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CHAPTER 1 

INTRODUCTION 

R.S. Michalski and P.H. Winston are pioneers in the field 

of variable precision logic. In the real world, both human and 

computer often has to reason using insufficient, incomplete or 

tentative premises. Moreover, both are subject to constraints of 

time and memory. Variable precision logic is concerned with 

problems of reasoning with incomplete information and resource 

constraints. It offers mechanism for handling trade-offs between 

the precision of inferences and computational efficiency of 

deriving them. Two aspects of precision are specificity and 

certainity. 

The terms specificity and certainity are used in ways that 

are reminiscent of the use of the term precision and accuracy in 

measurement theory. Precision in measurement theory represents 

the number of significant digits associated with a quantity, 

while in variable precision logic specificity is opposite of 

generality. Moreover, a general concept is included in a 

specific concept; but, a general concept may or may not include 
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the specific concept, e.g., a concept of triangle is more 

specific than a concept of polygon and a triangle must be a 

polygon but, a polygon may or may not be a triangle. 

The term accuracy in measurement theory represen~s the numerical 

difference between the measured value and the true value of a 

quantity, while certainity in variable precision logic is a 

measure of confidence, that a given statement represents a true 

statement, e.g., the statement "John 

would be 

is working in the yard" 

1. more certain if it is known that "weather is nice". 

2. somewhat less certain 

reasoning process. 

if weather is unknown to the 

3. very less certain if it is known that "weather is bad". 

Winston and Michalaski [1] employed censored production 

rules to handle the trade-offs between the certainities of 

various decisions and the effort needed to derive them. The 

system employing censored production rules handle only certainity 

part of the variable precision logic. 

To take into account the specificity part of precision, we 

are employing hier~rchical censored production rules or simply 

HCPRs. These HCPRs are censored production rules augmented with 

the specificity information and are written in the form "If A 

- 2 -
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Then 8 Unless C Specifically S," where "S" 

information of more specific rules or conditions. 

represents the 

From logical viewpoint "8" and "S" are related to each other with 

exclusive-nor operator (xnor); it means, if condition "8" holds 

then the condition represented by "S" must also hold and if 

condition represented by "S" holds then the condition "8" must 

also hold. From expositive point of view the "Specifically S" 

part of the rule represents the applicable set of rules when "8" 

holds. From control point of view the condition "8" is easy to 

establish and must hold for the condition represented by "S". It 

would prove to be the best answer if resources are tight and 

sufficient data is not provided. Given more time and data, a 

more specific answer would be tried using specificity information 

.. su • 

Chapter-2 discusses some important logical systems employed to 

represent knowledge in a computer. The need for extending a 

censored production rule to exhibit variable precision of 

decisions is discussed and a HCPRs system of knowledge 

representation is suggested. Chapter-3 describes a HCPRs system 

of knowledge representation in detail. A general control scheme 

(GCS) is discussed in Chapter-4. The GCS is implemented on two 

knowledge-bases designed using HCPRs system of knowledge 

repl·esentation. These knowledge-bases are discussed in 

chapter-5. One knowledge-base deals with some daily life 
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queries, whereas another is designed for biological 

classifications of an unknown organism. Some more observations 

of a HCPRs system are given in chapter-6, which includes learning 

and inference rules. 

The last chapter includes the concluding remarks about HCPRs 

system of knowledge representation. 

- 4 -



CHAPTER 2 

INTRODUCTION TO LOGICAL SYSTEMS 

Representing knowledge in a computer consists of setting up a 

correspondence between a symbolic reasoning system and the 

outside world. Just as no one has yet succeeded in designing a 

universal programming language, no one has yet produced an ideal 

form for representing knowledge in an AI system. The power of a 

method of representation can be judged by its ability to 

represent the complex situations precisely and also by its 

ability to represent the fact that two statements have something 

in common: thus in a geological information system "compacted 

limestone" and "porous limestone" should be represented as two 

particular forms of "limestone" and not as two unrelated 

substances. This second characterstic not only improves the 

clarity of the representation but also reduces the demands on 

memory because items having properties in common need to be 

recorded only once, in the most general form, instead of seprate 

entries. 
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The power can be judged also by the ability to deal with 

imprecise arguments, especially the inductive process; the latter 

is more difficult to represent than purely deductive processes. 

This brings in the idea of "common sense" reasoning, which 

differs from formal logic and mathematics in that it is used when 

a decision has to be based on incomplete information. In real 

life, we often have to face the fact that our knowledge is 

limited and draw conclusions fol· which we cannot give a rigorous 

proof but which seem , to us plausible, often expressed as 

"reas.onable". 

An introduction to some of the imp o l- tan t logical systems, to 

represent reasoning and decision-making process follows: 

2.1 TWO VALUED LOGIC 

It is a yes or no kind of logic, 1n which all classes are assumed 

to have sharply defined boundaries. So either an object is a 

member of a class or it is not a member of a class. Fol· example, 

mortal or not-mortal, dead or alive, male or female and so forth 

are classes that have sharp boundaries. 

2.1.1 Syllogistic Logic 

The first known logician was Aristotle (384-322 b.c.), 

philospher and natural scientist. He developed 

the great 

much of the 

theory of what has come to be called syllogistic or classical 
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logic. Syllogistic logic essentially deals with deriving the 

truth (or falsehood) from a philosophical argument. This type of 

logic is still used because it is the basis for virtually all 

legal argumentation. 

Study this short argument. 

man. 

,John is a man. 

All men used to be boys 

Therefore, John used to be a boy. 

Common sense tells us that John was a boy before he became a 

After being converted to syllogistic form, this argument 

becomes 

,J -- > 1"1 

All M --> B 

hence ,J --> B 

In many ways, syllogistic logic is simply a formalisation of 

common sense. However, because syllogistic logic is based in 

natural languages, it suffers from the inherent flaws of a 

natural language. Natural languages are often imprecise and can 

be misunderstood. Also, people tend to hear or read selectively, 

which can cause further confusion. This lack of precision 

eventually led to the invention of symbolic logic. 

- 7 -
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2.1.2 Symbolic Logic 

Symbolic logic began with G. W. Leibniz(1646- 1717), but was 

forgotten when he died. The entire field was rediscoverd by the 

person generally given credit for its invention, George 

Boole(1815 - 1864). This type of logic is called Boolean logic. 

Symbolic logic deals with the abstraction of concepts into 

symbols and interconnection of these symbols by certain 

operators. 

example: IF (P is true ) and 

(Q is false) 

THEN (P or Q is true) and 

(P and Q is false) 

The idea of using formal logical system to represent reasoning 

and decision-making process was first suggested in a paper by 

John McCarthy in 1958 [5]. 

There are two distinct but interlocking branches in symbolic 

logic, the first is propositional logic and the other is 

predicate calculas. We describe first the propositional logic. 

2.1.2.1 Propositional Logic- Proposition~l logic deals with the 

determination of the truthfulness or falseness of various 

propositions. A proposition is a properly formed statement that 

is either true or false. 
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Although, propositional logic forms the basis for both 

intelligence and computer languages, one cannot use it by itself 

to represent human knowledge of the world, because it lacks the 

ability to represent relationship between objects, and it cannot 

be used on classifications. This shortcoming leads to predicate 

calculas. 

2.1.2.2 Predicate Calculas- Predicate calculas sometimes called 

predicate logic, is simply an extention of propositional logic. 

The basis of predicate calculas is the predicate, which is 

essentially a function that returns either a value of true or 

false depending upon its argument. 

examplel: The predicate Dog defined by Dog(X) " X is dog " 

takes the value True if X=Rover and False if X=Pussy. 

example2: is hard ( rock ) ==> true, 

is_hard ( cotton ) ==> false. 

In propositional logic these two predicates and arguments become: 

a rock is hard. 

cotton is not hard. 

In predicate calculas, it is possible to create a function 

that determines the hardness of any object. The predicate 

calculas uses variables to generalise predicates, e.g., 

man(X) ==>Not woman(X). 

- 9 -



Page 2-6 

Predicate calculas uses two quantifiers, existential (there 

exists) and universal (for all), e.g., 

All cats are animals 

Every boy has a bicycle 

<==> 

for all X (Boy(X) 

2.2 MULTIVALUE LOGIC 

<==> 

__ , 
--/ 

A polish mathematician J. 

for all X Cat(X) ==> animal(X) 

there_exists Y (Bicycle(Y) and 

own(X, Y))) 

Lukasiewiecz, first developed the 

concept of multivalued logic during the 1920s. In multivalued 

logical systems, there are more than two truth values. There may 

be a finite or infinite number of truth values, i.e., an infinite 

number of degrees to which a property may be possessed. In a 

three valued system, for instance, something can be true, false, 

or on the boundary. 

2.3 NONMONOTONIC LOGIC 

A logic in which a conclusion stands no matter what new axioms 

are added, is called monotonic logic. Traditional system based 

upon predicate logic are monotonic in the sense that the number 

of statements known to be true is strictly increasing over time. 

Neither of new statements added to the system or new theorem 

proved, will ever cause a previously known or proven statement to 
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become invalid. 

Monotonic systems are not very good at dealing with 

incomplete information, changing situations, and generation of 

assumptions in the process of solving problems. Nonmonotonic 

logic [4] allows statements to be deleted from, as well as added 

to, the database. Among other things this allows the beliefs. in 

one statement to rest on a lack of belief in some other one. 

Rarely does a system have at its disposal all the information 

that would be useful. But often when such information is 

lacking, there are some sensible guesses that can be made, as 

long as no contradictory evidence is present. The construction 

of these guesses are known as default reasoning. We know that 

one of a set of things must be true and, in the absence of 

complete information, we choose the most likely. Most people 

like flowers. Most dogs have tails. The most common color for 

Swedes is blond. These examples illustrates one common kind of 

default reasoning, which may be called most probable choice. 

Another important kind of default reasoning is circumscription 

[ 3] ' in which we assume that the only objects that can satisfy 

some property P, are those that can be shown to satisy it. 

2.4 PROBABILISTIC LOGIC 

Probabilistic logic makes it possible to represent likely but 

uncertain inferences. There are three types of situations in 
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which it is tempting to use probabilistic logic: 

for example, the The relevant world is really random, 

motion of electrons in atom or the distribution of 

people who will fall ill during an epidemic. 

Examplel. consider the problem of deciding which card 

to play in a game of bridge. We are dealing with a 

genuinely random world. 

probabilistic reasoning. 

So we will have to use 

The relevant world is not random given enough data but 

our program will not always have access to that much 

data, e.g., the likelihood of success of a drug at 

combatting a disease in a particular patient. 

