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CHAPTER 1 

IN1ROOUCTI ON 

Lasers are one of the biggest achievements made in the 

second half of the twentieth centu·ry. 

Lasers are quantum generater working in the optical 

region of the spectrum and so they may be called an extension 

of the nas er principle to the optical dollllin. 

The principle on which lasers operation is based is the 

amplification of electromagnetic oscillations by means of a 

forcei or induced radiation of atoms and molecules. Einstein 

had predicted this kind of radiation as long as 1917 while 

studying the equilibrium between the energy of atomic systems 

and their radiation. Therefore, it will be not. w~~g ·to say 

that the history of creation of lasers begins just as early •. · 

We present here a theoretical description of the oper12- ·. 

tion of nul tillOde laser oscillation. This approach is par.ti- "' - . ~ . -~ :;:..:r . ,;; 

cularly suitable f~~. gas€ous lasers of the type sug~ested by 
~ ..... ' - •• ' ' • • ·: § ~ ~ • " 

Schallow and Townes 1 and first realised experimentally by 

Ja van, Bannet and ai rriot t 2 ·.· 

1, A.L. Schallo\V and c. H. To~nes, PhYs. Rev. 112, 1940 {1958) 

2. A.· Javan1 W.R. Bennet ~and D.R •. Hlrriott, Peys. Rev. Letters 

6, 106 (196J.) " 
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The equations obtained are also useful in describing 

some of the features of solid state Lasers. 

We consider a classical electromagnetic field in a 

high - Q -multi~de cavity, acting on active medium consisting 

of collection of atoms. The atoms are described by the laws 

of quantum meChanics whereas el.~tromagnetic field is described 

by Maxwell's equations. We d.o not consider the phenomenon 

of noise due to spontaneous emission, thermal density or 

quantum fluctuation. The intrinsic line width of the laser 

field, resulting from spontaneous emission etc. can only be 

obtained by taking into account the field quantization. 

Javan and Co-workers 1 have obtained a high degree of spectral 

IUrity which suggests that the exclusion of the phenomenon of 

noise in the semi-classical theory is a good approximation. 

A macroscopic electric polarization P( r,t) is produced 

in the active medium due to interaction between the electro­

magnetic, field and the atoms in the cavity. This mcroscopic 

polarization acts as a source in the electrollllgnetic field · 

in accordarc.e with the Maxwell's equations. The amplitude 

and frequency of possible oscillations is obtained by the 

condition of self consistency (that the field produced should 

1'!. T.s. Jaseja, A. Javan and c. F. Tol•mes, Peys. Rev. Letter 

!Q, 165 (196)) 



be equal to the field assumed). Our calculation includes 

non-linear effect which deseribes the phenomenon of freqUency 

pulling and mode competition. 

We have assumed that only two atomic states 'a' and 'b' 

contribute to the laser action. We further make the simpli­

fication that the vector· cha ra.cter (polarization) of the 

electric field is ignored. In our calculation cavity is 

employed with windows of the Brewsters angle type so that the 

optical configuration favours one plane of polarization. 

The cavity of the Fabry ~erot type used by Javan, Bennet 

and Harriott is not enclosed by a reflecting wall and so 

contains a continuum of .IOOdes. However Fox and Li 1 have shown 

that there are descrete sets of quasimodes for :which the loss 

due to diffraction leakage is small. The cavi cy mdes of 

highest Q are the even symmetric ones whose circular frequencies 

are given by 

wnc 
T 

where c is the velocity of Light, L is the distance between 

the reflecting planes (L - 100 em) and n is a large integer, 

of the order of 2 x 106~ Fox and Li pave shown that the node 

1. A.G. Fox and T~ Li~ Bell System Tech. J. ~~ 61 (1961} 



of the next highest Q differ by 1 rrr:./sec from the former 

modes. Our discussion will be specifically aimed at the 

mode of highest Q. 

The basic JOOdel for the laser is schematized in the 

Fig. 1.1 we have N active 2 level atoms per unit volume all 
0 

coupled to the laser field by an electric dipole mment. It 

can be imagined that each atom i is being coupled to its own 

11 Pumping Reservoir" Rpi• Similarly each atom i is coupled to 

its own "Loss Reservoir'' R_· which describes the damping of 
-~,i 

the levels • a' and 'b' due· to (non laser) transition to other 

levels and to atomic collisio~~ The laser field is also 

coupled to a • Field Loss Reservoir' ~' F which describes the 

damping of the laser nodes due to transmission through the 

semi-transparent mirror, diffraction losses, losses due to 

finite conductivity of the walls etc. 

