
..

MANAGING THE BANDWIDTH
' _..... ,,

OF
.

JNU CAMPUS WIDE NETWORK

Dissertation submitted to Jawaharlal Nehru University in partial fulfillment oftlte

requir_ements for the award of tlte degree of

......

Master of Technology

in

Computer Science and Technology

By

CHALLA BHANU PRASAD

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067

JANUARY. 2001

•·
·"¥ .. v; .

·'

·,

\ltQ(g(MfH ~ ftr~C4~01(11q
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

CERTIFICATE

This is to certify that the dissertation entitled Managing the Bandwidth of JNU

Campus Wide Network being submitted by CHALLA BHANU PRASAD to the School

of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi in partial

fulfillment of the requirements for the award of the degree of Master of Technology in

Computer Science is a bonafide work carried out by him under the guidance and

supervision ofProf.G.V.Singh and Dr.D.KLobiyal.
. I

The matter embodied.in the dissertation has not been submitted for the awaid of

any other degree or diploma.

Prof.G .. m ,
Professor, SC&SS,
Jawaharlal Nehru University,
New Delhi- 110067.

C--8-(_~
Prof. C.P.Katti,
Dean, SC&SS,

' ..

e.g. pt),~ ;;ll'•'
Challa Bhanu Prasad

~voo\
Dr.D.KLobiya~
Asst. Professor, SC&SS,
J awaharlal Nehru University,
New Delhi- 110067.

Jawaharlal Nehru University,
New Delhi- 110067

GRAM : JAYENU TEL. : 667676, 6G7557 TELEX: 031-73167 JNU IN FAX: 91-011-6865886

••• dedicated to

111y beloved parents

ACKNOWLEDGEMENTS

I would like to pay obeisance at the feet of my beloved parents for their blessings

are always with me in all my aspirations including my academics.

I would like to sincerely thank my supervisors, Prof G. V. Singh and Dr. D. K.

Lobiyal, School of Computer and Systems Sciences, Jawaharlal Nehru University for

their help, encouragement and support extended in colnpletion of this project. The

valuable discussions were very much helpful in keeping the project in the right track.

I would like to record my sincere thanks to my dean Prof C. P. Katti and

Communication and Information Services, Jawaharlal Nehru University for providing the

necessm:v computing facilities.

I take this opportunity to thank all of my faculty members and friends for their

help and suggestio1zs during the course of my project work.

Challa Bhanu Prasad

ABSTRACT

The assignment of appropriate data carrying capacity within the network for every

user and application is the ultimate goal of monitoring and managing the bandwidth of an

Internet edge link. Such a link could be, for example, a campus Internet access link or a

. small ISP's backbone access link.

We use packet monitoring to obtain traffic statistics, and blocking TCP requests

· for bandwidth control. Packet capturing implies capturing all packets that travel in the

·network. This can be achieved in an Ethernet Network because of its broadcasting nature.

That is any packet sent over an Ethernet network is broadcasted to all machines in the

network. The Ethernet card in every machine checks whether the particular packet is

destined to it, if so accepts it else rejects it. This basic functionality of an Ethernet

network is exploited to capture all packets that travel through the network.

Blocking a TCP connection and balancing the load on the network can be

achieved by sending a segment that has the RST bit set to any one side of the connection.

A monitoring and control architecture has been proposed to carry out the above

'· mentioned operations. Further enhancements that manage the bandwidth of the campus

wide network have been discussed.

TABLE OF CONTENTS

1. INTRODUCTION

2. BANDWIDTH MANAGEMENT

2.1 Scope of the Bandwidth Management

2.1.1 Characteristics ofBandwidth-Management

2.2 Motivations for Bandwidth Management

2.2.1 Necessity of ~and width Managment

3. MONITORING AND CONTROL ARCHITECTURE

3.1 The Architecture

3.2 Load Balancing

3.3 Structure of the Driver used for Capturing

Packets on the Network

3.4 The Filtering Process

3.5 The Reading and Buffering Processes

3.6 The Writing Process

3.7 Statistics Mode

3.8 Data Structures and Functions

4. PACKET MONITORING .

4.1 Modes in an Ethernet Interface Card

4.2 Sample PACKET.SYS Driver
•·

4.3 TCP/IP Layered Architecture

4.4 Identifying Users Different Requests

4.4.1 Identify4tg a TCPIIP Packet

4.4.2 Identifying a HTTP Request

1

5

5

6

7

7

9

9

12

12

15

15

17

17

18

29

29

30

37

38

40

42

5. NETWORK BANDWIDTH CONTROL

5.1 TCP Communication in a network

5.2 Establishing a TCP connection

5.3 TCP connection Reset

5.4 Breaking a TCP connection

5.5 Framing a RST packet

CONCLUSION

REFERENCES

44

44

46

46

46

47

. 57

58

CHAPTER!

INTRODUCTION

This chapter gives a brief overview of the Internet as mesh of interconnected

users and se1vice providers, explaining how se1vice providers operate, and some

examples of policies that can be set up based on Internet access link utilization by the

network manager.

A network user is a person using a computer which is connected to a network, for

accessing seivices delivered over that network such as e-mail. An internet is simply a

collection of networks which are interconnected by links of various kinds. One special

intemet is the Intemet, which is global intemet of connected networks which all use the

TCP/IP (Transmission Control Protocol I Internet Protocol) suit of network protocols.

The network to which an individual host is attached may be provided by her

organization - a campus network or by a public Internet Service Provider (ISP). In either

case, the network provides transport for the packets which carry the users data.

Se1vices such as e-mai~ news and the world wide web (WWW) are based on

server hosts. Such servers may be operated by ISP, this is usually the case for e-mail,

network news and chat se1vices. Other servers, such as web servers and information or e

commerce se~vers and the se1vices which are based on them are often operated by

independent providers known as Content Providers.

The information between user hosts and se1vices is canied in packets, i.e., shmt

messages (typically containing 64 to about 1500 bytes) which travel across the Internet.

A stream of packets between a pa1ticular host and se1ver is often described as a flow of

1

network traffic; if we wish to know how the Intemet is being used, we will have to

measure these traffic tlows.

Problem Definition

Managing the bandwidth of JNU Internet edge link with a view towards

certain quality of service objectives for the services it carries.

Ordinary users connect to the Internet via the public telephone network, using

modems to connect to their Internet Service Provider (ISP). We call this kind of ISP as

Local ISP. A Local ISP makes it possible for individual users to attach their host

computers to the LocallSP's network, and thus to the global Internet.

ho
st

ho
st

host

L____..l/
/

Depattment
- LAN

r-....L..----,

host

Campus
network

host

host

Network
manager

Network
operations
center LAN

---lntem~t access (
l.mk t

Figure: I A campus network with an access link to an lntemet Service Provider

2

Packets arriving at a router are sent on towards their destination along the best

possible path. This path is other networks in the Internet. This kind of transmission is

described as connectionless packet routing. Until very recently all packets within the

Internet were forwarded using the best possible path at each step in their paths; this is

described as best effort service. Protocols for other kinds of service are beginning to

emerge, for example the IETF's differentiated service (diffserv) protocol allows for

various levels of priority traffic, and so on. The ability to offer services other than best

effort will provide significant new oppurtunities for ISPs over the next few years.

Figure 1 shows a campus wide network and its attachment to an Internet Service

Provider (ISP}. Typical campus backbone speeds are 10 to lOOMbps, with more recent

installations at 155Mbps ifbased on a~ynchronous transfer mode (ATMO or lOOOMbps if

based on Gigabit Ethernet. Campus end points are typically cmmected to the backbone

by depattmental LANs of at least lOMbps. As opposed to these numbers, Internet access

link speeds range from 64Kpbs to 2Mbps (our network link speed being 512Kpbs). The

access links with 2Mbps are fairly common now in developed countries, but still quite

expensive and uncommon in developing countries. It is immediately clear from the

scenario described above, that the WAN access link can become a bottleneck resource

that needs to be monitored and managed.

All traffic between the access link and the campus network is made to pass

through an Ethernet segment or, equivalently, an Ethernet hub. On this segment resides a

machine called the network manager, with a module required to monitor and control the

network.

The packet capturing is based on the utilities for promiscuously capturing IP

packets on the Ethernet segment. The captured packet data is used to generate source

destination statistics and service statistics (like e-mail, HTTP, FTP} for the packets

flowing on the Internet access link.

3

Based on the link utilization policies set up by the network manager, the packet

monitoring module generates the traffic statistics. The bandwidth control module then

controls the TCP connections to control the load on the Internet access link so that the

traffic flowing on the link conforms to the configured policies. Some examples of

policies that can be set up:

• Do not allowing the network users to access a set of (IP addresses) that are obviously

very unproductive there by utilizing the network resources efficiently.

• Do not allowing the occupancy of the access link to exceed 90%; this threshold may

be obtained, for example, from a model of TCP connections over a WAN with this

link as the bottleneck link; the objective is to meet a session throughput objective.

There are several advantages to our approach:

1. Efficient utilization of the bandwidth capacity of the campus wide Internet access

link.

2. QoS (Integrated Services) will be provided to the users of the network.

3. Easy installation in the network (most WAN access links are attached to campus

network via a router on an Ethernet LAN. Installation of a system based on our

approach is then just a matter of installing one or more machines on the same LAN).

4. Network unaffected by the manager hardware failure (in our approach, if the manager

machine fails, the controls stop working, but the network traffic continues to flow,

albeit in the original uncontrolled manner).

In this dissettation, we describe bandwidth management, proposed monitoring and

control architecture and the algorithms that could help in implementing the work.

4

CHAPTER2

BANDWIDTH MANAGEMENT

Bandwidth is the amount of data that can be transmitted in a fixed amount of time.