Example2. consider the problem of diagnosing people/s 

illness from clinical records. There is some randomness 

in our description of the world, since medical science 

does not completely understand how the body works. In 

addition we must design a program that can function even 

if it does not have access to all the data medical 

science could conceivably provide, since some clinical 

test are expensive and dangerous. With such incomplete 

data to work with, we will have to use probabilistic 

logic. 

- 12 -
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The world appears to be random because we have not 

described it at the right level. 

Example3. consider the character recognition problem, 

whet·e if, characters are viewed as a collection of dots 

of ink, then there appear to be a great deal of random 

variation in their appearence. But if they are analyzed 

in terms of arcs and lines, then much of the randomnesss 

disappears, 

lines are. 

i . e. , it no longer matters how wide the 

For this problem, we should use as little 

probabilistic logic as possible. 

2.5 FUZZY LOGIC 

In 1965, Zadeh introduced the concept of a fuzzy set as a 

model of a vague fact. In every day life we often deal with 

impt·ecisely defined properties ot· quantities: "a few books", "a 

long story", "a beautiful woman", "a tall man " The key ide a in 

fuzzy set theory is that an element has a degree of membership in 

a fuzzy set. Thus a proposition need not be simply true or 

false, but may be partly true to any degree. We usually assume 

that this degree is a real number in the interval [0, 1]. 

Consider the fuzzy set "tall". The element are men and their 

degree of membership depend on their heights. For example, a man 

who is 5 feet tall has degree 0, 

have degree 1 and men with 

a man who is 7 feet tall might 

intermediate heights might have 

- 13 -
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intermediate degree. 

2.6 VARIABLE PRECISION LOGIC 

In 1986, Michalski, R. S. and Winston, P. H. in their paper 

(1], introduced the censored production rule to exhibit variable 

precision logic. Variable precision logic is concerned with 

reasoning with incomlete information and resource constraints. 

It offers mechanism to handle trade-offs between the precision of 

inferences and the cornputational efficient:y of deriving them. 

You can not tell an ordin~ry logic-based reasoning system much 

about how you want it to do its job. You can not give the 

following instructions, for example 

Give me a reasonable answer immediately; if 

enough time, tell me you are more confident in the 

answer or change your mind and give me another better 

answer. 

Give me a reasonable answer immediately, even if 

somewhat general; if there is enough time, give me a 

more specific answer. 

Give me a highly certain answer only, even if somewhat 

general; if there is enough time, give me a more 

specific answel-. 

- 14 -
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Give me ~ highly specific answer in the time allowed, 

even if you are less confident about it; if the allowed 

time is enough, tell whether you are more confident in 

it . 

There may be various other requirements of this type, which 

might arise 

f aci 1 it ate 

understand 

in real life. So 

these requirements on 

the variable precision 

following example. 

Suppose you are interested to 

our reasoning system should 

real life problems. To 

logic system consider the 

know, what X is doing on 

sunday and you know that on sundays people generally do not 

prefer to stay inside their houses. Noticing this fact, a quick 

answer may be that "X is outside his house". But by considering 

the fact that "X has to appear in annual ex ami nation tomorrow", 

you have to withdraw the previous decision that "X is outside his 

house" and have to give another better answer that "X is inside 

his house". On taking in to account the fact that "weather is 

bad", you can answer with more certainity that "X is inside his 

house". A more specific answer, on taking in to consideration 

the fact that "X is in his reading room", would be that "he is 

reading for tomorrow's examination". A system that gives more 

specific answers, given more time is what we call a variable 

specificity system. A system that gives more certain answers, 

given more time is what we call a variable certainity system. 

- 15 -
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There can be various combinations of the two systems, reflecting 

the fact that specificity and certainity are inversely related. 

Variable specificity and variable certainity are two aspects 

of variable precision. Thus, in general variable precision 

system is a system that exhibits either variable specificity or 

variable certainity or some trade-off between the two. Next 

consider the important production rules system, which on suitable 

modification will 

logic. 

become the basis of the variable precision 

2.6.1 Production Rules 

A production rule is a situation-action couple, meaning that 

whenever a certain situation is encountered, given as the left 

side of the t·ule, the action given on the right side is 

performed. I t can be written in the form "If premise Then 

action." The premise is a conjunction of predicates representing 

certain situation and the action is what is to be done when 

premise is satisfied. Very often the action is the taking of 

some decision, then rule becomes an implicative assertion of the 

form: 

"premise==> decision." 

But this is not always the case. There is no apriori constraint 

on the form of the situation or of the action. A system based on 

production rules will usually have three components: 

- 16 -
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1. The rule base, 

1·u1es. 

consisting of the set of production 

2. The fact bases, consisting of some useful definitions 

and data structures containing the known facts. 

3. The interpreter of these facts and rules, which is the 

mechanism that decides which rule to apply and initiates 

the corresponding action. 

The facts and the rules have a syntax that is known to the 

interpreter; the latter can therefore manipulate these logically, 

deciding on their truth or otherwise, in some programs, deriving 

new facts from them or suppressing certain facts. 

simple example: 

Consider this 

Rule base: 

rule only) 

R1 If X is an animal and X mews then X is a cat (one 

Fact base: F1 Felix is an animal 

F2 Felix mews 

Fact base after the interpreter has scanned both facts and rules 

Fl Felix is an animal 

F2 Felix mew<E. 

F3 Felix is a cat (new fact obtained by applying R1 

with X =Felix) 

- 17 -
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A production rule lacks certain aspects of common sense 

knowledge. Precision of inferences remains constant in 

production rules system, since neither certainity nor specificity 

can vary with resource constraints. The production rules system 

is not suited to reasoning t.-.lith incomplete information and 

resource constraints. Also, the pt·oduct ion s:.y stem of 

knowledge representation is not natural to rule repair mechanism. 

Whenever, a contradiction to a p t· o duct ion t· u 1 e is found, there 

are various possibilities to handle it: 

1. To consider the rule invalid, and ignore it in future. 

2. To continue to use the rule without change, realising 

that it will result in error occasionally. 

3. To modify the rule, so that the rule applies correctly 

to all encountered situations. 

4. To develop a new rule, substituting the new rule for the 

old. 

5. to remember the situations for which the rule does not 

work, treating them as exceptions. 

Action 1, is simple and prevents us from making errors. It 

deprives us of the benefit of using the rule when it does work. 

Action 2, is also simple. It preserves the benefit of using the 

rule when it does work, but using it will lead to some error. If 
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modification to be made to a rule is small, then action 3, is the 

better choice. But if this modification i~- unclea1· 

complicated, then Action 4, is the better choice. Both these 

later actions lead to a better and more precise rule, but require 

time and effort. In science, where standards for precision are 

high, one of these two actions is the usual choice. (the problem 

of incrementally 

explored in [8].) 

refining rules to accomodate new facts is 

If exceptions are few, then Action 5, is a good choice. I t 

preserves the usefulness of the old rule, but prevents makinq 

mistakes in situations recognised as exceptions. Even ~t-Jhen 

exceptions are more than few, it is the best action to take, 

particularly when it is not clear how to make changes to the old 

rule or how to create a new one. Production rules •,Ji th 

exceptions are called censored production rules. 

2.6.2 Censored Production Rules 

Winston [2] first introduced the concept of censored production 

rules. Censored production rules are production rules augmented 

with exceptions. It is of the form: "If premise Then conclusion 

Unless censor." The censor is a logical condition (a predicate or 

a disjunction of predicates) that when satisfied, blocks the 

rule. Thus, a censor can be viewed as a statement of exceptions 

to the rule. 

- 19 -



Page 2-16 

These forms of representation are more natural and 

comprehensible than other equivalent logical forms .. A simple 

rule with exceptions may be better than a complicated one without 

exceptions, particularly when the exceptions occur only rarely. 

Also, if exceptions are few, then to remember exception 

conditions, using censored production rule is a good choice. 

Some initial work, in the direction of inductive learning of 

decision rules with exceptions, was done by Becker [7]. 

Censored rules support a number of obvious alternate control 

s.chemes. In Winston's formulation an unlimited effort is put 

into showing that premise is true, but only one-step effort is 

put in teo showing that censor is true, and when one-step effeort 

fails, the censor condition is assumed to be false. 

tweo extreme possibilities of control schemes: 

Here are the 

The show-me method: Treat the unless operator as if 

they are exclusive or operators. 

The ask-question-later method: Ignore all censors. 

Employing censored production rules as a vehicle to 

implement variable precision logic exhibits only variable 

certainity, whereas specificity stays constant. Seo there should 

be some other better representation schemes or some modification 

to the existing censeored production rules representation. We 
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prefer latter, because it would retain the advantages of a 

censored production rule, while exhibiting more intelligence. 

The resulting rule will be called a hierarchical censored 

production rule or simply HCPR. We will discuss it in detail, in 

the next chapter. 
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CHAPTER 3 

HCPRs SYSTE~1 

For a reasoning process, at any state of the system, i t is 

valuable to have information about the applicable rules, because 

then it need not find them using exhaustive search of the whole 

rule ba:.e, but on considering the given information, it can 

select a set of most relevant rules to the current state of the 

:.ys t em, e.g., consider the query- "What John is doing?" ; after 

finding by reasoning process that "he is working in the yard," 

the next line of action taken by the system would be to get more 

specific answer, or it should apply rules which can provide 

decisions of the type: 

He is raking leaves. 

He is watering. 

He is shaping plants. 
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He is preparing field. 

rather than the rules, which gives decisions of the type: 

He is reading a story book. 

He is eating fruits. 

He is climbing on a tree. 

He is watching a movie. 

because these decisions are totally unrelated to the previously 

inferred decision, i . e., "John is working in the yard". These 

out of context rules should be avoided, because they might 

require some irrelevant information to be provided, which surely, 

one would not like. Intelligent systems should also be able to 

discard most of the task irrelevant information quickly, and 

should concentrate on main line of reasoning. 

Such a behaviour exhibited by system should be regarded as 

"intelligent behavior" since the availability of information of 

applicable set of rules is evidence of more complex reasoning 

process than a blind search through all the possibilities. One 

of the criteria for intelligence is the ability to deal with 

complexity (where complexity is necessary: recall Einstein/s 

dictum, "Things should be made as simple as possible, but no 

simpler".) 

.-.. -. 
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Augmenting censored production rule with the information of 

rules, which should apply next to get a more specific decision, 

results in a hierarchical censored production rule or simply a 

HCPR. Next section describes a HCPR in detail. 

3.1 HCPR 

A HCPR is of the form "If A Then 8 Unless C Specifically S" It 

is created by augmenting the censor production rules with the 

specificity informationS • The specificity information to a 

rule is hint about a set of rules in a rule-base, such that: 

(A) these rules are the most likely to be satisfied, 

(8) these rules are the most relevant to the current state 

of the system and 

(C) the decisions from these rules are more specific than 

the decision of the augmented rule. 