The laser system formed by the active atoms and the field 

{broken line box in the fig. 1) represents an • open system' 

which interchanges energy with the JX.UnP· and loss reservoirs. 

In the condition of stable oscillation above threshold, it is 

a system which is far from thermodynamical equilibrium; this 

is one of the reason why it is theoretically interesting. 
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We have disCusSed the fundamental assumptions and the 

basic philosopl\Y of the semiclassical theory in chapter 2 

and then using the Maxwells equations we obtained the frequency 

and amplitude equations of the field in terms of polarization. 

Chapter :; describes how with the help: of Schrodinger 

equation, microscopic polarization can be obtained in a two 

level atom system. At the end of this chapter we have intro­

duced the density rmtrix fonnalism and deduced the equation 

of motion of density matrix, which is instrumental in our 

further calculation in the following chapters. 

1\tla.croscopic polarization has been calculated in chapter 4 

with the help of density matrix. At the end of the chapter 

we have obtained a set of rate equations for diagonal and off 

diagonal elEments of the density matrix. 

The rate equations mentioned above have been solved in 

chapter 5 by assuming the popll.ation inversion density inde­

pendent of time which helps in calculating macroscopic pc:>lari­

zation p{ r, t). Thi..s chapter also detennines the linear 

equation in En and conditions of laser oscillation; and then 

expression for critical population Inversion Density is obtained 

'Frequency Pulling Effect' has been discussed at the end of 
"" 

the chapter. 
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Chapter 6 contains how rate equations of linear appro­

ximation are modified when we consider the time- dependen= e 

of poJ;Ulation inversion density. We have presented the steady 

state solution of rate equations which defines the population 

inversion density in non-linear approximation. Next we have 

obtained the diagonal mtrix element which helps in obtaining· 

the field equation which is non-linear in E. Solving this 

non-linear field equation in the steady-state we get the 

expression for intensity of laser oscillation in one JOOde. 

Mode competition phenomenon has been discussed in 

chapter 7. In this chapter amplitude equation has been derived 

assuming the probability of oscillation of roore than one node. 

At the end of the chapter we have discussed a simple case of 

two modes.;.oscillation and shown how under certain ci.~umstances 

one toode suppresses the other and when both roodes oscillate 

simultaneously. The phenomenon of m:>de competition has also 

been explained with the help of phase-sJBCe diagram in linearized 

approxima. tion. 

We have concluded our discussion of the semi-classical 

theory in chapter 8 pro{l ecting its success and failure in 

explaining certain important features of lasers. A mre 

illuminating theor.y is required to explain the finer details 

of the laser problem, which is nothing but the quantum theory. 



CHAPI'ER 2 

ELECTROMAGNETIC FIELD 

{a) BASIC ASSUMPTIONS AND PID:LOSOPHY 

In a laser an electronagnetic field is in resonance with 

the atomic transition between two levels enclosed in an optical 

cavity resonator. The resonance of the field with the atomic 

transition gives rise to stimulated emission; the emitted 

radiation is again in resonance and gives rise to further 

transition in other atoms and in this manner a kind of chain 

reaction or photon avalan~ starts. 

The field in a cavity is characterised by a discrete 

set of eigen modes. The atoms taking part in laser operation 

are excited by a pumping mechanism. This .(X.lmping causes 

electronic transition, to a large number of excited states 

of which same pairs will be in resonance with the cavity 

modes. These transition will amplify the field if the po.(X.lla­

tion of atoms in the upper level is more than the population 

in the lower level. In thermal equilibrium, lower level is 

more poJ:Ulated than the upper level. Hence the reverse 

situation which is the pre-requisite of laser operation is 

called "Population Inversion". 
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P.nother important requirement is that in a cavity there 

are large number of JOOdes competing with the· energy in the 

frequency range of atomic transition. To get the laser action,· 

this is reduced to a small number by employing, instead of a 

cavity a laterally open system with mirrors at the ends. 

