=12kF, 3, Simplly,
testl_int(Simpld, X, ULy, !,

testl int(U,X,UL):-

stand_int(U, X, Ul);
const_and_int(U,x, Ul);
sum_of _ints(l,x, Ul
diff_of _ints(U,x, U1l
imt_bw parts{U,x, Ui},

Shtk int_by_parts{Exp,¥,R): expression(Exp) iz of the form

pixi*g(x} i.e.,integration by parts *&ks



p-l=
int bu _partsiWd ¥ Result) -

select_the_order (UkU,X,R),
evszl 1nfo,H,Fli,__1mp(Pl Resultl.

int_by parts(Expr,¥{,Result):-

Expr =..[1ln,x],Ex

prl = Expr*i,
eual_lnt(Ehprl‘i,R)

sseimp(R,Result), !,
int_by parts{Expr,®,R):— R = “"Sorruv,l cannot integrate"’,!,

e e e e e de o

Fhkd select_the_order(Exp,x,RY: orders the expressioniExp)
to Rk '

H
i
ot
n

ct_the_ovder{ Uk, Ry
(
(

U=..[0p,_1,
(Qp==zin;0p==cosijOp==tan;lp==cotjlp==s&ec;

qu.:"
sconst{ULl, Xy,

L] 3 .
,l1=..{Up1 3,
e

V=, . [1ln, _J¥3(arg(l,V,W1),

Wi=, . [1ln,_J;{Wi==e,U =..[~,L,_1,L%==x)

select_the_order (LW VY- 1,
K e e e e de

Ahkd sugl int{Exp,¥,R1: svaluates the integral of ordered
Exp tu B okhks

eval int(l),x,Fesult)-



stand_intd{V, X, W1y, simpl (WAL, R,
L1 = [R],

diffl, =, Uly,simpl (UL+VL X, Exprl),
testZ_int{Exprl 2,0, L1 Newlist),
reviMewlist,List),

sval ll’flLlﬁt,; Pe_ulf)

eual 1nrfUA¢,K Resultl:-

eval _int(UxY X ,Result):~-

U = . -[ - lel‘.".‘] s

=L LML 2T,
Lompdreg<.Ul.U2),
Ve =. -[fﬁ'yF'g':!] s
number (Y,
F=..[_,P1,FP2],
atomici{Pl) ,atomici{P2),
= WI-P,spi(D,Simpl),
number (Simphy,
Mois 1-0,
ar is -4,
MNewdt =, [+ P (MY SimpD&P~({0Q13 1],
test ﬂTﬂi _argdiMentd KR, b,
Re culf = LR,

eval _int(Us) X, Resultli~

Ll:,,[ E'."};

=, .07,M,01,
(

D =..00pl,1l,cos{ArgD)];
D =..[0pl,cosi{AaraD), 1]
2

Mewarglh = 240-13%Araqb,
simpl (MewfrgD, X SArgb),
¢ _

(Opl=="+7 Newh = Zkcos(Sargbi~2);
{Opl=="—"' NewD = E*Si (SR rng‘a‘
Ty
(

(M =..[0p2;,Ln,=sinlAargDby],
numberilnj,

F = Ln¥MewD~{-1173;

(N = [Up;,dznféthx,Pn].
numbﬁrtFnﬁ

P = Rn*HewD“(—l))



1y
simploF,x,5impF),
trig_ bzmpf31mpP.».RP;,

(
ff_'.!p ==+ D = tan{.SﬁT’gD));
(Opl==7-7,0 = cot(SArgD))
Ys

Mewtd =, . [0p2,5F,0],
test_ﬂrgl_erE»HewU,E,R),!,
Fezult = UsR.

. S S

test?_int({—Expr,x U Oldlist Mewlist) i~

append{0ldlist,[-],01dlistl),
testd_int(Expr, ¥, , 0ldlist]l Newlist).

testZ_int(Expr,x, W ,00dlist Newlist) -
(

canst_and_int(Expr ,¥X,R1l};
stand _int{Expr,®x,Rl}

3y
,1mpl(P1 X,F),
L = [R],

append{Qldlist,L Mewlist),
testZ_int(Expr,x,Ux),00dlist ,Newligt) i~

{
({Expr==U&t;Expr==U%),! ,Const = 11;
(Expr =..[*,Exprl, Eypr;],
canst(Exprl, ¥,
(Expra==U)yExpra==t&kl},! ,Const = Exprl)
3y
L=[Const],
append{0ldlist,L ,Newlist]).