For digital devices, the bandwidth is usually expressed in bits per second (bps or bytes

per second). For analog devices, the bandwidth is expressed in cycles per second, or

Hertz(Hz).

The ultimate goal of bandwidth management is the assignment of appropriate

canying capacity within the network for every user and application.

2.1 Scope of the Bandwidth Management

Today's best-effort model for public and private networks is based on the ideas

that traffic is created equal. By contrast, network setvices such as the public switched

telephone network have separate channels for signaling traffic and ~oice traffic, and they

·guarantee a fixed capacity end to end with small, predictable delays.

As we rely on best-effmt networks to carry concurrent voice, video, data, and

interactive application across a common network infrastructure, we must offer each of

these traffic types the specific services and handling characteristics it requires.

Managing bandwidth means controlling traffic levels in real-time in order to make

optimal use of scarce capacity.

5

2.1.1 Characteristics of a Bandwidth-managed Network

As described above the ultimate goal of bandwidth management is the assignment

of appropriate carrying capacity within the network for every user and application. This

statement can be further explained as:

"appropriate" capacity means the right data rate, the proper delay, and the right level of

change in delay.

"with in the network" means that a network has differentiated services to offer. If a

network is to provide more than one sort of service, then it must be able to identify

different types of traffic and handle them in different ways.

"for every user and application" implies that the network has user-based and application

based identification systems. Today's networking devices work with addresses and

interfaces, so a bandwidth-managed network needs to determine user and application

information from addressing information using a variety of network services such as

user-based logins. This represents a significant shift away from a low-level. addressing

perspective and towards a view of the network based on users and services as the

networking infi:astructure starts to offer so-called ')lolicy" capabilities.

A bandwidth-managed network is able to offer distinct characteristics based on

the kinds of traffic it handles. Traffic can be classified by application, user, or even

"external" factors such as time-of-day, date, or level of network congestion. While

today's technology won't enable us to build a perfectly manageable network, we can take

steps to build a network that can offer varying degrees of service and to deploy the

system of directories and authentication points that will govern allocation of these

services. Managing bandwidth properly will postpone the needs for additional bandwidth,

making it a suitable alternative to increased LAN capacity.

6

Typically a network manager changes network behavior by altering parameters on

a device manually, using a management console. Such a change is called an

"administrative configuration" if the change is repeated across a range of devices

automatically and it involves the creation of specific services, then the process is known

as ')Jrovisioning". A simple association of application types with relative priorities that

can be configured administratively on an individual device or provisioned for a specific

service can administer some degree of Quality of Service.

Because network bandwidth is a scarce resource, devices can be said to enforce

the use of networked capacity. Enforcers attempt to deliver optimal bandwidth allocation,

delay, variance in delay, and so on. Enforcing devices can send different kinds of traffic

across different paths in the networks or they can treat traffic differently as. it passes

through them, using packet filters, firewalls etc.

2.2 Motivations for Bandwidth Management

If we're going to invest time and effort in the creation of a differentiated-service

network, there had better be good reasons to do so. Fortunately, there are many such

reasons. In this section, we explore the motivations for bandwidth management, and look

at the benefits and drawbacks of so-called "managed" bandwidth versus the ''big"

bandwidth approach of simply throwing capacity at congestion problems.

2.2.1 Necessity of Bandwidth Management

A fundamental question an IT manager must ask before embarking on the

deployment of a bandwidth-managed network is whether the total cost of managing the

network is lower than the cost of throwing bandwidth at congestion problems.

Managing bandwidth in detail is an extremely complicated task. Handling the

myriad requests for response time, jitter, and capacity with dimensions of application,

user, time-of-day, congestion, and link type is so complicated, in fact, that it's always

7

cheaper to throw faster boxes at the problem on the LAN and leave it to someone else on

the WAN.

Tiu·owing bandwidth at the problem is naive. It discounts the impact of network

failures, the delays in deploying capacity broadly, and the effects of application

bandwidth hunger in coming years. Without controls, even a network of enormous

bandwidth can still be overrun by miscreant applications. If a network cannot be throttled

to some degree, managers cannot ensure the proper setvice of mission-critical

applications. But the reality is that it's acceptable to throw bandwidth at a problem when

it is cost effective to do so.

8

CHAPTER3

MONITORING AND CONTROL

ARCHITECTURE

Figure 1 shows the placement of the monitoring and control device on the

Ethernet segment. All traffic between the bottleneck access link and the campus network

is made to go through an Ethernet segment on which the machine is placed.

3.1 The Ar.chi.tecture

A block diagram shown in Figure 2 describes how the packets that come to the

NIC can be captured, and how packet with RST bit set is sent on to the network if the

source 1P address of the packet matches any of the address in the blocking file. The

machine with such an 1P address is restricted from accessing the Internet.

The module comprises two threads one for grabbing the packets from the network

and another for performing matching and sending the reset packets.

To petform a blocking operation, after obtaining the packet we have to compare it

with the addresses that are specified in the blocking file, frame the reset packet and send '

it to the machine that has to be restricted. These operations put together will be very slow

when compared to the rate at which the packets come to the NIC. If the application is a

single-threaded application, which will read a packet and perform the above operations

and then read the next packet, it is sure of losing packets. To prevent this we go in for a

multi-threaded application with one thread continuously reading packets and the other

9

doing the blocking. The application has to make a ReadFile call to read a packet that

comes to the NIC. Once the driver reads a packet from the NIC, while application is busy

in perfonning other activity, the driver has to copy its buffer to the buffer of the

application in other words, the packet has to be lifted up from the kernel level to the user

The
Read file buffer packet
call to the where the from
driver packet is

read

User level

Packet.dll

kernel level
packet capture driver

NIC driver

packet network

Figure: 2 Monitming and Control Architecture

10

level. The lifting process takes quite sometime, if with in this time a packet comes to the

NIC that packet is not grabbed and is lost.

Thus even if we call the ReadFile function continuously in an infmite while loop

we tend to lose packets. This is because only after one ReadFile returns the other is

initiated and so on. Thus if during a ReadFile is in progress a packet comes, the packet is

lost. To avoid this, instead of making the ReadFile call synchronous, we make this

asynchronous. By asynchronous, we mean that it is not necessary to wait until the

previous ReadFile call returns, instead we can initiate some more reads. Let us see with

this how we overcome the problem of missing the packets that come during the ReadFile

is in progress. Consider that we have initiated 15 reads, now when a packet comes, the

first read is invoked and it keeps reading. During this time if another packet comes then

the second read that we have initiated gets invoked and similarly the other reads that we

have initiated. Once a read is completed the blocking thread gets notified and this thread

gets the buffer in which the packet has been read. The thread matches the obtained

packet's IP address with those specified in the blocking file and then calls the SendPacket

routine that we have already discussed to send a reset packet. Once this is over, the

blocking thread indicates the grabber thread that initiates another read on this buffer.

Thus at any time there will be a pending read and if any packet comes to the NIC it will

be automatically grabbed. Even after this, if the rate at which the packets come to the

NIC is very high then there are possibilities of missing the packets. But doing

asynclu:onous reads gives the maximum efficiency in the sense that losing packets has the

least probability.

1. Once a ReadFile returns the grabber thread indicates the completion of the read to the

blocker thread. The blocker waits on an 10 completion pmt for the Read to complete.

Once the read is over the buffer is presented to the blocker thread. The blocker thread

then compares the IP addresses and if it matches it calls the SendPacket to send a reset

packet to the machine that has to be blocked.

2. Indicates that the Grabber thread fills the buffer with the packet that it has picked up

ll

fi:om the network.

3. Indicates that the blocker thread reads the packet that is placed by the grabber in the

buffer.

4. Once the blocker sends a reset packet to the machine or finishes comparing the

addresses, it posts a message with the buffer to the grabber thread. Once the grabber

thread receives this message and the buffer, it initiates another ReadFile call on this

buffer. Thus the application continuously keeps grabbing all the packets that come to the

network and will not allow the machines that are added in the blocking file from

accessing the Internet. To enter the IP addresses of the machines that need to be blocked,

into the blocking file,. the user is provided with a simple UI to do so.

3.2 Load Balancing ·

Similarly we can initiate a thread in the monitoring application that increments the

count of the number of packets whenever a packets comes to its NIC. If we want to block.

the new connections when the load on the network exceeds the threshold value then what

we can do is specify another file in which we will enter IP addresses of the sites that have

to be restricted. Once a packet is obtained, the blocker thread compares the source IP

address and the destination IP address with the set of addresses in the blocking file and

act accordingly.

Since we do not use any queue or other variables that are accessed by both the

threads simultaneously we have not dealt with the thread synchronization issues. If a

queue or some other data structure is used that is accessed by both the threads, then the

accesses have to be synchronized using critical section variables or other thread

synchronization mechanisms.

3.3 Structure of the driver used for capturing packets on the network

The packet capture driver adds to windows kemels the capability to capture raw

packets fi:om a network in a way very similar to UNIX kemels with BPF. In addition, it

12

provides some functions, not available in the original BPF driver, to help the

development of network test and monitor programs. Main goals of the packet capture

driver are high capture performance, flexibility and compatibility with the original BPF

for UNIX. This results into a protocol driver that can:

Application

User
buffer

NIC Driver

Packets

User level

Application

User
buffer

User
buffer

ftlter

Kernel level

NIC Driver

packets network level

Figure: 3 structure of the driver with llvo adapters and a two applications

13

1. capture the raw traffic from the network and pass it to a user level application, and

ftlter the incoming packets executing BPF pseudo-machine code. This means that the

capture application can define a standard BPF program and pass it to the driver. The

driver will discard the incoming packets that do not satisfy the filter, holds the packets in

a buffer when the application is busy or it is not fast enough to sustain the flow of packets

coming from the network, and collects the data from several packets and return it as a

unit when the application does a read. To maintain packet boundaries packets are

encapsulated in a header (the same used by BPF) that includes a time stamp, length, and

offsets for data alignment.