We will employ a rule-tree as an underlying representational 

and computational mechanism to handle various trade-offs. Where, 

a rule-tree is a collection of all related HCPRs for the same 

domain of problems. 

detail. 

Next section describes a rule-tree in 
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3.2 RULE-TREE 

A rule-tree is a collective and systematical 

all related HCPRs about a given concept. 

Page 3-4 

representation of 

From collective we 

mean, all rules in a knowledge-base about a particular concept. 

A HCPR in a rule-tree is a quanta of knowledge about a particular 

It is a quanta in the sense that it cannot domain of problems. 

be further divided into two or more simpler rules, and is 

complete in itself. The concept of rule-tree, provides a 

mechanism to systematically handle the problems in a particular 

domain of knowledge. Also, it provides an efficient means to 

handle new information, which produce either a contradiction or 

which cannot be explained on the basis of the current 

knowledge-base. A knowledge-base may contain one or more 

rule-tree each for different domain of problems. 

The general concepts in a rule-tree are represented at 

relatively low level of specificity (in the vicinity of the root) 

and the specific concepts are represented at relatively higher 

level of specificity (in the vicinity of the leaves of the 

rule-tree). So a rule-tree is a systematic representation of 

HCPRs for similar domain of problems. Any subtree of a rule-tree 

cannot represent more general concept than rule-tree itself, or 

in other words, its domain of problems is relatively restricted. 

A general rule is one, on which one or more specialised rules are 

dependent directly or indirectly, i.e., leaves of a rule-tree 
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represent the most specialised rules and nodes other than leaves 

represent relatively more general rules. Rules dependent on same 

immediate general rule are called sibling rules and the general 

rule is called the parent rule. 

For simplicity, from this point onwards, we will assume that 

sibling rules in a rule-tree will give mutually exclusive 

decisions. This mutually exclusive property between sibling 

rules would be made explicit in the specificity information part 

of the parent rule, using "xor" operator. 

1. The rule-tree offers mechanisms 

trade-offs. 

to handle various 

i.e., (a) it offers mechanism to handle nade-offs 

between the precision of inferences and computational 

efficiency of deriving them. (b) it offers mechanis-m to 

handle trade-offs between the certainity of conclusion 

and its specificity. 

2. The representation using rule-tree facilitates efficient 

use of memory, e.g., consider the query "Did John hit 

Peter?" , issued to an ordinary logic based reasoning 

system having sing!~ fact that "John punched Peter." On 

checking the fact-base, it will reply "no" and if 

another fact that "John hit Peter" is included in the 

system then it will reply "yes", to the above query. 

Though, actions hit and punched are related to each 
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other, but it has to store separate facts for these 

related actions of "hit" and "punched". So it is not an 

efficient utilisation of memory. 

following knowledge base: 

> rule-tree: 

Now consider the 

Rl: strike (X, Y) ==> hit (X, Y) $ 

(punched xor 

slapped xor 

kicked) 

hit (X, Y) and strike_by_fist (X, Y) 

==>punched (X, Y). 

hit (X, Y) and strike_by_hand (X, Y) 

==>slapped (X, Y). 

hit (X, Y) and strike_by_foot (X, Y) 

R2: strike $ 

> fact-base: 

(strike_by_fist xor 

strike_by_hand xor 

strike_by_foot) 

Fl: Strike_by_hand(John, Mary). 

F2: Strike_by_foot(John, Jim). 

F3: Strike_by_fist(Jim, Peter). 

F5: Strike_by_fist(John, Peter). 

- 2? -

==> kicked (X, Y). 
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From a rule-tree a general concept can be inferred 

if its specific concept is given in the fact-base. So 

in HCPRs system only the most specific facts are needed 

to be stored in the fact-base, such that, all the 

general concepts may be inferred from the rule-tree and 

the fact-base, i.e., using a single fact Fl, rule-tree 

Rl and R2 it can answer the following questions: 

From fact Fl: strike_by_hand(John, Mary) 

it would reply yes to the query - Did John strike 

Mary by hand ?. 

From Fl, R2; it results in a new fact RFl -

RFl: John struck Mary. 

From Rl, RFl; it gives a new fact RF2 

RF2: John hit Mary ; using RF2 it is able to answer 

the query -Did John hit Mary ? and reply yes. 

From Fl, RF2 and Rl; it gives a new fact RF3-

RF3: John slapped Mary. 

The mutually exclusive 

decisions namely 

property of sibling 

punched, slapped and 

rules 

kicked 

(these are mutually exclusive, since at any instant 

of time only one action could be performed) , a 

rule-tree Rl and a fact RF3 results in the following 

facts (negative). 
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NFl: John did not punch Mary. 

NF2: John did not kick Mary. 

NF3: John did not strike by fist. 

NF4: John did not strike by foot. 

Page 3-8 

So using little knowledge stored, it is able to answer a 

number of queries. 

3. This rule-tree provides an efficient mechanism to 

discard most of the task irrelevant information provided 

to an intelligent system. It considers or asks task 

relevant information only (it may be noticed from the 

number of example sessions in Appendix-8 and 

Appendix-C). 

4. The specificity information provides a systematic way to 

proceed for the conclusion. It discards a large number 

of rules at each level of specificity of conclusion, 

thus makes possible the most rapid progress to a useful 

conclusion. So to find a conclusion, inference engine 

is required to consider only a small set of rules 

(information about which is given by the last successful 

rule) and hence, i t 

whole knowledge-base. 

using a rule-tree, 

is not required to consider the 

To understand a forward chaining 

consider the rule-tree Rl for the 

general concept of " hit" (page 26). Suppose a robot 

with rule-tiee Rl is watching John and Mary in action. 
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On seeing that John struck Mary by some object, it will 

infer that "John hit Mary". His next line of action 

would be to see, whether the object was his fist 

(because it comes first in the specificity information) 

and on finding that object was his hand {a relatively 

finer observation), it will infer that "John slapped 

Mary". 

So it is superior to other systems because it requests 

information that has the greatest importance (or impact), given 

the current state of the system. The general theory of operation 

is that the system requests as its next piece of information the 

one that will remove most of the uncertainity from the system, 

e.g., The doctor first asks if the child has fever because the 

answer to this question narrows the greatest number of 

possibilities. If your answer is "yes" to the first question, 

then the doctor asks you if your child is nauseated. As with the 

first question, the doctor asks this question over other 

questions because its answer has the greatest impact given the 

current state. This procedure continues until the doctor can 

make a diagnosis. In this example the key point is that doctor 

selects each question 

conclusion. 

to make the most rapid progress to a 
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At this point, a formalisation of rule-tree is required. 

Since, a rule-tree 1s simply a systematic representation of 

HCPRs, a formalisation of a HCPR at its ith level of specificity 

is given. 

3.2.1 Formalisation 

Following is a HCPR at ith level of specificity of a rule-tree: 

A ( j 0 , j 1 , j 2 ...... j ( i -1) ) : YA ( j 0 , j 1 , ..... , j ( i -1) ) and 

8 ( j 0 , j 1 , ...... j i , 1 ) : Y8 ( j 0 , j 1 , ...... , j i , 1 ) and ............. and 

8 ( j 0 , j 1 , .... j i , p ( j 0 , j 1 , ..• j i ) ) : YB ( j 0 , j 1 , ...• j i , p ( j 0 , j 1 , .... j i ) ) 

==> A ( j 0 , j 1 , •••• j i ) : CF ( j 0 , j 1 , •.•• , j i ) @ 

X ( j 0 , j 1 , .••• j i , 1) : CF ( j 0 , j 1 , •. , j i , 1 ) or 

X ( j 0 , j 1 , •••• , j i , 2) : CF ( j 0 , j 1 , ••••• , j i , 2) or ••.•... c• r 

X ( j 0 , •• , j i , m ( j 0 , j 1 , .•. j i ) _) : CF ( j 0 , j 1 , •• m ( j 0 , j 1 , •• j i ) ) 

: YA(jO,j1, .••• ,ji) $ 

A(jO,j1, .••• ,ji,1) xor 

A(jO,j1, •••• ,ji,2) xor ••••• xor 

A( j 0, j 1, •.•• ,j i , n ( j 0, j 1, .•• , j i)) 

Where, A(jO,jl ...•• j(i-1)) is a decision derived from parent 

rule of A(j0,j1 ..... j(i-1),ji) at (i-1)th level of specificity, 

and A(jO,j1 .... ji,1); A(j0,j1 .... ji,2); ........ are its child 
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rules decisions at (i+l)th level of specificity. If a rule does 

not have any child rule then it represents a leaf-rule of the 

rule-tree, and if it does not have any parent rule then it is the 

root-rule of the rule-tree. 

1. The symbols "@" and "$" are for "Unless" and 

"Specifically" respectively. If resources are tight 

then reasoning process can neglect information 

associated with these symbols completely or selectively. 

2. Nm is the total number of levels of specificity in the 

rule-tree and i is a positive integer less than Nm. 

3. j0 is always zero, such that A(jO) <==> A(O) <==>A. It 

shows that at Oth level of a rule-tree only one rule is 

there. In other words, each tree has only one root. 

4. jl,j2, •.. ji are non-zero positive integers. Their 

values decide the particular rule at ith level of 

specificity of a rule-tree. 

5. p(jO,jl, •.• ji) is a positive integer. It gives the 

number of predicates other than the decision from its 

parent rule, using which A(jO,jl, .. ji) might be 

inferred. 

- ·-:"~-") -
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6. m(jO,j1,j2, .• ji) is a positive integer. It gives the 

number of exception conditions to the rule. 

7. n(j0,j1,j2 ... ji) is a positive integer. It gives the 

number of child rules associated to the HCPR. In other 

words, it gives the numbers of rules which reasoning 

process would tried next if assertion A(j0,j1, ..•. ji) 
holds. 

8. YA(jO,j1, ... ,j(i-1)) ; YB(j0,j1, .. ,ji,1) ........... 
YB(jO,j1, .... ji,p(jO,j1, ... ji)) and YA(jO,jl, ... ji) are 

variable certainity factors assigned to various 

predicates during execution. Their values depend very 

much on resource constraints and input data. This is 

related to reasoning with tentative premise. 

9. YA(jO,jl,j2, .• ,ji) is the certainity factor with which 

the decision A(j0,jl,j2, ••• ,ji) is inferred. 

There are several ways to combine certainity factor 

at different levels of specificity depending on the type 

of knowledge-base system. Our knowledge-bases (designed 

for implementation part) employed the following method 

to calculate the certainity factor of a decision. 

