DESCRIPTION AND SYATHESIS

IN

patrern recocnition

A thesis sumptead in partial fulfilment
Por the Ausrd of the Dogree of ПASTER OF PHILDSOPFY
vi L $_{1 \beta}$,

3AUAHARLAL NEHRU UNTVERSITY
 NETHELHL 110057

ScHOOL OE COHPUTER AND SYSREMS SCIENCES
 HE DELHI-110057

The research work embodied in this diopertation has been carried out by when Reich Rani at the school of Computer and Systems Sciences, Jawharlal Nehru University. Hes Deli - 110057.

This wow is original and has not been submitted in part or full for any other degree or aplomb of any other University:

R.Sadananda
 DE. R. SADALIANDA SUPRKYISOR

N. r. Murthenje
 1 HCHARES

SCHOOL OR COMPUTED AMD SYSTEMS SCIENCES JANALARLAK DEKKO UNIVERSITY (EU DELHI - 110057.
Working with Or. R. Sadannde, my diseertation oupervisor, has been a reugrding experience. The tillingnese and eooperation that he has extended gt all times has been constant souree of encouragem pent to me. I alse thenk him for his patiance end the guidence he has given duxing the course of this disecrtation.
My gratitude $i s$ alae due to Dr. NoP. AukerJee, In-charge, School of Computer and Systoms Selences, Jaugharlal Nohru Univarsity, Net Delni, far not only providing all possible holp and facilitiog, but also for his intarget and enthusiasm in the presant uork.
1 thank my calleagues and the technical ataff of the Computer Contre, for heving halped no at various stages of this disaertation.
Pege
ACKNOLLEDGEMEMT 4
contents 41
SYNQPSIS iv
CHAPTEA 1
1.1 Artificial Intelligence 1
1.2 Computers and Psychology 3
1.3 Scene Analysis and Computars 4
1.4 Scope of Present Work 5
CMAPTER 2
2.1 Pattern 7
2.2 Approaches to Pattern Recognition 6
2.2.1 Statistical Decision Theory 8
2.2.2 Syntactic Approach 11
2.3 Linguistic Methods and the Present work 12
2.4 Gramar Controlled Pattern Anelyser 13

CONTENTS (CONTO.)

Page
CHAPTEA 3
3.1 The Image former 15
3.2 The Syatem ANS 17
3.2.1 1_DATA 19
3.2 .2 TEE 19
3.2 .3 H10_L 21
3.2.4 ST_L 21
3.2.5 Thf RN 23
3.2 .6 日U_R 23
CHAPTER 4
4.1 The Domain of AMS 26
4.2 The theight Systen 27
4.3 Leaming 27
4.4 Future Trends 29
APPENDIX A
A. 1 IDATA 30
A. 2 TEE 33
A. 3 HID 2 35
A. 4 ST_L 35
A. 5 TR_RN 35
A. 6 QUB RN 36
appemoix \quad a 37
BIBLIOGRAPHY 36

Since recognition of pattams is intrinaic to intelligence, the atudy of pattern reeagnition as independent disciplin has gaineal a lot of importanee in the past feif yars. Research and developuent In pattern racognition has been malnty along two general paths decision theoretic appraach and the syntactic approach. In the decision theoretie approaeh, set of charactarlstic features ere oxtracted Pron the pettems and a pattem is transformed to vector in the feam ture gnace. Recagnition of ash pattern is usunily done by partitioning the fonture opace into the pattern clase and assigning the input pattern to a partioular pettex class on the babis of the velue of its Peature vector. In the byntectic epproech, the pattern primitives are seloeted and their reletions in the pattern are described by sat of syntactic rules. The result is a structured tescription of the input. Both appreaches have led ta number of useful resulte of theoretical and prectical importance. The choice of the pproach to be follougd depents on the kind of pattems to be recognised. It has now been raalised that a gosa pattern recagnition system usas deaision theoretic, syntactical and heuriatic mothods at various atages.

Since meny problema of pattern raeognition are concerned tith Picture anelysis and degcxiption, degeription schomes based on a syatax are ubry useful and poverful mathods of solving such probleme. Ine of the areas of picture analysis and deacription uhere deseriptive nethods
should prove to be ustful is in recagntuon of partially oceluded objects. With powarful descriptive apparatus, it is posaibie to Synthesise the objecte into Freognisable wholes in a gestalt sense. once the scone is subjected ta a descriptive andiysis.

In this dissertetion an atterpt has bem made to une descriptive achenas to find out the hidden lines in a pattom and on the principles of Gestalt psychology to detormine the ohopes of figures, some of which are hidden by othars.

