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CHAPTER 1

INTRODUCTION

R.S. Michalski and P.H. Winston are pioneers in the field
of wvariable precision legic. In the real world, both human and
computer often has to reason using insufficient, incomplete or
tentative premises. Moreover, both are subject to constraints of
time and memory. WVariable precision logic is concerned with
problems of reasoning with incomplete information and resource
constraints. It offers mechanism for handling trade-offs between
the precision of inferences and computational efficiency of
deriving them. Two aspects of precision are specificity and

certainity.

The terms specificity and certainity are used in ways that
are reminiscent of the use of the term precision and accuracy in
measurement theory. Precision in measurement theory represents
the number of significant digits associated with a quantity,
Wwhile in variable precision 1logic specificity is opposite of
generality. Moreover, a general concept 1is included in a

specific concept; but, a general concept may or may not include
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the specific concept, e.9., a concept of triangle 1is more
specific than a concept of poclygon and & triangle must be a
polygon but, a polygon may or may not be a triangle.

The term accuracy in measurement theory represents the numerical
difference between the measured wvalue and the true value of a
quantity, while certainity in variable precision logic is a
measure of confidence, that a given statement represents a true
statement, e.g9., the statement “John is workina 1in the yard"

would be

1. more certain if it ies known that "weather i1s nice".

2. somewhat less certain i1f weather 1is unknown to the

reasoning process.

)

very less certain if it is known that "weather is bad".

Winston and Michalaski (1] employed censored production
rules to handle the trade-offs between the certainities of
various decisions and the effort needed to derive them. The
system employing censored production rules handle only certainity

part of the variable precision logic.

To take into account the specificity part of precision, we
are employing hierarchical censored production rules or simply
HCPRs. These HCPRs are censored production rules augmented with

the specificity information and are written in the form "If A
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Then B Unless C Specifically S," where "S" represents the
information of more specific rvrulees or conditions.

From logical viewpoint "B" and "S" are related to each other with
exclusive-nor operator (xnor); it means, if condition "B" holds
then the condition represented by "“S" must also hold and if
condition vrepresented by "S" holds then the condition "B" must
also hold. From expositive point of view the "Specifically S"
part of the rule represents the applicable set of rules when "B"
holds. From control point of view the condition "B" 1s easy to
ecstablish and must hold for the coendition represented by “S". It
would prove to be the best answer if resources are tight and
sufficient data is not provided. Given more time and data, a

more specific answer would be tried using specificity information

"Sll .

Chapter-2 discusses some important logical systems employed to

represent knowledge in a computer. The need for extending a
censored production rule to exhibit wvariable precision of
decisions is discussed and a HCPRs system of knowledge

representation is suggested. Chapter—-3 describes a3 HCPRs system
of knowledge representation in detail. A general control scheme
(G€S) is discussed in Chapter-4. The GCS is implemented on two
knowledge-bases designed using HCPRs system of knowledge
reprecentation. These knowledge—bases are discussed in

chapter-3. One knowledge—-base deals with some daily life
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queries, whereas ano ther is designed for bioclogical
classifications of an unknown organism. Some more observations
of a HCPRs system are given in chapter-6, which includes learning
and inference rules.

The last chapter includes the concluding vremarks about HCFRs

system of knowledge representation.



CHAPTER 2

INTRODUCTION TO LOGICAL SYSTEMS

Representing knowledge in a computer consists of setting up a
correspondence between a symbolic reasoning <system and the
outside world. Just as no one has yet succeeded in designing a
universal programming language, no one has vet produced an ideal
form for representing knowledge in an Al system. The power of a
method of representation can be 3judged by its ability to
represent the complex situations precisely and alsoc by its

ability to represent the fact that two statements have something

in common: thus in a geological information system "compacted
limestone" and ‘“"porous limestone" should be represented as two
particular forms of “limestone" and not as two unrelated
substances. This second characterstic not only improves the

clarity of the representation but alse reduces the demands on
memory because items having properties in common need to be
recorded only once, in the most general form, instead of seprate

entries.
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The power can be judged also by the ability to deal with
imprecice arguments, especially the inductive procecss; the latter
is more difficult to represent than purely deductive processes.
This brings in the idea of ‘common senhse* reasaening, which
differs from formal logic and mathematics in that it is used when
a decision has to be baced on incomplete information. In real
life, we often have to face the fact that our knowledge |is
limited and draw conclusionse for which we cannot give 3 rigorous
proof but which éeem. to us plausible, often expressed as
"reaconable".

An introduction to some of the 1mportant logical systems, to

represent reasoning and decision-making process follows:

2.1 TWO VALUED LOGIC

It is 38 yee or no kind of logic, in which all classes are assumed
to have sharply defined boundaries. So either an object is a
member of & class or it is not a member of & class. For example,
mortal or not-mortal, dead or alive, male or female and so forth

are classes that have sharp boundaries.

2.1.1 Syllogistic Logic

The firet known leogician was Aristotle (384-322 b.c.), the great
philospher and natural scientist. He developed much of the

theary of what hac come to be called seyllegistic or classical



Page 2-3

logic. Syllogistic logic essentially deals with deriving the
truth (or falsehood) from & philosephical argument. Thie type of
logic is still wused because it is the basis for wvirtually all

legal arqumentation.

Study this short argument.
John 1s a man.
All men used to be boys

Thevrefare, John used to be a boy.

Common sense telle us that John was a boy before he became a
man . Af ter being converted to syllogistic ferm, this argqument
becomes

J =2 M
All M -——-> B

hence J --> B

In many ways, syllogistic logic is simply a formalisation of
common sense. However, because syllogistic logic is based in
natural languages, it sufferse from the inherent flawe of a
natural language. Natural languages are of ten imprecise and can
be misunderstood. Also, people tend to hear or read selectively,

"which can cause further confusion. This lack of precision

eventually led to the invention of symbelic legic.



2.1.2 Symbolic Logic

Symbeolic logic began with G. W. Leibniz(led4e - 1717), but was
forgotten when he died. The entire field was rediscoverd by the
person generally given credit for its invention, George
Boole(1815 - 1864). This type of logic is called Boolean logic.
Symbolic logic deals with the abstraction of concepts intc
symbols and interconnection of these symbels by certain
operators,
example: IF (P is true ) and

(Q is false)

THEN (P ovr Q@ is true) and

(P and Q is false)
The idea of using formal logical system to represent reasoning
and decision-making process was first suggested in a paper by
John McCarthy in 1938 [5].
There are two distinct but interlocking branches in symbolic
logic, the first is propositional 1logic and the other is

predicate calculas. MWe describe first the propositicnal logic.

2.1.2.1 Propositional Logic - Propositional logic deals with the
determination of the truthfulness or falseness of wvarious

propesitions. A proposition is a properly formed statement that

is either true or false.
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Al though, propositional 1logic forms the basis for both
intelliqgence and computer languages, one cannot use it by itself
to represent human knowledge of the world, because it lacks the
ability to represent relationship between objects, and it cannot

be used on classifications. This shortcoming leads to predicate

calculas.

2.1.2.2 Predicate Calculas - Predicate calculas sometimes called
predicate logic, 1is simply an extention of propositional logic.
The basie of predicate calculas is the predicate, which is
essentially & function that returns either a value of true or
false depending upon its arqument.
examplel: The predicate Dog defined by Dog(X) : " X is dog "

takes the value True if X=Rover and False if X=Pussy.
example2: is_hard ( rock ) ==) true,

is_hard ( cotton } ==> falce.

In propositional logic these two predicates and arguments become:

a rock is hard.

cotton is not hard.

In predicate calculas, it is possible to create & function
that determines the hardness of any object. The predicate
calculas uses variables to generalise predicates, e.g.,

man(X) == Not woman(X).
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Predicate calculas uses two quantifiers, existential (there

exists) and universal (for all), e.q.,

All cats are animals {==> for all X Cat(X) == animal(X)

Every boy has a bicycle

for_all X (Boy(X) ==} there_existse Y (Bicycle(Y) and

own(X, Y)))

2.2 MULTIVALUE LOGIC

A polish mathematician J. Lukasiewiecz, first developed the
concept of multivalued 1logic during the 1920s. In multivalued
logical systems, there are more than two truth values. There may
be a finite or infinite number of truth values, i.e., an infinite
number of degrees to which a property may be possessed. In a

three wvalued system, for instance, something can be true, false,

or on the boundary.

2.3 NONMONOTONIC LOGIC

A logic in which a conclusion stands no matter what new axioms
are added, 1is called monotonic logic. Traditional system based
upon predicate logic are monotonic in the sense that the number
of statements known to be true is strictly increasing over time,
Nei ther of new statements added to the sygtem or new theorem

proved, will ever cause a previously krnown or proven statement to

- 10 -
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become invalid.

Monotonic <systems are not wvery good at dealing with
incomplete information, changing situations, and generation of
assumptions in the process of solving problems,. Nonmonotonic
logic [4] allows statements to be deleted from, as well as added
to, the databhase. ®Among cther things ;his allows the beliefe 1n
one statement to rest on a lack of belief in some other one.
Rarely doecs a system have at ite disposal all the information
that would be wuseful. But often when such information is
lacking, there are some sensible quesses that can be made, acs
long as no contradictory evidence is present. The construction
of these quesces are Rnown as default reasoning. We know that

one of a set of things must be true and, in the absence of

complete information, we choose the moet likely, Most people
like flowers. Most dogs have tails. The most common color for
Swedes is blond., These examples illustrates one common kKind of

default reasoning, which may be called most probable choice.
Another important kind of default reasoning is circumscription
[3], in which we assume that the only objects that can satisfy

some property P, are those that can be shown to satisy it.

2.4 PROBABILISTIC LOGIC

Probsbilistic logic makes it possible to represent likely but

uncertain inferences. There are three types of situations 1n



which it

Fage 2-8
is tempting to use probabilistic logic:

The relevant world is really random, for example, the
motion of electrons 1in atom or the distribution of
people who will fall ill during an epidemic.

Examplel. consider the problem of deciding which card
te play in &8 game of bridge. We are dealing with a
genuinely random world. So we will have to use

probabilistic reasaning.

The relevant world is not random given enough data but
our program will not always have access to that much
data, e.g., the likelihood of success of & drug at
combatting a disease in a particular patient.

Example2. consider the problem of diagnosing people’s
illness from clinical records." There ie some randomness
in our description of the world, since medical science
does not completely understand how the body workes. In
addition we must design a program that can function even
if it does not have access to all the data medical
science could conceivably provide, since some clinical
test are expensive and dangerous. With such incomplete

data to work with, we will have to use probabilistic

logic.
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- The world appears toc be random because we have not
described it at the right level.
Example3. consider the character vrecognition problem,
where if, characters are viewed as a collection of dots
of ink, then there appear to be a great deal of random
variation in their appearence. But if they are analyzed
in terms of arcs and lines, then much of the randomnesss
dicappears, i.e., it no longer matters how wide the
lines are. For this problem, we should use as little

probabilistic leogic as possible.

