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Introduction

Models in theoretical population biology play a
key role in making the understanding of complex ecosystems a
possibility. There are two distinct types of models in

‘theoretical ecology:

-

(i) "explanatory" or systems models whose behaviour is
thought to duplicate, at least approximately, the true
behaviour of the populations in existing phase of biological

evolution.

(ii) models designed to predict the behavioural
patterns of the different populations of an ecosystem in

future, over long periods.

Models discussed in the present dissertation work
belong to the first category. They are systems models
designed to explain the behaviour of the populations having

prey-predation interaction.

The Lotka-Volterra model discussed in the first
chapter, possesses neutral stability. In other words, in a

system governed by this model, both host(prey) and parasite



(predator) would wundergo , constant oscillations whose
amplitudes would bear no relation to biology of the two
species but only to the initial sizes of their populations.
This kind of behaviour seems to be vefy unlikely for real
ecosystems. So, in the next chapter, - we discuss a more
elegant model given by Leslie and Gower. It 1leads to
solutions which have an asymptotic behaviour 1leading to
stable equilibrium, which is independent of the initial
conditions and depends on the intrinsic factors governing
the Dbiology of the system. So, although it marks a
significant improvement over the one given by Lotka and
Volterra, it 1is wvery much limited in its explanatory
capability. This is the reason why we discuss a more
"elaborate model - Holling - Tanner model. This model 1is
capable of generating solutions possessing stable
equilibrium as well as sable limit cycles. In other words,
the system modelled by Holling and Tanner behaves in such a
way that the dynamics of two interacting populations depends
upon the intrinsic attributes or the genetic features of the
system concermed. But, this model too, has certain

weaknesses.

The object of the present work is to devise a

model which is free from the weaknesses inherent in the



Holling-Tanner model to certain extent and has the following

features :

The per capita growth rate of the parasite is not
proportional to the papulation ratio (P) but rather to a
factor which 1is similar in form as the pasasite'é attack
rate with a ceiling Wl occuring for H -200 . This
establishes a desirable reiationship between the host's loss
and parasite's gain which does not exist in the Holling -
Tanner model. The new interactiipn>terms appearing in the
rate equations thus also restore to some extent the symmetry
which characterises the Lotka - Volterra model. In the
process, we also _find that the behaviour of the rate
equation for the parasite near H=0 is now dimproved over
that of the Leslie - Gower and Holling - Tanqer models. The
behaviour for H ->09 , leading asymptotically to
exponential growth for the parasite is common to all the
models, but this possibility is always excluded due to the
presencé of the self interaction term in the rate equation

for the host.

The value of the present model, which is discussed

in detail in the 3rd Chapter, lies in the fact that it 1is



thedretically more sound in comparision to previous ones in
view of what has been nbted in the above; and at the same
time it is capable of generating, basides stable equilibrium
solutions, limit cycles, which signify oscillations for both
the .populations, which become independent of initial
conditions asymptotically. The latter possibility is a more
realistic one for living systems, which all the ecosystems

indeed are.



CHAPTER 1

LOTKA-VOLTERRA MODEL

One of the earliest Qf host-parasite models s
that devised by Lotka (1925) and independently by Volterra
(1971). This so called model can be mathematically given by
the following pair of coupled non"linéar differential

equations

dH
—_— = (a; - b;P) H (la)
dt .
dP
——— = (- a, + byH) P : (1b)
dt

where ajg bl’ a,, b2 are all positive constants.,

In the above equations, H is the density of the
host (prey) population, P is the density of the parasite
(predator) population, a, is the intrinsic rate of increase

1
of the host (prey) population, a, is the dintrinsic death
rate of the parasite (predator) population, and b1 and b2
are constants expressing the effect of the density of one

species on the rate of growth of the other. The first

equation tells us that the rate of change in the density of



host (prey) population with time is a function of the
intrinsic rate of increase of the host (prey) minus losses
due to the density of the parasite (predator) population.
Similarly, the 2nd eqn. states that the rate of change in
the density of the parasites (predators) is equal to a gain
due to the density of the host (prey) minus the intrinsic

rate of death.

The assumptions implicit in the model are :

1] Neither the host (prey) nor the parasite
(predator) population inhibits its own rate of

growth,

2] The environment is completely closed and

homogeneous.

3] Every host or prey has an equal probability of

being attacked.