2. write raw packets to the network calculate statistics on the network traffic

The real structure is more complex and can be seen in figure 3. This figure shows

the driver's configuration with two network adapters and two capture applications.

For each capture session established between an adapter and a capture program,

the driver maintains a ftlter and a buffer. The single network interface' can be used by

more than one application at the same time. For example, a user that wants to capture the

IP and the UDP traffic and save them in two separate files, can launc4 two sessions of

WinDump on the same adapter (but with different filters) at the same time. The first

session will set a filter for the IP packets (and a buffer to store them), and the second a

ftlter for the UDP packets. It is also possible to write an application that, interacting with

the capture driver, is able to receive packets from more than one interface· at the same

time.

The interaction with NDIS is very similar under the different platforms and is

obtained by a set of callback functions exported by the driver and a group NDIS library

functions (NdisTransferData, NdisSend ...) used by the packet driver to communicate with

the NIC driver. Differences between the different flavors concerns the interaction with

the other parts ofthe operating system (read and write call handling from user-level

14

applications, timer functions ...), since the philosophy of the various operating systems is

quite different.

3.4 The filtering process

The filter mechanism present in the packet capture driver derives directly from the

BPF filter in UNIX. An application that needs to set a filter on the incoming packets can

build a standard BPF filter program (for example through a call to the pcap _compile

function of libpcap) and pass it to the driver, and the filtering process will be done at .

kernel level. The BPF program is transferred to the driver through an IOCTL call with the

control code set to pBJOCSETF. A very important thing is that the driver needs to be able ,

to verify the application•s filter code. If no filter is defined, the driver accepts all the

incoming packets.

The filter is applied to a packet when it•s still in the NIC drivers memory, without

copying it to the packet capture driver. This allows to reject a packet before any copy

thus minimizing the load on the system ·

3.5 The reading and buffering processes

When an application wants to obtain the packets from the network, it performs a

read call on the NDIS packet capture driver (this is not true in Windows 95, where the

application retrieves the data through a IOCTL call; however the result is the same). This

call can be synchronous or asynchronous, because the driver offers both the possibilities. :.

In the first case, the read call is blocking and the application is stopped until a packet

arrives to the machine. In the second case, the application is not stopped and must check

when the packet arrives. The usual and RECOMMENDED method to access the dri~er i~.

the synchronous one because of the difficulties in implementing the asynchronous one

that can bring to enors. The asynchronous method can be used to do application-level.

buffering, but this is usually not needed because the buffering in the driver is more

efficient and clean.

15

After an incoming packet is accepted by the filter, the driver can be in two

different situations:

The application is ready to get the packet, i.e. it executed a read call and is

cuiTently asleep waiting for the result of the call. In this case the incoming packet is

immediately copied in the application's memory, the read call is completed and .the

application is waked up. .

There is no pending read at the moment, i.e. the application is doing other stuff

and is not blocked waiting for a packet. To avoid the loss of the packet, it must be stored

in the driver's buffer and transferred to the application when it will be ready to receive it,

i.e. at the next read call.

The driver uses a circular buffer to store the packets. A packet is stored in the

buffer with a header that maintains information like the timestamp and the size of the

packet. Incoming packets are discarded by the driver if the buffer is full when a new

packet aiTives. In fact, it is likely that a capture application, that needs to make operations

on each packet, sharing at the same time the processor with other tasks, will not be able

to work at network speed during heavy traffic or bursts. This problem is more noticeable

on slower machines. The driver, on the other hand, runs at kernel level and is written

explicitly to capture the packets, so it is very fast and usually it does not loose packets.

Therefore an adequate buffer in the driver can store the packets while the application is

busy, can compensate the slowness of the application and can avoid the loss of packets

during bursts or high network activity.

If the buffer is not empty when the application performs a read system call, the

packets in the driver's buffer are copied to the application memory and the read call is

immediately completed. More than one packet can be copied from the driver's circular

buffer to the application with a single read.call. This improves the performances because

it minimizes the number of reads ..

The packet driver handles the kernel-level and user-level packet buffers in a very

versatile way. It is possible to choose any dimension for the driver's circular buffer,

limited only by the RAM of the machine. Furthermore, also the buffer used by the user

level application can have any size and can be changed whenever the application needs to

do so. An important feature is that the two buffers ar~ not forced to have the same size.

16

The packet captw·e driver detects the dimension of the application's buffer and fills it in

the right way even when it has different size from the circular buffer. This is important

when the driver's buffers is big, because a large application buffer would be a waste of

memory. On the other hand, this mechanism has also a drawback: since the size of the

packets is not fixed, when the dimension of the application's buffer is smaller than the

number of bytes in the driver's buffer, it can happen that the driver has to scan the

headers of the packets in its buffer in order to determine the amount of bytes to copy.

This process slows down a bit the capture process, therefore best performance are

obtained when application and kernel buffers have the same size.

3.6 The writing process

The packet capture driver allows to write raw data to the network. This can be

useful to test either the network or the protocols and applications working on it. To send

data, a user-level application performs a write system call on.the packet driver's device

file. The data is sent to the network as is, without encapsulating it in any protocol,

therefore the application will have to build the various headers for each packet. The

application does not need to generate the FCS because it is calculated by the network

adapter hardware and it is attached automatically at the end of a packet before sending it

to the network.

3.7 Statistics mode

A network manager is often not interested in the whole sequence of packets

transiting on a network, but in statistical values about them For example the user could

be interested in network's utilization, broadcast level, but also in more refined

information, like amount of mail traffic or number of web requests per second. 'Statistics'

mode, or mode 1, is a particular working mode of the BPF capture driver that can be used

to perform real time statistics on the network's traffic in an easy way and with the

minimum impact on the system

17

To put the driver in statistics mode, the user-level application makes an IOCTL

call with code pBIOCSMODE, and the value •1• as input parameter. To set again the

normal •capture• working mode the same IOCTL, but with •o• as input parameter, can be

called.

When in mode 1, the driver does not capture anything but limits itself to countthe

number of packets and the amount of bytes that satisfy the user-defined BPF filter. These

values are passed to the application at regular intervals, whenever a timeout expires. The

default value of this timeout is 1 second, but it can be set to any other value (with a 1 ms

precision) with an IOCTL call (parameter pBIOCSRTIMEOUT). The counters are

encapsulated in a bpf_ hdr structure before being passed to the application.

In Windows NT/2000 the packet driver is seen by the applications as a network

service. This means that an application uses the driver like a normal file: it reads and

writes data from the network using the readfile and writefile system calls. Particular

actions like setting a filter or a buffer in the driver are handled through IOCTL functions.

3.8 Data Structures and Functions

3.8.1 Data structures

In this section we give a simple description of the most important data structures of

the driver. The structures will not be described in deep because our goal is to give an

overview ofthem and to point out the location of the most important dtiver•s variables.

The main data structures of the packet capture driver are:

System structures

The following is a list ofthe kemel and NDIS data structures mostly used by the

driver. We provide only a short description ofthem an.d oftheir use in the driver.

NDIS PACKET This NDIS stmcture defines the packet descriptors with chained

buffer descriptors for which pointers are passed to many NdisXxx, Minip01tXxx, and

18

ProtocolXxx functions. A protocol driver that wants to write a packet to the network

through the NDIS primitives must encapsulate it in a NDIS_PACKET structure.

Similarly, a protocol driver receives a packet from the underlying NIC drivers in a

NDIS_PACKET structure. Therefore, this structure is used heavily by the PacketRead

and Packet Write functions.

NDIS_PROTOCOL_CHARACTERISTICS This NDIS structure is used by the

DriverEntry function during the initialization of the packet capture driver and contains all

the information that NDIS will need to interact with the driver: the name of the protocol,

the requested version of NDIS, the pointer to the various callback functions, and so on.

This data is passed to ~IS through the NdisRegisterProtocol function.

LIST_ ENTRY This is a kemel structure defined both in Windows 9x and in Windows

NTx, to support handling of doubly linked list.s. The kernel provides a set of primitives to

handle lists, insert and remove elements, and so on. To use these primitives the

LIST ENTRY data structure must be used. All the linked lists ofthe drivers are handled

through this structure.· ·

IRP This structure is used only by the NT/2000 versions of the driver. IRP, or 1/0

Request Packet, is the fundamental structure that the Windows NTx kernels use for the

communication between applications and drivers. All the data received by the driver from

an application are packed in an IRP. All the data that the driver passes to the applications

must be packed in an. IRP. IRP is a VERY complex structure that contains all the data

needed to communicate with the user-level: addresses ofbuffers, process IDs ...

OPEN_INSTANCE This structure is use by almost all the functions of the driver. It

contains the variables and the data associated with a running instance of the driver. The

OPEN_INSTANCE Structure is enough to identify completely and univocally an instance

ofthe driver. A new instance ofthe driver with its own OPEN INSTANCE structure is

associated to every application that performs CreateFileO system call on the packet

19

capture driver. This means that more than one application can have access to the packet

capture driver.

INTERNAL REQUEST This structure is used by the driver to perform OlD query

and set operations on the network adapter through the underlying NIC driver. The

query/set operations on the adapter can be done usually only by protocol drivers, but the

packet capture driver allows the user-level applications to use this mechanism through an

IOCTL function. The driver uses the INTERNAL_REQUEST structure to store the

information on a query/set operation requested by the application.

DEVICE EXTENSION This ·.structure contains information on the packet capture

driver, like the pointer to the D~R _OBJECT structure that describes the driver, or the

ProtocolHandle that NDIS associates to the driver. It is used by the DriverEntry and

PacketUnload functions to initialize or uninstall the driver

timeval This structure is used to store the timestamp associated with a packet

3.8.2 Functions

This paragraph will describe the procedures of the packet capture driver.