YA( .•. ) =(Strength of premise)* 

(Strength of implication) 
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More clearly, 

YA(jO,j1, ... ji) = min [YA(j0,j1, ... ,j(i-1)) 

YB(jO ,j1, .•. j i ,1) ........•.. , 

YB ( j 0 , j 1 , .• j i , p ( j 0 , j 1 ..... , j i ) ) l * 
[CF(jO,j1, .. ji) + l:(n) CF(jO, .• ji,n)) 

Where l(n) represents summation over n, and n is 

a positive integer such that, X(jO,j1, .. ji ,n) is the nth 

exception condition to the rule and it is found to be 

false. If some nth censor condition X( j 0, j 1, ... j i , n) is 

found to be true then YA(j0,j1, ... ji) = 0. 0' or 

A(jO,jl, ... ji) is false. Also, if for some value of n 

exception X(jO,jl, .. ji,n) is unknown then CF(jO, .. ji,n) 

is 0.0, i.e., it would contribute nothing to the 

confidence, in deriving a decision. 

10 . CF ( j 0 , j 1 , ••• j i ) CF ( j 0 , j 1 , •.• j i , 1 ) .......•........•• 

and CF ( j 0 , j 1 , ••.. , m ( j 0 , j 1 , •.. , j i ) ) are constant 

certainity factors. CF(jO,jl, •.. ji) is 0-level strength 

of implication and it should always be greater than 

0 • 50 • CF ( j 0 , j 1 , j 2 .••• j i ) + ~( n ) CF ( j 0 , j 1 , .•... j i , n ) is 

1-level strength of implication, where n ranges from 1 

to m(j0,j1, ••• ji). CF(jO,jl,j2 .....•. ji,l) ....... and 

CF ( j 0 , j 1 ..... m ( j 0 , j 1 , .•... j i ) ) are n umet· i cal estimates 

of likelihood of 1st, 2nd, ..... and m(jO,jl ..... ji)th 

exception condition respectively. The 1-level strength 
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of implication can not exceed 1.0 • The values to these 

constants should be given by either experts in that area 

of knowledge or using probability theory. 

3.2.2 Rule-tree is a tree of Decisions 

For example, consider the following general rule-tree 

/ 
/ 

/ 
A(O,l) 

I 
I 

/ 

A(O) 
/ '\ 

/ 

'\ 
'\ 

A(0,2) 
/ I '\ 

I '\ 
'\ / 

A(O,l,l) 
I 

A(0,1,2) 
/ 

A(0,2,1) 
/ I '\ 

I 

I 
A(0,2,2) A(0,2,3) 

I 

/ 
/ 

/ 
A(0,2,1,1) 

/ I 
I 
I 
I 

/ 
/ '\ 

I '\ 
I '\ 

A(0,2,1,2) A(0,2,1,3) 

/ 
/ 

/ 

/ I 
I 
I 
I / 

A(0,2,1,1,1) 
/ 

A(0,2,1,1,2) A(0,2,1,3,1) A(0,2,1,3,2) 

/ 
/ 

/ 
A(0,2,1,1,1,1) 

/ I '\ 
/ I 

/ I 
/ I 

A(0,2,1,3,2,1) A(0,2,1,3,2,2) 

/ 
/ 

/ 

/ I '\ 
I 
I 
I 

I 
I 
I 

A(0,2,3,1) 

'\ 

'\ 
A(0,2,1,3,2,3) 

'\ 
A(0,2,1,3,2,2,1) A(0,2,1,3,2,2,2) A(0,2,1,3,2,2,3) 

Fig.- 1 
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Each rule in a rule-tree is of the form "If premise Then decision 

Unless censor_conditions Specifically specificity_information". 

The nodes in rule-tree (fig.l), represent the decisions of 

increasing specificity from root to leaves and links between 

nodes represent the specificity information. The premises and 

censor-conditions are implicitly assumed with the nodes. This 

rule-tree has grown up to the sixth level of specificity (Nm = 

7). Nodes at different levels of rule-tree denote the decisions 

with the specificity of that level. 

specificity depend on the existance of 

decisions. A(0,2,1,3,2) is a decision 

Decisions of higher 

their ancestor rules 

at 4th level of 

specificity, A(0,2,1,3) is its parent rule decision at 3rd level 

of specificity and A(0,2,1,3,2,1); A(0,2,1,3,2,2); 

A(0,2,1,3,2,3); are its child rules decisions at 5th level of 

specificity. The values 

n(0,2,1,3,2,2), n(0,2,1,3,2), 

of integers 

n(0,2,1,3), 

n(0,2,1,3,2,2,2), 

n(0,2,1), n(0,2) and 

n(O) in this particular rule-tree are O, 3, 3, 2, 3, 3 and 2 

respectively. 
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Consider a particular example of a rule-tree for the concept of 

plane figure (fig.2), to understand a rule-tree. 

plane figure 

/ ' 
/ ' convex non convex 

/. ' 
/ ' 

/ ' polygon oval figure 

/ ' I ' 
/ ' I ' irregular regular ellipse 

/ I "'-
/ I ' 

/ I '\.. 
equilateral 

triangle 
square pentagon 

Fig.- 2 

circle 

This rule-tree for plane figures, represents the plan to 

identify an unknown plane figure. The root of the tree 

represents the general concept of plane figure, and its subtree 

with root convex represents the somewhat less general concept of 

·convex figure. This subtree includes all the specialised rules 

relevant to the general concept of convex figure, but no rule 

about the concept of non-convex figures. 

This rule-tree will infer a given figure is triangle only after 

it has inferred that it is a polygon, convex and plane figure. 
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CHAPTER 4 

CONTROL SCHEMES 

Consider a HCPR: A ==> 8 @ C 

$ D. 

Like exception conditions, specificity information "D", to a rule 

may be incomplete and in such case, "D" should be interpreted as 

- (Dl xor D2 xor xor Dn xor Unknown), instead of (Dl xor D2 

...•. xor Dn) when it is complete. 

There are different viewpoints of "unless" operator "@" and 

"specificity" operator "$" namely logical, expositive and 

control viewpoint. 

1 . from a logical viewpoint, the "unless" operator "@" 

between "8" and "C" acts as the "xor" operator and 

"specificity" operator "$" between "8" and "D" 

the "xnor" operator. 

- 38 -
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2. From an expository viewpoint: 

the "A ==> 8" part of a HCPR expresses an important 

information, while the "@ C" part acts only as a 

switch that changes the polarity of "8" to 

when "C" holds. 

"not B" 

the "A ==> 8" part of a HCPR expresses the general 

part of information which requires compartively less 

efforts. If "8" holds then control is passed to the 

set of implications given by "D". 

gives the more specific information 

rule. 

The "$ D" 

part of 

part 

the 

The expositive aspect of operator "$" gives that the 

"$ D" part of the rule, will require more data (or 

fine observation) than "A ==> 8" part of the rule, 

e.g. ' the observation "John struck Mary using his 

fist" is more fine than the observation "John struck 

Mary". The latter observation requires less 

efforts, but the first one includes the latter 

observation too. 

3. From control viewpoint HCPRs are intended for situations 

in which 
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the implication "A ==> 8" holds frequently and the 

assertion "C" holds rarely. Systems employing HCPRs 

are free to ignore exception conditions when 

resources are tight. Given more time, the exception 

conditions are examined, lending credibility to high 

speed answers or changing them. 

the assertion "B" is more general than assertions 

given by "D" and it is a must for holding of 

assertions given by "D". Also, the assertion "8" 

would prove to be the best answer, if sufficient 

resources are not available to find the assertions 

given by nou. Systems using HCPRs are free to 

ignore the specificity information provided by II D II. 

If more resources are made available to the 

reasoning process, it will try to establish 

assertions given by "D" also, and would give a more 

specific answer. 

the HCPRs system exhibits variable precision of 

conclusions, reflecting variable investment of computational 

resources in conducting reasoning. Next, we consider a General 

Control Scheme (GCS), which may be employed in reasoning process 

of a HCPRs system of knowledge representatic•n. 
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4.1 A GENERAL CONTROL SCHEME 

First we define a threshold certainity factor m, which 

separates the CF of true and false answers. Such that, answers 

with CF >=mare considered true and answers with CF < m would be 

considered false. By default, the value of m is 0.5, i.e., 

answers with CF < 0.5 are false and answers with CF >= 0.5 are 

true. It may vary between 0.0 and 1.0 (exclusively) depending on 

the requirement, (0 < m < 1.0). 

The control aspect of "speci f i cit~," and "unless" operator 

supports various obvious control schemes. There are two extreme 

cases of these control schemes. 

4.1 .1 Control Scheme 1 (CSl) 

Under this control scheme for each level of specificity treat the 

"unless" operators as if they are exclusive-or operators. 

ignores the expectation information of "unless" 

is good in situations in which 

1. expectation conditions are unreliable. 

2. nothing should be assumed. 

3. there is no resource constraint. 

operator. 

I t 

This 

The fig.l is for CSl where, m varies between 0.09 to 0.99 in the 

steps of 0.20 and parameters e and k remain constant. 
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4.1.2 Control Scheme 2 (CS2) 

This control scheme ignores all censor conditions wherever 

possible. This is good in situations in which 

1. rapid response is critical. 

2. resources are very tight. 

3. censors to the rules are rare and unlikely to occur. 

In CS2, censor conditions would be considered only if certainity 

factor of the answer is less than m. 

The fig.2 is for CS2 where, m varies between 0.09 to 0.99 in the 

steps of 0.20 and parameters e and k remain constant. 

4.1.3 General Control Scheme (GCS) 

The censor conditions and specificity informations support 

various control schemes. CSl and CS2 are two extreme cases of 

the various control schemes possible. 

control scheme GCS, using which 

Here we propose a general 

any of the possible control 

schemes may be generated on providing the control parameters e, m 

and k (fig.l to fig.6). 
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N =Ceiling ( Nm * ( expt (1.0 - m) (1.0 / (e * k)))) 

CF(I) = 1.0 - (1.0 - m)*(expt ((I + 1) / N)) (e / k)) 

: 0 <= I < N 

3. CF( I) = m N <= I < Nm, N < Nm. 

Where, Nm is the total number of levels of specificity (Nm > 0) 

of the rule-tree to which the query is issued. 

N is the number of lower levels of specificity (N <= Nm) for 

which control schemes in between CS1 and CS2 (inclusively) would 

be employed. 

Nm-N is the number of higher levels of specificity for which CS2 

would be employed. 

CF(I) is the requirement on CF at the ith level of specificity by 

the particular control scheme employed. Its value may vary 

between m and 1.0 (inclusively) or m <= CF(I) <= 1.0 . 

Parameter e is a real number and depends · o_nly on the resource 

constraints. It may vary between 0.0 and infinity (exclusively). 

In fig.3 to fig.6 each, value of parameter e varies between 0.25 

to 2.10 in the steps of 0.30. 