Now, the question comes how will a system
described by equations 1(a), 1(b) behave? Unfortunately the
system described by equations 1(a) and 1(b) cannot be solved

as such. On the other hand, if we think of its wunknown



solution

H o= H(t)

P

]

P(t)

as constituting the parametric equations of a curve in the
H-P plane, then we can find the equation of this curve. On
eliminating t in l(a)vand 1(b) by division, and separating

the variables we obtain

S W R bor SO L
P H
Integrafing gives us
a; log P - b1 P = —a, log H + b2 H + log K,
or
P21 o P1P - g eP2F yTay (2)

where the constant K is given by

al e_'bLHo —b‘ P,

in terms of the initial values of H and P.



Although we éannot solve (2) for either H or P, we can
determine points on the curve by an ingenious method due to
Volterra., To do this, we equate the left and right sides of
(2) «to new variables Z and W, and then plot the graphs C1

- and 92 of the functions.

z = P8 e PP and W = K H 22 ePal (3)

ds shown in fig.(1l). Since Z = W, we are confined in the
third quadrant to the dotted line L. To the maximum value of
Z, given by the point A on Cl’ there corresponds one P and
via M on L.and the corresponding points A' and A" on C2 -
two H's, and these determine the bounds between which H may
vary. Similarly, the minimum value of W given by B on 02
leads to N on L and hence to B' and B" on Cl and these
points determine the bounds for P. In this way, we can find
the points Pl, P2 and a;, a, on the desired curve C3°
Additional points were easily found by starting on L-
projecting wupto C1 and over to C3, and then over to C2 and
upto CZ’ as 1indicated in Fig. (1). It is <clear that
changing the value of K raises or lowers the point B, and

this expands or contracts the curve C Accordingly, when K

3.

is given wvarious values we obtain a family of ovals about



the point S, which is all these is of C, when minimum value

3

of W equals the maximum value of Z.

We next -show that as t increases, the
corresponding point (H, P) on‘C3 moves around the curve in
an anticlockwise direction. To see this, we begin by noting
that eqns. 1(a) and 1(b) give the horizontal and veftical
components of the velocity of this point. A simple
calculation based on formulae (3) shows that the point S$ has
coordinagtes H = a2/b2, and P = al/bl' When H < éz/bz, it
follows from the eqn.l(b) that dP/dt is negative, so our
point on C3 moves down as it traverses the arc QZPIQl'

Similarly, it moves up aiong the arc Q1P2Q2.

Thus, we find that system describéd.by eqns.1l(a)
and 1(b) is characterised . by endlessly ‘prolonged
oscillations of constant amplitude and this amplitude will
be determined by the chosen initial population sizes, H0 and
PO. In other wo;ds, the system has neutral stability,
which means that the two populations wundergo constant
.oscillations with amplitudes depending on the initial

population sizes rather than on any intrinsic attributes of

the two interacting species.
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Another way of reaching the same conclusion, i.e.
that the model possesses neutral stability, is by
considering the behaviour of linear version of the model in

the neighbourhood of its equilibrium points.

So, we consider the behaviour of the system in the
A} - * *
neighbourhood of the equilibrium point (H , P ), The
v * 3 '
equilibrium populations H and P are the non-zero solutions

obtained by putting dH/dt = 0 and dP/dt = 0 in equations

1(a) and 1(b). It gives us

H = a2/b2
P* =
= al/bl
Defining
H*
H - = X1
P -P = X2

We obtain, near the equilibrium points, the following

equations.

10



aF.
X,

I

Where a, .
1]

and Fi are defined below in (4a) and (4b).

The elements aij of what is commonly known as the

community matrix can now be calculated as follows

¢
Let us represent the right hand sides of eqns.

1(a) and 1(b) in the following manner

F,(H,P) = H[a;-b P] (4a)

Fy(H,B) = Rl-a, + byH] _ (4b)
So, aj; = Of /3H = a - bP

al‘2 = Of,/dp = —b»lH

a,; = DE,/DH = b,P

a8y = Vf,/DP = —a, + b,H

11



-

*
Evaluated at the equilibrium point (H , P ), these partial

derivatives give

a;; = 0, "ajy = “bya,/b,

(5)

3917 = bya;/by, 39,

Now, the community matrix A can be written as

hd —

0 —.blaz/b2

bya; /by 0

The eigenvalues of the matrix follow from the determinantal

eqn. det.]A - A 1| = 0, which here takes the form
-A -b,a,/b,
det ’ = 0
b,a; /b, - A
e =
A + aja, = 0 (6)