Driver Entry

This procedure is called by the operating system when the packet capture driver is

loaded and started. It makes all the initializations needed by the driver. In particular this

function allocates a NDIS PROTOCOL CHARACTERISTICS structure and initializes

it with the protocol data (version, name, etc.) and the addresses of all the callback

functions of the driver. This structure is then passed to NDIS with a call to

NdisRegisterProtocol. The Wmdows NT version of the driver calls also the

JoCreateDevice function to pass to the operating system the addresses of the handlers for

the open/close, read, wdte and IOCTL requests.

20

Packet Open

This function is called when a new instance of the driver is opened. It allocates

and initializes variables and buffers needed by the new instance, fills the

OPEN_ INSTANCE structure associated with it and opens the adapter. The time constants

used to obtain the timestamps of the packets during the capture are initialized here.

PacketOpenAdapterComplete

Callback function associated with the NdisOpenA.dapter function ofNDIS library.

It is invoked by NDIS when the NIC driver has finished an open operation that was

started previously by the PacketOpen function with a call to NdisOpenA.dapter.

PacketClose

This function is called when a running instance of the driver is closed. It stops the

capture and buffering process and deallocates the memory buffers that were allocated by

the PacketOpen function. The network adapter is closed here with a call to

NdisCloseAdapter.

PacketReset

Resets the adapter associated with the current instance, calling the NdisReset

function of NDIS library. This function is defined only in Windows 95, because the

Windows NT version of the driver calls NdisReset directly from the PacketloControl

function.

Packet Unload

This function is called by the system when the packet capture driver is unloaded.

It frees the DEVICE_EXTENSION internal structure, and calls NdisDeregisterProtocol

to deregister fi:om NDIS.

21

PacketloControl

Once the packet capture driver is opened it has to be configured from user-level

applications with IOCTL commands using the Device/oControl system call. This

function handles IOCTL calls from the user level applications.

Packet Write

This function is used to send packets to the network. The packet to send is passed

to the driver with the WriteFile system call ..

Packet Send Complete

Callback function associated with the NdisSend function of NDIS library. It is

invoked by NDIS when the NIC driver has finished to send a packet to the network, after

PacketWrite was called. This function frees the NDIS PACKET structure that was

allocated in the PacketWrite function, and awakens the application from the WriteFile or

Device/oControl system call.

PacketRead

This function is invoked when the user level application perfmms a ReadFile

system call (in Windows NTx), or an IOCTL_PROTOCOL_WRITE IOCTL call (in

Windows 95x). In both cases the application must provide a buffer that will be filled by

the dtiver with the packets coming from the network. The behavior of this function is the

same when the driver is in mode 0 and when it is in mode'l.

The first operation performed by PacketRead is a check on the driver's circular

packet buffer associated with the cunent instance of the driver. There are two possible

cases:

1. The packet buffer is empty. This is ALWAYS tme ifcunent instance ofthe driver is in

mode 1. The application's request cannot be satisfied immediately, and the system call

22

must be blocked until at least a packet arrives from the net or the timeout on this read

expires. PacketRead sets the timeout on this read calling KeSetTimer in Windows NTx,

and the custom function SetReadTimeOut in Windows 9x. After a NDIS PACKET

structure is allocated, the buffer received from the application is mapped in the driver's

address space and associated with this structure. The NDIS_PACKET structure is put in

the linked list of pending reads. It will be extracted from this list by the Packet_ Tap

function when a new packet will be captured. At this point PacketRead returns without

awaking the application.

2. The packet buffer contains data: the application's request can be satisfied immediately.

First, the driver obtains the length of the buffer passed by the application, to which the

packets will be copied. Knowing this value, PacketRead tries to copy all the data to the

application without further operations. This is possible if the number of bytes present in

the driver's circular buffer is smaller than the size of the application buffer. If the

application's buffer is too small to contain all the data present in the driver's packet

buffer, a scan on the kernel buffer is performed to determine the amount ofbytes to copy.

After the scan, NdisMoveMemory is invoked to copy the packets. At this point the

application is awaked and PacketRead returns.

PacketMoveMem

This function is used by all versions of the driver to copy data from the driver's

circular buffer to the user-level application's buffer. It copies the data minimizing the

accesses to the RAM. This is obtained aligning the memory accesses at the dword.

Furthermore, it updates the head of the circular buffer every I 024 bytes copied. In this

way the circular buffer is updated during the copy allowing a better use of the circular

buffer and a lower loss probability. The function has been written to have a low overhead

compared to a normal copy function. For this reason the head is updated no more often

than every I 024 bytes.

23

Read Timeout

This function is automatically invoked by the kernel when the timeout associated

with a read call expires. First of all, the OPEN_ INSTANCE structure associated with the

current instance of the driver is found. From this structure ReadTimeout determines the

working mode of cuuent driver's instance. There are two possibilities.

Current driver's instance is in mode 0. No packet passed the filter during the timeout

period. In fact, if a single packet had passed the filter, the timeout would have been

deleted in the packet_tap function. For the same reason, the driver's circular buffer must

be empty. The read system call associated with current instance is completed, but an

empty buffer is pass'~d to the application.

Current driver's instance is in mode 1. ReadTimeout builds in the user-level buffer a

bpf_hdr structure, and fills it with the current timestamp and with the value 16 for

bh_caplen and bh_datalen. After the header, two 64 bit integers are put. The first is the

count of the number of packets satisfying the filter (hold in the Npackets field of the

OPEN_INSTANCE structure associated with current instance), while the second is the

amount of bytes satisfying the filter (hold in the Nbytes field of the OPEN_ INSTANCE

structure). Finally, Npackets and Nbytes are reset and the read system call associated with

current instance' is completed.

PacketCancelRoutine

This is the cancel routine set in the PacketRead function with a call to

IoSetCance!Routine. It is called by the operating system when the read system call is

cancelled, for example when the user-level application is closed during a read on the

packet capture ~1er, PacketCancelRoutine removes the pending IRPs from the queue

and completes them This function was introduced to correct a bug ofthe old versions of

the driver. Without this function, in fact, the driver hangs after the user-level application

is closed until at le~st a packet anives from the network. This is a Windows NT specific

problem, so this function is present only in the Windows NT version of the driver.

24

Packet_tap

Packet _tap is invoked by the underlying NIC driver when a packet anives to the

network adapter. In Windows 95 and in Windows NT it has the same following syntax:

NDIS_STATUS Packet_tap (NDIS_HANDLE ProtocoffiindingContext,

NDIS _HANDLE MacReceiveContext,

PYOID HeaderBuffer,

UINT HeaderBufferSize,

PYOID LookAheadBuffer,

UINT LookaheadBufferSize)

First of all, the Protoco!BindingContext parameter is used to determine if current

instance is running in mode 0 or in mode I.

Then, Packet_Tap executes the BPF filter on the packet. The filter is obtained

from the OPEN_INSTANCE structure pointed by the ProtocolBindingContext input

parameter. To optimize the capture performances and minimize the number of bytes

copied by the system, the BPF filter is applied to a packet before copying it, i.e. when it is

still in the NIC driver's memory.

Notice that the capture driver receives the incoming packet from NDIS in two

buffers: one containing the header and one containing the data. The reason of this

subdivision is that normally a protocol driver makes separate uses of the header (used to

decode the packet), and the data (sent to the applications). This is not the case of the

packet capture driver, that works at link-layer level and needs to treat the whole packet as

a unit. However, we noted that in the great part ofthe cases the packet is stored in the ··

NIC ddver's memory in a single buffer (this is the most obvious choice, because the

packet anives to the NIC driver through a single transfer). In these situations

HeaderBuffer and LookAheadBuffer point to two different sections of the same memory

buffer, and it is possible to use HeaderBuffer as a pointer to the whole packet and use the

standard bpf _filter function. The packet driver in every case performs a check on the

25

distance between the two buffers: if it is equal to HeaderBufferSize (i.e. there is a single

buffer), the standard bpf Jilter function is called, otherwise bpf Jilter _with_ 2 _buffers is

called.

If the filter accepts the packet, there are two possibilities:

Current instance is working in mode I. In this case, packet_tap is extremely fast,

because it has to do very few operations. The Npackets field of the OPEN_ INSTANCE

structure associated with current driver's instance is incremented. The length of the

packet (plus a correction that adds the lenght of the preamble, the SFD and the FCS) is

added to the Nbytes field of the OPEN_ INSTANCE structure. After this, packet _tap

returns.

Current instance is working in mode 0, Packet_Tap tries to extract an element

from the linked list of pending reads. This operation can have two results:

The list of pending reads is empty. This means that the user-level application is not

waiting for a packet in this moment. The incoming packet must .be copied to the circular

buffer of the packet capture driver. The address of the circular buffer and the pointers to

head and tail are obtained from the OPEN_INSTANCE structure pointed by the

Protoco!BindingContext input parameter. If the buffer is full (or, better, if the incoming

packet does not fit in the remaining buffer space), the incoming packet is discarded.

Packet_Tap allocates a NDIS_PACKET structure to receive the packet, and associates to

this structure the correct memory position in the circular buffer. At this point, the amount

of bytes specified previously by the filter is copied from the NIC driver's memory, and

the bpf_ hdr structure for this packet is built. Then the head and tail of the buffer are

updated and Packet_ Tap returns.

The list of pending reads contains at least one element. This means that at the

moment the user-level application is blocked waiting for the result of a read on the packet

driver. Packet_Tap extracts the first pending read fi:om the list and finds the

NDIS PACKET structure associated with it. This structure is used to receive the packet

fi"om the NIC driver. At this point, the amount of bytes specified previously by the filter

26

is copied fi:om the NIC driver's memory, and the bpf_hdr structure for this packet is built.