The input patten after premroceosing is reduced to a labelled Bketch consisting of straight line adges. The relevent information pertaining to the points and lines under consideration is also extracted. On the basia of this informetion and the gremner supplied to Ehis systom, it determines which may be the possible hiteden ines; 1.e. Lines which are averlappod by another figure. The system procesde by first detemining the kind of joints at various vertices, 1.E., how many linas meat at a point and their configuration with respect to ench other. It then finds out which of these line segments may be parts of a larger lines, a pert of thich is hidden by another figurge On the basis of this informetion and principles of Gestalt psychology, the two segnents are treated ae one straight Line. Using different types of gyntactic rules, depending on the shape of the geometric figure to be recognised, the syotem attempts to recognise the figuras according to their shapes.

Bifferent kinds of gsonetric figures have different sets of Qyntactic rulea for their recognition. By finding out which sets
of production rules or descriptions are gatisfied by paints in the pattexn, the syatem attengts to rocogise the various figures es
balonging to different eategories, typified according to thait shape.

Some possible extensions of the system are also suggested.

The human brain is a very complex entity and little is known about ite internal mechanions and organisation. Any attenpt at ainulating its activities in tho hopa of understanding it en cen be of some success only if te have deuices thich can not only atore huge amounts of information but albo orpanise and procese this information at very high speads. tut it can not be concluded that these achiovenents in harcware alone can pave the way for understanding the neuralogical mechanisms and organisetion. Pexhapo, more significant may be the role of softudere development. We may negd a. softuare temhology to hendle vact amounts of data and methods to hendle with eaze combinatorially axplosive problems - performance of ordinaty importance to biological beings.

The repid development of computers from the fiftias onearde in terms of memory size, speed and varsatility in terms of input-output devices, led to the use of computers for a wide variety of applicam tionse It tas no longer just a computing machine thich could do complex computations at incredible apeeds. Prograns ware witten thich attenptad to moke the computer "behava intelligently" and do such functions as theorem proofs, solve anelogy tests; understand natural languages or play ganes ($0,13,14,23,24,20,29,30,36,39$).

1.1 Artificial Intallinence

A. Turing in nis classic paper (43) argues that if a machine and an intelligent baing are posed with the aame set of questions, the answering of wich requires intelilgence and they canot be diatinguished from thoir ensuers, then the machine is entitled to be called
intelligent. It does not matter what atrategy the machine applies to solve this problem. The advocates of this epproech argue that though computers can only do that they are progrmmed to do, humens can also leern, think and create because bilogicelly they have been programped to do so (2, 9, 43). furthermore, this biological program is modified by interaction tith the environment, similarly if a computer is programmed to behave intelligently, it can do so. Cleerly this program should be able to analyoe its oun performence, and enhance its oun effectiveness. It is quite possible that this program may axhibit a beheviour more intelligent than it was programed for, eapecially, aince with the complexity of information processing possible in the problem-solving-learning machine, it is not always possible to predict the behauiour of tha program. The task becomes even mare complex when there are a large number of information processing operations and the behaviour of these operatians after their interaction with the task enviranment has to be predicted (9).

Since high spead computers axe available, it may appar that problems involying intelligence can be attempted by invoking exhaustive search procesees. But it can be shown that the number of steps involved even in simple preblame are astronomical. Not only it is imposeible to meet this challenge of combinatorial explosion now, it does not appear that it uould be possible even in the foreseabble future if one tekes into account the tecmological trends in hathare. The clue to intelligence is a highly solective search of the possible alternatives to given problen in such way that this leads to pathe with
solutions. Therofore, a wehine if it is to be labelled intalligent should to a vexy drastic pruning of the possible solution trees and chonse paths which lead to solutions.

Some othar problens that have to be tackled in the process of progremming computers to be intalligent is how is one to make computor Learn nea heuristics? Shouid these heuristics bs special-purpose with Lou failure rate or should they be general-purpose with oulde varinty of aplicetions? Gut sinee our knowledge of learning mechenfams is rudimantary, the ansuers to these questions are only partly known.

1.2 Computers and Psychalogy

Ons of the appraschos to making aachines intelligent is to base pogratis on principles of human leaming and behavioux. In this tay the descriptians of thought-processes can be tumed inte nodels of machines or the design of programs. Pionsexing work has been dane in this finid anong athers by Notell, Simon, Shat (28, 29, 30, 36, 39).

Forceptual grouping appears to be the besis of human visual organisation. It is regponsible for the formation of tholes from parts. Objects forned from parts of scenfs mby themselves be grouped. Thus percoptual grouping yields a heirarchy of parts and sub-parts (18). To autonate this kind of perceputal grouping, it uas necessary to tite programs in guch a way that results from variaus local pature datectars of elenents uere combined into larger units such as parts or anen camplete objacts. In a gencrel case the number of auch objects is very large and in the assembly stage of the larger abject, all the clementa nay not even be present, thile there may be a large number of extraneous
ones. To try out ell the combinations becomes impossible in practice (21). Bialogicel information procesaing systems seen to overcome this problem ty having evolved a aet of processing strategies according to uhich the individual features are to be combingd. Such a procedure naturally reduces the number of possible combinations that need to be compared against some model.