Thus, the eigenvalues are the pair of purely imaginary

numbers + iw, where for mnotational convenience we introduce

12



The perturbations to host (prey) and parasite
(predator) populations are linear combinations of the
factors exp.( ﬂl»t) and exp.( A 2,t), with coefficients
depending upon th; initial disturbance. Here this means we
have linear combinations of the purel? osciliatory factors
eth and e~th, which is to say 1linear combinations of
Cos(wt) and sin (wt). That is, the stability is neutral,
with perturbations leading to undamped pure oscillations, of

frequency w or period (2® /w), but amplitudes depending on

the initial conditions.

This "unnatural" behaviour of the model, leading
to constant oscillations whose amplitudes would depend on
thé initial conditions rather than the intrinsic biological
attributes of the interactihg systems, probably makeé
further study of it unprofitable. We, therefore, turn to

consideration of more realistic models.

Later authors . have given more realistic models,
yielding solutions that would asymptotically be independent
of the initial conditions and depénd only on the intrinsic
attributes of tﬂe interécting system, e.g. the pa¥ameters

b etc. in eqn. 1(a) and 1(b).

2?7 712

13



Leslie and Gower and later Holling and Tanner
consider such models which mark significant improvement over
the one by Lotka and Volterra. We will discuss these two

models in detail in the next chapter.

14



below

where all

(i)

(ii)

intrinsic

CHAPTER - 2

LESLIE AND GOWER MODEL

v

This model is represented by the equations given

dH

~- = (a; - C,P) H : (2a)
1 1

dt :

dP P P

— = (a, - C, =) (2b)

dt 2 2 H

the constants aj, Cl’ a,, C2 > 0.

In the model following assumptions are inherent:

The rate of 1increase of a parasite (predator)

population has an upper limit, and

intraspecific competition has hegligible effect on

host's population growth.,

In the above equations the parameter a, is

growth rate of host (or prey) and C, is the effect

1

15



-of the density of the predator (or parasite) population on

the population growth of the host (or prey). a is the

2
intrinsic growth rate of the parasite and the factor CZ(P/H)
tells wus that the rate of the growth of the predator (or

parasite) population is limited and causes a decrease in the

rate of increase of the predator population as P increases.

Local stability analysis"applying Ruth-Hurwit
criteria leads to damﬁed oscillations towards a stable
equilibrium level in both populations. The details of the
above analysis for the present model can be given as

hereunder:

F, (H,P) = (a; - C;P) H

F, (H,P) = (a, —- C,(P/H))P

Setting Fl(H,P) and FZ(H’P) equal to zero leads to

ale
w

P = a

*
1/C and H = (aICZ/aZCl)

1

as the host and parasite populations are not zero. Now let
us calculate wvarious elements of the community matrix as

follows

16



F,

2H

2F,;

AP

¥,

0H

¥,

_’bP

If
E3
[P =(a,/C)),

(alCZ/aZ)‘ a,,

= a1 - CIP
= —ClH
. P2
- o g
= a, - C2/H (2P)

we calculate
*:

(a22/C2), and a

these

we

22

at

get a,,

9

equilibrium

=0,

The community matrix can be written as

The determinental equation (A-7I) =

17

0 will be

12

point



o)
= 0
(az)2
~=5-5-- - a, -A
(cz)
-5 “a; ¢,
a, - o
-~ p
a a

—=> A%+ a,n o+ (-2 = o (3)

As a2>0 and (a1 az/Cz) > 0, eqn.(3) shows that the

Leslie-Gower model possesses neighbourhood stability.

The basic characteristic of the Leslie-Gower model
is thaf it leads to such a solution which is asymptatically
independent of the initial conditions and depend only on the
intrinsic attributes of the interacting system, e.g., the

parameters as Cl’ etc.

18



A typical trajectory governed by the model given
by equations (2a) and (2b) has been shown in figure (2.1).
In figure (2.2) the corresponding time development of the

two populations has been shown.

We can also incorporate in the above model a self-
. . Ly 2 . .
interaction term 1like —blH in the equation for the time
rate of change for the host. The equations of the model are

then

dH

—_———— = (a1 -blH - C1 P) H (4a)
dt

dp

---= = (32 - C2P/H)'P (4b)
dt

where all the constants aj bi, Cl’ a, and C2 are positive.