Finally the application is awaked and Packet_Tap returns.

To build the bpf_ hdr structure associated with a packet, current value of the

microsecond timer must be obtained from the system. In Windows NT this is done by

means of a call to the kernel function KeQueryPerformanceCounter, in Windows 95 with

a call to the packet driver's function QuerySystemTime. Since Packet_ Tap is called

directly by the NIC driver, the receive timestamp is closer to the actual reception time.

PacketTransferDataComplete

This function is called by Packe.f_Tap when the packet must be passed directly to

the user-level application. PacketTrafl.sjerDataComplete releases the NDIS_PACKET

structure and the buffers associated with the packet and awakes the application.

PacketRequest

This function is used to send a OlD query/set request to the underlying NIC

driver. PacketRequest allocates a INTERNAL _REQUEST structure and fills it with the

data received from the application. Then The NdisRequest function from NDIS library is

used to send the request to the NIC driver. This function is available only in Windows

95/98, because in Windows NT/2000 this operation is performed by the PacketloControl

function.

PacketRequestComp lete

Callback function associated -\.Vith the NdisRequest function ofNDIS library. It is

invoked by NDIS when the NIC driver has finished an open operation that was started

previously either by the PacketRequest or PacketloControl function of the packet capture

driver.

27

GetDate

This assembler function returns the current system date as a 64 bit integer. The

low word contains the current time in milliseconds. The high word contains the number

of days since January 1, 1980. This function is present only in the Windows 95 version of

the driver.

QuerySystemTime

This assembler functions returns the current microsecond system time as a 64 bit

integer. This function is present only in the Windows 95 version of the driver, where it is

used to get the timestamps of the packets.

28

CHAPTER4

PACKET MONITORING

Packet monitoring implies capturing all packets that travel in the LAN. This can

be achieved in an Ethernet network because of its broadcasting nature. That is any packet

sent over an Ethernet network is broadcasted to all machines in the network. The Ethernet

card in every machine checks whether the particular packet is destined to it, 1f so accepts

it else rejects it. This basic functionality of an Ethernet Network is exploited. to capture all

packets that travel through the network. The Ethernet card can be placed in a number of

modes using drivers and can be used to capture packets as desired.

4.1 Modes in an Ethernet Interface Card

The various modes in which an Ethernet card can be placed is as follows:

• Broadcast.

• Multicast.

• Directed.

• Promiscuous.

Broadcast: A frame that is to be sent to all machines in the network is broadcasted

over the network with the destination address Oxffifff. This is supposed to be the

broadcast address for the fl-ame. Any card that is placed in the broadcast mode accepts

fi·ames with this destination address. Usually all cards will be configured to accept

bioadcast fi·ames.

29

Multicast: A frame that is to sent to a particular set of machines is sent as a multicast

fi·ame with a specified multicast address as its destination address. These sets of machines

constitute a multicast group. Thus any machine that is a member of the multicast group

will accept the fi·ame with the multicast destination address. Everi though a card is not a

part of the multicast group it can programmatically be placed in the multicast mode to

accept all multicast frames.

Directed: A frame that is destined to a particular machine will have the destination

machine's physical address (Ethernet address) specified as its destination address. The

machine with that physical address will accept the frame while all'_the others will reject it.

The card can also be set to only receive directed frames programmatically.

Promiscuous: Any card when placed in this mode accepts any packet that comes to it.

This mode along with the broadcasting nature of the Ethernet is the key to the packet

monitoring application.

The PACKET.SYS sample driver that comes along with windows NT DDK helps

to place the network card in all the above mentioned modes. The application with the aid

of the PACKET.SYS places the card in the promiscuous mode to capture all the packets

that travel in the network.

4.2 Sample PACK.ET.SYS Driver

This driver helps to place the network card in any mode desired and also allows

applications to send and receive packets through and from -the network. The driver

sample apa11 fi:om the sys file also provides a DLL (PACKET32.DLL) through which an

application communicates with the driver.

The diagram shown below clearly depicts the way our application interacts with

the PACKET.SYS driver. The Application calls the functions in the DLL, which in tum

30

calls the entiy points in the PACKET.SYS driver. The driver uses the NDIS.SYS

exported functions to communicate with the Network Interface Card.

Application

Packet32.dll

PACKET.SYS

NDIS.SYS

NIC

Figure: 4 Communication between application and PACKET.SYS

The stmctures that can be used in the above process are listed below.

typedef stmct _ADAPTER

{

I I holds the handle that is returned by the CreateFile method.

HANDLE hFile;

II Holds the symbolic link name of the driver.

TCHAR SymbolicLink[MAX _LINK_ NAME_ LENGTH];

} ADAPTER, *LP ADAPTER;

typedef stmct _PACKET

{

II Holds the handle to the event that is associated with the adapter object.

31

HANDLE hEvent;

II The OVERLAPPED structure contains information used in

I I asynchronous input and output

OVERLAPPED OverLapped;

I I Buffer that holds the data sent or received.

PVOID Buffer; //Length of the buffer

UINT Length;

} PACKET, *LPPACKET;

typedef struct _CONTROL_ BLOCK

{//pointer to the Adapter object

LPADAPTERhFile;

HANDLE hEvent; //handle to the event

TCHAR · AdapterName[64]; //Name of the driver as registered in the registry

//Buffer where the received packet data is stored

HANDLE hMem;

LPBYTE lpMem;

//Buffer where the packet data to be sent is stored

HGLOBAL hMem2;

LPBYTE lpMem2;

I /Specifies the packet length

ULONG PacketLength;

//Specifies the last read packet size

ULONG LastReadSize;

//Specifies the Buffer length

UINT BufferSize;

} CONTROL_ BLOCK, *PCONTROL _BLOCK;

The various function definitions as provided in the Packet32.dll that are used by the

application are as follows:

32

LONG PacketGetAdapterNames(PTSTR pStr, PULONG BufferSize)

{

HKEY SystemKey;

HKEY ControlSetKey;

HKEY SeiVicesKey;

HKEY N disPerfKey;

HKEY Linkage Key;

LONG Status;

DWORD RegType;

II Open the Key HKEY_LOCAL_MACIITNE,

Status=RegOpenKeyEx(HKEY _LOCAL_ MACIDNE, TEXT(" SYSTEM"), 0,

KEY _READ,&SystemKey);

if(Status ==ERROR_ SUCCESS)

{

I I Open the key currentcontrolset

Status=RegOpenKeyEx(SystemKey, TEXT(11CurrentControlSet"), 0,

KEY_ READ,&ControlSetKey);

if(Status == ERROR_SUCCESS) {II Open the key Services

Status=RegOpenKeyEx(ControlSetKey,TEXT("Services"),O,

KEY_ READ,&ServicesKey);

if(Status == ERROR_SUCCESS) {II Open the key Packet.

Status=RegOpenKeyEx(ServicesKey,TEXT("Packet"),O,

KEY READ,&NdisPerfKey);

if(Status =""'ERROR_ SUCCESS){// Open the key Linkage.

Status=RegOpenKeyEx(NdisPerfKey, TEXT("Linkage"), 0,

KEY READ, &LinkageKey);

if(Status == ERROR_SUCCESS) {II Open the key Expmt.

Status=RegQueryValueEx(LinkageKey,TEXT("Export"),NULL,

&RegType,(LPBYTE)pStr,BufferSize);

33

}

}

}

}

}

I I Close all the keys that have been opened so far.

RegCloseKey(LinkageKey);

RegCloseKey(~ disPerfKey);

RegCloseKey(ServicesKey);

. RegCloseKey(ControlSetKey);

RegCloseKey(SystemKey);

retum Status;

}

The above function PacketGetAdapter~ames retrieves the name of the driver as

registered in the registty.

Application calls
packetOpenAdapter

PacketOpenAdapter
calls the entry point
IRP MJ CREATE
which calls
~disOpenAdapter

Opens the Adapter

Figure: 5 Application interacting with the dtiver

The above diagram shows flow of a function call from the application. This

applies to all other functions used to interact with the dtiver. The function

PacketOpenAdapter -defines a new DOS device name for the device and calls the

34

CreateFile method to create or open a communication device and get a handle to the

device. This function is called from the application prior to sending or receiving packets.

The CreateFile method invokes the entry point specified by the IRP _ MJ _CREATE in the

driver, which calls the NDIS library, exported function NdisOpenAdapter to open the

Adapter.

PVOID PacketAllocatePacket(LPADAPTER AdapterObject)

{

LPPACKET lpPacket;

II Allocates J?lemory for the Packet object.

lpPacket=(LPPACKET)GlobalAllocPtr(GMEM_ MOVEABLE I .GMEM_ ZEROINIT,

sizeof{PACKET));

}

if (lpPacket--,NULL) {

}

ODS("Packet32: PacketAllocateSendPacket: Globa1Alloc Failed\n");

retumNULL;

II Create an event that will be signaled when the operation is over.

lpPacket->OverLapped.hEvent=CreateEvent(·

NULL,

FALSE,

FALSE,

NULL

);

if (lpPacket->OverLapped.hEvent==NULL) {

}

ODS("Packet32: PacketAllocateSendPacket: CreateEvent Failed\n");

GlobalFreePtr(lpPacket);

retum NULL;

retum lpPacket;

35

The above function PacketAllocatePacket allocates memory for the packet object

and calls the CreateEvent function to create an event that is associated with the particular

file handle.

VOID PacketlnitPacket(LPPACKET lpPacket, PYOID Buffer,

{

}

UINT Length)

II Set packet object's buffer to the buffer. ·

lpPacket->Buffer=Buffer;

II Set packet object's buffer Length to the buffer Length.

lpPacket->Length=Length;

This function sets the packet object's buffer to the buffer pointer that is passed.