As Kanal and Chandrashekhran (19) point out "long before the emergence of Pattern Recognition which is an important aspect of all activities to which the appeliation "intelligent" can be applied psychologiat had concemned thenselves with the phenomena of perception and concept formation. Patterns, after all, cannot be recognised without the concept of patterns. Therefore, the belief that if complex pattem recognition problems can be oolved, agiant stride toGards matelling fumen intelligence would be on the way.

The Gestalt school of psyehologist after considerable experimentel and theoretical research, have listed some basic principles of perception. Uhile one nay not be able to natimate the clinicel rele vence of these concepts, the Gestalt principles do successfully explain many of the questions relating to pexception. Many successful programs in the eres of visual pattern recognition hevo been debioned and developed taking into atcount Gestalt principles.

1.3 Scene Analysis end Computers

One area there machines have been programmed to exhibit intelligent behaviour is the area of scene analysis. A central problem in the area of scene analysis is that of segmenting a acone into scenes
which earrespond to natural objects. Let we defing this vigual process as segmenting or grouping. In recent years several efforts heve been direeted toueftes the study of physical cues for grouping and computer nethods which are effectiva for particular typo of aecre thich invalue particular cue (49).

Pioneering wark has been dono by foberts (32) in this fiedd. His program is copable of building up an internal copresentation of relaw tively eimple conflguration of solid oblects given a perspective vies as input. This description ten then be manipulated to some other oonfiguration as hypathosized by tho program, from changed parspective.

Guzman (15) in his doctoral thesis uorked succestully on aregram thich finds bodies in scenes. formed by three-dinensional objestz. Some of thea bodien nay be partially hidden from view Guzman's prom grem set analyeed the program in tems of vortices, lines and surfaces. The primitivo cues in his progran are various typas of joints eg. a F jaint indieates an edge of one block dibeppearing into enother, a V joint indicates a thras way cornex and so on. Other guch edge end vertices cues give aimive implicotione. This progran zhen eombines all the implications to decide which faces ferm the blocks.

1.4 Scape of Prasent Work

The atm of this system is to build up and clasaify geometric figures from the date given to the aysten in terns of vertices and 1ines. The system deale with figures in two dinensions in the Euclidean plane. Some of these figures may be partially oceluded by
other figures. It recognises the visible parts of the ocluded fioum res and by involving Gestalt principles generates the occluded parte. It then integrates the tuo to nake the decomposition of the sene possible. The syatem deals uith straight line figures like triangles and quadrilaterale.
2.1 Patten

A pattern may be regarded (10) as

1) any arbitrary ordexed aet of numbers representing particular values of a pinte number of variabies. Each arbitrary ont is given a label which theraby defines its class, with the wesult thet wo ouch sets might be gesocinted with a particulat class although there may be no obuiaus sinilarity between the two aets. Dr en could also define 教 as
2) on ordored set of numbers repreatening a particular walum of fintte number of varighles in thich there are certain definable ralam tionships betwaen the numbers in the set. wo such sets tould be given the same elassifying Lebel if they are observed to conform to the oame definable relationships.

According to these viet polnte tee cen heve the following types of patterns

1) Rendom pattorns being patterns of the type described in definition 1.
2) Point Petterne in wieh the esoential quality of the pattem could be represented by a ant of points distributed with relative orientation in the input fiold (15).
3) Texture Patterns in which there is a repetition of tell definga groups ecrass the input field (although the group itself may be a random pattern). It is the presence of repetitions which 4 is imartant there.
4) Line Pattems in thich the easential quality of the pattem could be represented by a systen af zero-didth I Ines.
5) Area Petterns in uhich the essential quality of the pettern can be represented by a syoten of exeas:

2.2 Approaches to Pattern-Recognition

The study of Pattern-Recognition as en independent discipline is rathes recent, Research and development in Pattem Regognition has bers mainiy along two broad paths:

1. The Statistical Decision Theory
2. The Syntactic Approach.

2.2.1 Stetistical Decisian Thonry

The statistical decision theory provides one of the nast poierful (5. 19, 20, 26, 41) mathematieal tools to pattern recognition. A mather matical theory of pattem recognition is cancernad with claseification of unknoums into one of sevatal categorias.

A Guitoble model on which ach a theory can be built is n dimensionel Euclidean spece in uhich manbers of categotias and the unknouns are represented as points. For any problea, cach membars is deseribed by e fintte menles of measurable properties, ach of thich (preperty) is ropresentad as a courdinate in n dimensional space The "Leanning" pracess is the develapment of apecific clessification procedure from samples from the categories; the "recognition" process is the use of thet procedure for classtification of an unknown.

Pattem Recognition problan is concemned with detemmining into thich of a numer of categories the unknoun begt fits. The selection of categeriea reflects the subjective notion of the axperimenter. The claseification procedure at best can be a probabilistic one, i.ses
one can only say that the input pattern hes a certain probability of belonging to a particular eatsgory.