When the ampli.fication by the resonant transition exactly 

compensates the losses in the cavity due to imperfect refl cc-

tion etc., the laser oscillates in a steady-state. If the 

gain is higher than the loss, the inte~sity increases untill 

a new stable state is reached. Thus it is important to consi-

der the non-linear properties of tlie laser, because the outJUt 

intensity is determined by the saturation behaviour. 

Let us consider ansemble of excited two level atoms, 

upper state Iva> lower state ltb> placed between the mirrors 

of a laser cavity at time t = o. We assume that at this 

initial time there exists a small electric field in the cavity. 

The atoms will respond to this electric-field and begin to 

oscillate as tiny dipoles. These atomic dipoles add up to 

give a macroscopic -~larization per unit volume. The macro­

scopic dipole JOOment now drives the ·field i.e. acts as a 
.. 

source of radiation. The theocy of laser action as formulated by 

Lamb1 m~ be summerised in the following three steps. 

1. W.E. Lamb, Phys. Rev., 134, A 142:9 {1964) 
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2. These atomic dipoles add up to give a macroscopic dipole 

moment per unit volume 

p( r,t) i < p (r,t) > 

where N is the number of lasing atoms per unit volume in the 

ca:yity at time t. If the excitation is unifonn we may write 

p(r,t) = N< p(r,t) > 

3. This polarization P(r,t) drives the laser field according 

to Maxwells equation. 

We assume each atom envolves in a field prepared for it 

by all the other atoms, then look for the field prod~ced by 

maey such envol ving a toms. In this way the laser problem is 

similar to that of a fearomagnet in which each spin sees a 

mean magnetic field due to all the three spins and aligns 

• 

itself accordingly, thus cc;mtributing to the average magnetic 

field. There each laser atom interacts with the electromagnetic..., 

field produced by all the other atons that have contributed 

to the ·field ·via stimulated emission. 
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Both semi-classical and quantum theory of tl:le laser are 

based on a number of assumptions. These are listed below. 

1. Two Level Atoms 

We assume only two level systems take part in the 

transition tmt gives rise to laser radiation. 

2. Electric Dipole AEproximation 

The interaction between the two level atoms and the 

radiation field is_ treated in the electric dipole approxina­

tion. This is justified by the fact that optical wave 1 ength 

are much greater than atomic dimension. 

:S. Absence of Direct Interatomic Interaction 

The direct interaction among the atoms of the active 

medium is neglected. They interact via the common radiation 

field. 

4. Rotating wave Aperoxilllltion 

In the expression of the type 

oo -w -ly o n 
+ 

where w
0

, l' correspond to atomic frequency and line width, 

w the mode frequoocy, the second term {anti-resonant) is 
n 



negl eeted as compared to the first term (resonant) because 
. 

the mode is close to resonance I oo
0 
-~ 1 ~ y whereas 

(~0+oon) >> y. The neglected tenn is both snlill (due to 

denominator) and rapidly oscillating. This approximation is 

known as 'Rotating Wave Approxinlltion'. 

(b) FREQUENCY Al'D AMPLITIDE EQUATIONS 

The intensi.ty of the electromagnetic field in the laser 

is very high there it is justified to consider the electro-

nagnetic field classically; this is in agreement with the 

correspondence principle which states that : · quantum mechanics 

goes over to classical mechanics for large quantum number. 

It is very helpful for Imi\Y purposes to treat the electro-

magnetic field in classical ter.ms i.e. it is not quanti%ed 

and treat the atoms quantum mechanically. 

Condier the equations for the field due to a given 

-macroscopic polarization F{ r, t ). The electromagnetic field 

in a cavity is detennined from Maxwells equations 

-- - oB 'lx E - or (1.1) 

-- - - cJ> 'lx H - J+ or (1.2) 

-div B - 0 

-div D - 0 
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where 

- - -D - e E + p 
0 

8 -· !f1H (1. 3) 
0 

J - a'£ 

Oi is the equivalent ohmic conductivity which is introduced 

here as a purely phenomenological parameter to vepresent the 

damping of the laser intensity which arises from the field 

losses due to imperfect reflections in the cavity and mirrors 

and other causes. 