BOOLEAN PacketReceivePacket(LP ADAPTER AdapterObject,

{

LPPACKET lpPacket,BOOLEAN Sync,PULONG BytesReceived)

BOOLEAN Result;

II Set offset value to 0.

lpPacket->OverLapped. Offset=O;

lpPacket->OverLapped. OffsetHigh=O;

if (! ResetEvent(lpPacket->OverLapped.hEvent)) {

return FALSE;

}

II Call ReadFile to read a packet.

Result=ReadFile(

AdapterObject->hFile,

lpPacket->Buffer,

lpPacket->Length,

BytesReceived,

36

,

{

}

}

&lpPacket->OverLapped

);

if(Sync) {

}

else

Result=GetOverlappedResult(

AdapterObject->hFile,

&lpPacket->OverLapped,

BytesReceived,

TRUE

);

Result = TRUE;

retum Result;

The function calls the driver's appropriate entry point to read a packet from the

network and place it in the buffer specified. This is accomplished by calling the ReadFile

method with the handle retumed by the CreateFile method.

These are the various routines that are useful towards packet monitoring using

the driver PACKET.SYS.

4.3 TCPIIP layered architecture

In the TCPIIP each layer has a specific role.

I

Application Layer Network applications depend upon the definition of a clear dialog.

In a client-se1ver system, the client application knows how to request services, and the

37

setver knows how to appropriately respond. Protocols that implement this layer include

HTTP, FTP, and Telnet.

Transport Layer The Transport Layer allows network applications to obtain

messages over clearly defmed channels and with specific characteristics. The two

protocols within

4 Application layer

3 Transport layer

2 Network layer

1 Link layer

Figure: 6 TCP/IP layered Architecture

the TCP/IP suite that generally implement this layer are Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP).

Network Layer :The Network Layer allows information to be transmitted to any

machine on the contiguous TCP/IP network, regardless of the different physical networks

that intervene. Internet Protocol (IP) is the mechanism for transmitting data within this

layer.

Link Layer : The Link Layer consists of the low-level protocols used to transmit

data to machines on the same physical network. Protocols that aren't part of the TCP/IP

suite, such as Ethernet, Token Ring, FDDI, and ATM, implement this layer.

Data within these layers is usually encapsulated with a common mechanism: protocols

have a header, identifying meta-information such as the source, destination, and other

attributes, and a data portion that contains the actual information. The protocols :fi:om the

upper layers are encapsulated "Within the data portion of the lower ones. When traveling
I

back up the protocol stack, the information is reconstmcted as it is delivered to each layer

4.4 Identifying Users Different Requests

The above section describes how all the packets in an Ethernet network can be

captured. Our idea is not only to capture all packets but also to monitor the Internet

38

activity in the network, which means that we have also to identify packets carrying

HTTP, FTP, SMTP, etc., requests. This requires knowledge about the Ethemet frame

stmcture and how IP, TCPIUDP packets are encapsulated in a frame. This section

describes how packets are identified as TCP/IP packets, how HTTP requests are

identified and how URL information in a frame is obtained.

Data Flow in a TCP/IP Network

To transmit data across a layered network we pass data from our application to a

protocol on a protocol stack. After that protocol finishes with our data it passes the data

~o the next protocol on the stack. As the data passes through each layer, the protocols on

the stack encapsulates the data for the next lower level in the stack. Encapsulation,

therefore, is the process of storing your data in the format required by the lower level

protocol in the stack.

AJlp~on Layer Data

lJ I Header I Tran~Layer Data u I Header Header I Internet Layer Data
/.">-...

Netwy Access Layer I Header I Header I Header I Data

Figure: 7 Data flow in TCP/IP layered model

So we see that the application module encapsulate data from the user in an

application message. TCP module encapsulates the application data and attaches the TCP

header and sends it to the next layer. As the data passe·s·through. IP module in the network

layer, it formats the TCP segment into an IP datagram or packet. The Ethemet driver

formats the data from the IP module and places the data into an Ethemet frame. This

explains how a fi·ame encapsulates an IP datagram and further how the IP packet

encapsulates TCP/UDP data.

39

4.4.1 Identifying TCP/IP packet

To identify a packet as a TCP/IP packet we have to first have a look at the

Ethernet fl-ame structure.

Number of bits function
56 Preamble

8 Start Frame Delimiter

~~·······················

~8 Source Address

16 Frame Type

0-12000 Data.(ILG. l)ata J3ytes)
0-368 I>.l1.44.~g ·····
32 PCS

Figure: 8 Format of an Ethernet Data Frame.

The fields that are of our interest in the Ethernet header are:

• Destination address (6 Bytes).

• Source address (6 Bytes).

• Frame type (2 Bytes).

As the name suggests the destination address field specifies the destination of the

Ethernet frame. Similarly the source address field specifies the source address of the

frame. The frame type field is the field of our interest. This field identifies the overlying

protocol of the frame.

lfthe packet is a valid packet then the value ofFrame type field (13th and 14th bytes)

will be 08 00 Hex.

40

n ·.- - -·.~ Tl '.

vERs !H.LEN 1 sEn vicE TYPE TOTAL LENGTH

IDENTifiCATION F.~~,~~-!!L~.!-~,~,~,~~E2!.F~~,!__,_
"~!lit'i'1ot:lveyT"'"~""1'¥, e""""'"'- HEADER CHECKSUM

$0URCE jp- AODRESS

OESliNArtON lP A.ODRESS

IP OPTION$ (MAY BE O~!TTEO.} ! PA.PD!~G.

BEGINNING OF DATA . . .

Figure: 9 IP Header Format

After identifying a packet as a TCP/IP packet, our next duty is to find out whether the

packet is a TCP packet or any other packet. Since any HTTP request goes as only TCP
I .

request we can ignore other packets. To find out whether the packet is a TCP packet we

have to parse the IP header. The IP header is shown above.

The important fields in the IP header are

• Header Length (4 Bits) and Version number (4 Bits).

• Total Packet Length (2 Bytes).

• Protocol to be used as the data passes upwards to the transport layer. The

following table specifies the protocol field values for the common TCP/IP protocols that

use IP.

Protocol Value(decimal}

TCP 6

UDP 17

ICMP 1

IGMP 2

Figure: 10 Protocol field values in TCP/IP suite

41

• Header Checksum (2 Bytes).

• Source IP (4 Bytes).

• Destination IP (4 Bytes).

Thus a value of 06 in the protocol field of the IP header specifies that the packet is

TCP packet.

4.4.2 Identifying a HITP request

After identifying a packet as a TCP packet, we have to find out whether the

packet is an HTTP request packet. To find out whether a packet contains an HTTP

request we have to examine the TCP header. The TCP header is shown below.

The important fields in the TCP header are

• Source Port (2 Bytes).

0 1 2 3
01234567890123456789012345678901

Source Port I Destination Port

Sequence Number

Acknowledgement Number

Data ~Jr. P R

Offset Reserved R~ ~ 'i Window
:;~ ~lr ~~

Checksum Urgent Pointer

Options l Padding

data

Figure: 11 TCP header format

• Destination Pmt (2 Bytes).

• Sequence Number (4 Bytes).

• Acknowledge Number (4 Bytes).

• Hlen, Resetved and Code Bits (2 Bytes).

42

• Window (2 Bytes).

• Checksum (2 Bytes).

• Urgent Pointer (2 Bytes).

Of the above mentioned fields in the TCP header, the fields of our interest are the

source and the destination port fields. These fields specify the port to which a connection

is established. Various services of the TCP like the HTTP, FTP, etc use specific port

numbers to render their services.

For an HITP service the port number would be 00 80to or 00 5016.

H the source port field contains the value of 80 (HTTP port number) then the packet

is an HTTP response packet. H the destination port field is 80 then the packet is

HITP request packet.

Once the-HTTP request packet is found it is fairly ea·sy to get th·e URL contained

in the data patt of the packet. Any request we type in a browser goes to the HTTP set:Ver

as GET or a POST request. The browser attaches other browser-related information and

sends the packet to the corresponding HTTP server. The. whole information including the

URL of the page requested is encapsulated with in the data part of the packet. Thus just

by parsing the data part of the packet we can obtain the URL.

43

CHAPTERS

NETWORK BANDWDITH

CONTROL

In the previous chapter we examined how the packets can be captured by placing

the Ethernet network card in the promiscuous mode. After capturing the packets we can

extract the URL contained in them With these URLs that are obtained it is possible to

,find out the site the particular user has visited. We will also see how to control network

·bandwidth when the load on the network exceeds the value that we set up in our policies.

5.1 TCP communication in a network:

To understand this we see the various fields that are present in the TCP header

0 16 31

SOURCE PORT (2 bytes) I DESTINATION PORT (2 bytes)

SEQUENCE NUMBER (4 bytes)

ACKNOWLEDGEMENT NUMBER (4 bytes)

HLEN I RESERVED I CODE BITS WINDOW

(4 bits) (6 bits) (6 bits) (2 bytes)

CHECK SUM (2bytes) URGENT POINTER(2bytes)

OPTIONS (if any 3 bytes) !PADDING (1 byte)

DATA ...

Figure: 12 TCP header format

The important fields in the TCP header are

"" Source Pmt (2 Bytes).

"" Destination Port (2 Bytes).

"" Sequence Number (4 Bytes).

44

Sequence Number (4 Bytes).

The various fields that are of interest to us are elaborated below:

Source Port: This field specifies the port from which the request originated. The source

port value can be used to find out whether the packet is a HTTP packet, FTP packet etc.

Destination Port: This field specifies the port to which the packet is destined. The

destination port value can be used to find out whether the packet is a HTTP response, .

FTP response etc.