A mathengtical theory on a n space model (6, 10, 11, 20, 26) cennot ensure that these techniques are adequate for ony representation. Date from the real world must be properly represented in n Bpece. Tha technigugs will be effoctive in clasalfication only to the extent that propartias measured adequetely typify the various categorics of interest. A n space representetion cen correspond to tata deseribed by finite number of distinct properties. In this theory one inplicitly assumes that each catagory has asooctated with it a multivariate probability distribution in n epace describing the dietribution of acmbers of that categery. Catogory distribuLions if incompletely knoun Initially are estimated from amples end it is experted that this detamination can be improved for larger number of amples and for greater prion knowledge of forms of these distributions.

The classification procedure then conaists in effect of a division of the space into K regions each associated uith a category. An unknown is classified into the category corresponding to tha region into which it folls. The deciaion procoture partitions the space Into diejoint regions. Given an unknoun point x, and its probability distribution over the categories, then this point x can be assuciem tod to any category with a correspanding probability for each such assignment. But are interested in specifically assigning the unknown into one eategory only and for this generelly threshold precedures are used (6. 20, 26).

Searching for the 'best' decision procedure is a very subjective process and depands solely on what values the experimenter wishes to atbach to various effects caused by orrors of classification. Threshald classification result in errors and we attempt to find decision rules whith minimise some espects of these errors. But onee again the particular espects chosen raflact the subjective nature of the experinenter (10, 11, 20, 26).

But there are certein inherent inadequecies in this genetal methodology (26) because in dealing with pictures or class of pictures the rablly relevant and signifieant problens are concemed with their genaration and deacription. Since pattern recognition is the problem of pattem analysis and description (26), the frame wark coping with general recognition preblem should be capable of analysing the input picture and genersting atructured description of it. Recognition tachniques based on structural deacription of the input pieture is a nore comprehensive scheme*

A typical example of this kind of approach is acene analybis where the picture to be analysed is quite complex and the number of features required is often very large. Tha statistical decision theory does not appear very appealing here then the patterns are complex, and then the numbers of possible dascriptions is very lerge, it is inpracticel to regard aach description os jefining a class. Then the requirement of recagnition can only be setisfied only by a dascription of each pattern rather than task classification (10, 11).

2.2 .2 5yntactie Approach

The syntectical approach draws enalogy betwen the heirarchical structure of patterns ond the syntax of languages (10, 11, 26). A cless of pattorns is defined as atisfying a certain oet of reletionanips between suitably defined primitives. The relationahips may be baclean expressions or might be specifieble by generetive aramer. The primitives themselves are left undefined within the madel. The structural reletions specify hou the primitives are juxteposed to qualify as a certain abject. Obviously for the success of this approach, the primitives themselves ohould be more ensily recepniseble then the pattern itaelf. After ach primitive ulthin the pattern is apecified the recognition process is accomplashed by performing a syntax analysis or parising of the sentence deocribing the piven pattern to determine whether it is syntactically correct with respect to the apecified gramar. The syntax analyais also produces a structural. description of the sentence representing the given pattern. One very attrective aspect of this approach is thet sonetimes it is possible to debign a recursive grammar which may lead to a very compact representation of oven camplex and longthy deseription. The major problen that arises in this approach is the design of the gramer. that are tive primitives to be uead and how the production rules are to be structured are questions of prime impartance. Mereover, the gramar should be auch that it generetes all descriptians of aprticular kind as required, and should not genorate any extrennous object. In practice this may beconn difficult objective to achieve.

2.2.2.1 Semantics

Whan tes are dealing tith pictures, the interpretation involves a further syntactie atrueture of the ovent pietorially depicted - this constitutes the senanties of the picture. Given a pictorial expression there is a multiplicity of poasible picture syntactic descriptions. Such multiplieity would present on imposaible task to the syntex directed parser. If, however, the parser is directed not only by the picture gramar but also by the necessity to racaver uell formed descriptions with sespect to a certain frame of reference it is plausible that e variety of potentially assignable descriptions can be drasticelly reduced (26).

The key to pattern-recognition prohlem does not lie wholly in statistical approaches or heuristics or syntactical approaches. Rather a good pattem recognition schema ubes all thasa appoachpe at various lavels of preprocessing with each toal being applied there it is mast optimum (12,20). Among others pionenring uork has been done in this field by Narsimhan $(26,27)$, Evans $(6,7)$, Guzmen (15, 16), Clatgs (3), fosenfald (35), Wineten (46, 47, 48).

2.3 Linguist Methods and the Present fork

SInce sceno enslysis is an area where the pletures to be anelyoed are quite complex and the number of features required for clesatfication are vory large, syntactic methods for recognition ara more appropriate than statistical decision procedurea.

Poreover, Eince, for e recognition procedare to be linguistic it is not necessary that it ahould explicitly formulate expressions in
formal language and procgas it to reach the claseification decision. A1L that is nocessary is that recognition of pattern be hased on the presence and proper juxtaposition of opectife elenents of patten (6, 20).

Keping thit definition of a oyntactical procedure and princlples of Geatalt paychology in mind (21), a gramar controLled pettern analyser is fommleted for a class of pletures consleting of triamgles and quedrilatergla.