Equation ( 1'~·2) may be written as 

- - - 0 .... -'V x H - aE + at (e0~ + P) 

or 

Equation (1.1) may be written as 

- 0 - 0 -~ x E = - at llo H = - '-'o ()£ H ( 1. 4a) 

Taking the curl of equation { 1.4a) we obtain 

- "';!. - < ·o-'Vx(vxn)- Vx -'-'(>a£H) 

- - lJ.o l£ ( ~ x Ti) ( 1. 5) 
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From above 

.. v X TI 

or 

or 

From equation ( 1;~·5) 

From equation (l~ 6) and ( 1.7) 

or 

or 

...;~x(~xE) 
j,Lo 

-Vx.(:qxE.) 

aZE 
s -+ 

0 dit2 

3E a2E -. -a l.f.o ~t + (;.11. & .- ·+ 'V x { 'V .x H ) 
g];, o o ot2 · 

or 

{ 1.6) 

(1. 7) 

o2F = - 1:1 - (1.8) . 0 2 
3t 

-
Since solution of the laser field will be ~.ractically 

menochromltic, we can write 
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where w is the mean angular frequency of oscillation of p 

which be latter identified wi. th frequency wn of the laser 

field. This approximation essentially means that the polari-

-zation P contains parts which oscillate with frequency within 

a narrow range only. Let us confine our attention to axial 

mde and expand the electric field in tenns of a complete set 

of such toodes. 

E(z,t) \ A (t) u -(z) 
~ n n 

I L~ A ( t) sin ( k z) n n ( 1. 9a) 

where 
mr 1h 

- "L --c 

Here L is the laser length ( ::: 100 em) 1 .an is the eigen 

frequency of the cavity toode, and the coorctinate system intro­

duc ed is one with the laser axis along the z axis. The 

el ectronagnetic field is transverse in nature, hence we have 

two mdes for each kn• But for convenience we assume that 

one mode is suppressed by Brewster's windovvs and only one 

IOOde for each k is considered. Simi&arly we can expand n 
polarization P(z,t) in the cavity eigen-functions as 
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( 1.9} 

where tin( z,) satisfies 

~ x t ti x u ( z >)- lJ. e fi2 u ( z) · n o o n n 0 ( 1.10) 

and the boundary conditions. 

Substituting equation (1.9a} and (1.9) in equation (1.8} 

and using equation ( 1.10) we get 

(1.11) 

where the driving force Pn( t). is the proJ~.ection of the 

inhoJOOgeneous source term "Nz,t) on the mde n 

p ( t) 
n 

L 

J p( z, t) un( ~) dz: 

0 

( 1.1la) 

We see that the unknown mode amplitudes An( t) in equation 

( 1.11) obey the equation of IOOtion for the driven damped 

harmonic oscillator. 

Consider the simple time dependen:: e of A ( t) i.e. n 

~{t) 

substituting the above in equation (1.11) the L. H.S. is 

obtained as equal to 
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a - 002eiwt + ·-e 
0 

eiwt 
( - 002 + 

The factor 

2 · 0 n2 -w + J.w- + .1~ e
0 

n 

iwe iwt 
+ 

. a 
l.(l)- + 

eo 

n2 
n e iwt 

~ 

n2 ) 
n 

- i (1.12) 

Now resonance interaction can take place when w z ~ • 

Thus er.tpression (1.12) becomes 

2w[( fln- w) + i _2_. ] 
2e

0 

The half-width of the resonanc e·• is given by 

6w = 0 --
The cavity Q value is defined in the usual way 

Q :.:;. nrfrraction of stored energy dissipated per 

unit time 
-tj·:;; . n 

since the energy decays e , where 'tn is the Jrode life time, 
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Hence 

Q = 
we

0 --0 
(1.14) 

equation (1.'14) is introduced into equation ( 1.11) to 

e1 imina te a and result ohtained is 

d A ( t) 
n 

dt + n~ '\(t) 

equation (1.15) will bee. orne a differential equation for the 

determination of An ( t) after imposing the self consistency 

requiranent. The total out111t energy cannot e~ eed the 

energy supplied by optical JUinping and a saturation effect is 

obtained. A steaqy state solution corresponding to the 

stable amplitude of oscillation can only be obtained from a 

non-linear theory. 

This non-J.inear diftl'erential equation can be solved 

by a classical method - 11 Method of slowly varying amplitudes 

and phases" due to Krylov and Bogoliubov. The following 

u Ansatztt is nade for the fGFlution sott.t.fton. 