test2_inti{Expr,x,Ud},0ldlist Mewlist)s—

E«pr =..E*,C,MewExpr},

({maot const{C,x), C,E2=MewExpr ,C1=10;
MewExpr=..[*,ELl, Ed},El =C3,1,
EElECt~ThF_OTdETLEl*E_,A'HeUElﬁﬂeNEdj,
stand_int(MewE2,¥,R),simpl{Cl¥*NewEl#R ,¥,R1],
L = [R1],

dﬂﬁ“ﬁd{ﬂldlidr L.L1),

diff(MewEl W, 0, simpl {CL&DAR (X Expr2),
fehth_lnffExpr LR L LT  Mewlists,

T e



Fhkdk vreu(ll My reverses the order of elements in list L
into list M #h4s

Fe"-'”:[]j[:f)- :
revi[HITI Ly:— veu(T,Z),append(Z,[H],L}.

Shkk append(,Y,L): aspends the list X with list Y to
new list L A&ks

append([],L,L).
append([®L1],L2,[¥{L3]yi— append(ll,L2,L3Y.

e e e e e e e e e e e S ——— */

Ahdh evsl list{L,;¥,R): evalustes the list L to give
result as R dokks

eual list(list,X,Resultl:-

hati(list,HL,Tl},
check _tasil_svwal{Tl,%<,Hl,Resulty,

SHhk mEt(L,H,Ti: gives the head of list L as H and
tail mz T K&k

hat([HI ,H,[1):= !},
hat{[H|T]1,H,T.

Shdk check_tail_eval(bist, X, H,R): checks the tail list {Li=st]
whose head value is H and evaluates the list o
give final rezult as R hk&s

check_tail_eval(T,x,H,Result):-
hiat({T,H1,T1},

not const{H, ),
Hiw=="=~7 ,Tl==[1,Result =..[-,H1,H].

check _tsil_eval(T,<,H,Rezult):-

const(H,$),hst{T,HL,T1}:,
{
(Ti==[1,R = HL};
{Hi=="-",evgl_ list{Tl,%,R1l1;
{(Hi=="~" ,eual_ list{T,x,R)}
3y .
simp({1+HY*(~-1),Const},
Result = Const®R.

[y
gy
i
p
=
-+
]

il_eval(T,x,H,Result):-



hat{T,HL,Ti),

Hix== =7 Tix==[],simp{HLl SimpHl),
R o=..[- .olmle HI, -

check_tail _ewsl{Tl,<R,Result).

check_tail _evsl({T,«,H,Result):~
Fat{T,H1 ,Tl:,

Hl == “-‘,R =..[-,H1,
check _tail euwsl(Tl,x,R,Result).

P e e e e e e e e e e e e e e e e S
Fhhk test_ rgl argaiExp,»,R): teste lst arqument with the
2nd argument of Exp to give result gs R Hhhs

test_argl_arg2dW,x,Result)i-

Vo=, . [0p,V1, V2],
{
(:Dpzz"'-{-"!
{
(diffeVL ¥, R, compare(=R1,V2),
Result = Vlj;
(dif V2, x,Re) ,comparel=,R2,M1),
Rezult = v--;':
testl _int{W1,%,R2),comparel(=,R3,V2),
Result = W21,
(testl _int V2, ¥, R4y, compare(=,R4,U1),
Fesult = W1

”th.w
]
I
il
.
1
-

ldlff(Ul,ﬁ Ri),comparel{=,R1l,-2),
Pe=ult = “l;;
(diff{-Uz,®,R2),compare({=,R2,V1),

Result = —U2);
{testl _int{W1,¥,R3),compare(=,R3,-W2),
Fesult = -U2);

(testl_int (-2, X,R4) ,compare(=,~-R4,U1),
Result = L)

e

differentiate :-readfilei{file),
repest,



p-i7

differ,nl,nl,
print( Do you want to differentiate ancther expression? ),
read(fne),
nl,
{{aBnsx==yes,truel;fail).

differ - nl,
"print{‘Give the exzpression to be differentisted 173,

readi{El,
R o=..[diff, E,ﬁ,Fe»ult}.LallgP;,nl nl,
print{"The differential of "),tab{3}),
printiﬁ"’E,print{E},print(’"’),
tab(2i,printi{ iz = “3,tabi2},
print{Result),!.