2.4 Grammar Contralled Pattarn Anelyser

H Gramar is defined as finite set of production rulem Each rule (6) consists of four parte
(a) the nome of the syntactic quentity being definga
(b) eithar one list (A, B, C) or a list of $148 t s$ eay $(A, B),(c C, b)$ of names of constituents to be used in (c) end (d) below.
(c) Aredicote in terms of constituents that must be satisfied If they are to constitute an object of the type being defined
(d) an expression that is used only if predicate in (c) returno true in which cese a not object has been found.

A grammar may be recursive and there may be as meny alternate definitions of eyntactic typa as desired. The inputs required by the anelysis (6) progran consists of
(a) a grammar
(b) en input pattern in the form of lownt lavel constituents with ony desired information attenthed to them for letar use in analysia process.

An extensive preprecesaing may be required to transform the input pattern into the form required by the enalyser. The demarcation between the functions of the preprocessor and the functions of the anelyser Le arbitrary depending on the kind of gremmex. form of input etc.

The grammar in our cabe coneists of various nodules in the system ANS which defines the rules far occursences of various byntactic typos. As Narsimhen (25) points out "this descriptive sehema should be such that it must asaign atructure to acone in terns of occurrences of specific objects and their spatial distribution. it must also assign structuras to an object in terns of occurrences of sub-parts and thatr composition. Assign structures to sub-parts in tams of more primitive ontities and their compaaition. Thus given a pieture one should be able to genereto deacriptiens of the following aort - In the given pleture such and such objects occur with such and such configuration. An object itoplf would bo described as being composed in specified menner of such and such sub-parts aith apecipied parts".

The gramar controlled pattern enalyser discussed gbove and in the following chapter is tesigned keening the gove in consideration.

Meny visual acenes contain objecte which are partielly hidden from uite. Fron the portion of the object thet is visible one can gonerelly guess what the object es atole is (21). eg. In Fig. 3.1, the object 0 uill be recognised as a houss", even though a part of it is hiden from view.

In this diasertation an attrmpt hes been made to design a system which avercones the difficulties arising from the exigtence of hidden and overlep lines in scene analysis. Only the simplest ceses of hidden and overlap lines partaining to atraight line figures are considered beleu as a first step touards the anelyais of ocenes conaisting of straight line figures and objects somo of which mey be partially occluded by athers.

It has been pointed out by Evans (7) "awong the probleas of picture analysis with which ayntactic analysis techniques can help are difficultzes of overlap and hidden linas."

The syatem consiste of tiod sub-systens. The main system that handles problems of partial occlueion io named ANS (anALySIS ANO SymTursis). The input to this system is from anothex system Ifan (ImAGE FORMER) which preprocesses the pictorial objects into a format aceapteble to AnS.

3.1 The Image farmer (IFOWM)

In this phase of the implementetion the pleture is converted to two dimensional multilevel image. There are a variety of techiques for doing this (44), specifleally a raster may be uged. The imput to

FIGURE 3.1

AN EXAMPLE OF ONE FIGURE OVERLAPPING
ANOTHER

ANOTHER
REAL-LIFE
SITUATION OF ONE OVERLAPPING

FIGURE
ANOTHER

IFOFA 1 a picture first this picture is converted to a todo dimensiom nal nrray of numbers, each number representing an intensity lovel. Gith the help of goolean threshold functions, nolas, cleaning guoothing, gep filling, thiming of the odges are done. The image is in the form of line diegram, tagethor with some auxiliary information about the obstract locel fatures, ex. this informetion could be in the form of lobels of paints and Lines and also the coordinates of the vertieas. The picture which ulll be input to Ans will be of the kind ahotin in Fige 3.2.

3.2 The Systan ans

The output of Iforef is fed to the computer using any of the evallable edge detection techniques (34). A contoux trace of the figure can locate various vortices and elso the number of line segments meating at point. The systen adS scts on the lebelled sketch and extracta information partaining to the global espeats of the aketch like connectivity, bundery shepes of idelimited reaieng. The output of ANs can be fed to another progran which determines relationehips betuen these regions (ice sceno analysie), information atrout Gestalt clugters (iee. cenfiguration aspect, sub-pgtterns and so on).

The system ANS consiste of the fallouing sub-wodules thich are oxecuted eequentielly. Any module may croso-reforence any other module for executing a spocifiad function.

3.2 .11 OATA

DOTA is the firgt module. In this phase the figure is taken as consisting of straight line edges and each point and line is described as a hairarchy of various types of infarmation relating to the ontity in question, eg. any vertex is characterised by its absissa and ordinete and the number of Iine segments mooting at that point. This cen be done with the help of specielised dete-structures or an erray, the elements of which spneify the values of particular attributes. The dimeneions of the array would depend on the number of attributes one would like to specify (fpptanix a).