The following are various ranges of e, showing different resource 

constraints: 
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A. v~ry-2 high resource constraint: 0.125 <= e < 0.250 

B. very high resource constraint: 0.250 <= e < 0.50 

c. high resource constraint: 0.50 <= e < 1.0 

D. moderate resource constraint: e = 1.0 

E. low resource constraint: 1.0 <= e < 2.0 

F. very low resource constraint: 2.0 <= e < 4.0 

G. very-2 low resource constraint: 4.0 <= e < 8.0 

The default value of parameter e is 1.0, which shows that 

reasoning system always has some constraints of time or memory or 

both. The value of e is dependent on real resource constraints 

(allowed time and memory), which in turn are dependent on 

type of knowledge-base, i . e. , for some type of particular 

problems, time of 30 minutes may be reasonable, but for others 

time of 30 mili-seconds is more than enough. 

Parameter k is a real number, which for given values of 

parameters e and m, will decide: 

the number of higher levels Nm-N, for which CS2 is to be 

employed 
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the number of lower levels for which CSl is to be 

employed and 

the number of in between levels for which control scheme 

between CSl and CS2 would be employed. 

(1) if k > 1 then Nm-N will be lesser than what it is if k < 1. 

(2) if k < 1 then number of lower levels for which CS1 is 

employed, are more than what it is, if k > 1. 

For given values of parameters e and m, the following are 

different ranges of k, showing various user requirements. 

A. For very high specificity and low certainity: 

2.0 < k <= 4.0 

B. For high specificity and moderate certainity: 

1.0 < k <= 2.0 

C. For moderate specificity and moderate certainity: 

k = 1.0 

D. For moderate specificity and high certainity: 

0.5 <= k < 1.0 

E. For low specificity and very high certainity: 

0.25 <= k < 0.5 

fig.4 to fig.6 are for different values of parameter k (0.5, 1.0 

and 2.0) and fixed value of parameter m ( 0.5). 
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CHAPTER 5 

IMPLEMENTATION 

There are two types of knowledge representation items: in a 

declarative knowledge item, there is nothing to say how it should 

be used, a procedural item, in contrast, contains within itself 

explicit information on this point. The former has the nature of 

an i tern of data to be used by a program, whilst the latter is the 

program itself. A declarative item cannot stand alone but must 

be comlemented by an interpreting procedure; thus a system cannot 

be fully declarativ~ but it can be fully procedural. 

Our implemented intelligent systems 

knowledge item. This procedural item 

employes a procedural 

is based on the HCPRs 

system of knowledge representation and control informations are 

relegated to its procedural parts. 

The following are the steps of a general scheme employed to 

implement a HCPR in the practical knowledge-bases. 
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Stepl: A rule is defined by giving it a particular name and a 

list of control parameters. These control parameters describe 

the current state of the reasoning process completly. This 

control information is passed from one rule to another as control 

is altered between them. 

Step2: A variable cfm called minimum certainity factor is 

initialised to CF of parent rule decision and for the root rule 

it is 100 (by default). 

Step3: A list of exceptions to the rule with their likelihoods 

and 0-level strength of implication are given. 

Step4: It checks the various flags and the ranges of different 

control parameters. 

Step5: Premise part of the rule is defined and value of cfm is 

updated. 

Step6: Employ a control scheme to handle the exception 

conditions and output (or return) 

processing. 

the results of knowledge 

Step7: In the last, a set of more specific rules is defined and 

in forward chaining, control is passed to one of these rule. 

But, in backward chaining this specificity information is 

completly neglected. 

Using this scheme to represent a HCPR, two knowledge-bases are 

designed and a rule from the knowledge-base of biological 

classification is given below: 
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;**************************************************************** 
;* This rule is for the general concept of living organism *** 

;**************************************************************** 

. . ' ................ . STEPl . .................... ' 
(defun x_is_living_organism(x 

&optional(chaining /forward)(m 50)(e l)(k l)(i 0) 

(n (spe_n 0 me k)) (y 100)) ;list of optional 

;parameters gives control schem~s and system/s current state. 

. . ' ................ . STEP2 . ..................... ' 
(setq name x cfm y) ;initialised cfm to CF of parent rule 

decision. 

. ' ................ . STEP3 . 
a a a a • a a a a a I I I I I I I I I I I 8 ' 

(let ((sO_impl 96) (elist'((is_it_always_undergoing_ 

change_in_their_substances_called_metabolism 2 ,name) 

(does_it_arise_from_other_organism_of_same_or_ 

related_species 2 ,name)))) ;elist is a list of exceptions & 

their likelihood. 

. 
' I I I I I I I I I I I I I a I I I I STEP4 . . ...................... ' 
(and (init_cond_p y m (* e 4) i n) ;check range error. 

. ' ................. . STEP5 . 
I I I I I I I I I I I I I I I I I I I I I I I , 

(minip m cfm (posses_p x /characterstic_shape_&_bound_ 

by_regular_curved_surface)) ;predicates 

(minip m cfm (show_p x /growth_largely_by_assimlation)) 
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. ' ................ . STEP6 . . ...................... ' 
(setq c_fac (control_P chaining sO_impl elist cfm x m 

e k in /1 living organism.!)) ;a control scheme is employed. 

. ' ................ . STEP? . ...................... ' 
(if (equal chaining /backward) 

(setq ya c_fac) 

(or(x_is_animalia x chaining me k (1+ i) n ya1) 

(x_is_plantae x chaining me k (1+ i) n yal) 

t))))) ;control is transferred to more specific rules. 

Another knowledge-base, which gives answers to some daily 

life queries is designed using a similar knowledge representation 

scheme. A rule from this knowledge-base is given below: 

;**************************************************************** 

;this is a rule for answering a query of the type "is_x_outdoor"* 

;**************************************************************** 

. ' ................. . STEPl . . ................... ' 
(defun is_x_outdoor(x &optional(chaining /forward)(m 50)(e 1) 

(k 1)(i O)(n(spe_n 1 m e k))(y(what_x_is_doing x /backward))) 

;rule name and control parameters. 

. ' ................ . STEP2 . . ................... ' 
(setq cfm y) ;initialised the minimum certainity factor cfm. 
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. . ' ................ . STEP3 . ................... ' 
(let ((elist '((is bad_w~.ather 4)(is_riots_in_the_city 3) 

(is_final_exams_in_progress 3 ,name)(is_he_ill 3 ,nam~)))) 

;a list of exceptions to the rule. 

' ................ . STEP4 . . . . . . . . . . . . . . . . . . . . . ' 
(and (init_cond_p y m (* e 4) i n) ;checks ranges & flags. 

. . ' ............... . STEP5 . ................... ' 
(setq cfm (min(day_p "sunday) cfm)) ;premise part. 

' ............... . STEP6 . . . . . . . . . . . . . . . . . . . . . ' 
(if (equal chaining "backward) ;return CF of decision. 

(exception_handler 85 elist 100 e 1 1) 

(and ( > (exception_handler 85 elist m e i n k) m) 

(writep x '"I is outdoor . i) 

;output a decision with calculated certainity factor. 

. ' ............... . STEP? . . ................... ' 
(setq ya1 ya m1 m e1 e) 

;control is transferred to more specific set of rules. 

(or(is_x_playing_outdoor x chaining ml e1 k (1+ i) n ya1) 

(is_x_entertainning_outdoor x chaining ml el k (1+ i) n ya1) 

(is_x_working_outdoor x chaining m1 e1 k (1+ i) n ya1)t)))))) 

For these implemented intelligent systems, a certainity 

factor in the range of 0 to 100 (instead of 0 to 1) is used and 

it denotes the percentage certainity factor, for simplicity we 

would call it CF. 
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In the rule of living organism a macro "control_p" is used, it 

simply returns the value of certainity factor of the decision if 

chaining is backward, otherwise, it will output the decision with 

its truth value. 

Appendix-A includes macro "control_p" alongwith some other 

important functions. Appendix-8 and Appendix-C include example 

sessions with these knowledge-bases, 

parameters. 
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CHAPTER 6 

OTHER OBSERVATIONS: HCPRs SYSTEM 

The power of a method of representation can be judged by 

its ability to express complex situations precisely. 

its clarity of representation. 

its efficient utilisation of available memory. 

its ability to deal with imprecise arguments. 

its ability to reason with insufficient data. 

its ability to conclude both the positive and negative 

inferences. 

its ability to facilitate parallel processing. 

its ability to remember past experiences. 
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its ability to improve performance as time passes, or 

its ease to learning, and in the last 

it should be an ideal representation scheme. 

Most of these features of the HCPRs system of 

representation have been discussed in previous chapters. 

knowledge 

In this 

chapter a set of inference rules, a parallel processing scheme 

and some learning schemes for HCPRs system of knowledge 

representation are described as follows: 

6.1 INFERENCE RULES 

Consider a HCPR without censor conditions or simply 

hierarchical production rule (HPR) and a rule-tree Rl, of HPRs: 

> Rl: 

* A ==> B $ (Dl xor D2) 

* B and Al ==> Dl $ (El xor E2) 

* 8 and A2 ==> D2 $ (Fl xor F2) 

* Dl and All ==> El $ (UNKWl) 

* Dl and Al2 ==> E2 $ (UNKW2) 
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# D2 and A21 ==> Fl $ (UNKW3) 

+ D2 and A22 ==> F2 $ (UNKW4) 

Where, UNKW1,UNKW2, •. represent unknown specificity informations 

to the rules. We are assuming that the specificity informations 

to the rules of decisions "B", "Dl" and "D2" are complete. 