2.5 FUZZY LOGIC

In 1965, Zadeh introduced the concept of & fuzzy <cet as a

moedel of a vague fact. In every day life we often deal with
imprecisely defined properties or quantities: "a few books", "a
long story", "a beautiful woman", "a tall man ". The key i1dea in

fuzzy set theory is that an element has 3 deqree of membership in
a fuzzy set. Thus a proposition need not be simply true or
false, but may be partly true to any degree. We wusually assume
that this degree is a real number in the interval [0, 1].

Consider the fuzzy set "tall". The element are men and their
degree of membership depend on their heights. For example, a man
who 1 & feet tall has degree 0, & man who is 7 feet tall might

have degree 1 and men with intermediate heights might have

|
oy
1)
I
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intermediate degree.

2.6 VARIABLE PRECISION LOGIC

In 1986, Michalski, R. S. and Winston, P. H. 1in their paper
[1], 1introduced the censored production rule to exhibit variable
precision logic. WVariable precision logic is concerned with
reasoning with incomlete information and resource constraints.
It offers mechanism to handle trade-offs between the precision of
inferences and the computatiocnal efficiency of deriving them.

You can not tell an ordinary logic—-based reasoning system fmuch
about how you want it to do its job. You can not give the

following instructions, for example

~ Give me a reasonable answer immediately; if there 1is
enough time, tell me you are more confident in the
answer or change your mind and give me another better

answer.

- Give me a reasonable answer immediately, even if
somewhat general; if there 1is enough time, give me a

more specific answer.

- Give me a highly certain answer only, even if somewhat
general; 1if there 1s enough time, give me & motre

specific answer.
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- Give me a highly specific answer in the time allowed,
even 1if you are less confident about it; if the allowed

time i1s enough, tell whether you are more confident in

it'

There may be various other requirements of this type, which
might arise in real 1life. So our reasoning system should
facilitate these requirements on vreal life problems. To

understand the wvariable precision logic system consider the

fallowing example.

Suppose you are interested to know, what X 1s& doing on
sunday and you know that on sundays people generally do not
prefer to stay inside their houses. Noticing this fact, & quick
answer may be that "X is outside his house". But by considering
the fact that "X has to appear in annual examination tomorrow",
you have to withdraw the previous decision that "X is ocutside his
house" and have to give ancther better answer that "X 1is inside

his house". On taking in to account the fact that “"weather is

bad" ou can answer with more certainity that "X is inside his
s Y

house". A more specific answer, on taking in to consideration
the fact that "X is in his reading room", would be that "he is
reading for tomorrow’s examination". A system that gives more

specific answers, given more time is what we c¢call &a wvariable
specificity system. A system that gives more certaln answers,

given moere time ic what we call & wvariable certainity <eystem,
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There can be variocus combinations of the two systems, reflecting

the fact that specificity and certainity are inversely related.

Variable specificity and variable certainity are two aspects
of wvariable precicion. Thus, 1in general wvariable precision
system 1s a system that exhibits either variable specificity or
variable certainity or some trade-off between the two. Next
consider the important production rvules system, which on suitable
modification will become the basic of the variable precision

logic.

2.6.1 Production Rules

& production rule is 3 <ituation-action couple, meaning that
whenever a certain situation is encountered, given as the left
side of the rule, the action given on the 7right side 1is
performed. It can be written in the form "If premise Then
action." The premise i1s a coniunction of predicates reprecenting
certain situation and the action 1is what is to be done when

premise is satisfied. UVery often the action 1ie the taking of

some decision, then rule becomes an implicative assertion of the

form:

"premise ==) decision."

But this is not always the case. There is no apriovi constraint
on the form of the situation or of the action. A system based on

production rules will usually have three components:
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The rule base, consisting of the set of production

rules.

The fact bases, consisting of some wuseful definitions

and data structures containing the known facts.

The interpreter of thece facts and rules, which 1ig the
mechanism that decides which rule to apply and initiates

the corvesponding action.

The facts and the rules have a syntax that 1is known to the

interpreter; the latter can therefore manipulate these logically,

deciding on their truth or otherwise, in some programs, deriving

new

facts from them or suppressing certain facts. Consider this

simple example:

Rule

rule

Fact

Fact

base: Rl If X is an animal and X mews then X is a cat (ane

only)

base: F1 Felix ie an animal

"F2 Felix mews

base after the interpreter has scanned both facts and rules

Fl1 Felix is an animal
F2 Felix mews

F3 Felix i a cat (new fact obtained by applying Rl

Wwith X = Felix)



Fage 2-14

A production rule lacks certain aspects of common <sense
knowledqge. Precision of inferences remaine constant in
production rules system, since neither certainity nor specificity
can wvary with resource constraints. The production rules system
is not suited to vreasoning with incomplete information and
resouvyce constraints. Also, the production rules system of
knowledge representation is not natural to rule repair mechanlsm.
Whenever, a contradiction to & production rvule is found, there

are various possibilities to handle 1t:

.

1. To consider the rule invalid, and ignovre it in future.

2. To continue to use the rule without change, realising

that 1t will recult in ervor occacsionally,

3. To modify the rule, so that the rule applies correctly

to all encountered situations.

4. To develop a new rule, substituting the new rule for the

cld.

S. to remember the situations for which the rule does niot

work, treating them as exceptions.

Action 1, is simple and prevents use from making errors, It
deprives wus of the benefit of using the rule when it does work.
Action 2, is alsoc simple. 1t precerves the benefit of using the

rule when 1t doces wovrk, but using it will lead te some error. If

- 18 -
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modification to be made to a rule is small, then action 3, 1s the
better choice. But if this modification 1s unclear orvr
complicated, then Action 4, is the better choice. Both these
later actions lead to a better and more precise rule, but require
time and effort. In science, where standards for precision are

high, ocne of these two actions is the usual choice. (the problem

of incrementally refining rules to accomodate new facts is

explovred in [8]1.)

If exceptiaons are few, then Actien S5, 1is a good choice. It
preserves the usefulness of the old rule, but prevents making
mistakes in <cituations recogrnised as exceptions. Even when
exceptions are more than few, 1t is the best action to take,
particularly when it is not clear how to make changes to the old

rule or how to create a new one. Production vrules with

exceptions are called cenccred production rules.

2.6.2 Censored Production Rules

Winston [2)] first introduced the concept of censored production
rules. Censored production rules are production rules augmented
with exceptions. It is of the form: "If premise Then conclusion
Unless censor." The censor is a logical condition (a predicate or
a disjunction of predicates) that when scatisfied, blocke the

rule. Thus, a censor can be viewed as a statement of exceptions

to the rule.
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These forms of representation are more natural and
comprehensible than other equivalent 1logical forms. & simple
rule with exceptions may be better than a complicated one without
exceptions, particularly when the exceptions cccur only rarely.
Also, if exceptione are few, then to remember exception
conditions, using censored production rule ie 3 good choice.

Some initial work, in the direction of 1inductive learning of

decicsion rules with exceptions, was done by Beckevr [7].

Censored rules support a number of obvious alternate control
cchermes. In Winston’s formulation an unlimited effort i< put
into showing that premise is true, but only one-step effort is
put 1nto showing that censor is true, and when one-step effort
fails, the censor condition is assumed to be false. Here are the

two extreme poscsibilities of control schemes:

- The show—-me method: Treat the unless operator as if

they are exclusive or operators.

- The ask—-question—-later method: Ignore all censors.

Employing censored production rules as a vehicle to
implement variable precision logic exhibits only wvariable
certainity, whereas specificity stays constant., So there <chould

be <some other better representation schemes or some modificatian

to the existing censored production vules vreprecentation. ke

_20_
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prefer latter, because 1t would vretain the advantages of a

censored production vule, while exhibiting more 1intelligence.
The resulting rule will be

called a hierarchical censored

production rule or <imply HCPFR. We will discuss

it in detail, in
the next chapter.

D-fse |

5(9.2.5
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CHAPTER 3

HCFPRs SYSTEM

For a reasoning process, at any state of the system, it is
valuable to have information about the applicable rules, becauce
then 1t need not find them using exhaustive search of the whole
rule base, but on considering the qiven i1nformaticn, 1t can
select a set of most relevant rules to the current state of the
system, e€.9., consider the query - "What John ie doing?" ; after
finding by reasoning process that "he is working 1in the vyard,"
the next line of action taken by the system would be to get more
specific answer, or it should apply rules which can provide

decisions of the type:
- He is raking leaves.
- He is watering.

- He is shaping plants.



- He is preparing field.
rather than the rules, which gives decisions of the type:
- He is reading a story book.
- He is eating fruits.
- He is climbing on a tree.
- He is watching a movie.

because these decisions are totally unrelated to the previocusly
inferred decision, 1i.e., “John i1s working in the yard". These
out of context rules should be avoided, because they might
require some irrelevant information to be provided, which surely,
one would not like. Intelligent systems should also be able to
discard most of the task irrelevant infermation quickly, and

should concentrate on main line of reasoning.

Such a behaviour exhibited by system should be regarded as
"intelligent behavior" since the availability of-information of
applicable set of rules is evidence of more complex vreasoning
process than a blind search through all the possibilities. One
of the criteria for intelligence is the ability to deal with
complexity (where complexity 1is necessary: recall Einstein’s

dictum, “Things should be made as simple as possible, but no

simpler".)

[
03]
1
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Augmenting censored production rule with the information of
rules, which should apply next to get a more specific decision,
results in a hierarchical censored production rule or simply a

HCPR. Next section describes a HCPR in detail.

3.1 HCPR

A HCFR is of the form “If A Then B Unless C Specifically 8" ., It
is created by augmenting the censor production rules with the
specificity information S . The specificity information to a

rule is hint about a set of rules in a rule-base, such that:
(A) these rules are the most likely to be saticsfied,

(B) these rules are the most relevant to the current state

of the system and

(C) the decicions from these rules are more specific than

the decision of the augmented rule.

We will employ a rule-tree as an underlying representational
and computational mechanism to handle various trade-offs. MWhere,
a rule-tree is a collection of all related HCPRs for the same

domain of problems. Next section describes a rule-tree in

detail.

..24_.
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3.2 RULE-TREE

A rule-tree is a3 collective and <cystematical representation of
all related HCPRs about a given concept. From collective we
mean, all rules in a knowledge-base about a particular concept.
A HCPR in a rule-tree is a quanta of knowledge about a particular
domain of problems. It is a quanta in the sense that it cannot
be further divided inte two or more simpler rules, and is
complete in itself,. The concept of rule-tree, provides a
mechanism to systematically handle the problems in a particular
domain of knowledge. Also, it provides an efficient means to
handle new information, which produce either a contradiction or
which cannot be explained on the bacsis of the current
knowledge—-base. A knowledge-base may contain one or more

rule-tfee each for different domain of problems.