3.2 .2 TEE

This is the second phase of the system. This module detects at which of the vertices there are throe begnents forming a 'T" The seope of this module could be milerged to define and include various other configuretions of aegnents noetimg at a vartex like a fork joint" or an "arrow joint" (Fig. 3.3). The interpretation of these jointe would depend on the context of their occurrence and this would form the semantice of the system. In all these ceser, the corresponding intarpratation, iet how thesg agonents are ta be related with respect to the figure bhare they occur, Forms an Integral part of the prom gram.

The syotem ans considers simple cases of overlepping, les, where one figure overlaps the other. This madule acte on the data-structure envisaged in Phase 1 - WATA. The output is in the form of an array of all vertices. Thosn vertices that have a T foint havo tho correaponding element in the array as " 1 ', otherwise it is " 0 ".

$3.2 .3 \mathrm{H1O} \mathrm{~L}$
This module examines the vertices which have a 'T' joint and finds out if there to a straight line between any of these vertices, which is hidden by an overlapping figure, This procedure is an attempt to take into account the principles of Gestalt Psychology (21). This is done by developing equations for all segments that meet at vertices which have a T joint. These equations are then reduced to a canonical form, and compared with the equations of other line seqments. The sets of equations that match clearly represent the same line indicating continuity. The vertices which have "T" joint and the segments meeting at the vertex have the sans bet of equations, the system assumes, that these tor segments are actually just parts of a larger segment, a part of which is hidden by on overleaping ligure, eg. line segment $D_{1} F_{1}$ (fig. 3.4.1) ia considered as "hidden" and segrants $A_{1} D_{1}$ and $F_{1} H_{1}$ ere considered to be parts of large segment $A_{1} H_{1}$. In fig. 3.4.2, $\mathrm{D}_{2} \mathrm{~F}_{2}$ ia considered as "hidden" and segments $\mathrm{A}_{2} \mathrm{O}_{2}$ and $F_{2} \mathrm{C}_{2}$ are taken as parts of a larger segment $A_{2} G_{2}$

The output of this phase is an ordered list of segments which are considered to be a part of a larger segment. The ordered list will contain entries of the type $\left(A_{1} D_{1}, F_{1} H_{1}\right),\left(A_{2} D_{2}, F_{2} G_{2}\right)$,

$3.2 .45 T \mathrm{LH}$

The input to this phase is the output of Hip 1 . i. en names of segments which are parts of a larger segment, part of which is occluded by another figure. This module combines them to form one straight ling. This facilitates in recognition of figures which is done in the later stages.

FIGURE 3.4 .1

FIGURE
$3 \cdot 4 \cdot 2$

This module functions on the besis of results provided by its submadule or sub-routine Lite M. LiN procedure finds aut the coordinates of the end points thich forn the merged straight line.

The output of ST Lit in an array of ordered pains of vertices. Cach member of the orderex pafr denates that there is a line betueen members forming the ordared pair, eg. for F4g. 3.5, the output would be of the form $(1,8),(1,2),(3,7),(8,9),(3,5),(5,7),(2,9)$ for fig. 3.5 .1 and $(1,7),(1,2),(3,5),(2,7),(5,8),(7,8),(3,7)$ for Fig. 3.5.2.

3.2 .5 Th-FIN

This module finds out which 1 ines form triangles in the input pattern. for this it finds out if

1) thare exist straight lines betueen pasrs of peints in triplets of vertices
2) Wo two lines in (1) phould be collinoax. for this squetions of the lines are compared. The output is a triplet of points Which farm triangles.

3.2 .6 DU_(H)

This phase of the algorithm finds out thich vertices form quadrilaterals. The gremmar for this case is

1) there exist streight lines between adjacent points in sots of all points conaldered as quadruples.
2) No two such straight lines ohould be collinoar The collinearity condition: is found out by finding out the equations of the lines. The output so quadruple of points representing a

FIGURE 3.5 .1

FIGURE 3.5 .2
quedrilateral in the figure.

Modules thich recognise other kinde of geometrie figures could alas be incorporated into the oystang to bronden its scope. Also one could incopperate in en extended version of this program, thich quadrileterals are squares, rectangles, which triangles are scalene, isesceles or equilatexal. For bhis a more comprehensive grammar would have to be built in the systen.

The importance of developing algorithms for handiling partially oceluded pictorial information cannot be over atressed. Thie kind of probiens are frequently encountered in handling military photographs, mining deta, design of rabots etc. (15, 46, 47, 48). The deaign of A NS is a btep cowards this end. Delow we consider some of the liaitations and some possibla future extensions of ANS.

4.1 The Domain of ans

The system ANS works in a restricted domain of otraight ine figures. The reason for doing thia was that the relevant information pertaining to the attributes of the figure (sog. the slepe of a line) can be extracted from tull-developed mathematical fomulse. Noreover, many real iffe scenes preserve thoir pietarial meaning even after a transformetion into seenes containing straight line objeets only provided the transformation io appropisiate. The clasoic exemple is Atteneneave's sleping Cat (1).