The local stability criteria can now  be worked out

as follows

First of all let us find out the various elements

of the community matrix A.

?F,
- % ay - ClP
du :

19
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‘N2 = 30,



--= = -C.H
2P L
F, .
=-2 . C2(P2/H2)
DJH .
er
=2 = a - c,/H (2P)
DP :
. Now, let us evaluate each of these at the
: * *
equilibrium point (H = aICZ/aZCl + blCZ; P = alaz/a2C1+
bICZ)'

T

Various elements of the community matrix turn out

to be as follows

L 5 S S Li¢ b S
11 | )
B,H a2c1 + blc2
T a1¢q¢,
312 - (_’.‘;__) = e
P aje) + bjc,
2 F x a 2
21 > H c2

and the last one is 1is

20



a =

F
22 (--

fage |
2P

a9

Community matrix A can now be written as

I e e S Wit U
ay, ¢ t by ooy a, ¢y * by ¢y
2 . —
22 %2
b
P
‘]j The determinental equation (A-QAI) = 0 gives us
!
>° R Vs U S _ S U Wy I
£:- a, ¢, + b1 Cy a, ¢, + bl sy
o) -0
Qo 2, )
2
______ - a, - A
€2
5‘75\ OO! . 5"7
a,. b, ¢
===> ﬁz + ( az + _—l—_l__g ______ ) 2 R)s
8y ¢ v by oy ne
a, ¢, a 2 + a é b, ¢
1 1 2 1 2 1 2
+ (R S )=0 (5)
A a c + b Cc
EBhss 2 1 1 "2
5750957
Rit%
i

21



AS (8.2 + '—————-l——-];__g _____ ) : > 0 and
a c a 2 + a a b c
O P S SRS Wi B¢ Wiior SRNN ;
32 Cl + bl C2

because of all the constants are positive. Equation 5) shows
that the system given by equations (4a) and (4b) also

possesses neighbourhood stability.

Like Leslie-Gower model without self-interaction
term in the rate eqn. for'the host, this Leslie—-Gower model
(given by equations (4a) and (4b)) also leads to solutions
which are asymptotically independent of initial conditions
and depend only én the intrinsic attributes of the
‘interacting system (e.g., constants ajs bl’ Cl’ etc).

A typical trajectory governea by the model 1is
shown in Fig. 2.3. and the corresponding time development

of the two populations is given in Fig. 2.4.

22
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Holling-Tanner Model

This model is given by the following equations

dn W P

-——-=(Ca; - b H - —---—-- ) H (6a)
dt D + H

dp P

—_—— = ( a. - ¢, --=) P - (6b)
dt 2 2 q

This model preserves the equation (2b) of Laslie-
Gower model but the rate equation for the host (or prey) is
completely different. Since the rate equation for the
parasite is the same as thatvof the parasite in Leslie-Gower
model, we need not explain the various terms in (6b) again.
In eqn. (6a), a, is the intfinsic growth rate of host and b1

measures the effect of intraspecific competition.

The assumption underlying eqn.(6a) is that in the
absence of the parasite, the‘host population would gro&
logistically but if the former is present, the host's growth
rate 1is reduced. The coefficient (W/D+H) is achieved by

considering the probable effect of the density of the host's

23



population on parasites attack rate. If this coefficient is
multiplied by H (the host population at any dinstant of
time), it gives the attack rate on the hosts per parasite.

We denote it by vy,

It 1is reasonable to assume that this rate bwould be a
function of the parasite's ability to attack onthe hosté.
So, therefore, there:should be a ceiling W ﬁo Yy no matter
how large the host's population becomes. The quantity Y-
does, 1indeed, have this propertye. It is obvious from the
fact that when H -20p ,Y -> W, théh is the maximum that
it can reach: The constant D in equation (6a) measures the
host's ability to evade attack. vThe larger the value of D,

more elusive is the host in evading attack by parasites.

. Let us analyse the model given by equations (6a)
and (6b) both locally and globally. At first, we present

the local stability analysis of the model.