The general concepts in a rule-tree are represented at
relatively low level of specificity (in the vicinity of the root)
and the specific concepts are represented at relatively higher
level of specificity (in the vicinity of the leaves of the
rule—-tree). So a rule-tree is a systematic representation of
HCPRs for cimilar domain of problems. Any subtree of a rule—-tree
cannot represent more general concept than rule—-tree itself, or
in other words, its domain of problems ie relatively restricted.
A general rule is one, on which one or more specialised rules are

dependent directly or indirectly, 1i.e., leaves of a rvrule-tree



Fage 3-5

represent the most specialised rules and nodes other than leaves
represent relatively more general rules. Rules dependent on same
immediate general rule are called sibling rules and the general
rule is called the parent rule.

For simplicity, from this point onwards, we will assume that
cibling rules in a rule-tree will qgive mutually exclusive
decisions. This mutually exclusive property between <sibling
rulee would be made explicit in the specificity information part

of the parent rule, using "xor" operator.

1. The rule-tree offers mechanisms to handle various
trade-offs.
i.e., (a) 1t offers mechanism to handle trade-cffs
between the precision of inferences and computational
efficiency of deriving them. (b)) it cffers mechaniem to
handle trade-offs between the certainity of conclusion

and its specificity,

2. The representation using rule—-tree facilitates efficient
use of memory, e.g., consider the query "Did John hit
Peter?" , issued to an ordinary logic based reasoning

system having singlée fact that "John punchéd Peter." On

checking the fact-base, it will reply “no" , and if
another fact that "John hit Peter" is included in the
system then it will reply "ves", to the above query,

Though, actions hit and punched are related to each
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other, but it has to <store separate facts for these
related actione of "hit" and “"punched". So it is not an
efficient wutilisation of memory. Now consider the

fellowing knowledge base:

> rule-tree:
Rl: strike (X, Y) ==> hit (X, Y) #
(punched xorvr
slapped xor

kicked)

hit (X, Y) and strike_by fist (X, Y)
==> punched (X, Y).
hit (X, Y) and strike_by_ hand (X, Y)
==> slapped (X, Y).
hit (X, Y) and strike_by foot (X, Y)
==> kicked (X, Y).
R2: strike
(strike_by_fist xor
strike_by_hand xor
strike_by_foot)
> fact-base:
Fl: Strike_by_hand(John, Mary).
F2: Strike_by_foot(John, Jim).
F3: Strike_by_fist(Jim, Peter),

FS: Strike_by fist(John, Peter),.

..27_
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From a rule-tree a general concept can be inferred
1f 1ts specific concept is given in the fact-base. So
in HCPRs system only the most specific facts are needed
to be stored in the fact-base, such that, all the
general concepts may be inferred from the rule-tree and
the fact-base, 1i1.e., using a single fact F1l, rule-tree

R1 and R2 it can answer the following questions:

- From fact Fl: strike_by hand(John, Mary)
1t would reply ves to the query - Did John strike

Mary by hand 7.

-~ From F1, R2; it resulte in a new fact RF1 -

RF1l: John struck Mary.

- From R1, RFl; it gives a new fact RF2 -
RF2: John hit Mary ; using RF2 it is able to answer

the query - Did John hit Mary ? and reply yes.

- From F1, RF2 and R1; it gives a new fact RF3 -

RF3: John slapped Mary.

- The mutually exclusive property of sibling rules
decisions namely - punched, slapped and kicked
(these are mutually exclusive, since at any instant
of time only one action could be performed) , a
rule-tree Rl and a fact RF23 results in the following

facte (negqative),.

...28_
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NF1: John did not punch Mary.
NF2: John did not kick Mary,
NF3: John did not strike by fist.

NF4: John did not strike by foot.

So using little knowledge stored, it is able to answer a

number of queries.

This rule-tree provides an efficient mechanism to
discard most of the task irrelevant information provided
to an intelligent system. It considers or acks task

relevant information only (it may be noticed from the

number of example sessions in Appendix-B and

Appendix-C).

The specificity information provides a systematic way to
proceed for the conclusion. It discards a large number
of rules at each level of <specificity of conclusion,
thus makes possible the most rapid progress to a useful
conclusion., So to find a conclusion, inference engine
is required to consider only a small set of rules
(information about which is given by the last successful
rule) and hence, it 1is not required to consider the
whole knowledge-base. To understand a forward chaining
using a rule-tree, consider the rule—-tree Rl for the
general concept of " hit" (page 26). Suppose a vrobot

Wwith rule—-tree Rl is watching John and Mary in action.
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On seeing that John struck Mary by some object, it will
infer that "John - hit Mary". His next line of action
would be to see, whether the object was his fist
(because it comes first in the specificity information)
and on finding that object was his hand (a relatively
finer observation), it will infer that "John slapped

Mary".

So it is superior to other systems because it requests
information that has the greatest importance (or impact), given
the current ctate of the system. The general theory of operation
is that the system requests as its next piece of information the
one that will remove most of the uncertainity from the system,
e.9., The doctor first asks if the child has fever because the
answer to this question narreows the greatest number of
possibilities. If your answer is "yes" to the first question,
then the doctor asks you if your child is nauseated. As with the
first question, the doctor asks this question over other
questions because its answer has the greatest impact given the
current state. This procedure continues until the doctor can
make a diagnosis. In this example the key point is that doctor

selects each question to make the most rapid progress to a

conclusion.

|
[£2]
[am]
|
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At this point, 8 formalisation of rule—-tree 1is required.
Since, &a vrule-tree 1is <simply a systematic representation of

HCPRs, a foermalisation of a HCPR at its ith level of specificity

is given.

3.2.1 Formalisation

Following is a HCPR at ith level of specificity of a rule-tree:

AC30,31,32...... JCi-1)): YA(30,31,..... yJ(1-1)) and
BC30,31,0unn.. Jis1): YB(i0,31,...... biis1) B8Rt and
B(jO,31,....31,p(30,31,...31)): YB(jD,jl,....ji,p(jO,jl,....ji)ﬁ
==> A(30,31,....31): CF(j0,31,....,431) @
X(j0,3j1,....3i,1): CF(JjO,j1l,..,3i,1) or
X(i0,il,eeueydis@)t CF(30,31,00ueey3iy2) OVuuuwwn.or
X(30,y..43i,m(j0,31,...313): CF(30,31,..m(30,31,..31))
YA(i0,i1,....,Ji) %
A(J0,51,....,3i,1) xor
ACJ0,31,.c0.45314,2) XOY..... XOV

A(I0,31,.00e,y3i,n(3j0,31,...,31))

Where, A(J0,31.....3(1i-1})) is a decision derived from parent
rule of ACI0,31.....3(1i-1),7i) at (i-1)th level of specificity,

and A(30,31....5i,1); ACI0,31....3i,2)5 wuu.. ... are its child
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rules decisions at (i+l)th level of specificity. If a rule does
not have any child rule then it represents a leaf-rule of the
rule-tree, and if it does not have any parent rule then it is the

root-rule of the rule-tree.

1. The symbols "€" and "%" are for “Unless" and
“Specifically" respectively. If resources are tight
then reasoning process can neglect information

associated with these symbols completely or selectively.

2. Nm is the total number of levelse of specificity in the

rule—tree and I is a positive integer less than Nm.

3. 3j0 is always zero, such that A(JQ) <(==> A(0) <==> A. It
shows that at 0th level of a rule-tree only one rule is
there. In other words, each tree has only one root.

4. 31,i2,...31i are non-zero positive integers. Their
values decide the particular rule at ith level of
specificity of a rule—tree.

5. p(30,j1l,...Ji) is a positive integer. It gives the

number of predicates other than the decision from its
parent rule, using which ACI0,31,..31) might be

inferred.

!
)
[A8]



m(3j0,31,i2,..ji) is a positive integer. It gives the

number of exception conditions to the rule.

n(30,31,32...3i) is a positive integer. It gives the
number of child rules associated to the HCFPR. In other
words, it gives the numbers of rules which reasoning
process would tried next if assertion A(i0,il,....3i)
holds.

YA(30,31,...,301-1)) 3 YB(30,31,..,3i,41) § +ieieeernenn
YB(30,31,....31,p(i0,31,...31i)) and YA(jO0,3l,...Ji) are
variable certainity factors assigned to various
predicates during execution. Their values depend very
much on resource constraints and input data. This 1is

related to reasoning with tentative premise.

YA(j0,il,ij2,..,31) is the certainity factor with which

the decision A(3J0,3j1,32,...,3i) is inferved.

There are several ways to combine certainity factor
at different levels of specificity depending on the type
of knowledge-base system. Our knowledge-bases (designed
for implementation part) employed the following method

to calculate the certainity factor of a decision.

YA(...}) = (Strength of premise) *

(Strength of implication)
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.More clearly,

YAC30,31,...3i) = min [YA(30,31,...,iCi-1)) ,
YB(30,3%,eeedisl)eeennnns ey
YB(30,31,..3i,p(i0,i1..... ,3i))] *

[CF(j0,31,..3i) + Z(n) CF(30,..3i,n)]

Where Z(n) represents summation over n, and n is
a positive integef such that, X(j0,jil,..Jji,n) is the nth
exception condition to the rule and it ie found to be
false. If some nth censor condition X(j0,31,...ji,n) is
found to be trué then YA(1i0,31,...3i) = 0.0, . or
A(j0,31,...Ji) 1s false. Also, if for some value of n
exception X(3i0,31,..3i,n) is unknown then CF(i0,..ji,n)
is 0.0, 1i.e., it would contribute nothing to the

confidence, in deriving a decision,

CF(jo,31,...31i) CF(30,31y...01,1).0uu.. ereeceean -
and CF(30,31,..0.,m(j0,32,...,3i)) are constant
certainity factors. CF(j0,jl,...ji) is 0O-level strength
of implication and it should always be greater than
0.50. CF(&O,jl,j2....ji) + 2(n) CF(30,31,..... ji,n) is

l1-level strength of implication, where n ranges from 1

to m(3j0,31,...3i). CF(j0,31,3i2..ccc.. Ji ). ... wand
CF(i0,31..... mCi0,31,..... ii1)) are numerical estimates
of likelihood of 1lst, 2nd, ..... and m(30,31..... j1)th

exception condition rvrespectively., The l-level cstrength

_34_
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of implication can not exceed 1.0 . The values to these
constants should be given by either experts in that area

of knowledge or using probability theory.