Only very aimple geometric figures like triangles and quadrile torale have bem considered. Mora complex geometric figures can aleo be studied by incerporating into the aysten an appropriate grammar to describe them.

The Image Former (IFORH) by preprocessing the input images enobles further computation by providing the neceasary deacriptive inputs. These can be considered to form a vocabulary in a language defined by a suiteble grammer. The computatione done in ANS are releted to computations on the phrase, sentence and intereentenea entities of picture language.

4.2 The Woight Syatem

The scope of ans cen be broadened by allouing it to chonse from a eut of different "alternative" meanings for the partielly oceluded part. Each of the possible meanings could be associated with a certain weight which (weight) uould depend on the configuration of the environment, eg. If the system encountered a hidden line in a triangle then depending on whether the surrounding seene is that of house or a machine part; the oceluded portion could either be a straight line or e satotaath like figure (fig. 4.2). Thersfore, suen though the parts of the figure that are visible are the two sides of a triangle, the "meaning" attached with the hidden parts are entirely different.
4.3 Leaming
fost learning devices incorparate some kind of a veighing process. The crucial process in this task is the choice of an appropriate waight systen, eg. the Perceptron (5,33). With a auitable weight system designed for this aysten, the bysten Ans could be exposed to learning situations where the typical kind of objects it wauld have to identify are already built into the syatem. Then ans would "know' that set of weights to assign to each oecurrence of a hidden line depending on the context in which it appears. Such a set of weights tould depend on the set of ueighta that ware incorporated in it during the training phase. The choice of the waight syatem could depend on statistical considerations, i.a. what molght systen gives maximum number of correct outputs.

All learning achemes do not necessarily involve the woight aystem or statistical inference methods. Some of them depend on heuristice

FIGURE 4.2

and formulation of concepte in the training phase (31, 36, 37, 42). Perhaps, it usuld be torthuhile attempt to integrate an appropriate set of taighting procedures with hourietic and poredigm of concept formation.

One of the posaible ways to realise a "laarting machine" is to equip it little at the design etege ond support it with heauy learning machinery. Another tay to realise is to hava a system uth no training phase and tifth a haay dependence on a programmar built dosign for ito functioning.

4.4 Future Trends

Bue to the enormity of problems concenned sith simulation of any thought process or the brain Punctions in terns of the solution spaces to be aearched, more otrass should be laid on the design af algorithms Whieh sffar a reduction in the search space of solutions and evoid combinatorial expleaions.

APPENDIXA

The implenentation of the system ANS tas attempted on EC 1020 a installed in Joweharlal Nehru University, Nou Delin.

PL/I das choeen for developing the progrems because of its veraatility and some of its non-numeric computational adds. LISP would have been a more powerful non-numeric list processing language on which to implement ANS. PL/I was chosen due to the non-avallability of LISP. Since PL/I D Level Computer was availeble and since many of the datastructures end pacilitios thich are evaliable in PL/I F level computers were envisaged in the system ARS, a madified version tas run on the computer. Some of the important aspects of the program are described belons.

A. 1 IDATA

This module consiste of date declarations. The vertices and lines are associated with auxiliazy information thich is structured as a heirarchy. The vartices are input as a data atructure of the following kind:

1 point (p)
$2 \times \mathrm{CRB}$
2 Y_CRD
2 NAME
2 S_MTE (a)
2 NO LINSSAT
2 ANGLE (S)
where $p=$ total number of pointa in the picture
0 - number of Line segments meeting at point

The second date structure that is used pertains to the information about the linemsegments. It is also atructured as a hairarchy of auxiLiery information. The follouing is an example:

1 Line (1)
2 SAT NME
2 X1_CRO
2 Y1_CRD
2×2 CRD
2 Y 2 CRO

FIGURE A. 1

The linewsegment 41 in Fig. H. 2 would heve the following information associeted uith tit.

STITHE $=11$
$X 1$ _ $\mathrm{CFO}=2$

V1_ERD $=7$
$x_{2} \mathrm{CNO}=6$
$Y_{2} \mathrm{CPD}=2$
A. 2 TEE

This is the procedure thich finds out which vertices have 'T" foints. For thic it finde out

1) the number of line aegments meeting at point
2) sum of the interiar angles betueen eggents meeting at point.

The module gives an output '1' for the point under consideration, If number of line eegnents in (1) is three and value of (2) $=180$. otheruise the value is ${ }^{*} 0$ ' for the point under considaration. Thus. the output is an arrey of De and is depending on which of the vertices have a 'T" joint. The vertices are so numbered so that there is a 1-1 correspondence between the vartices which have a T jaint and the

FIGURE A. 2
vartices which have a 11 output.