Otherwise, the incomplete specificity information to the rule of 

decision "Dl" would be written as (El xor E2 xor UNKNOWN). A 

sample of inference rules applicable to a HPRs system of 

knowledge representation is given below: 

Rl 

A: true 

Rl 

A: false 

Rl 

B:false 

I 
I 
I> B:true 
I 
I 

I 
I 
I> B: false 
I 
I 

I 
I 
I > Dl: false 
I > D2:false 
I > A: false 
I 
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I 
Rl I 

I > Dl:true 
B: true I 

I > D2:false 
Al:true I 

I 

I 
Rl I 

I> Fl:false 
D2: false I 

I> F2:false 
I 

I 
Rl I 

I > El:false 
Dl:true I 

I > E2:true 
A12: true I 

I 

I 
Rl I 

I > UNKW2 : true 
E2:true I> El:false 

I 

I 
Rl I 

I> UNKW4: false 
F2:false I 

I 
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Rl 

B:true 

Rl 

D2: true 

Rl 

Fl:true 

I 
I 
I> A:true 
I 
I 

I 
I 
I> B:true 
I > A2: true 
I> Dl:false 
I 

I 
I 
I> A21:true 
I> D2:true 
I > F2: false 
I> UNKW3: true 
I 

I 
Rl I 

I 
F2:false I> A22:false 

I 
D2:true I 

I 

As an example con~.i del· the following 

representing the general concept of excitement: 
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rule-tree "Rex", 



EXCITEMENT 

/ " 
/ " 

/ " 
/ " 

/ " Distress 
/ I 

/ I 
Fear Shame " Anger 

Delight 
/ I 

/ I 
Affection Joy 

fig.- 1 
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Elation 

The rule-tree "Rex" in fig.l, may be given as follows: 

> Rex: 

# State of agitation ==> ExcitementS 

(Distress xor Delight) 

# Excitement and extreme pain ==> Distress S 

(Feat· xor Shame xot· Anger) 

# Excitement and great pleasure ==> Delight S 

(Affection xor Joy xor Elation) 

# Distress and danger ==> Fear 

# Distress and guilt feeling ==> Shame 

# Distress and real/fancied injury ==> anger 

- 57 -



Page 6-7 

* Delight and kindness/love ==> Affection 

+ Delight and gladness ==> Joy 

# Delight and pride from success ==> Elation 

This rule-tree may be used to find a proper word, which is 

required to describe the feeling of a person. On noticing that 

the person is in the state of agitation, 

with rule-tree "Re" will infer that 

the reasoning system 

"he is excited". After 

noticing the fact that "he is having great pleasure", it will 

infer that "he is delighted". Similarly, on finding further that 

"he is showing great gladness", it will infer more specifically 

that "he is in joy." And, on taking into account the mutually 

exclusive property between sibling rules and the fact that "he is 

in joy " it may infer the following statements (negative): 

1 . he is not feeling shame. 

2. he is not fearful. 

3. he is not angry. 

4. he is not elated. 

5. he is not having affection. 
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6. he is not distressed. 

6.2 LEARNING 

The rule-trees in a HCPRs system have the capability of 

continuous growth with time. A rule-tree will become stronger 

(strength of implication) and richer in knowledge as time passes. 

Like exceptions, specificity informations may be incomplete or 

even absent in a HCPR depending on, how much a system has learnt. 

Following are some of the possible learning schemes suitable for 

the HCPRs system. 

6.2.1 Remembering most likely Lines of Action 

Specificity informations may be resequenced according to how 

frequently a specific rule has been applied in the past or in the 

order of decreasing importance. Such that, information of rule, 

which is used most frequently (or recently) should come first in 

the specificity information part of the rule. A HCPRs based 

reasoning system should apply rules according to their order in 

the specificity information, rather than the order in which they 

are stored in the rule base. Similarly, exception conditions may 

be stored in the order of their cost-factor and likelihoods. 

6.2.2 Learning by Refining Beliefs 
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Strength of implications (0-level) and liklihoods of various 

exceptions should be updated according to the past experience of 

the system. This could be performed by using the past-data of 

each HCPR, where the past-data may include information of the 

type: 

number of times a HCPR has been employed successfully 1n 

the past, 

number of times a particular exception has blocked the 

rule, etc. 

6.2.3 Learning by Concept Formation 

To understand learning by concept formation consider an example: 

The children/s concepts often show a crude generality which has 

to be overcome by taking, note of differences. A little girl on 

seeing a squirrel called it 

generalising by assimilating the 

a 

new 

"funny kitty" 

to the old, 

She was 

but as she 

noticed that the new kitty was funny, she was ready to draw a new 

name and differentiate a new concept. 

6.2.3.1 Horizontal Growth - If a new rule to be added to a 

rule-tree, does not increase the maximum level of specificity, 

then its inclusion in the rule-tree will be called its horizontal 

growth (fig.2 and fig.3). 
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Al Al 
/ " / " / " / " A2 A3 ==> A2 A3 

I / " I / " A4 A4 AS 

Fig.- 2 

Al Al 
/ " / " / " / " A2 A3 ==> A2 A3 

I I I 
I I I 
A4 A4 AS 

Fig.- 3 

Horizontal - Growth 

6.2.3.2 Vertical Growth - If a new rule to be added to a 

rule-tree, increases the maximum level of specificity by one, 

then its inclusion in the rule-tree will be called its vertical 

growth (fig.4). 

Al Al 
/ " / " / " / " A2 A3 ==> A2 A3 

/ " I / " I 
/ " I / " I 

A4 AS A6 A4 AS A6 
I 
I 
A7 

Fig.- 4 

Vertical - Growth 
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6.2.4 Learning by Fusion 

Consider two rule-trees R1 and R2 (fig.5), which represent two 

unrelated concepts "Aal" and "Abl". But, after some time it is 

observed that these two concepts are related, so they may be 

combined in one single general concept by introducing a new rule 

Cl, with rule-trees Rl and R2 its subtrees. 

Aal 
/ '\ + 

/ '\ 
Aa2 Aa3 

-Rl-

Abl 
/ '\ 

/ '\ 
Ab2 Ab3 

-R2-

fig.- 5 

Cl 
==> / '\ 

/ '\ 
Aal 

/ '\ 
/ '\ 

Aa2 Aa3 

Abl 
/ '\ 

/ '\ 
Ab2 Ab3 

-R3-

A rule-tree R2, with an independent concept "Aal" initially, may 

be a sub concept of another rule-tree Rl. So, it would become a 

subtree of rule-tree Rl after suitable modification (fig.6). 

Aal 
/ '\ 

/ '\ 
Aa2 Aa3 

I 
I 

Aa4 

-Rl-

Abl 
/ '\ 

Aal 
/ '\ 

+ / '\ ==> / '\ 
Ab2 Ab3 

-R2-

fig.- 6 

Aa2 Aa3 
/ '\ 

/ '\ 
Aa4 Abl 

/ '\ 
/ '\ 

Ab2 Ab3 

-Rl-
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6.2.5 Learning by Fission 

This process is employed to simplify a complex rule by breaking 

it into two or more simpler rules, related to each other in 

hierarchy (fig.?). This process will be called vertical fission. 

A1 

/ " 
/ " A2 A3 

/ '- I 

A1 

/ " 
/ " ==> 81 A3 

I I 
/ '- I I I 

A4 A5 A6 82 A6 

/ " -R1-
/ " A4 A5 

-R1-
fig.- 7 

Similarly as the number of sibling rules crosses some critical 

value they may split under two or more intermediate parent rules 

(fig.8). This process will be called horizontal fission. 

/ 
/ 

A4 

A1 

/ " 
/ " A2 A3 

I '-
I '­
A5 A6 

-R1-

A1 

/ " 
==> / " 

A2 A3 

/ " 
/ " 81 82 

/ '- I 
/ '- I 

A4 A6 A5 

-R1-

fig.- 8 

where, 81 and 82 are two intermediate parent rules. 
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6.3 PARALLEL PROCESSING 

The HCPRs system of knowledge representation supports parellel 

processing. At each level of specificity there would be a set of 

rules (child rules), which is the most relevant to the current 

state of the system. A HCPRs system of knowledge representation 

provides an efficient mechanism to get information about this set 

of rules and how the rules are related to each other. So, 

according to their mutual relationships they may be assigned to 

separate processors, i.e., all the mutually exclusive rules might 

be assigned to separate processors and processor finising first 

with successful and acceptable results might abort the jobs of 

remaining processors and these processors may be reassigned to 

derive more specific inferences. Here, successful and acceptable 

results mean answers with certainity factor greater than m. 

Also, if it has to choose between more than one answers (not 

mutually exclusive) then the answer with the largest CF would be 

selected. 
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CONCLUSION 

Our aim is to produce systems having tens of thoushands of rules 

or even more. These systems will have several levels of 

knowledge, the higher levels making possible a more intelligent 

use of the lower: if a program is asked to find out "what book 

John is reading" and it is known to him that he is sleeping then 

it should not search to find this. 

Both human and computer must be able to react promptly to 

new information, and they must be able to change or repair their 

knowledge when new information produces contradictions or when 

initial assumptions are withdrawn. 

For lack of any better way, information scientists today 

continue to impt·c·ve the knowledge bases of their programs by 

hand. The small size of existing programs makes this acceptable, 

but what will happen when they get to the size of a million rules 

or concepts ? Programs on this scale will themselves have to 

learn from experience and to improve themselves by using simple 
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rules provided by human experts for assessing their performance. 

The less sophisticated programs simply read the data at the 

start of the session, perform the reasoning operations on these 

and give the results without taking any advantage of the 

interactive possibilities offered by the computer. Also 

sometimes all the data relevant to the problem is not available 

at the time when solution is required. The consequence of the 

data being incomplete is simply that the conclusions are less 

certain, or less good in some sense- with the possibility of 

being wrong in some cases. Also an answer which is more certain 

but somewhat general 

should be capable of 

is sometimes acceptable. Thus, our programs 

providing some solutions, even -:.omewhat 

general or less certain. 

It is also possible that some data which is unrelated to the 

problem (or noise information) is provided. Our programs should 

be able to discard these task irrelevant informations efficiently 

and should concentrate on the main line of reasoning. 

In the present work, we have suggested a HCPRs system of 

knowledge representation, which has the ability to incorporate 

into the knowledge structure additional information that can be 

used to focus the attention of the inference mechanism in the 

most promising directions. 

We have shown that a HCPRs system enables the trade-offs between 

the precision of decisions and the efforts needed to derive those 
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decisions. 

The control planning problem is one of the important topic, 

which has been described using a general control scheme (GCS). 

The GCS describes how a reasoning mechanism for the HCPRs system, 

can make controllable trade-offs between the certainity and the 

specific i t y • 

It has been shown that a HCPRs system supports various learning 

schemes and how it can improve its reasoning power using past 

experience. 

Also, a pat·allel processing scheme for a HCPRs system ha~- been 

described. 

We need to find some more suitable operators 

using which various mutual relationships between different rules, 

conditions and facts can be made explicit, 

operators to give relationships of 

Has_el emen t ~-, Has_properties, ... and 

required. 

Like specificity operator "$",we think, 

"G%" should be employed, 

rule-tree becomes: 

AO ==> 8 $ 

Al ==> c $ 

A2 ==> D $ 

All ==> Cl 

........... . . . . . . . . . . . 

(C xor D) 

( Cl xor .. ) 

(D2 x or .. ) 

$ ( .... ) G% 

G% B 

G% 8 

c 

such that, 
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the type Has_parts, 

Has_constraints al·e 

a generality operator 

our representation of a 



instead of the following rule-tree representation: 

AO ==> 8 $ (C xor D) 

8 and Al ==> C $ (Cl xor .• ) 

8 and A2 ==> D $ (D2 xor .. ) 

............. . . . . . . . . . . . . . 

Page 7-4 

Operator "G%" would make the backward chaining equally efficient 

as the forward chaining. In backward chaining a reasoning 

process should neglect the information associated with the 

operator "$" and in forward chaining information associated with 

operator "G%" should be neglected. 