Sequence Number: The sequence number identifies the position of the packet ~· the

sender's byte stream.

Acknowledgement Number: The acknowledgement number field identifies the number

of the octet that the source expects to receive next.

Header Length: Since TCP header includes the variable length options and padding

-fields, the length of the TCP header is not fixed. This fieid specifies the length of the

header. This is a 4-bit field.

Reserved Bits: This is a 6-Bit field and is reseiVed for future use.

Code Bits: The code bits totally comprise 6 bits and each has its own significance.

The six code bits are:

URG: This specifies that the packet has some urgent data in it. The urgent pointer field

that follows will hold the offset from where the urgent data begins.

ACK: This signifies that the acknowledgement number field is valid.

PSH: This specifies that this segment requests a push. This flag is set usually for p~ckets

that contain TCP requests or responses.

RST: This is the reset bit that tells the host to reset the connection. That is, if this bit is

set then it means that the connection has to be reset immediately.

SYN: This bit specifies that the sequence number is valid. In other words this bit tells

both the machines to synchronize the sequence numbers. Usually set when the hosts try

for a connection.

FIN: This specifies that the sender has reached the end of the byte stream.

45

Checksum: This field contains a 16-bit integer checksum that is used to verify the

integrity of the data as well as the TCP header.

Now that we have had a look at the TCP header, we can see how a connection is

established between a host and a server.

5.2 Establishing a TCP connection

To establish a connection, TCP uses a three-way handshake. First the host that

wants to connect sends a request with the SYN bit set to the server then the server replies

with another segment in which both the SYN and the ACK bits are set. Then the host

again sends a third segment that has the ACK bit alone set. With this the three-way

handshake gets over and the connection is established between the two machines. Once

the connection is established the data transfer can occur both ways.

5.3 TCP connection Reset

Apart from the normal closing operation, there may be certain abnormal

conditions that force the application or the network software to break a connection. TCP

provides the reset facility for such conditions.

To reset a connection, one side initiates the reset by sending a segment that has

the RST bit set. The other side responds immediately by aborting the connection. This

reset is instantaneous, in the sense that transfer in both directions ceases immediately and

all the resources such as buffers are released.

5.4 Breaking a TCP connection (blocking a particular workstation)

As we have seen to break an ongoing TCP communication it is enough if we send

a segment that has the RST bit set to anyone side of the connection. Once a machine

receives this segment it immediately breaks the connection. The following illustration

will make this concept clear.

46

Consider that a machine M 1 in our LAN is accessing a server S 1 through the

Internet. The machine M1 will send a TCP request packet to the server S1, which will in

tum send a response packet to M1 and their communication is established.

To break a connection we have to send a segment with the RST bit set to either

machine M1 or to the server Sl. Consider the situation where the machine M1 has sent a

request to the server S 1 and is waiting for the response. The request packet that is sent to

the server S 1 is captured by our monitoring application that is capable of capturing all the

packets that travel in the network. Once we get this packet we immediately send the

packet that has the RST bit set to the machine M1, since LAN is much faster than the

Internet our packet will reach machine M1 before the response from the actual server.

Assuming for now that the packet that we send is properly framed, it will be accepted by

the IP and the TCP software on machine Ml. Thus machine Ml will think that the

server S 1 has initiated a reset and will immediately reset the connection. The actual

response that comes from the original server is ignored .. The above section describes the

logic involved in blocking a workstation from accessing the Internet. But, the catch lies in

the framing of the packet with the RST bit set and sending it to the machine Ml.

5.5 Framing of a RST packet

The packet that we send to machine M1 has to be framed properly so that the IP

and the TCP software in the target machine accept it.

The various data that are required for framing a reset packet are:

• Source Ethernet Address.

• Destination Ethernet Address.

• Source IP Address.

• Destination IP Address.

• Total length of the packet as given by the IP header length field.

• IP Checksum

• Source port.

• Destination port.

47

• Sequence number.

• Acknowledgement number.

• TCP Checksum.

The values for most of the above fields are picked up fiom the packet that we

obtain. Let us see how the values in these fields are filled. Let us call the packet that we

have captured as PI and the new packet that we are framing as P2.

The source Ethernet address ofP2 is the destination Ethernet address in Pl.

The destination Ethernet address ofP2 is the source Ethernet address in Pl.

The source IP address ofP2 is the destination IP address in Pl.

The destination IP address ofP2 is the source IP address in Pl.·

The total length of the packet is the length of the packet in bytes minus the Ethernet

header length.

The IP checksum is then computed using the standard algorithm for the IP checksum

computation routine that has been listed in the RFC.

The source port ofP2 is the destination port in Pl.

The destination port ofP2 is the source port in Pl.

The sequence number and the acknowledgement numbers are ignored so we need

not fill anything in these fields.

The TCP checksum is computed using the standard algorithm for TCP checksum

computation as listed in the RFC.

Here is the pseudo code of a routine called SendPacket that frames a reset packet

and sends this packet to the target machine. Along with this the IP and the TCP checksum

computation routines are also given.

CONTROL _BLOCK Adapter;

void SendPacket(int gnSend)

{

short int nSendlndex;

unsigned short *piP,*pTcp;

int nAckNum,finalAck;

SeqAndAckNos ackNum;

48

Length lTotalLength;

Checksum ipChksum,tcpChksum;

unsigned char IPHead[20]; II IPAddr[8];

PYOID Packet;

char seqN o[20],ackNo[20],szAddr[25];

: :FillMemory(seqN o,20,'\0');

: :FillMemory(ackNo,20,'\0');

::FillMemory(szAddr,25,'\0');

II Allocate memory for the packet to be sent to the W s.

Packet=PacketAllocatePacket((LP ADAPTER)Adapter.hFile);

if(Packet !=NULL)

{

PacketlnitPacket((PACKET *)Packet, Adapter.lpMem2, 54);

/******Start Filling the Packet to be sent*******/

/********** Ethernet header**************/

II 14 bytes

II Destination and Source ethernet address.

for(nSendlndex = O;nSendlndex < 6;nSendlndex++)

{

II Copy the packets destination address

I I into our source address and the source address

II into our destination address.

Adapter.lpMem2[nSendlndex] = pdBlockedData[gnSend]. pData[nSendlndex+6];

Adapter.lpMem2[nSendlndex+6] = pdBlockedData[gnSend].pData[nSendlndex];

}

II Protocol type is Internet protocol.

Adapter.lpMem2[12] = Ox08;

Adapter.lpMem2[13] = OxOO;

/********** IP header details.**************/

II 20 bytes

II Version and Header length.

49

IPHead[O] = Adapter.lpMem2[14] = Ox45;

II Type ofse1vice. Normal.

lPHead[l] = Adapter.lpMem2[15] = OxOO;

II Total packet length

IPHead[2] = Adapter.lpMem2[16] = OxOO;

lPHead[3] = Adapter.lpMem2[17] = Ox28;

I I Also get total packet length of the obtained packet.

IT otalLength. szTotalLength[1] = pdBlockedData[gnSend]. pData[16];

lTotalLength.szTotalLength[O] = pdBlockedData[gnSend].pData[l7];

fmalAck = lTotalLength.nTotalLength;

/I Identification number.

IPHead[4] = Adapter.lpMem2[18] = pdBlocke<lData[gnSend].pData[18];

IPHead[5] = Adapter.lpMem2[19] = pdBlockedData[gnSend].pData[l9];

II flags+ fragment offset.. set it to nothing.

lPHead[6] = Adapter.lpMem2[20] = OxOO;

IPHead[7] = Adapter.lpMem2[21] = OxOO;

II Time to live for the packet. no significance for selecting this 77.

IPHead[8] = Adapter.lpMem2[22] = Ox77;

I I Protocol used (TCP)

fi>Head[9] = Adapter.lpMem2[23] = Ox06;

I I previous checksum.

l]>Head[IO] = OxOO;

l]>Head[Il] = OxOO;

I I source IP address and destination IP address.

for(nSendlndex = 26;nSendlndex < 30;nSendlndex++)

{

I I As with the ethemet address, do the same swapping with the IP

II addresses also.

IPHead[nSendlndex-14] = Adapter.lpMem2[nSendlndex] =

pdBlockedData[gnSend]. pData[nSendlndex+4];

IPHead[nSendlndex-1 0] = Adapter.lpMem2[nSendlndex+4] =

50

p dBlockedData[!?lSend]. pData[nSendindex];

}

I I Set the pointer to point to the buffer where the IP header lies.

piP= (unsigned short *)&IPHead(0];./1 Call the checksum computation routine.

ipChksum.iChksum = htons(IpChksum(piP));

: :ZeroMemory(szAddr, 25);

I I Fill the computed checksum

Adapter.lp Mem2(24] = ipChksu~ szCli.k~1ll19l;

Adapter.lpMem2[25] = ipChksum.szChksum[l];

: :ZeroMemory(szAddr, 25);

I************ Fill the TCP header ****************I
II 20 bytes.