3.2.2 Rule-tree is a tree of Decisions
For example, consider the following general rule-tree

ACO)

/ | / | \
AC0,1,1) AC0,1,2) ACD,2,1) AC0,2,2) A(D,2,3)
/1 N\ |
/ | \ |
/ | AN I
/ | \ |
ACD,2,1,1) AC0,2,1,2) AC0,2,1,3) A(0,2,3,1)
/ ] 7/ !
/ | / |
/ | / |
/ | /o |
A(0,2,1,1,1) A(0,2,1,1,2) A(0,2,1,3,1) A(0,2,1,3,2)
/ /] N
/ / | \
/ / | \
/ / | \
AC0,2,1,1,1,1) A(0,2,1,3,2,1) A(0,2,1,3,2,2) A(0,2,1,3,2,3)
/ | \
/ | \
/ | \
/ ( \
AC0,2,1,3,2,2,1) A(0,2,1,3,2,2,2) A(0,2,1,3,2,2,3)

Fig.- 1
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Each rule in a rule-tree is of the form "If premise Then decision
Unless cencsor_conditions Specifically specificity_information".
The nodes in rule—-tree (fig.l), represent the decisions of
increasing specificity from vroot to leaves and links between
nodes represent the specificity information. The premices and
censor—-conditions are implicitly assumed with the nodecs. This
rule—-tree has grown up to the sixth level of specificity (Nm =
7). Nodes at different levels of rule-tree denote the decisions
with the specificity of that level. Decisions of higher
specificity depend on the existance of their ancestor rules
decisions. A(0,2,1,3,2) 1is a decision at 4th level of
specificity, A(0,2,1,3) is its parent rule decision at 3rd level
of specificity and A(0,2,1,3,2,1); A(D,2,1,3,2,2)3;
A(0,2,1,3,2,3); are its child rules decisions at Sth level of
specificity. The values of integers n(0,2,1,3,2,2,2),
n(0,2,1,3,2,2), n(0,2,1,3,2), n(0,2,1,3), n(0,2,1), n(0,2) and
n(0) in this particular rule—-tree are 0, 3, 3, 2, 3, 3 and 2

respectively.

- 3 -
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Consider a particular example of a rule—tree for the concept of

plane figqure (fig.2), to understand a rule-tree.

plane figure

/ AN
e N
convex non convex
/s A
7/ N\
/ N
polygon ovalfiqure
/ N | N
/ AN ] N\
irreqular reqular ellipse circle
7 | AN
/ } AN
/ i \
equilateral square pentagon
triangle
Fig.- 2

This rule-tree for plane figures, represents the plan to
identify an unknown plane figure. The 7root of the tree
represents the general concept of plane figure, and 1its subtree
with vroot convex represents the somewhat less general concept of
convex figure. This subtree includes all the specialised rules
relevant to the general concept of convex figure, but no rule
about the concept of non—convex figures.

This rule-tree will infer a given figure is trianqle only after

it has inferred that it is a polygon, convex and plane figure.



CHAPTER 4

CONTROL SCHEMES

Consider a HCPR: A ==> B @ C

$ D.
Like exception conditions, specificity information "D", to a rule
may be incomplete and in such case, "D" should be interpreted as

-~ (D1 xor D2 xor ... xor Dn xor Unknown), instead of (D1 xor D2

cveseX0otr Dn) when it ie complete.

There are different viewpoints of "unless" operator "@" and
"specificity" operator "$" namely - logical, expositive and

control viewpoint.

1. from & logical viewpoint, the "unless" operator "@"
between "B" and "C" acts as the "xor" operator and
"specificity" operator "$" between "B" and “D" acts as

the "xnor" operator,

- 38 -
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2. From an expository viewpoint:

- the "A ==> B" part of 3 HCPR expresses an important
information, while the "@ C" part acts only as a
switch that changes the polarity of "B" te "not B"

when “C" holds.

- the “A ==> B" part of a HCPR expresses the general
part of information which requires compartively less
efforts, If "B" holds then control is passed to the
set of implications given by "D". The "$ D" part
gives the more specific information part of the
rule.

The éxpositive aspect of operator "$" gives that the
"$ D" part of the rule, will require more data (or
fine observation) than "& == B" part of the rule,
e.g., the observation "John struck Mary using his
fist" is more fine than the observation "John struck
Mary". The latter ocbservation requires less
efforts, but the first one 1includes the latter

observation too.

3. From control viewpoint HCPRs are intended for situations

in which
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-~ the implication "A ==)> B" holds frequently and the
assertion "C" holds rarely. Systems employing HCPRs
are free to 1gnore exception conditions when
resources are tight. Given more time, the exception
condi tions are examined, lending credibility to high

speed answere or changing them.

- the assertion "BY is more general than assertions
given by “D" and it is &8 must for holding of
assertions given by “D". Also, the assertion "B"
would prove to be the best answer, if sufficient

resources are not available to find the assertions

given by "D".  Systems wusing HCPRs are free to
ignore the specificity information provided by "D".
If movre resources are made available to the
reasoning process, 1t will try to establish

assertions given by “D" alsc, and would give & more

specific answer.

Therefore, the HCPRs system exhibits wvariable precision of
conclusions, reflecting wvariable investment of computational
resources in conducting reasoning. Nex;, we consider a General
Control Scheme (GCS), which may be employved in reasoning process

of & HCPRs system of knowledge representation,
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4;1 A GENERAL CONTROL SCHEME

First we define a threshold certainity factor m, which
separates the CF of true and false answers. Such that, answers
with CF >= m are considered true and answers with CF < m would be
considered false. By default, the wvalue of m is 0.5, i.e.,
answers with CF ¢ 0.5 are false and answers with CF >= 0.5 are
true. It may vary between 0.0 and 1.0 (exclusively) depending on
the requirement, (0 < m < 1.0).

The control aspect of ‘“specificity" and "unless" operator
supports various cbvious control schemes. There are two extreme

cases of these control schemes.

4.1.1 Control Scheme 1 (CS1)

Under this control scheme for each level of specificity treat the
"unless" operatorse ac if they are exclusiwve-or operators. It
ignores the expectation information of "unless" operator. This

1s good in situations in which
1. expectation conditions are unreliable.
2. nothing should be assumed.
3. there is no resource constraint.

The fig.1 ie for CS1 where, m varies between 0.09 to 0.99 in the

steps of 0.20 and parameters e and k remain constant.
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4.1.2 Control Scheme 2 (CS2)

This control <ccheme ignores all censor conditions whevever

possible. This is good in situations in which
1. vrapid response is critical,
2. resources are very tight.
3. censoerse to the rules are rare and unlikely to occur.

In CS2, censor conditions would be considered only if certainity
factor of the answer is lese than m.
The fig.2 is for CS2 where, m varies between 0.09 to 0.99 in the

steps of 0.20 and parameters e and k remain constant.

4.1.3 General Control Scheme (GCS)

The censor conditions and specificity informations suppovrt
various control schemes. CS1 and CS2 are two extreme cases of
the various control schemes possible. Here we propose a general
control scheme GCS, wusing which any of the possible control
schemes may be generated on providing the control parameters e, m

and k (fig.l to fig.6).
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> GCs:

1. N = Ceiling ( Nm * ( expt (1.0 — m) (1.0 / (e * k))))
2. CF(I)

1.0 - (1.0 - m)y*Cexpt ((I + 1) / N)) (e / k))

0 <=1 <N
3. CF(I)

m :: N <=1 < Nm, N < Nm.

Where, Nm is the total number of levels of <specificity (Nm > 0)

of the rule-tree to which the query is issued.

N is the number of lower levels of scpecificity (N <= Nm) for

which control schemes in between CS1 and €S2 (inclusively) would

be emplaved.

Nm-N is the number of higher leveles of specificity for which CS2

would be employed.

CF(I) is the requitrement on CF at the ith level of specificity by
the particular control scheme employed. Its wvalue may wvary

between m and 1.0 (inclusively) or m <= CF(I) <= 1.0

Parameter e is a real number and depends  only on the resource

constraints. It may vary between 0.0 and infinity (exclusively).

In fig.S to fig.6 each, value of parameter e varies between 0.25

to 2.10 in the steps of 0.30.

The following are various ranges of e, showing different resource

constraints:
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A. very—-2 high resource constraint: 0.125 <= e < 0.290
B. wvery high resogurce constraint: 0.250 <= e < 0.50
C. high resource constraint: 0.350 <= e < 1.0

D. moderate resource constraint: e

]
[
o

E. low resource constraint: 1.0 <= e < 2.0
F. wvery low resource constraint: 2.0 (= e < 4.0
G. wvery-2 low resource constraint: 4.0 <= e ( 8.0

The default value of parameter e is 1.0, which <shows that
reasoning system always has some constraints of time or memory or
bothh. The value of e is dependent on real resource constraints
(allowed ti&e and memory), which in turn are dependent on
particular type of knowledge-base, 1i.e., for some type «of

problems, time of 30 minutes may be reasonable, but for others

time of 30 mili-seconds is more than enough.

Parameter k 1is a real number, which for given wvalues of

parameters e and m, will decide:

- the number of higher levels Nm-N, for which CS2 is to be

employed
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- the number of lower levels for which CS1 1is to be

employed and

- the number of in between levels for which control scheme

between CS1 and CS2 would be emploved.
(1) 1f kK > 1 then Nm-N will be lesser than what it is if k < 1.

(2) if Kk < 1 then number of lower levels for which CS&S1 is

employed, are more than what it is, if k > 1.
For given values of parameters e and m, the following are

different ranges of k, showing various user requirements.

A. For very high specificity and low certainity:

2.0 < k <= 4.0

B. For high specificity and moderate certainity:

1.0 < k <= 2.0

C. For moderate specificity and moderate certainity:

k = 1.0

D. For moderate specificity and high certainity:

0.5 <=k < 1.0

E. For low specificity and very high certainity:

0.23 <= k <€ 0.5

fig.4 to fig.6 are for different values of parameter k (0.5, 1.0

and 2.0) and fixed value of parameter m ( 0.9).

_45...
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CHAPTER S

IMPLEMENTATION

There are twoe types of knowledge representation items: in &
declarative knowledge item, there is nothing to say how it should
be used, & procedursal item, in contrast, contains within itgelf
explicit information on this point. The former has the nature of
an item of data to be used by & program, whilst the latter is the
program 1itself. A declarative item cannot stand alone but must
be comlemented by an interpreting procedure; thus a system cannot

be fully declarative but it can be fully procedural.

Our implemented intelligent systems employes &a procedural
knowledge item. This procedural item 1is based on the HCPRs
system of knowledge representation and control informations are

relegated to its procedural parts.

The following are the steps of a general scheme employed to

implement a HCPR in the practical knowledge-bases.

_46_
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Stepl: A rule is defined by giving it a particular name and a
list of control parameters. These control parameters describe
the current state of the reasoning process completly. This
control information ic passed from one rule to another as control
is altered between them.

Step2: A wvariable cfm called minimum certainity factor 1is
initialised to CF of parent rule decision and for the root rule
it ie 100 (by default).

Step3: A list of exceptions to the rule with their likelihoods
and O0-level strength of implication are given.

Stepd4: It checks the various flags and the ranges of different
control parameters.

StepS: Premise part of the rule is defined and value of cfm 1is
updated.

Step6: Employ a control scheme to handle the exceptian
conditions and output (or vreturn} the results of knowledge
processing.

Step?7: In the last, a et of more specific rules is defined and
in forward chaining, control 1is passed to one of these rule.
But, in backward chaining this specificity information is

completly neglected.