Writing N1 for the host (or prey) population and
N2 for the parasite (or predator) population in eqns. (6a)

and (6b), we get

24



Fp (N,N) = ayN) [ 1 === Ny = —= N, ]
/ 0 S SR
N, +0D
N,
Fo (N[,N)) = a, Ny [ 1 = —=--5-conmmo ]
A3 a2
(--=-) N,
€9
x
v \ % Py W N, .
F. . =0 =>1-0N, == - ==cco—=Z-—-= =0 (7)
1 1 (v, )
a a; 4™
* a, *
F, =0 =>N, = --=- N, (8)
€2
Let us define two quantities and
. W a B
2
< = ----E- (9)
€2 21
D b1 .
g = ____1_ o : (10)
a4

The solution of the quadratic equation (7) for the

host equilibrium population is given by

Ny* = D (1 -« - R+ R )/2B,

25



where R = [(1 - -p)° + 4p)t/? - an
and « and g are already defined.

To construct the community matrix we procede as

follows

_RF . b, (W/a;) N,
211 7 (5{‘_') =2y Ny [= = gt PR
Nl a, (N1 + p)
%
’EFI * w Nl
a;, = (jg—-) = e
. N2 Nl + D
*_2 2
~ fazFZ %* ~ a2 (N2 ) _ az
a1 = (o7 e AN
’BNI (az/cz) (N1 ) c,
*
- S Y T . .
22 - x0T T 4
ENZ _ az/c2 N,

After calculating all the matrix elements it 1is

very easy to write the community matrix. It looks 1like as

26



11

a1 a9 .

where the matrix elements have already been evaluated.

Now, the determinental eqn. (A-‘aI) = 0 gives us
) o
"+ ad + b =0 (12)
with a = -(all + a22)

211%22 7 212991

Eqn. (12) is a quadratic eqn. It gives us

AN = _____ e ‘ : (13)

According to Ruth-Hurwitz criteria, the necessary
and sufficient condition for .the system ¢to possess
neighbourhood stability is that both eigen values 7\ should
have -ve real parts. From eqn.(13) it is quite clear that

both values of 7} will have negative real parts in all the

27



cases. So, they obviously satisfy the Ruth-Hurwitz criteria

provided a > 0, b > 0.

The condition b >0 implies

* 2
b (W/a,) N WN a
_alNl*az [ - __1 + ___%___Z_E] + ___;l____ __g_> 0
al (N1 + D) (Nl + D) C2
%
b <N, o
=> m—me o m—mes b e > 0
2y (Np* L py? N‘* + D '
N, b
N %y ”Nl + D a1
QURe - 1R2
o D b,
=> _— __—;__‘——_E—_ < ______
(N,” + D) 07

=> a negative quantity is less than a positive

quantity, which is always true.

The second condition, a > 0, clearly needs

28



After some algebraic manipulation using eqn.(l1l)
for Nl* along with the definitions (9), (10) and (12), we

get the stability criterion as
(---=- D i (14)

In particular, for given o the largest value the
R.H.S. <can attain 1is “'!.‘(_ if &> 1 or (29 ~-1) if &« < 1
(this 1limit is being attained when f3—> 0). Values of a2/a1
in | éxcess of these limits ' consequently always imply

stability.

The answer to the question whether the 1local
stability condition (14) will or will not be satisfied will
depend on the chosen values of various parameters involved

in the inequality (l4).

When we do the Kolmogorov analysis (which is
disqussed in detail, for convenience in the next Chapter),
we find that it satisfies all the <conditions imposed by
Kolmogorov for a system to possess either a  stable

equilibrium point or a stable limit cycle.
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The criterion (14), therefore, devides the region
where the host - parasite (or predator-prey) equations (6a)
and (6b) have a stable equilibrium point from the region

where they exhibit stable limit cycle.

In figure 2.5, we take &« to be unity, and show
that what the stability criterion (14) implies about the
parameters al/a2 and al/b1 D. Similar stability boundaries

can be shown for other values of <X .

It is clear from the figure 2.5% that the system
given by equations (6a) ~and (6b)  possesses stable
equilibrium point ‘provided either -'one of (al/bl ID) »or
(ai/az) is noﬁ too large.

e
If both are largish (i.e. tobsay host population
is characterised by relatively weak self-regulation and by

host intrinsic growth rate which is significantly in excess

of that of the parasite), the equilibrium point is not
stable. In such cases, one gets the stable 1limit cycle
behaviour. In figures 2.6 and 2.7 numerical

calculations leading to both kinds of solutionshave Dbeen

given. Corresponding time development of the two
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Figure 2.6 Xp denotes the prey population Yp denotes
the predator population. v
a, = 1.2, b.1 = 0.024, W = 1, D = 10, a, = 0.6, C2
Xp = 20, Yp = 30-
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populations are given in Figures 2.8 and 2.9, respectively.
In the nextchapter we will discuss our own model

which is theoretically not any worse than above model, and

it is even an improvement over the former in some respects.
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CHAPTER - 3
A NEW PREY-PREDATOR MODEL