We have implemented HCPRs system using procedural 

representation of knowledge, but the power of the HCPRs system is 

in its declarative representation of knowledge. Implementation 

of the HCPRs system with declarative knowledge representation, 

would certainly require an interpreter capable of handling the 

various features of the HCPRs system of knowledge representation. 
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LISTING OF IMPORTANT FUNCTIONS DEFINED IN LISP 

;**************************************************************** ;** a macro to control the forward and backward chaining. **** 
; *********************************************-).:*************•).:**** 
(defmacro control_p(chaining sO_impl elist cfrn x m e k i n s1) 
'(if (equal ,chaining "backward) ;backward chaining 

(exception_handler ,sO_impl ,elist) 
(if (> (setq ya (* ,~.O_irnpl ,cfm .01)) ,m) ;forward chaining 

(and (writep ,x "I belongs tol ,s1 ,i) ;output decision 
(if ( > (exception_handlEH ,sO_impl ,eli:.t, m, e ,k ,i ,n) m) 

(and (print '(is true with cf = ,ya)) ;output CF 
(print '(and required cf was ,cf))) 

(and (print '(is false with cf = 100)) (= 1 2))) 
(setq ya1 ya))))) 

;*************************************************************** ;*** a function for general exception handler ******* 
;*************************************************************** 
(defun exception_handler(y elist m e i &optional (n nm) (k 1)) 

(setq cf (- 100.0 (* (-100m) (expt(/ (+ i 1) n) (/ e k))))) 

(setq c y prede elist) 
(do ( ) 

((or(< cfm rn) ;IF premise part is false, 
(equal (* c cfm .01) 0.0) an exception is true, 

(> (/ <* c cfm) 100.0) cf); required CF is achieved 
(null prede)) (setq ya (* c cfm .01)) ;or no more 

;exception remains THEN return calculated CF of decision. 
(handle (car prede)) ;ELSE check next exception to rule 

(setq prede (cdr prede)))) 
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;**************************************************************** 
;*** this function modify the strength of implication **** 
;**************************************************************** 
(defun handle(x) 

( setq excep (exceptions x)) ; get the truth value of 
; exception ·condi ton x. 

(cond ((equal excep /y) (setq c O));if true then 
;strenght of implication is 0.0 

((equal excep /n) (setq c (+ c (cadr x)))) 
;if false then strenght of implication is increased. 

(t))) ; if unknown it remains same. 

;**************************************************************** ;** This function find the truth value of an exception *** 
;**************************************************************** 
(defun exceptions(x) 
(cond ((caar(my_member x exception_list))) 

;if truth value of exception is known then return it. 
( t ( and ( p r i n t '· ( , (car x) ? wr i t e Y /N • ) ) 

;otherwise request from the user. 
(setq ans (read)) 
(inter_stop ans) 

(cond ((or (eq ans /n)(eq ans /y)) 
(and(setq exception_list(cons(list ans x) exception_list)) 
;update exception list. 

(caar exception_list))) 
( t / q ) ) ) ) ) ) 

;****=********************************************************* 
;*** this function calculate the maximum level of ***** 
;** specificity to be tried in given conditions ******* 
;************************************************************** 
(defmacro spe_n (x m e k) 
'(ceiling <* (- ,nm ,x ) (expt <* (- 100.0 ,m) 0.01) 

(/ 1.0 (* ,k ,e)))))) 
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;**************************************************************** ;** this function reset various flags and database. ***** 
;**************************************************************** 
(defun reset() 

(setq dynamic_database1 '() dynamic_database2 '() 
exception_list '() get_list '() nm 12 flag nil)) 

;**************************************************************** 
;** this function checks the range of various parameters *** 
;**************************************************************** 
(defun init_cond_p(a &optional b c de) 

(if (and (not flag)) (and (cf_l·ange_p a) 
(cf_range_p b) 
(cf_range_p c) 
(cf_range_p d) 
( cf _range _p e) ) 

(= 1 2))) 

(defun cf_range_p(x) 
(if (stringp x) (= 1 2) 
({= 0 X 100))) 

;*************************************************************** 
;***** this function update cfm ********* 
;*************************************************************** 
(defun minip( x y z) 

(cond ((>= z x) (setq cfm (min y z))) 
('()))) 

;************************************************************** ;* this function is invoked when resources are expired *** 
;************************************************************** 
(defun constraints(m) 

(print '(do you want to proceed further? write y/n.)) 
(if (equal (read) 'y) 

(setq cf m) 
(setq c 0 flag 'true))) 
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APPENDIX 8 

EXAMPLE SESSIONS: KNOWLEDGE-BASE 1 

;*************************************************************** 
;*** EXAMPLE SESSIONS (K81) START FROM HERE ******** 
;*************************************************************** 
Lisp> 
(reset) 
NIL 

Lisp> (what_x_is_doing ;k.lal ;forward 40 2 .75) 
(GIVE THE NAME OF CITY OF WHICH K.LAL IS RESIDENT.) 
delhi 
(GIVE CF (0 TO 100) THAT K.LAL IS RESIDENT OF DELHI CITY IS 
TRUE.) 100 
(HAS_HE_LONG_VACATION? WRITE Y/N.) n 
(IS_HIS_CLOSE_RELATIVE_SERIOUSLY_ILL_IN_ANOTHER_CITY ? WRITE 
Y/N.) n 
(IS_HIS_CLOSE_RELATIVE/FRIEND_HAS_MARRIGE_FUNCTION_IN_OTHER_CITY 
? WRITE Y/N.) n 
(IS_HE_A_SALES_PERSON? WRITE Y/N.) n 

SPECIFICITY_LEVEL IS 0 

DECISION_IS K.LAL is in the DELHI 
ITS_CF_IS 99.0 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 99.17921 
(GIVE CF (0 TO 100) THAT DAY IS SUNDAY IS TRUE.) 100 
(IS_BAD_WEATHER? WRITE Y/N.) n 
(IS_RIOTS_IN_THE_CITY? WRITE Y/N.) n 
(IS_FINAL_EXAMS_IN_PROGRESS? WRITE Y/N.) n 
(IS_HE_ILL ? WRITE Y/N.) n 

SPECIFICITY_LEVEL_IS 1 
DECISION_IS K.LAL is outdoor . 

ITS_CF_IS 97.01999 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 94.78831 
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(GIVE CF (0 TO 100) THAT IT IS PLAYING TIME IS TRUE.) 10 
(GIVE CF (0 TO 100) THAT IT IS ENTERTAINNING TIME IS TRUE.) 100 
(DID_HE_GOT_A_MAJOR_ACCIDENT ? WRITE Y/N.) n 

SPECIFICITY_LEVEL_IS 2 

DECISION_IS K.LAL is entertainning outdoor . 
ITS_CF_IS 87.318 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 84.63422 
(GIVE CF (0 TO 100) THAT K.LAL LIKES SEA IS TRUE.) 75 

SPECIFICITY_LEVEL_IS 3 

DECISION_IS K.LAL is at sea side . 
ITS_CF_IS 67.5 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 66.90788 
(GIVE CF (0 TO 100) THAT K.LAL HAS ENOUGH_SPARE_TIME IS TRUE.) 70 

SPECIFICITY_LEVEL_IS 4 

DECISION_IS K.LAL is sitted at sea side . 
ITS_CF_IS 60.75 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 40.0 
T 

Lisp> (what_x_is_doing /k.lal /forward 60 2.0 2.0) 

SPECIFICITY_LEVEL_IS 0 

DECISION_IS K.LAL is in the DELHI 
ITS_CF_IS 94.0 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 92.0 

SPECIFICITY_LEVEL_IS 1 

DECISION_IS K.LAL is outdoor . 
ITS_CF_IS 86.48 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 84.0 

SPECIFICITY_LEVEL_IS 2 

DECISION_IS K.LAL is entertainning outdoor . 
ITS_CF_IS 77.832 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 76.0 
(IS_CITY_NOT_AT_SEA_SIDE? WRITE Y/N.) 
n 

SPECIFICITY_LEVEL_IS 3 

DECISION_IS K.LAL is at sea sid~ . 
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ITS_CF_IS 71.25 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 68.0 

SPECIFICITY_LEVEL_IS 4 

DECISION_IS K.LAL is sitted at sea side . 
ITS_CF_IS 63.0 
CF _REQUI RED_BY _CONTROL_SCHEt1E_WAS 60.0 
T 

Lisp> (is_x_outdoor /k.lal /backward) 
84.15 

Lisp> (what_x_is_doing /k.lal /forward 50 .5 .5) 

SPECIFICITY_LEVEL_IS 0 

DECISION_IS K.LAL is in the DELHI 
ITS_CF_IS 85.0 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 50.0 
T 

Lisp> (what_x_is_doing /k.lal 'forward 50 .5 2.) 

SPECIFICITY_LEVEL_IS 0 

DECISION_IS K.LAL is in the DELHI 
ITS_CF_IS 85.0 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 62.00821 

SPECIFICITY_LEVEL_IS 1 

DECISION_IS K.LAL is outdoor . 
ITS_CF_IS 72.25 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 54.8199 

SPECIFICITY_LEVEL_IS 2 

DECISION_IS K.LAL is entertainning outdoor 
ITS_CF_IS 61.41249 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 50.0 
T 

Lisp> (what_x_is_doing /k.lal 'forward 80 .5 2.) 