Using this scheme to represent 3 HCPR, two knowledge-bases are
designed and a rule from the knowledge-base of biological

classification is given below:

._47_
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3 ke s ek ook ok Ao e ok s e e e e e e e e e ok e ke e ke e ok e e Ao ek de e e e ke e e ke e el e ke ke ook e e e ek e ke deoke ek ke

i* This vrule 1is for the general concept of living organism **x%

3 oo ek v v e e v ke e oo e ok Ao ke e e A e e e ek e Ao e ke e e e e st e ke ke e el e ek kool e dkedke e ook dle e de ek e de ke e dkeoke

S STEP1 : s e e s e s s e e}
(defun x_is_living_organism(x

&optional(chaining “forward)(m S0)(e 1)(k 1)(i 0)

(n (spe_n O0me k)) (y 1003} ;list of optional
;jparameters gives control schemes and system’s current cstate.
e e eccarnoecanaanan STEPZ2 C s saer e aa s e}
(setq name x cfm y) j;initialised cfm to CF of parent rule
decision.

HEEEE R Y STEP3 s er et

-e

(let ((s0_impl 96) (elist ((is_it_always_undergoing_
change_in_their_substances_called_metabolism 2 ,name)
(does_it_arise_from_other_ovganism_of_same_ovr_

related_species 2 ,name)))) j3;elist ie a list of exceptions &
their likelihood.

S e s et e cn e STEP4 ettt et s st e s e e}
(and (init_cond_p y m (*x e 4) i n) jcheck range error.
R STEPS i er st e}
(minip m cfm (posses_p X ‘characterstic_shape_&_bound_
by_regqular_curved_surface)) ;predicates

(minip m cfm (show_p x “growth_largely_ by assimlation))
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Jerearneanannaneas STEP6 |
(setq c_fac (control_P chaining s0_impl elist cfm x m
e k i n ‘] living organism.|)) ja control scheme is employed.
Jressveancnnaneana STER? T e eeena]
(if (equal chaining ‘backward)
(setq va c_fac)
(or(x_is_animalia x chaining m e k (1+ i) n yal)
(x_is_plantae x chaining m e k (1+ i) n yal)

t)J)))) jcontrol is transferred to more specific rules.

Another knowledge-bace, which gives answers to <some daily
life queries is designed using a similar knowledge representation

scheme. A rule from this knowledge—-base is given below:

5 Fe ke Ao e e e ke Ao ke Ao ok e ek ok e e e dhe e dhe e e ek e e e e e e e e e e e ek et e dedke de e e e e e kel de e ke e ek ek e ke

sthis is & rule for answering a query of the type "1<_X_outdoor"*

3 FoAeA ke e e dle e e o e e e e e e Ao e ok e et de ek de e e e e de ek e e e e e ke e e e sk e ok e e e e ke e de e ek e deodle sk ek

T STEP1 e
(defun is_x_outdoor(x &optional(chaining “forward)(m 30})(e 1)

(k 1)¢{i 0)(n(spe_n 1 m e k))(y(what_x_1is_doing x “backward)))
srule name and control parameters.

e reeat et et as STEP2 Ce s st e e}

(setq cfm y) j;initialised the minimum certainity factor cfm.
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e eacnrnena vees e STEP3 = it i ienasnsasanas H
(let ((elist ‘((is_bad_weather 4)(is_riots_in_the_city 3)
(is_final_exams_in_progress 3 ,name)(is_he_ill 3 ,name))))
;ja list of exceptions to the rule.
e s e s aneaesaaaean STEP4 ceasusssesasansanesa}
(and (init_cond_p ¥ m (x e 4) i n) jchecks ranges & flags.
Frsenar e STEPS = i iiie e ii i ceen}
(setq cfm (min(day_p “sunday) cfm)) j;premise part.
T STEPS = ot i e e s nassnsnasreannse 3
(if (equal chaining “backward) j;return CF of decision.
{exception_handler 85 elist 100 e 1 1)
(and ( > (exception_handler 85 elist m e 1 n k) m)
{(writep x ‘| is outdoor . | 1)
joutput a3 decision with calculated certainity factor.
e e n s e STEP7 i it e H
(setq yal ya ml m el e)
;cqntrol is transferred to more specific set of rules.
(or(is_x_playing outdoor x chaining ml el k (1+ i) n yal)
(is_x_entertainning_outdoor x chaining ml el k (1+ i) n yal)

(is_x_working_outdoor x chaining ml el k (14 1) n yal)t)))li))

For these implemented intelligent systems, a certainity
factor in the range of 0 toe 100 (instead of 0 to 1) is used and
it denotes the percentage certainity factor, for simplicity we

would call it CF.
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In the rule of living organism a macro “control_p" is wused, it
simply vreturns the value of certainity factor of the decision if
chaining is backward, otherwise, it will output the decision with

its truth value.

Appendix-A includes macre "control_p" &slongwith some ather
important functions. Appendix—-B and Appendix-C include example
cessions with these knowledge-bases, for different control

parameters,



CHAPTER ©

OTHER OBSERVATIONS: HCPRs SYSTEM

The power of a method of representation can be judged by

- its ability to express complex situatiocns precisely,

- 1ts clarity of representation.

- 1ts efficient utilisation of available memory.

- its ability

- ite ability

~ 1its ability

inferences.

- ite ability

- 1ts ability

to

to

to

to

to

deal with imprecise arguments.

reason with insufficient data.

conclude both the positive and

facilitate parallel processing.

remember past experiences.

negative
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- its ability to improve performance as time passes, oOr

ite ease to learning, and in the last
- it should be an ideal representation scheme.
Most of these features of the HCPRs system of knowledge
representation have been discussed in previous chapters. In this
chapter a set of inference rules, a parallel processing scheme

and some learning schemes for HCPRs system of knowledge

representation are described 3s follows:

6.1 INFERENCE RULES

Consider & HCPR without censor conditions or simply

a

hierarchical production rule (HPR) and & rule-tree R1, of HPRs:

> R1:

# A ==> B ¢ (D1 xor D2)

# B and Al ==> Dl $ (El xor E2)

# B and A2 ==> D2 ¢ (F1 xor F2)

# D1 and All ==> E1 $ (UNKWI1)

# Dl and Al2 ==> E2 $ (UNKW2)



Page 6-3

# D2 and A21 ==> F1 % (UNKW3)

# D2 and A22 ==> F2 $ (UNKKW4)

Where, UNKWL,UNKWZ,.. represent unknown specificity informations
to the rules. We are assuming that the specificity informations
to the rules of decisions "B", “D1" and "D2“ are complete.
Otherwise, the incomplete specificity information to the rule of
decision "D1" would be written as (El1 xor E2 xor UNKNOWN). A
csample of inference vrules applicable to & HPRe system of

knowledge representation is given below:

I
R1 !
}> Bitrue
Aitrue |
|
|
R1 |
{> B:falce
A:false |
|
|
R1 |
[> Dl:false
B:false |> D2:false
> A:false
|

_54_



R1

B:true

Al true

R1

D2:false

R1

Dl:true

AlZ2:true

R1

E2:true

R1

F2:false

v

'

~

~

7

N

NN

Dl:true

D2:false

Fl:false

F2:false

El:false

E2:true

UNKWZ2: true
El:false

UNKW4:false
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|
R1 |
> Aitrue
B:true |
|
|
R1 |
|> Bitrue
D2:true > A2:true
|> Dl:false
|
|
R1 |
1> A2l:true
|> D2:true
Fl:true |> F2:false
1> UNKW3:true
|
|
R1 }
|
F2:false |{|> AZ22:false
|
D2:true (
l
As an example consider the following rule-tree "Rex",

representing the general concept of excitement:

_56_



Page 6-6

EXCITEMENT
7/ N
/ N
/ N
/ N
7/ AN
Distress Delight
/ AN 7/ | AN
/7 | N\ / | AN
Fear Shame Anger Affection Joy Elation
fig.—- 1

The rule—-tree "Rex" in fig.l, may be given as follows:

> Rex:
# State of agitation ==> Excitement $
(Distress xor Delight)
# Excitement and extreme pain == Distress $
(Fear xor Shame xor Anger)
# Excitement and great pleasure ==) Delight %

(Affection xovr Joy xor Elation)

# Distress and danger == Fear
# Distrese and quilt feeling ==3 Shame
# Distress and real/fancied injury ==> anger
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# Delight and kindness/love ==)> Affection
# Delight and gladness ==3 Joy
# Delight and pride from success ==> Elation

This rule-tree may be used to find a proper word, which is
required to describe the feeling of a person. On noticing that
the person i€ in the state of agitation, the reasoning <cystem
with rule-tree "Re" will infer that “he is excited". After
noticing the fact that "he is having great pleasure", it will
infer that "he is delighted". Similarly, on finding further that
“he is showing great gladness", it will infer more specifically
that "he 1is in Jjov." And, on taking into account the mutually
exclusive property between cibling rules and the fact that "he is

in joy ", it may infer the following stafements (negative):
1. he ic not feeling shame.

2. he is not fearful.

3. he is not angry.

4. he is not elated.

5. he is not having affection.

_..58._



Page 6-8

6. he is not distressed.

6.2 LEARNING

The rule—-trees in a HCPRs system have the capability of
continuous growth with time., A rule-tree will become stronger
(strength of implication) and richer in knowledge as time passes.
Like exceptions, specificity informations may be incomplete or
even absent in & HCPR depending on, how much a3 system has learnt.
Fellowing are some of the possible learning schemes suitable for

the HCPRe system.

6.2.1 Remembering most likely Lines of Action

Specificity informations may be resequenced according to how
frequently a specific rule has been applied in the past or in the
order of decreasing importance. Such that, information of rule,
which is used most frequently (or recently) should come first in
the specificity information part of the rule. A HCPRs based
reaconing <ystem should apply rules according to their order 1in
the specificity information, rather than the order in which they
are stored in the rule base. Similarly, exception conditions may

be stored in the order of their cost—factor and likelihoods.

6.2.2 Learning by Refining Beliefs

_59_
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Strength of implications (0-level) and 1liklihoods of wvarious
exceptions should be updated according to the past expervience of
the system. This could be performed by using the past-data of
each HCPR, where the past—-data may include information of the

type:

- number of times a HCPR has been employed successfully in

the past,

- number of times a particular exception has blocked the

rule, etc.

6.2.2 Learning by Concept Formation

To understand learning by concept formation consider an example:
The children’s concepts often show a crude generality which has
to be overcome by taking, note of differences. A little girl on
seeing a squirrel called it & "funny kitty" . She was
generalising by assimilating the new to the old, but as she
noticed that the new kitty was funny, she was ready to draw a new

name and differentiate a new concept.