Resolving the projection of the driving polarization P ( t) n 

into a component in phase with the e1 ectric field and a 

component 1r/2 out of phase we get ansatz 



p ( t) 
n 

C (t) cos(oo t + <P. (t)] n n n 

+ Sn( t) sin [ w t + CP. { t ) ) n n { 1.17) 

where E {t), cp (t), C (t) and S_(t) are slowly varying compared n n · n n 
to cos wnt and sin oont• The ansatz (1.16) and (1.17) are 

introduced in {1.15) and since En(t), <pn(t) are slowly varying 

can be neglected·. 

Since 

Therefore 

=, - (oo + ~ ( t))E sin(w t+<P. { t)) + n n n n n 

• 
En cos ( wn t + cpn( t)) { 1.18) 

and 

.. 
cos( wnt + <P { t}) [E - E (w2 +. 2w ~n( t)+ ~2( t) ) n _!!. nn n n 

neglecting the underlined terms in the above relation we 

we get 
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cos(oo t+<p(t))[- E {w2 + 2w ~ {t)-~2{t)] 
n n n n nn n 

• 
- sin(oo t+cp {t))[2E oo ] n n n n ( 1.19) 

Now we put equations (1.17), (1.18) and {1.19) in equation 

{1.15} and obtain 

sin(oo t+cp ( t)) + ffE cos(oo t+<P. ( t)) 
n n nn n n 

002 = - [c (t) cos(w t+<P. {t))+S (t)sin(w t.t-m_(t))] s
0 

n n n n n ~n 

Neglecting the underlined terms, and rearranging we get· 

'' -
• 00 w 

sin( w t+ CP, ( t)) [2:E oo + 
0 

n E ] 
n n nn --n n 

Equating the coefficient of sin in the above equation we get 

002 
n{ t) 

• oo oon 
En -S - -·2E 00 --s nn % 0 

or 
.J!L s {t) • En 

-2E- w-s
0 

n n ~ 
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or 

~~t) + !
2
* E (t) =- !

2
Je..s (t) n '1\ n e0 n (1. 21) 

equation (1.21) is obtained by Pitting wn ~ w, because only 

that part of Pn which oscillate with wn z w will be important 

as the distance l::t. between the cavity eigen-function is much 

larger than the width of the cavity resonance, l::t.w ~ 6.- equating 

the coefficient of cos in the equation (1. 20) we get 

or 

or 

<J?-' 
...!lc (t) 
e~ n 

0 

E [n2 - (w + ~n(t)) 2 ] n n n 

w2 
.E. e (t) e- n 0 . 

The frequency of oscillation wn is very close to the cavity 

eigen frequency ~ and we get 

<n + wn + tn< t)) % 2wn n 

Hence 
002 

E (n- (l) - 'n{ t)) - ! ..!!.··c ( t) 
n ·n n 2 e- n 

0 

or w2 
E <n - w - ~n( t)) - !. ...!! c (t) 

n n n 2 e- n 
0 



or 
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= -!~c(t) 
2 e. n 

0 

Thus we get the two conditions 

• 1 wn 
E ( t) +- -··- E ( t ) n 2 ~ n 

• 1 wn [w +<P. (t)- n ]E (t) =- -
2

- c {t) n, n n · n e0 n 

{1.22) 

{ 1. 21) 

These equations determine the amplitude En and the frequency 

wn when P
0 

is known:· 

535·375·54 

\127 -
~e -



CHAPTER J 

MICROSCOPIC POLARIZATION 

After finding the frequency equation (1. 22) and amplitude 

equation (1·:12J,) we will proceed to find the microscopic pola-
. ~ 

. " \ rization with the help of Schrodinger equation for a 2 level 
\ 

systems. 