In this Chapter, we improvise on the ideas
contained in the Leslie-Gower and Holling - Tanner models to

construct a new model which has the following features:

The per capita growth rate of the parasite is not
proportional to the population ratio (P/H) but rather to a
factor which 'is similar in form as the ©parasite's attack

rate with a ceiling W occurring for H —3 6 This

1 b
establishes a desirable relationship between the host's loss

and the parasite's gain which does not exist inthe Holling-

Tanner model.

The ‘interaction terms in the new model appearing
in the rate quations restore. to some extent the symmetry
which characterises the Lotka-Volterra model. Moreover, we
also find that the behéviour of the rate equation for the
parasite (or predator) near H = 0 is now improved over the
Leslie-Gower and Holling-Tanner models. The behaviour for H
~3 ™ leading to exponential growth for the parasite, is of

course common to all the models, but this possibility is
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always excluded due to the presence of the self-interaction

term in the rate eqn. for the host.

The present model is given by the equatiJns

dH ' ) W
Ceem = a, H-b H - -——==="P & (3a)
dt : D + H
dp Wl
o H P (3b)
dt D + H
) 1
where ajys bl’ W, D, 2y, wl, D1 > 0.
Now, let us see how this modél behaves globally
and locally. To see this we first do the Kolmogorov
analysis of the model. Before the actual analysis is done,

we would like.to mention what is Kolmogorov theorem and what
do the wvarious Kolmogorov constraints mean in ©biological

terms.

Kolmogorov theorem is often put in the following

form
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If a system given by equations

dH
———- = H F (H,P)
dt
(4)
ap
-——- = p G(H,P)
dt

where H is the host (or prey) population at any instant of
time and P is the parasite (or predator) population at the

same instant of time; satisfies the following conditions

QF
i) =---- . <0
.raP .
' DF ?dF
ii) H (-=—--- ) + P (-—-——- ) <0
dH op
26
iii)  ——=--- <0
Ddr
DG 2 G .
iv) H (==-==- ) + P (--——-- ) > 0
ol dp

v) F(0,0) > 0 and fulfils the requirements
vi) F(0O,A) = 0, with A > O

vii) F(B,0) = 0, with B > O

@«
~
(@]
o
~r
1]

viii) 0, with C > 0
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ix) "B > C,
‘then it ©possesses either é stable equilibrium point or a
stable 1limit <c¢ycle, -provided that F and.G are continuous
functions of H and P, vwith continuous first derivatives,

throughout the domain H20, P>O0.

In biological terms, Kolmogorov conditions can be

put as follows :

il for any given population size (as measured by
numbers, biomass, etc.), the per capita rate of increase of

‘"the 'prey species is a decreasing.function of the number of

predators, and similarly (iii) the rate of increase
ofpredators decreases with their population size.Fbr any
given. ratio between the two species, (ii) the rate of

increase ofprey is a decreasing function of the population

size -while conversely (iv) that of the predators is an
A

increasing function. It is 1lso required that (v) when both

populations are small the prey have a positive rate of

increase, and that (vi) there can be a predator ‘population

size sufficiently large to stop further prey increase, even

when the prey are rare. Condition (vii) reqﬁires a critical

prey population size B, beyond which they cannot increase
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even 1in the absence of pfedators (a resource or other self
limitation), and (viii) requires a critical prey size C that
stops further increase in predators, even if they be rare;
unless (ix) B > C,the system will collapse. These
biological constraints are spelled out more elaborately in

Scudo (1971) or Rescigno and Richardson (1967).

KOLMOGOROV ANALYSIS OF THE PRESENT MODEL

In our case, functions F (H,P) and G (H,P) are

WP .
S T T R
. h] H - H
| _
G (H,P) = -a, +  —===————-
B 2 3ﬂ.+F*D, » B
DF
(i) -—----- < 0 ===> W, D> O
op

This condition is satisfied because W and D are

both position constantse
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(ii) H (—---- R N ) <

==> - b, D" H - b, ul - 2b, DH® < WDP

It 1is quite clear that 2nd condition is satisfied

in the domain H, P > 0, as b, D, W are all positive

constants.