©.2.3.1 Horizontal Growth - If a3 new rule to be added to a
rule-tree, does not increase the maximum level of specificity,
then its inclusion in the rule—-tree will be called its horizontal

growth (fig.2 and fig.3).
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Al Al
/ AN /
/ AN /
AZ A3 ==) Az
| 7N
] /s AN
A4 A4d4 AS
Fig.—- 2
Al Al
s AN /s
/ N /
A2 A3 ==) A2
| |
| |
A4 A4
Fig.- 3
Horizontal - Growth

6.2.3.2 Vertical Growth - 1

rule-tree,
then its 1

growth (fi

increases

nclusion
g.4).
N
N
A3 ==>
i
| /
A6 A4
Fig.- 4
Vertical -

the

Growth

N\
N\
A3
N
N\
&3
|
|
A3
f a new.
max imum
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rule

to
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in the rule-tree will be called
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its
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level of specificity by one,

vertical
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6.2.4 Learning by Fusion

Consider two rule—trees Rl and R2 (fig.5), which represent two
unrelated concepts "Aal" and "Abl". But, after some time it is
observed that these two concepts are vrelated, so they may be

combined 1in one single general concept by introducing a8 new rule

Cl, with rule-treec R1 and R2 its subtrees.

Aal Abl Cc1
/ AN + / AN ==) VAN
/ AN / AN / N
Aaz Aa3 Ab2 Ab3 Aal Abl
VARERN VAN
-R1- -R2- /7 N\ / AN

Aal Aad Ab2 AbS3
_Ra_

fig;— S

A rule-tree R2, with an independent concept "Ral" initially, may
be a sub concept of another rule-tree Rl. So, it would become a

subtree of rule—-tree R1 after suitable modification (fig.6).

Aal Abl Aal
/N VRN /N
/ N+ N ==y / \
Aa2  Aa3 Ab2  AbS3 Aa2  Aad
l /N
[ / \
Aad -R2- Aad  Abl
/N
-R1- s \
ab2  Ab3
fig.— 6
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6.2.5 Learning by Fission

This process is employed to simplify & complex rule by breaking
it into two or more simpler rules, related to each other in

hierarchy (fig.7). This process will be called vertical fission.

Al Al
/ \ /N
/ AN /7 N
A2 A3 ==3 B1 A3
/N | | |
Ve N ! I
A4 AS A6 B2 Ab
7N
-R1- / AN
A4 AS
._.Rl.._
fig.—- 7

Similarly as the number of <ibling rules crosses some critical

value they may split under two or more intermediate parent rules

(fig.8)., This process will be called horizontal fission.
Al Al
/N /N
/ AN ==> 7/ N
AR A3 A2 A3
/1N /0N
VAR RN 7/ N
A4 AS Al B1 B2
/N !
-R1- / AN !
A4 A6 AS
_Rl_
fig.— 8

where, Bl and BZ are two intermediate parent rules.
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6.3 PARALLEL PROCESSING

The HCPRs system of knowledge representation supports parellel
processing. At each level of specificity there would be a set of
rules (child rules), which is the most relevant to the current
state of the system. A HCPRs system of knowledge representation
provides an efficient mechanism to get information about this set
of rules and how the rules are vrelated to each other. So,
according to their mutual relationships they may be assigned to
separate processors, i.e., all the mutually exclusive rules might
be assigned to separate processors and processor finising first
with successful and acceptable results might abort the jobs of
remaining processors and these processars may be reassigned to
derive more specific inferences. Here, successful and acceptable
results mean answers Wwith certainity factor greater than m.
Also, if it has to choose between more than one answers (not

mutually exclusive) then the answer with the largest CF would be

selected.



CHAPTER 7

CONCLUSION

Qur aim is to produce systems having tens of thoushands of rules
oY even maore. These <systems wili have <ceveral levels of
knowledge, the higher levels making possible a more intelligent
use of the lower: if a program is acked to find cut "what book
John is reading" and it is known to him that he is sleeping then

it should not search to find this.

Both human and computer must be able to react promptly to
new information, and they must be able toc change or repair their
knowledge when new information produces contradictions or when

initial assumptions are withdrawn.

For lack of any better way, Iinformation scientists today
continue to improve the knowledge bases of their programs by
hand. The small size of existing programs makes this acceptable,
but what will happen when they get to the size of a million rules
or concepts ? Programs on this scale will themselves have to

learn from experience and to improve themselves by using simple
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rules provided by human experts for assessing their performance.

The less sophisticated programe simply read the data at the
start of the session, perform the reasoning operations on these
and give the results without taking any advantage of the
interactive possibilities of fered by the computer. Also
sometimes &ll the data rvrelevant to the problem is not available
at the time when solution is required. The consequence of the
data being incomplete is simply that the conclusions are lecss
certain, or less good 1in some sense - with the possibility of
being wrong in some cases. Alsc an answer which is more certain
but somewhat general is sometimes acceptable. Thus, our programs
should be capable of providing some <solutions, even <somewhat
general or less certain.

It is also possible that some data which iz unrelated to the
problem (or noise information) is provided. Our programs should
be able to discard thece tack irrelevant informations efficiently

and should concentrate on the main line of reasoning.

In the present work, we have suqgested 3 HCPRs system of
knowledge representation, which has the ability to incorporate
inte the knowledge structure additional information that can be
used to focus the attention of the inference mechanism in the
most promising directions.

We have shown that a HCPRs system enables the trade-offe hetween

the precision of decisions and the efforts needed to derive those



Page 7-3
decisions.

The control planning problem ie cne of the important topic,
which has been described using a general control scheme (GCS).
The GCS decscribec how a reasconing mechanism for the HCPRs syestem,
can make controllable trade-offs between the certainity and the
specificity,.

It has been shown that a HCPRs system supporte various learning
schemes and ‘how it can improve i1ts reasoning power using past
experience.

Also, a parallel procecssing scheme for s HCPRs <system has been

described.

We need to find some more suitable operators

using which various mutual relationships between different rules,

conditions and facts can be made explicit, 1i.e., <come suitable
operators to give relationships of the type Has_parts,
Hae_elements, Has_properties,... and Has_constraints arve

required.

Like specificity operator "$', we think, & 9generality operator
"G%" should be employed, such that, our reprecentation of a
rule-tree becomes:

A0 ==> B ¢ (C xor D)

Al ==> C % (C1 xor ..) G% B

A2 ==> D ¢ (D2 xor..) G% B

All ==> C1 ¢ (....) G¥% C
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instead of the following rule—-tree representation:
A0 ==> B ¢ (C xor D)
B and A1 ==> C ¢ (Cl xor ..)

B and A2 ==> D ¢ (D2 xor..)

Operator "G%" would make the backward chaining equally efficient
as the forward chaining. In backward chaining a reasoning
process should neglect the information asscciated with the

operator "$" and in forward chaining information associated with

operator “"G%" should be neglected.

We have implemented HCPRs system using procedural
representation of knowledgqe, but the power of the HCPRs system is
in its declarative representation of knowledge. Implementation
of the HCPRs system with declarative knowledge representation,
would certainly require an interpreter capable of handling the

varioue features of the HCPRes system of knowledge representation.

_68_



APPENDIX A

LISTING OF IMPORTANT FUNCTIONS DEFINED IN LISP

§ ok AR e ok ok e ok e ke Ao 3k T e 9 e e e S ok e e oo ok e e R Ao Ak e e A ke e ke e ok e e e ke e e e etk e e e b kook e e ek ke e ok

HRae a macro to control the forward and backward chaining. Jobkk
§ 0Kk e R ke dhe ke e A A A Ak ok e A e e ok sk e A ke e e e ok Ao Ao e oo ok e e Aok ook ke e de ke ke A e e ok e de e ek oke ek ek ek ok

(defmacro control_p(chaining s0_impl elist cfmm x m e k i n s1)
*(if (equal ,chaining “backward) j;backward chaining
(exception_handler ,s0_impl ,elist)
(if (> (setq ya (% ,<0_impl ,cfrm .01)) ,m) j;forward chaining
(and (writep ,x ‘| belongs to| ,sl ,i) joutput decision
(if ¢ > (exception_handler ,s0_impl ,elict, m, € ,k ,i ,n) m)
(and (print “(is true with cf = ,ya)}) ;output CF
(print “(and required cf was ,cf)))
(and (print “(is false with cf = 100)) (= 1 2)))
(setq val va)))))

5 F0FEAA AP A A T e e e e e e Ao e e ook e e e e o e Fe e ke e s e e vl e ok e ek de e e e ke ke sk e ook ok ke e e de ke e e e ke oke
jRkk & function for general exception handlervr Frokededooke ok

3 PP 2k e b e die e e e Ao ke e s e A e Ao ke e de e Aok ke e e e de e e A e e e e e A ke e de ek e e e ke e e e ke e ke e e ek ek

(defun exception_handler{y elicst m € 1 &opticonal (n nm) (k 1))
(setg cf (— 100.0 (*x (— 100 m) (expt(/ (+ 1 1) n) (/ e k)}}))
(setq c y prede elist)
(do C )
((or €< cfm m) ;IF premice part is false,
(equal (¥ ¢ cfm .01) 0.0) ;3 an exception is true,
(> (/ (¥ c cfm) 100.0) cf); required CF is achieved
(null prede)) (setq ya (*x ¢ cfm .01)) j;0r no more
sexception remains THEN return calculated CF of decision.
(handle (car prede)) ;ELSE check next exception to rule
(csetq prede (cdr prede))})
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3 ek dededke o e e e Fe e e ok s ke ke ke ke ke e e e e e e ek e e dede de e ke e ok ke e dedke e et skl e ek e ook ek dlede sk ok ke e

3 dodkek this function modify the strength of implication Fededok
;*********************************************************#******

(defun handle(x)
(setq excep (exceptions x)) jget the truth value of
jexception conditon x.
(cond ((equal excep ‘y) (setq c 0));if true then
jstrenght of implication is 0.0
((equal excep ‘n) (setq c (+ c (cadr x))))
;if false then strenght of implication is increased.
(t))) ; if unknown it remains came.