I I Source Port

Adapter.lpMem2(34] = pdBlockedData[gnSend].pData[36];

Adapter.lpMem2[35] = pdBlockedData(gnSend].pData[37];

II Destination port

Adapter.lpMem2[36] = pdBlockedData[gnSend].pData(34];

Adapter.lpMem2[37] = pdBlockedData[gnSend].pData[35];

I I Sequence number

Adapter.lpMem2[38] = pdBlockedData[gnSend].pData[42]; ·

Adapter.lpMem2[39] = pdBlockedData[gnSend].pData[43];

Adapter.lpMem2[40] = pdBlockedData[gnSend].pData[44];

Adapter.lpMem2[41] = pdBlockedData[gnSend].pData[45];

I I Acknowledgement number computation

ackNum.szSeqOrAck(O] = pdBlockedData[gnSend].pData[38];

ackNum. szSeqOrAck[l] = pdBlockedData[gnSend].pData[39];

ackNum. szSeq OrAck[2] = pdBlockedData[gnSend]. p Data [40];

ackNum. szSeq Or Ack[3] = pdBlockedData[gnSend]. pData [41];

II compute ack number as the sum of seq number

II "plus"

II Number ofbytes received

51

II "minus"

I I 40 (header length of IP and TCP)

II Convert every thing to network-Byte order

::Zero Memory(szAddr, 25);

II convert the ack number from

I I Network-byte order to host byte order.

nAckNum = htonl(ackNumnNumber);

::ZeroMemory(szAddr, 25);

I I increment the ack number by one alone.

nAckNum = finalAck- 40;./1 convert it back to host-byte order

ackNumnNumber = htonl(nAckNum);

I I fill the ack. number to be sent

Adapter.lpMem2[42] = ackNumszSeqOrAck[O];

Adapter.lpMem2[43] = ackNum.szSeqOrAck[l];

Adapter.lpMem2[44] = ackNumszSeq0rAck[2];

Adapter.lpMem2[45] = ackNumszSeqOrAck[3];

I I Header length + reserved + flags

Adapter.lpMem2(46] = Ox50;

Adapter.lpMem2[47] = Oxl4;

II Window. For the reset packet 0 is enough.

Adapter.lpMem2[48] = OxOO;

Adapter.lpMem2[49] = OxOO;

II Checksum computation.

I I Fill zero initially in the checksum field.

Adapter.lpMem2[50] = OxOO;

Adapter.lpMem2[51] = Ox00/1 Urgent pointer

Adapter.lpMem2[52] = OxOO;

Adapter.lpMem2[53] = OxOO;

II set the conesponding pointers to be passed to the checksum

I I computation routine.

piP= (unsigned short *)&IPHead[l2];

52

pTcp =(unsigned short *)&Adapter.lpMem2[34];

I I Call the checksum computation routine.

tcpChksum.iChksum = TcpChksum(pTcp, piP);

I I Fill the actual checksum value.

Adapter.lpMem2[50] = tcpChksumszChksum[O];

Adapter.lpMem2[51] = tcpChksumszChksum[l];

II Send the packet to the blocked workstation.

PacketSend.Packet((LPADAPTER)Adapter.hFile, (PACKET *)Packet, TRUE);

I I Free the alloeated pool.

PacketFreePacket((PACKET *)Packet);

}

}

The algorithm that computes the IP Check sum is given below:

The checksum field is the 16 bit one's complement of the one's complement sum of

all 16-bit words in the header. For purposes of computing the checksum, the value of the

checksum field is zero.

unsigned short IpChksum(unsigned short *piP)

{

II variable holding the value of the IP header length.

unsigned short nLen=20;

II Variable that holds the checksum value.

unsigned chksum = 0;

II Variable that holds the value of the final checksum after

II computing the one's complement.

unsigned short finalchk;

II Divide the length by 2 for computing 16-bit checksum.

nLen >>=I;

53

I I compute the 16 bit checksum.

for(int i = 0; i < nLen;i++)

{

chksum += htons(*piP++);

}

II Fold the 32 bit value into the 16-bit field.

chksum = (chksum >> 16) + (chksum & Oxfffi);

chksum += (chksum >> 16);

II Compute the one's complement of the checksum

finalchk = (~chksum & Oxflll);

I I return the final checksum.

return finalchk;

}

The algorithm that computes is the TCP Check sum is given below:

The checksum field is the 16 bit one's complement of the one's complement sum of

all 16-bit words in the header and text. If a segment contains an odd number of header

and text octets to be checksummed, the last octet is padded on the right with zeros to form

a 16-bit word for checksum purposes. The pad is not transmitted as part of the segment.

While computing the checksum, the checksum field itself is replaced with zeros. The

checksum also covers a 96-bit pseudo header conceptually prefixed to the TCP header.

This pseudo header contains the Source Address, the Destination Address, the Protocol,

and TCP length. This gives the TCP protection against misrouted segments. This

information is carried in the Internet Protocol and is transferred across the TCP!Network

interface in the arguments or results of calls by the TCP on the /P.

The TCP Length is the TCP header length plus the data length in octets (this is

not an explicitly transmitted quantity, but is computed), and it does not count the 12

octets of the pseudo header.

The routine for the above algorithm has been described below

54

unsigned shott TcpChksum(unsigned short *pTcp, unsigned short *piP)

{

I I Variable that holds the checksum not _complemented.

unsigned chksum = 0;

I I Variable that holds the final checksum value.

unsigned short finalchk;

I I Variables that the TCP & IP header lengths.

unsigned short nLen = 20, nlpLen = 8;

I I divide both length values by 2 since we are adding 16 bits.

nlpLen >>= 1;

nLen >>= 1;

II compute the 16 bit sum of the pseudo header.

for(int i = O;i < nlpLen;i++)

{

chksum +=(*piP++);

}

I I length + the protocol type.

chksum += htons(26);

I I compute the 16 bit sum of the TCP header and data.

for(i = O;i < nLen;i++)

{

chksum += (*pTcp++);

}

II Fold the 32 checksum into 16 bit.

chksum = (chksum >> 16) + (chksum & Oxffff);

chksum += (chksum >> 16);

II Get the one's complement of the checksum.

finalchk = (~chksum & Oxfffl);

I I retum the final checksum.

retum finalchk;

}

55

The above algorithm describes how a particular user of the network can be

restricted from accessing the Internet by framing a RST packet and sending the packet to

the user and how to compute TCP and IP checksums.

56

Conclusion

This work has been modest attempt to study the different techniques used for

managing the bandwidth and to develop a software that ri:tanages the bandwidth of

Jawaharlal Nehru University (JNU) campus wide netWork. The salient features of the

approach used in the work are

• Easy installation in the network: Most WAN access links are attached to

campus networks via a router on an Ethernet LAN. Installation of a system

becomes installing one or more machines on the same LAN.

• Network unaffected by manager hardware failure: In the approach that we

described here If the manager machine fails, the controls stop working, but the

network traffic continues to flow in the original uncontrolled manner.

• Efficient utilization of the bandwidth capacity of the Internet access link.

The work can be. extended to limit the number of Internet connections to a

particular group ofusers.

An alternative approach to control the bandwidth of a network is TCP connection

admission control. Connection admission control appears ·to guarantee some TCP

throughput performance on an overloaded Internet access link. In this approach we can

explore better algorithms to invoke connection admission control.

57

References

1. Andrew S. Tanenbaum, "Computer Networks," Third Edition, Prentice Hall of India,

1999.

2. Anurag Kumar and Malati Hegde, ''Nonintrusive TCP Connection Admission Control

for Bandwidth Management of an Internet Access Link," IEEE Communication

Magazine, May 2000.

3. Douglas E. Comer, "Computer Networks and Internet," Second Edition, Prentice Hall

oflndia, 2000.

4. Douglas E. Comer, ''Internetworking With TCP/IP," Vol 1: Principles, Protocols, and

Architecture, Third Edition, Prentice Hall of India, 1999.

5. Dr. J. Nevil Brownlee, ''Internet Traffic Measurement: an Overview," A background

paper for the ICAIS seminar Miyazki, Japan, 8 March 1999.

6. G. Viscarola & W. Anthony Mason, ''Windows NT Device Driver Development,"

First Indian Edition, Techmedia, 1999.

7. Gray. R. Wright and W. Richard Stevens, ''TCP/IP illustrated, Volume 2 The

Implementation," First ISE 1999.

8. K G. Coffman and Andrew Odlyzko, "The size and the growth rate of Internet,"

Study available at http://www.:fin;tmonday.dk/issues/issue3=10/coffman/index.html.

9. Postel, J. B., ed. 1981a. "Internet Protoco~" RFC 791,45 pages (Sept.)

58

10. Postel J. B., ed. 1981c. ''Transmission Control Protocol," RFC 793,85 pages (Sept.)

11. R. Apparna and B. Prem Kumar, "Monitoring Ethernet Network activity with NDIS

drivers," California Software Laboratories, January 1999.

12. R. Mandevilie and D. Newinan, "Traffic Tuners: Striking the Rigth Note?," Data

Commun. (A$ia-Pacific), Nov. 21, 1998.

13. Stallings William, "Data and Computer Communications," Fifth Edition, Prentice

Hall of India.

14. Scott Mace, "Breaking Bandwidth Bottlenecks," Byte Magazine, May 1998.

15. W. Richard Stevens, ''TCP/IP lliustrated," Volume 1: The Protocols, Addison

Wesley, 2000.

59

	TH93560001
	TH93560002
	TH93560003
	TH93560004
	TH93560005
	TH93560006
	TH93560007
	TH93560008
	TH93560009
	TH93560010
	TH93560011
	TH93560012
	TH93560013
	TH93560014
	TH93560015
	TH93560016
	TH93560017
	TH93560018
	TH93560019
	TH93560020
	TH93560021
	TH93560022
	TH93560023
	TH93560024
	TH93560025
	TH93560026
	TH93560027
	TH93560028
	TH93560029
	TH93560030
	TH93560031
	TH93560032
	TH93560033
	TH93560034
	TH93560035
	TH93560036
	TH93560037
	TH93560038
	TH93560039
	TH93560040
	TH93560041
	TH93560042
	TH93560043
	TH93560044
	TH93560045
	TH93560046
	TH93560047
	TH93560048
	TH93560049
	TH93560050
	TH93560051
	TH93560052
	TH93560053
	TH93560054
	TH93560055
	TH93560056
	TH93560057
	TH93560058
	TH93560059
	TH93560060
	TH93560061
	TH93560062
	TH93560063
	TH93560064
	TH93560065
	TH93560066