A+3 HRD

This is the procedure which determines the segments in pairs which are probably parts of a larger aegnent which is hidden by another figure. In this procedura, the slopes and intercepts of line aegments which form a joint are eslculated using the reoulte of analytic geametry (Appendix B). The output 18 en ordereg pain of list of aegments betteen which may be tha nidden line.
A. 4 ST_UN

Calls subroutine HIN to determine the and paints of the larger Iine segment. This is dene by treating the arguments returned by H10 L as farming one larger line segement. It roturns 1 , for those coordinates thich heve a atraight $11 n o$ betwem theme $5 T$ LN uses this information to give the labsi of the painte betwen which are etraight lines.
A. 5 TR_MN

This ts the procedure which detarmines the coordinates of the triangles in the input figure The infarmation from ST_ LN 10 utillsed and the greminar utiliaed to determine the existence of triangles between any three points is

1) there should be straight line between pairt of points considered in triplets
2) no two lines in (1) should be collineer.

The output is a list of triplets which form triangles. A. 6 OU_RN

This is the procedure which recognises quadrilaterals in the input figare. The procadure finds out

1) If there oxist straight lines between adjacent painte in sets of all points considerad as quadruples.
2) No two straight linss in (1) should be collinsar.

If the above grammer is satisfied, then the system gives as output a 14st of quadruples uhich are the labels of the vertices of a quadrilateral.

Given below is a 14st of mathembtical Pommlae used in ANS.

1. Given the coordinates of two pointe $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ the distance Alsbeturen these two points is

$$
a=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-Y_{1}\right)^{2}}
$$

2. Given two line segmants they can be canaidered to be along one straight Line if
$n_{1}=m_{2}, \quad c_{1}=c_{2}$
where
$n_{1}, M_{2}=$ elopes of the two line segments
$\mathrm{C}_{1}, \mathrm{C}_{2}=$ are intereepts thich these segments form tith the y-axie

The genaral equetion of the line an be given ne

$$
y=n x+c
$$

Ghere

M = alepe
$C=$ intercept on the ymaxis.

1. Atteneave, Fo,	'Same Informatianal Aspacts of Vieual Perception', Psych. Review, 61, 183, 1954.
2. Blakemare, C.,	Mechanics of Mind, Cambridge Press, 1977.
3. Clowes, M*,	'Transformational Gramara and the Organisation of
	Pietures', Automatic interpretation and Classi-
	fication of Imeges, ed A. Grasselli, Acatemic Press,
	New York 1969.
4. Cooper, D.E.,	and Freman, J.He; "On the Asymptotic Improvement in
	the outcome of Supervised Leaming Prouided by
	Additional Non-superviend Learning', IECE Trans, on
	Computers, C 19 , 1055, Nov. 1970.
5. Cooper, P.U.,	"Fundamentals of Statistical Decision and Learning*
	Automatic Interpretation and Classification of
	Images ed. A* Grassblil, Academic Press; 1969.
6. Evans, T.C.e,	'Descriptive Pattern Analysia Techniques', Autametic
	Interpretation and classification of Imeges, ed.
	A. Grasselli, Acatenic Press, 1969.
7. Evens, T* ${ }_{\text {c }}$	Descriptive Pattern Analysis Teehniques - Potentie-
	lities and Problems', Methodologies of Pattem
	Recognition ed. S. Whtanabe, Academic Preas, 1969.
8. Evans, T.E.e,	-A Heuristic Program to Solve Geometric Analogy
	Problems', PhoD. Dissertation, M.1.T, 1963 ala in
	Semantic Information Processing od. M. Minaky, The
	M.I.T. Press, 1968.

9. Feignbaum, E.	and Feldmen, J., Computers and Theught, He Grasm H111, 1963.
10. Fu, K.S.	Introduction in Digital Pattom Recognition ede
	K.S.Fir, U.O. Keidel and H. Wolter, Springer-Uarlag.
11. Fu, K.5.	'Introduction* ${ }^{\text {In Syntactic Pattem Aecagnition }}$
	Application, ed. K,S. Fu, Springor-Verlag*
12. Fu, K.S.	- Sn Byntactic Pattem Recognttion and Stochastic
	Langueges*, Frontsers of Pattem Recognition ed.
	S. Hatanke, Acadenic Press, 1972.
13. Celemter; H.	Pfealisation of Geometry Theorem Prouing Machine**
	Proc. ICIP, 1959.
14. Galarnter, H	Hansen, J.f. and Lovaland, D.b. TEmpirical Explo-
	ration of Geomatry Theorem Proving Machines*
	Proce Uleatom Joint Computer Conf*, 143 , 1960.
15. Guzmen, A.	Computer Recognition of Three Dimensional Objects
	in a Wisual Scene* Ph.0. Thesis, Electrical Engg.
	Dept: M.I.T. December 1960.
16. Cuzman, A.	Decomposition of (Visual Scene Inta Three Dimen
	Sional Aodies', Automatie interpretation end
	Classification of Images, ad. A. Grasselli,
	Academic Press, 1969.
17. Jarvis, A . $\mathrm{A}_{\text {。 }}$	'Interactive Image Segmentacion', Data Structureo.
	Computer Graphies and Pattern Recognition. ed.
	A. Kıinget, K.S. Fu and Th. Kunij, Academic
	Prase, 1977.