6
(iii)  -——--- = 0
DP
G G
(iv) H (-—--- ) + P (-m————~- ) > 0 ===> Dl > 0
QH e
Positivity of Dl clearly guarantees the

satisfaction of this condition.

(v) The requirement F(0,0) >0 needs a; >

requirement is fulfilled.

0. As a,>0,

in our model this

vi) F (0,A) = 0 gives A = 1

, wWhich is clearly
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positive as a D,

l’

W all are positive constants.

So, this requirement is also fulfilled.

vii) F (B,0) .'=

which is also clearly positive

positive.

1
o

viii) G(C,0)

greaterthan zero, we get

1 ay

and b both

as al 1

are

. Since( must be

a constraint

(5)

(ix) The condition B > C gives us another constraint

é a, D
Sl Rl
b]. ")I l_-' '~

Thus

theorem to the model shows that the theorem is satisfied

it under the conditions

It can be noted here that
constraints can be
inequility can

38
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be replaced by an equality (see May

(6)

we see that an application of the Kolmogorov

by

the Kolmogorov

that an

original

relaxed in



(1974), pp. 88).

Wl_ > a, (7a)
and
©a D a
o, P - (75
by Wy, '

This means that under these constraints 7(a) -and 7(b), the

model will always lead to solutions possessing either stable
beint oy |

equilibrium ¢: &« limit cycles.
"

LOCAL OR NEIGHBOURHOOD STABILITY ANALYSIS

dH WP
For H-isocline,-- = 0 ==> a; - b1 H - —-—==- =0
dt D.-+ H
' . dp W, H
For P-isocline,--- = 0 ==> a, = —==--
dt D, + H

The intersection of the two isoclines is the

S
equilibrium point (H ,P ), where
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% a D
"= 2 1
W, oA,
S W See SR x
2
W W (Awl - a,)
[31 (ijaz) bl (D W1 - a, D + a, Dl)]

Writing N, for the host and N2 for the parasite in

1
the new model given by eqns. (3a) and (3b), we get

2 w
F(N,N)=aN—bN e N
' ' : L ! 1 1 D + N
{
Wl
Fg (Nla N2) =-a2 N2 4+ mmm——Iae N]_ N2
D1 + N‘

Now, various elements of the communities

can be calculated to get the result

40
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QFI " 1% N1
app = (77==== ) o= m TS %
AN, D+ N
ran * W1 D %
agy = (-===%- )= ot el
oM (D{N, )
%
VFy « W, Ny
3y = (707 ) = -ay oS = =0
AN, D, N,

% *
e T
41 171 2 *
(D + N ) D + N
1 1
Az
p, N 0
S W
2
(Dl + Nl )
]
The determinental equation det |A -73I| = 0 for

the eigen values A reduces to the quadratic eqn.

’?\zfa’a + b = 0 (8)
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(9)

with a

]

I
~
foh]

—
—
+
[sV)
[\
N
~

N and b = (10)

For the system given by equations (3a) and (3b) to
possess local stability two values of A ( ﬂland ﬁl. ) of the
quadratic eqn.(8) must have negative real parts. For that
it is essential that a > 0 and b >0, where quantities a and

b are defined by eqns. (9) and (10) respectiveiy.

a >0 => 2b, [-—S--Zo-——mo ] +b,D-a >0 (l1a)
b>0=> D >0 | (11b)

These two are the conditions to be fulfilled if the model is
to .possess a stable equilibrium point type of stability.
But .pésitivity of the constant Dl automatically guarantees
(11b). Now, one 1is in a position to say that a choice of
the varioué parameteré which respect the constraint (lia)
will thus lead to a solufion with stable equilibrium point

and a choice violating this will lead to limit cycles.

Numerical calculations leading to solutions which

show equilibrium point behaviour are given in figures 3.1 to
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3.4, In figure 3.%,time development of two populations

corresponding to phase portrait (Fig. 3.2) have been given.

In figures 3.6 to 3.8 numerical calculations
leading to stable limit cycle behaviour are given. In
figure 3.9 time development of two populations corresponding

to phaée portrait (Fig. 3.7) are given.

Extinction of parasites (predators) are also

possible in our model. It has been shown in Fig. 3.10.

Values of the constants and initial populations

can be read from the legend.
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