SPECIFICITY_LEVEL_IS 0 

DECISION_IS K.LAL is in the DELHI 
ITS_CF_IS 85.0 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 83.18207 
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SPECIFICITY_LEVEL_IS 1 

DECISION_IS K.LAL is outdoor . 
ITS_CF_IS 80.75 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 80.0 
T 

Lisp> (what_x_is_doing 'k.lal 'forward 40 2 2) 

SPECIFICITY_LEVEL_IS 0 

DECISION_IS K.LAL is in the DELHI 
ITS_CF_IS 94.0 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 90.0 

SPECIFICITY_LEVEL_IS 1 

DECISION_IS K.LAL is outdoor . 
ITS_CF_IS 83.66 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 80.0 

SPECIFICITY_LEVEL_IS 2 

DECISION_IS K.LAL is entertainning outdoor 
ITS_CF_IS 71.111 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 70.0 

SPECIFICITY_LEVEL_IS 3 

DECISION_IS K.LAL is at sea side . 
ITS_CF_IS 63.9999 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 60.0 

SPECIFICITY_LEVEL_IS 4 

DECISION_IS K.LAL is sitted at sea side . 
ITS_CF_IS 57.59991 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 50.0 

SPECIFICITY_LEVEL_IS 5 
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DECISION_IS K.LAL is sitted at sea side alongwith his wife. 
ITS_CF_IS 51.83992 
CF_REQUIRED_BY_CONTROL_SCHEME_WAS 40.0 
T 
Lisp> 
(exit) 
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APPENDIX C 

EXAMPLE SESSIONS: KNOWLEDGE-BASE 2 

;**************************************************************** 
;**** EXAMPLE SESSION ( KB2) START FROI1 HERE ****** 
;**************************************************************** 
Lisp> 
(reset) 
NIL 

Lisp> (x_is_living_organism 'X 'forward 80 2.0 1.0) 
(GIVE CF (0 TO 100) THAT X POSSESS 
CHARACTERSTIC_SHAPE_&_BOUND_BY_REGULAR_CURVED_SURFACE IS TRUE.) 
100 
(GIVE CF (0 TO 100) THAT X SHOWS GROWTH_LARGELY_BY_ASSIMLATION IS 
TRUE.) 100 

SPECIFICITY_LEVEL IS 0 

DECISION_IS X belongs to living organism. 
(IS_IT_ALWAYS_UNDERGOING_CHANGE_IN_THEIR_SUBSTANCES_CALLED_ 
METABOLISM ?) (WRITE T/F ?.) t 
( DOES_IT _ARI SE_FROM_OTHER_ORGANI St1_0F SAME OR_RELATED_SPECI ES ?) 
(WRITE T/F ?.) t 
(IT IS TRUE WITH CF = 100.0) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 99.44444) 
(GIVE CF (0 TO 100) THAT X POSSESS CHLOROPHYL IS TRUE.) 10 

SPECIFICITY_LEVEL_IS 1 

DECISION_IS X belongs to Kingdom Animalia. 
(DOES_IT_TAKE_ORGANIC_FOOD_PRODUCECED_BY_OTHER_ORGANISMS ?) 
(WRITE T/F ?.) t 
(IT IS TRUE WITH CF = 90.0) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 97.77777) 
(GIVE CF (0 TO 100) THAT X HAS MULTICELLULAR BODY IS TRUE.) 100 
(GIVE CF (0 TO 100) THAT X SHOWS 
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ORGANISATION_AT_TISSUE_LEVEL_OR_ORGAN_LEVEL IS TRUE.) 100 

SPECIFICITY_LEVEL_IS 2 

DECISION_IS X belongs to Subkingdom Metazoa. 
(IT IS TRUE WITH CF = 89.09999) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 95.0) 
(GIVE CF (0 TO 100) THAT X HAS 
UNIQUE_SUPPORTING_STRUCTURE_THE_NOTOCHORD IS TRUE.) 100 

Page C-2 

(GIVE CF (0 TO 100) THAT X HAS SEGMENTED_BODY IS TRUE.) 100 
(GIVE CF (0 TO 100) THAT X HAS BILATERAL_SYMMETRY IS TRUE.) 100 

SPECIFICITY_LEVEL_IS 3 

DECISION_IS X belongs to Phylum Chordata. 
(DOES_IT_HAS_CLOSED_BLOOD_SYSTEM ?) 
(WRITE T/F ?.) t 
(IT IS TRUE WITH CF = 89.09999) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 91.11111) 
(GIVE CF (0 TO 100) THAT X HAS BRAIN_OR_SKULL_OR_HEAD IS TRUE.) 
100 
(GIVE CF (0 TO 100) THAT X HAS ENDOSKELETON_OF_BONE_OR_CARTILAGE 
IS TRUE.) 100 

SPECIFICITY_LEVEL_IS 4 

DECISION_IS X belongs to Sub-Phylum Craniata. 
(IT IS TRUE WITH CF = 88.20899) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 86.11111) 
(GIVE CF (0 TO 100) THAT X HAS JAWS IS TRUE.) 100 

SPECIFICITY_LEVEL_IS 5 

DECISION_IS X belongs to Super-Class Gnathostomata. 
(IT IS TRUE WITH CF = 84.68063) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 80.0) 
(GIVE CF (0 TO 100) THAT X HAS BODY_COVERED_WITH_HAIR IS TRUE.) 
100 
(GIVE CF (0 TO 100) THAT X POSSESS MAMMARY_GLANDS IS TRUE.) 100 

SPECIFICITY_LEVEL_IS 6 

DECISION_IS X belongs to Class Mammalia. 
(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y 
(IT IS TRUE WITH CF = 84.68063) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 80) 
(GIVE CF (0 TO 100) THAT X POSSESS POUCH IS TRUE.) 1 
(GIVE CF (0 TO 100) THAT X HAS 
MATURE_NEW_BORN_WITH_COVERING_OF_HAIRS_&_ALL_SENSE_FUNCTIONING IS 
TRUE.) 100 
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SPECIFICITY_LEVEL_IS 7 

DECISION_IS X belongs to Sub-Class Eutheria. 
(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y 
(IT IS TRUE WITH CF = 82.98702) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 80) 
(GIVE CF (0 TO 100) THAT X POSSESS 
CLOSED_BONY_RINGS_SURROUNDED_TO_EYE_SOCKET IS TRUE.) 100 

Page C-3 

(GIVE CF (0 TO 100) THAT X HAS 
1ST_FINGER_&_AT_LEAST_ONE_PAIR_OF_DIGIT_OPPOSABLE_&_ABLE_TO_GRASP 
IS TRUE.) 100 

SPECIFICITY_LEVEL_IS 8 

DECISION_IS X belongs to Order Primates. 
(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y 
(IT IS TRUE WITH CF = 81.32727) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 80) 
(GIVE CF ( 0 TO 100) THAT NAKED_I10I ST _RHINARI Ul1 IS PRESENT IS 
TRUE.) 0 
T 

Lisp> (x_is_living_organism /y /forward 50) 
(GIVE CF (0 TO 100) THAT Y POSSESS 
CHARACTERSTIC_SHAPE_&_BOUND_BY_REGULAR_CURVED_SURFACE IS TRUE.) 
100 
(GIVE CF (0 TO 100) THAT Y SHOWS GROWTH_LARGELY_BY_ASSIMLATION IS 
TRUE.) 100 

SPECIFICITY_LEVEL IS 0 

DECISION_IS Y belongs to living organism. 
(IT IS TRUE WITH CF = 96.0) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 91.66666) 
(GIVE CF (0 TO 100) THAT Y POSSESS CHLOROPHYL IS TRUE.) 10 

SPECIFICITY_LEVEL_IS 1 

DECISION_IS Y belongs to Kingdom Animalia. 
(IT IS TRUE WITH CF = 86.4) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 83.33333) 
(GIVE CF (0 TO 100) THAT Y HAS MULTICELLULAR_BODY IS TRUE.) 100 
(GIVE CF (0 TO 100) THAT Y SHOWS 
ORGANISATION_AT_TISSUE_LEVEL_OR_ORGAN_LEVEL IS TRUE.) 100 

SPECIFICITY_LEVEL_IS 2 

DECISION_IS Y belongs to Subkingdom Metazoa. 
(IT IS TRUE WITH CF = 85.536) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 75.0) 
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(GIVE CF (0 TO 100) THAT Y HAS 
UNIQUE_SUPPORTING_STRUCTURE_THE_NOTOCHORD IS TRUE.) 
100 

Page C-4 

(GIVE CF (0 TO 100) THAT Y HAS SEGMENTED_BODY IS TRUE.) 100 
(GIVE CF (0 TO 100) THAT Y HAS BILATERAL_SYMMETRY IS TRUE.) 100 

SPECIFICITY_LEVEL IS 3 

DECISION_IS Y belongs to Phylum Chordata. 
(IT IS TRUE WITH CF = 83.82528) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 66.66667) 
(GIVE CF (0 TO 100) THAT Y HAS BRAIN_OR_SKULL_OR_HEAD IS TRUE.) 
100 
(GIVE CF (0 TO 100) THAT Y HAS ENDOSKELETON_OF_BONE_OR_CARTILAGE 
IS TRUE.) 100 

SPECIFICITY_LEVEL IS 4 

DECISION_IS Y belongs to Sub-Phylum Craniata. 
(IT IS TRUE WITH CF = 82.98703) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 58.33333) 
(GIVE CF (0 TO 100) THAT Y HAS JAWS IS TRUE.) 100 

SPECIFICITY_LEVEL_IS 5 

DECISION_IS Y belongs to Super-Class Gnathostomata. 
(IT IS TRUE WITH CF = 79.66754) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 50.0) 
(GIVE CF (0 TO 100) THAT Y HAS BODY_COVERED_WITH_HAIR IS TRUE.) 
100 
(GIVE CF ( 0 TO 100) THAT Y POSSESS 11AMMARY _GLANDS IS TRUE.) 90 

SPECIFICITY_LEVEL_IS 6 

DECISION_IS Y belongs to Class Mammalia. 
(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y 
(IT IS TRUE WITH CF = 79.66754) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 50) 
(GIVE CF (0 TO 100) THAT Y POSSESS POUCH IS TRUE.) 20 
(GIVE CF (0 TO 100) THAT Y HAS 
MATURE_NEW_BORN_WITH_COVERING_OF_HAIRS_&_ALL_SENSE_FUNCTIONING IS 
TRUE.) 0 
(GIVE CF (0 TO 100) THAT Y LAY SHELLED_EGGS IS TRUE.) 100 

- 79 -



SPECIFICITY_LEVEL_IS 7 

DECISION_IS Y belongs to Sub-Class Prototheria. 
(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y 
(IT IS TRUE WITH CF = 78.07419) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 50) 
(GIVE CF (0 TO 100) THAT Y IS 
PLUMP_STOUT_SHORT_LEGGED_&_SHORT_TAILED IS TRUE.) 100 
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(GIVE CF (0 TO 100) THAT Y HAS THICK_FUR_OR_HAIR_&_SPINES IS 
TRUE.) 90 

SPECIFICITY_LEVEL IS 8 

DECISION_IS Y belongs to Order Monotremata. 
(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y 
(IT IS TRUE WITH CF = 78.07419) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 50) 
(GIVE CF (0 TO 100) THAT Y HAS WT._BETWEEN_2.5_T0_6_KG. IS TRUE.) 
100 
(GIVE CF (0 TO 100) THAT Y HAS 
BEAK_LIKE_SNOUT_OF_ROUND_CROSECTION IS TRUE.) 80 

SPECIFICITY_LEVEL_IS 9 

DECISION_IS Y belongs to Family Tachyglossidre. 
(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y 
(IT IS TRUE WITH CF = 77.29344) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 50) 
(GIVE CF (0 TO 100) THAT Y HAS SNOUT_IS_SHORT_AND_STRAIGHT IS 
TRUE.) 20 

SPECIFICITY_LEVEL_IS 10 

DECISION_IS Y belongs to Genera Zaglossus. 
(DO YOU WANT TO PROCEED FURTHER? WRITE Y/N.) y 
(IT IS TRUE WITH CF = 76.52051) 
(AND CF REQUIRED BY CONTROL SCHEME WAS 50) 
T 
Lisp> (exit) 
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