S G G sl
diff(E,¥,Resulti:— =imp(E,SimpE),d{SimpE,¥,R),simp(R,Result),

Aok dev “,P}: gives differential of expression(Exp)
e fg # oms R OkkkS

di,x,1).
die"x, X.e”V)-—i.
di e U,\,P;'— die~U U R1),d{U,x,ULl),R = U14R]1,
disin( <),,,caqffll'—'. ’
d(cosLX) smEinf{Xire-l,
di tan () h,dﬁc(vﬁﬁzﬁ'— b
d{cotixj,f —cozeci{X1%2r- 1,
dicosec{ ), ,~cosec{(l*cot{«re—- |,
dicseci(¥),x,sec()b taniXi i~ |,
AdIn ) MyH -1y =t,
d{in{W) ,*,R)— Jd{lnCUd U,RL1,d(U,®, ULy, R = UL*RL,
AKX, 001~ cons tfP.AJ.
d(—T,f.—P}-~ diT, xRy, . ,
dfT %, UL*R1) s~ T—..[F UY ==k, duU, 2, UL ,d{T,4,RL), 1.
dLU+U.A_U1+U11:— dfu,a.Hlﬁ gt} = Ul} I,
AU W UL -V e - dOU, UL, de,ﬁ.« N
iRl ALY - ccnbttk ) de,;,Ul} L.
UL G UL AL AL — diU,M,Ul,_dL“ ML,
g MM KGNS MY - const{N, X, _

tnumber (M) Mw==0,M iz N-1,1; M=h-=1).
A UMM, DURRY s — number (M) ,d{UH L UL,RY ,d{U, X, DU,
dlUAU.ﬁ NI LV H !“~1)+lan;AH*“*Ulﬁ'— not [const(U, X1y,

diu,»,ulr, dfu,?,“li

A USSR = dOUR (=1 (K R,

T e e i e e e e e e e e e e e o

Shkk const(Exp,¥): determines if expression(Exp) is a
constant w.r.to ¥ or not w5



bol&

const(Y, %)= atomici{X¥),atomic(¥), (==Y ,1;!,faill.

consti¥,Xyi-1,fail.

constiE,®xi:— E=..[ 21y baoanst i, X)),

L0n=ffE,Yj:— ragil, E LEFT) yoconet{left,X),arg(2,E,Right),!,
rct!P1gh f}. '

A

consti__,_J.

e e e e e e e
HShkdk veadfile(X): reads the file X #kds
readfile(¥) i~seeing{01ld) ,sec(¥i,readline{d} see{0ld),!.

readline(Crii-read_in(5,C),C1 is Cr+l,
(({C==2c;C==4),seen,!);

23 ,nlywritel "You want more?’ 1, tab(2)
seeingl{0ld) ,seefuser], rﬁadthne’,
{fAns==yes, ({nonvar{S,uritel{Sh)

rnadllne
{seen,!)

(Zy,nl,readline(Cl));
ite{S),nl,readline(Cl)

read_ini{d,C20 5~ getDCLj,rwadward(E WL, 2.

readuward(C,W,C21 35— inwardfC JMewly , t ,get0{C1l}y,
rgEtHanlrl,__,:Ej narme(ld, [Mewlils]).
resduwerd(C,W,0).,

restuard( L, [Newl]Cs],C2) - inword(C,Newl), ! ,getl(L1},
restword(Cl C=s,02).
restword(C,[1,C).

1 Celi

7

™o

inword(C,C)
inword(C,C)

- C} .

=
=
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- integrate.

* L4 BDUWICE TO THE USER A7 *

* Always give the input expression in the cannonical form, *

* [numberloperator[constantloperator[Flx)].

=

* examples: Zkaksinix),
G4+1n(314cosix).

* Any input must be terminsted by 3 7.7 (dot)., ) *

#* Exponentisl ocperator is "7, : *

& ' *
dekdododokhhdoddohdohdok ki dddrdoke ek HAVE & MNICE SESSION Addddddohbdddodddodddddridddod

Give the expression to be integrated : x5,
Intégral ﬁf i is = Eh=1ku"G |
Do wou want to integrate another expression? ves.

Give the expression to be integarsted : sin(=z)tcos(dks+3),

Integral of "sin{xitoos{dhutI)" is = —cos(u)+dt-lasin(dhx+3)
Lo wou want to integrate an&ther expression? ves.