§ Yook e ake e ke e Ao e Aok Ao e e e e dbe e Ao e de Ao dedle e e e de ke dedle s e s e e e ke ke e ek e de dede ek dede ok ok e oo e ok oke

gk This function find the truth value of &an exception Hedek
3 Fe oo oo v e e s Ao ke e e e e e e e dke e e e e e de ek Fe e e de e Ao dede sk ek e ek e ek ok ek e ok ek ek e e e ok

‘(defun excepticons(x)
(cond ({(caar(my_member x exception_list)})
;31f truth value of exception ics known then return it.
(tCand (print*(,{car x) ? write Y/N.})
jotherwise request from the user.
(setq ans (read))
(inter_stop ansc)
(cond ((or (eq ans ‘n)(eq ans “yl)
(and(setq exception_list(cons(list ans x)} exception_list))
jupdate exception list.
(caar exception_list)))

(t 7g)}l)))

§ R AR 3 A AR AR I A AR AR Hok Ak de ke dkdokdh A A Ak ok kA A A AR KA AR A AA AR A AAhKAAkkd
jRkk this function calculate the maximum level of FokkAk
HRaR specificity ta be tried in given conditions Kk kkkhk
3 ookt dle o e ook e e e e ol ke e e e de e e e ot e ke ok e e e e e de e e e e e Ao Ao e ke e e e e e e e ook e e e e e ke ke ek ok

(defmacro spe_n (x m e k)
*(ceiling (% (- ,nm ,x ) (expt (x (- 100.0 ,m) 0.01)
(/ 1.0 (% ,k ,e))))))
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3 Pkt s e ke v dke e Ao ok e e e e ok e b e ke e s e e e ok Ao ek ke e dke e ek e kool e e e e sk ke e ke ek e sk e de sk ke e dede ke ok

a2 this function reset various flaqs and database. Fokkdek
3 vk e e e e e ok e e ke e e e e e e e o e ke e dke e dke e dke e e e dke e ke e ke e o e e e oo e ok e ok e e e ke e e e ek ke de e e ke ke

(defun reset()
(setq dynamic_databasel ‘() dynamic_database2 ‘()
exception_list “() get_list “() nm 12 flag nil))

3 ek sfe ok vl e e e e e ok v s e e ke e e e dke e e e e e ek Ao e e ke ke ok e s ke e e e ok ke e ook ke ke e e e e e ek ke ke e ke e e ke

3 Yok this function checks the range of various parameters Hokek
$ Ao ok ook ok e ke A e e ok e e e e ke Ao e e e sk ok ok e ook e e ke ke sk e ok ke e ke ke ke A ek Ak ok ok sk kA e dkedkede e sk ke ke e keokeoke

(defun init_cond_p(a &optional b c d e)
(if (and (not flag)) (and (cf_range_p &)
(cf_range_p b)
(cf_range_p c)
(cf_range_p d)
(cf_range_p e))
(=1 2))>

(defun cf_range_p(x)
(if (stringp x) (=1 2)
(<=0 x 100))»)

3 0 2Rk 9k sk ok ke ke e ok b ke oA ok e ok Aok ke ok e e ok ok e ade ok e de e ok e s ok e e e e de e e ok e ok e oo ke e e dedke e ke ek e e de ke ke

3 Fededekok this function update cfm Feoke Fede e e deFedke
5 P koo ke e ke Ao e ok e e ke ok ke e e ok e e e ke e ok Ao ok e e ok e oo e A e ke ok ok o ok e e ke deake sk e ke oo Aok e dkeoke ke e ek ke ke ek e

(defun minip( x v 2z)
(cond ((>= z x) (setq cfm (min y z)))
GEGDDD)

§ Yo Forke ke vl e s ok ke Ao v e e ok e e e e e e e e e e ke ok ok e ke e e ke e ok e o ke ke ok ke e ok e de ke ke e ke she de e ke ke e e ok e ke ke ke ke

HRd this function is invoked when resources are expired Fokk
;**************************************************************

(defun constraints(m)
(print “(do you want to proceed further? write y/n.})
(if (equal (read) “y)
(setq cf m)
(setq ¢ 0 flag “true)))
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EXAMPLE SESSIONS: KNOWLEDGE-BASE 1

3 Fode e dedhe e e e e e e e e e dede Ao de e ek e dedede e de ke ok e e s e sk ke ek ke ke et dke e Ao de defe e e de e Aot e e etk deoke

; Kokk EXAMPLE SESSIONS (KB1) START FROM HERE Fekkk A Ak
3 Fededekodede e dede de e e Fedede e s e e e dededede e e ok Ao ek ek e e ook e ke de de e e ek e e dede e e e de ek ke de ke de ek
Lisp>

(reset)

NIL

Lisp? (what_x_is_doing ‘k.lal “forward 40 2 .75)

(GIVE THE NAME OF CITY OF WHICH K.LAL IS RESIDENT.)

delhi

(GIVE CF (0 TO 100) THAT K.LAL IS RESIDENT OF DELHI CITY IS
TRUE.) 100

(HAS_HE_LONG_VACATION ? WRITE Y/N.) n
(I1S_HIS_CLOSE_RELATIVE_SERIOUSLY_ILL_IN_ANOTHER_CITY ? WRITE
Y/N.) n ‘

(I1S_HIS_CLOSE_RELATIVE/FRIEND_HAS MARRIGE_FUNCTION_IN_OTHER_CITY
? WRITE Y/N.) n

(IS_HE_A_SALES_PERSON ? WRITE Y/N.) n

SPECIFICITY_LEVEL_IS @

DECISION_IS K.LAL ie in the DELHI

ITS_CF_IS 99.0

CF_REQUIRED_BY_CONTROL_SCHEME_WAS 99.17921

(GIVE CF (0 TO 100) THAT DAY IS SUNDAY IS TRUE.) 100
(15_BAD_WEATHER ? WRITE Y/N.) n
(IS_RIOTS_IN_THE_CITY ? WRITE Y/N.) n
(IS_FINAL_EXAMS_IN_PROGRESS ? WRITE Y/N.) n
(IS_HE_ILL ? WRITE Y/N.} n

SPECIFICITY_LEVEL_IS 1
DECISION_IS K.LAL is outdoor

ITS_CF_IS 97.01999
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 94.78831

...’72_



Page B-2

(GIVE CF (0 TO 100) THAT IT IS PLAYING TIME IS TRUE.) 10
(GIVE CF (0 TO 100) THAT IT IS ENTERTAINNING TIME IS TRUE.) 100
(DID_HE_GOT_A_MAJOR_ACCIDENT ? WRITE Y/N.) n

SPECIFICITY_LEVEL_IS 2

DECISION_IS K.LAL is entertainning outdoor

ITS_CF_IS 87.318

CF_REQUIRED_BY_CONTROL_SCHEME_INAS 24.63422

(GIVE CF (0 TO 100) THAT K.LAL LIKES SEA IS TRUE.) 7S5

SPECIFICITY_LEVEL_IS 3

DECISION_IS K.LAL is at sea side .

ITS_CF_1S 67.5

CF_REQUIRED_BY_CONTROL_SCHEME_KWAS ©6.90788

(GIVE CF (0 TO 100) THAT K.LAL HAS ENOUGH_SPARE_TIME IS TRUE.) 70

SPECIFICITY_LEVEL_IS 4
DECISION_IS K.LAL is sitted at sea side
ITS_CF_IS 60.75

CF_REQUIRED_BY_CONTROL_SCHEME_WAS 40.0
7

Lisp> (what_x_is_doing ‘k.lal “forward 60 2.0 2.0)
SPECIFICITY_LEVEL_IS O

DECISION_IS K.LAL is in the DELHI
ITS_CF_IS 94.0
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 92.0
SPECIFICITY_LEVEL_IS 1

DECISION_IS K.LAL is outdoor

ITS_CF_IS 86.48
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 84.0
SPECIFICITY_LEVEL_IS 2

DECISION_IS K.LAL is entertainning outdoor
ITS_CF_IS 77.832
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 76.0
(IS_CITY_NOT_AT_SEA_SIDE ? WRITE Y/N.)

n

SPECIFICITY_LEVEL_IS 3

DECISION_IS K.LAL is at sea side, .
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ITS_CF_IS 71.25
CF_REQUIRED_BY_ CONTROL_SCHEME_WAS 68.0

SPECIFICITY_LEVEL_IS 4
DECISION_IS K.LAL is sitted at sea side
ITS_CF_IS 63.0
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 60.0
T

Lisp> (is_x_outdoor “k.lal ‘backward)
84.15

Lisp?> (what_x_is_doing ‘k.lal “forward S0 .5 .5)
SPECIFICITY_LEVEL_IS O

DECISION_IS K.LAL is in the DELHI

ITS_CF_IS 85.0

CF_REQUIRED_BY_CONTROL_SCHEME_WAS S50.0

T

Lisp> (what_x_is_doing ‘k.lal “farward S0 .5 2.}
SPECIFICITY_LEVEL_IS O

DECISION_IS K.LAL is in the DELHI

ITS_CF_IS 85.0

CF_REQUIRED_BY_CONTROL_SCHEME_WAS 62.00821
SPECIFICITY_LEVEL_IS 1

DECISION_IS K.LAL is outdoor .

ITS_CF_IS 72.25
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 54.8199
SPECIFICITY_LEVEL_IS 2

DECISION_IS K.LAL is entertsinning ocutdoor
ITS_CF_IS 61.41249
CF_REQUIRED_BY_CONTROL_SCHEME_WAS S5S0.0

T

Lisp> (what_x_is_doing ‘k.lal ‘forward 80 .5 2.)
SPECIFICITY_LEVEL_IS O

DECISION_IS K.LAL is in the DELHI

ITS_CF_IS 85.0
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 83.18207
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SPECIFICITY_LEVEL_IS 1

DECISION_IS K.LAL is outdoor
ITS_CF_IS 80.75
CF_REQUIRED_BY_CONTROL_SCHEME_WAS £0.0
7

Lisp?> (what_x_is_doing ‘k.lal “forward 40 2 2).
SPECIFICITY_LEVEL_IS 0

DECISION_IS K.LAL is in the DELHI
ITS_CF_IS 94.0
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 90.0

SPECIFICITY_LEVEL_IS 1

DECISION_IS K.LAL is outdoor
ITS_CF_IS 83.66
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 80.0

SPECIFICITY_LEVEL_IS 2

DECISION_IS K.LAL is entertainning outdoor
ITS_CF_IS 71.111
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 70.0

SPECIFICITY_LEVEL_IS 3

DECISION_IS K.LAL is at cea cide
ITS_CF_IS 63.9999
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 60.0

SPECIFICITY_LEVEL_IS 4

DECISION_IS K.LAL is csitted at sea cide
ITS_CF_IS 57.359991
CF_REQUIRED_BY_CONTROL_SCHEME_IWAS S0.0

SPECIFICITY_LEVEL_IS S

DECISION_IS K.LAL is sitted at ses side alongwith his wife.
ITS_CF_IS 51.83992

CF_REQUIRED_BY_CONTROL_SCHEME_WAS 40.0

T

Lisp>

(exit)
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APPENDIX C

EXAMPLE SESSIONS: KNOWLEDGE-BASE 2

3 Fe ek derfedle e ek e A Ao e Aok s e e ek s Ao sk e e e e e dle de e e e ke ok e e e e e e e e e e ke e e e ke ke s e e e ke e e e ek deoke

3 hkkk EXAMPLE SESSION (KB2) START FROM HERE Fkkkkk
5 Fo ke ok e 3l dhe e A T e e e Ao e e dle Ao e de e e e ke e Ao ke de ke ke e ke e Ao e Fe vk e e e e ke ok e e ke ok e e st sk e ke e e ke e e ke e e e adeoke

Lisp>
(reset)
NIL

Lisp> (x_is_living_organism ‘X “forward 80 2.0 1.0)

(GIVE CF (0 TO 100) THAT X POSSESS
CHARACTERSTIC_SHAPE_&_BOUND_EY_ REGULAR_CURVED_SURFACE IS TRUE.)
100

(GIVE CF (0 TO 100) THAT X SHOWS GROWTH_LARGELY_BY_ASSIMLATION IS
TRUE.) 100 :

SPECIFICITY_LEVEL_IS 0O

DECISION_IS X belongs to liwving organiem.
(IS_IT_ALWAYS_UNDERGOING_CHANGE_IN_THEIR_SUBSTANCES_CALLED_
METABOLISM ?) (WRITE T/F ?.) t
(DOES_IT_ARISE_FROM_QTHER_ORGANISM_OF_SAME_OR_RELATED_SPECIES ?)
(WRITE T/F ?.) ¢t

(IT IS TRUE WITH CF = 100.0)

(AND CF REQUIRED BY CONTROL SCHEME WAS 99.,44444)

(GIVE CF (0 TO 100) THAT X POSSESS CHLOROPHYL 1S TRUE.) 10

SPECIFICITY_LEVEL_IS 1

DECISION_IS X belongs to Kingdom Animalia.
(DOES_IT_TAKE_ORGANIC_FOOD_PRODUCECED_BY_OTHER_ORGANISMS ?)
(WRITE T/F 7.) t

(IT IS TRUE WITH CF = 90.0)

(AND CF REQUIRED BY CONTROL SCHEME WAS 97.77777)

(GIVE CF (0 T0O 100) THAT X HAS MULTICELLULAR_BODY IS TRUE.) 100
(GIVE CF (0 TO 100) THAT X SHOWS
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ORGANISATION_AT_TISSUE_LEVEL_OR_ORGAN_LEVEL IS TRUE.) 100
SPECIFICITY_LEVEL_IS 2

DECISION_IS X belongs to Subkingdom Metazoa.

(IT IS TRUE WITH CF = 89.09999)

(AND CF REQUIRED BY CONTROL SCHEME WAS 95.0)

(GIVE CF (0 TGO 100) THAT X HAS
UNIQUE_SUPPORTING_STRUCTURE_THE_NOTOCHORD IS TRUE.) 100

(GIVE CF (0 TO 100) THAT X HAS SEGMENTED_BODY IS TRUE.) 100
(GIVE CF (0 TO 100) THAT X HAS BILATERAL_SYMMETRY IS TRUE.) 100

SPECIFICITY_LEVEL_IS 3

DECISION_IS X belongs to Phylum Chordata.
(DOES_IT_HAS_CLOSED_BLOOD_SYSTEM 2)

(WRITE T/F ?.) t

(IT IS TRUE WITH CF = 89.09999)

(AND CF REQUIRED BY CONTROL SCHEME WAS 91.11111)

(GIVE CF (0 TO 100) THAT X HAS BRAIN_OR_SKULL_OR_HEAD 1& TRUE.)
100

(GIVE CF (0 TO 100) THAT X HAS ENDOSKELETON_OF _BONE_OR_CARTILAGE
IS TRUE.) 100

SPECIFICITY_LEVEL_IS 4

DECISION_IS X belongs to Sub-Phylum Craniata.

(IT IS TRUE WITH CF = 88.20889)

(AND CF REQUIRED BY CONTROL SCHEME WAS 86.11111)
(GIVE CF (0 TO 100) THAT X HAS JAWS IS TRUE.) 100

SPECIFICITY_LEVEL_IS S

DECISION_IS X belongs to Super-Class Gnathostomata.

(IT IS TRUE WITH CF = 84.68063)

(AND CF REQUIRED BY CONTROL SCHEME WAS 80.0)

(GIVE CF (0 TO 100) THAT X HAS BODY_COVERED_WITH_HAIR IS TRUE.)
100

(GIVE CF (0 TO 100) THAT X POSSESS MAMMARY_GLANDS IS TRUE.) 100
SPECIFICITY_LEVEL_IS 6

DECISION_IS X belongs to Class Mammalia.

(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y

(IT IS TRUE WITH CF = 84.68063)

(AND CF REQUIRED BY CONTROL SCHEME WAS 80)

(GIVE CF (0 TO 100) THAT X PQOSSESS POUCH IS TRUE.) 1

(GIVE CF (0 TO 100) THAT X HAS , '
MATURE_NEW_BORN_WITH_COVERING_OF_HAIRS_& _ALL_SENSE_FUNCTIONING IS
TRUE.) 100
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SPECIFICITY_LEVEL_IS 7

DECISION_IS X belongs to Sub-Class Eutheria.

(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) vy

(IT IS TRUE WITH CF = 82.98702)

(AND CF REQUIRED BY CONTROL SCHEME WAS 80)

(GIVE CF (0 TO 100) THAT X POSSESS
CLOSED_BONY_RINGS_SURROUNDED_TO_EYE_SOCKET IS TRUE.) 100

(GIVE CF (0 TO 100) THAT X HAS
1ST_FINGER_&_AT_LEAST_ONE_PAIR_OF_DIGIT_OPPOSABLE_&_ABLE_TO_GRASP
IS TRUE.) 100

SPECIFICITY_LEVEL_IS 8

DECISION_IS X belongs to Order Primates.

(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y

(IT IS TRUE WITH CF = 81.32727)

(AND CF REQUIRED BY CONTROL SCHEME WaS 80)

(GIVE CF (0 TO 100) THAT NAKED_MOIST_RHINARIUM IS PRESENT IS
TRUE.) O

T

Lisp> (x_is_living_organism 'Y “forward 30)

(GIVE CF (0 TO 100) THAT Y POSSESS

CHARACTERSTIC_SHAPE_&_ BOUND_BY_REGULAR_CURVED_SURFACE IS TRUE.)
100

(GIVE CF (0 TO 100) THAT Y SHOWS GROWTH_LARGELY_BY_ASSIMLATION IS
TRUE.) 100

SPECIFICITY_LEVEL_IS @

DECISION_IS Y belongs to living organism.

(IT IS TRUE WITH CF = 96.0) '

(AND CF REQUIRED BY CONTROL SCHEME WAS 91.66666)

(GIVE CF (0 TO 100) THAT Y POSSESS CHLOROPHYL IS TRUE.) 10

SPECIFICITY_LEVEL_IS 1

DECISION_IS Y belongs to Kingdom Animalia.

(IT IS TRUE WITH CF = 86.4)

(AND CF REQUIRED BY CONTROL SCHEME WAS 83.33333)

(GIVE CF (0 TO 100) THAT Y HAS MULTICELLULAR_BODY IS TRUE.) 100
(GIVE CF (0 TO 100) THAT Y SHOWS
ORGANISATION_AT_TISSUE_LEVEL_OR_ORGAN_LEVEL IS TRUE.) 100

SPECIFICITY_LEVEL_IS 2
DECISION_IS Y belongs to Subkingdom Metazoa.

(IT IS TRUE WITH CF = 85.536)
(AND CF REQUIRED BY CONTROL SCHEME WAS 73.0)
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(GIVE CF (0 TO 100) THAT Y HAS
UNTQUE_SUPPORTING_STRUCTURE_THE_NOTOCHORD IS TRUE.)

100

(GIVE CF (0 TO 100) THAT Y HAS SEGMENTED_BODY IS TRUE.) 100
(GIVE CF (0 TO 100) THAT Y HAS BILATERAL_SYMMETRY IS TRUE.) 100

SPECIFICITY_LEVEL_1S 3

DECISION_IS Y belongs to Phylum Chordata.

(IT IS TRUE WITH CF = 83.82528)

(AND CF REQUIRED BY CONTROL SCHEME WAS 66.66667)

(GIVE CF (0 TO 100) THAT Y HAS BRAIN_OR_SKULL_OR_HEAD 1S TRUE.)
100

(GIVE CF (0 TO 100) THAT Y HAS ENDOSKELETON_OF_BONE_OR_CARTILAGE
IS TRUE.) 100

SPECIFICITY_LEVEL_IS 4

DECISION_IS Y belongs to Sub-Phylum Craniata.

(IT IS TRUE WITH CF = 82.98702)

(AND CF REQUIRED BY CONTROL SCHEME WAS 58.33333)
(GIVE CF (0 TO 100) THAT Y HAS JAKWS IS TRUE.) 100

SPECIFICITY_LEVEL_IS S

DECISION_IS Y belongs te Super—-Class Gnathostomata.

(IT IS TRUE WITH CF = 79.66754)

(AND CF REQUIRED BY CONTROL SCHEME WAS S0.0Q)

(GIVE CF (0 TO 100) THAT Y HAS BODY_COVERED_WITH_HAIR IS TRUE.}
100

(GIVE CF (0 TO 1006) THAT Y POSSESS MAMMARY_GLANDS IS TRUE.} 90

SPECIFICITY_LEVEL_IS 6

DECISION_IS Y belongse to Class Mammalia.

(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) v

(IT IS TRUE WITH CF = 79.66734)

(AND CF REQUIRED BY CONTROL SCHEME WA&S 9S0)

(GIVE CF (0 TO 100) THAT Y FPOSSESS POUCH 1S TRUE.) 20

(GIVE CF (0 TO 100) THAT Y HAS
MATURE_NEW_BORN_WITH_COVERING_OF_HAIRS & ALL_SENSE_FUNCTIONING IS
TRUE.) O

(GIVE CF (0 TO 100) THAT Y LAY SHELLED_EGGS IS TRUE.) 100
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SPECIFICITY_LEVEL_ IS 7

DECISION_IS Y belongs to Sub-Class Prototheria.

(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) v

(IT IS TRUE WITH CF = 78.07419)

(AND CF REQUIRED BY CONTROL SCHEME WAS 50)

(GIVE CF (0 TO 100) THAT Y IS

PLUMP_STOUT_SHORT_LEGGED_& SHORT_TAILED IS TRUE.) 100

(GIVE CF (0 TO 100) THAT Y HAS THICK_FUR_OR_HAIR_& SPINES IS
TRUE.) 90

SPECIFICITY_LEVEL IS 8

DECISION_IS Y belongs to Order Monotremata.

(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) v

(IT IS TRUE WITH CF = 78.,07419)

(AND CF REQUIRED BY CONTROL SCHEME WAS 350)

(GIVE CF (0 TO 100) THAT Y HAS WT._BETWEEN_2.5_TO_6_KG. IS TRUE,)
100

(GIVE CF (0 TO 100) THAT Y HAS
BEAK_LIKE_SNOUT_OF_ROUND_CROSECTION IS TRUE.) 80

SPECIFICITY_LEVEL_IS 9

DECISION_IS Y belongs to Family Tachyglossidre.

(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) v

(IT IS TRUE WITH CF = 77.29344)

(AND CF REQUIRED BY CONTROL SCHEME WAS S0)

(GIVE CF (0 TO 100) THAT Y HAS SNOUT_IS_SHORT_AND_STRAIGHT IS
TRUE.) 20

SPECIFICITY_LEVEL_IS 10

DECISION_IS ¥ belongs to Genera Zaglossus.

(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) v
(IT IS TRUE WITH CF = 76.52051)

(AND CF REQUIRED BY CONTROL SCHEME WAS S50)

T

Lisp?> (exit)
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