Giwve the expression to be integrated @ z"xdoos(3%x+4).

Integral of Yatukoos{ 2hx+gr " is = (l+infa) 2k -2 -1k{3*-1%{a"x
deinf3hx+4)1+lni{a)dg -2z " wkoos(Ihkx+d) )} .

Do you want to integrate ancther expreséion? yes,
Give the expression to be integrated 3 Indxd.
Integral of R is = In(s it —x

Do wou want to integrate ancther expression? ves,
Give the expression to be integrated : lIn{x) .

5

integral of "Inlx)Sw" is = 2=1*lnixy"2



Do vou want to integrate asnother expressian? ves,

Give the sxpression to be integrated @ e®xk{tan{x)- lnkco 2R I

i1}
fl

integral of fetwdh{tan{xi-ln{cos(x}1 )" i etyk({—ln{casi{x)l)
' vou want to integrate another ex pression? ves.

Give the expression to be integrated : e®x¥((l+sin(x) ) (l+cos(xddl).

etxktani 2t ~1%x]

o
L]
i

Integral of "etuk({lteind{x) 1S (1tcos{x2a "
Do veou want to integrate another expression? ves.
Give the expression to be integrated : e®xd{{x-137(x+13"33.

gtxk(x+1l1"~-2

21
S
'™
n

i}

Integral of Tetah (x-St 3
Do vou want to integrate snother expression? yes.
Give the expression to be integrated @ x%4%1lnix21™4,

Integral of Putdklnixitgn” is = S=14%{1ln(x)"4&kx 51 —4&25-2%(1nx;
ATk SOIFI NI 2T - 3#(ln(x}“gﬁx*5)—24$C25“-4*fln(>3 """ R B Sl Y SCK LR Y Y

Give the expression to be integrated @ cos(Skx+d)idkx"6,

Integral of "cos{Ikxtq ket 0 is = =1k (" Ehsin(Shx+d) 1+EX25 2%
(x"S%kcos(Thxtd) ) -30% 1257~k (" dkein Dk +4)1 ~LE0XEZTA -Gk x Dhcosl Shxtd)
+350*3125“—5*{ﬁ“2*51ntEiA+4))+;26*15€25“—tﬁi«*ﬁnb‘%ih+4;;—7”ﬂ*7qliq*—
Fhsin(Tkutd)

Do you want to integrate another éxpression? yes.

Give the sxpression to be integrated : sin{avtx+blidx"G,

Integral of "siniaketbikx~SY ie = —gt=l%{x"Skcos abxt+b) 1 +5hat 24
(x*ddsinakutb) )+20ka” -3k (x"3kcos(akx+b) ) ~60ka -4k (" 2%sinf akx+bl i -120
kg ~Sk{wkoos( akxth) ) +120%s" ~Ekein ( akxth)

Do wvou want to integrate another expression? no.
* Cad F
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?- differentiate.

-

drhrdededhe Ao dode et sk Ao de oo e dohe e ke oo e Ao do e ok e bk ok dekek e bk ok dedode e dedo bbbk
£

SO AalDJICE TO THE USER #7 #*

: *

#lwavs give the input expression in the cannonical form, *

*

that is, *

' %

[number Joperator(constantloperator[f{x)]. *

*

* . ezamples: Fhaksin(xl, *
* G+ln(31+cos(x), . *
¥ +
* Any input must be terminated by & “. {dot}. *
* . : %
* Exponential operator is 77, *
o *
dedrdhddhe ot b d b h bk hhd HAVE & MNICE SESSION dohddkhdddkbddddrbhdd b ddedodk Aok

L}

Give the expression to be differentiated tcos(Zhx).

ois = —3ksini 3kx]

b

St”

The differential of Toos( 3k
Do wou want to differentizste another exxpression? ves.
Give the expression to he differentiateﬁ L A

The differential of TPt is = Fhu i

Do vou Want to differentiate ancother esxpression? wes.
Give the exprescion to bhe differentizted :13%x.

The differential of "yt is

Ini{alika™x
Do wou want to differentiate ancother esxprecsion? yes.

Giwve the expression to be differentiated 1x%x.

The differential aof oty ® iz = whu M (H-1a1+ln(xdketn

Do wvou want to differentiate anocther expression? no.
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