According to our assumption (1) we rray represent an 

active atom by a two level system·(Fig. J:.l) 

---------------------!ya> 

. ...--~--------1</'h) 
Ftg. 3·1 

Let Ha = lbrniltonian for a free atom 

The stationaxy eigen functions of the two states 11fra > and 

l1Jrb > respectively sa tis f.y 

together with 

- ..ft. w f ( x) a a 

I 1Jr rf.. d '1; a a 

(2.1) 
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and 

(I) - (1). = (I) a D o {2. 3) 

The corresponding time dependent wave fUnction is given 

by 

1Jr { x, t) = v ( x) exp(-ioo t) a a a 

In the Weiss Kopf-Wigner approxiJmtion 1 the decay level 

'a' and 'b' takes place exponentially 

- 1Jr { ;() exp[-·i(oo- i ~ )t] 
a a 2 

{ 2. 5) 

where 

ll = ~ ( = life time) 
l'a a 

Now we introduce the atomic loss reservior by phenomene-

logical replacement 

't 
w -+w -i 2a a a 

i yb 
T 

1. w. Heitl er, The Qlantum Theoty of Radiation, 3nl Edition 
Oxford University Press ( 1954) P. 182~' 
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lilmiltonian of atom interacting with the laser field ~Y be 

written in the dipole approximation 

( 2. 7) 

where 

~v = -exE(r,t) ( 2.8) 

and r is a fixed point in the atom. 

Let at the initial time t = t
0 

the atom is pumped to 
-

1 evel a. Then 

( 2.9) 

Under the influence of perturbation (4\V!) transition to level 

b is possible due to induced emission and so the wave rune-

tion at a latter timet becomes 

( 2.10) 

This state IIBY be represented by a column vector 

= (a{ t)) 
. b( t) 

Time dependent Schrodinger ~quation is 

or 



" 

Substituting for t from ( 2.10) we get 

Taking the vecto~ product of above with ~ and ~ res­

pectively and using the relation ( 2• 2) we get · 

ia = aoo + bV b + aV a a aa 

ard 

Thus we have 

( 2.11) 

where 

Since 
.,¥N -exE( r, t) 

V - - ~· E(r,t) 

Now 



or 

where 
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d 
- - E • 1\ 

and is known as" Transition Dipole )OOment". 

In deducing ( 2:.11) we have nade use of the fact V a a 

Vbb = 0 which means that the expectation value of electric 

dipole Jl'Dment in a stationary state vanishes. This becomes 

obvious due to the fact that dipole rooment operater has 

negative parity whereas, due to definite parity of a stat~onary 

state, the probability distribution has a positive parity. 

The expectation value of the electric dipole moment in 

the state i(x,t) (: a(t}va(x)+b(t)tJFb(x)) is given by 

e < 1/tl xl_v > 
'' 

_ e J .,.X'fl.dtt =,.e[. r< a*tf..+b*vt:. >x< at +bt )d~] . . . ,~j a b a b 
. -. 

- eJ Jaa";~XtJrad~._..J!;b*;afbXTifad~ + 
c 

a*b J vf~x tVb?'t + b*b J tflb x 'ljrbd't) 
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Therefore 

( 2.12) 

Now eqUation (~11) can be written in the following natrix 

form. 

• d 
~at \:) --

.Y 
~...! 

2 

vba 

vab a 

yb 
( 2.13) 

~- i- b 
~ 

Here we have introduced damping terms y
8 

and yb by replacing 

coa and cob according to (2.6). We write (2:.13.) in the following 

form 

where 

r [H- i{ - ) ] 
2 

H. H + V 
0 

( 2.14) 



and 

r 

w a 

0 

0 

0 0 

+ 
0 

Let us now define a density na trix (operator) 

a 

p( t) 

b 

a a* ab* I a( 2 

-
br{: bb::e at'/.)); 

.. 
From the property of a density m:t t rix we lcnow 

Trp(t} 1 

ab* 

(bl2 

that 

and this is only time when r = o. p( t) may be written in the 

matrix element form as 
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Paa ab* 

~a 

Thus 

a*b = Pba and ab* = Pab ( 2.15) 

Substituting from ( 2:.15} in equation ( 2.12.) we get the dipole 

mment in terms of the element of the density nPtrix 

= d(pab + p~) 
/ 

because p is a Hermitian natrix. 

Thus 

We have 

p 

Therefore 

or 

d 
a:tP 

a 

b*) 

b 

• a 

. 
b 

( 2.16) 



--~-

a a 

d 
i (a* b" .. ). (" tl• j,t:.) i at p * a'" 

• 
b b 

Using ( 2.14) for the first term and using Hermitian conjugate 

of ( 2.14) for the second term in the above equation we get 

d i- p 
dt { H- i ~ )p - p( H + i ~ ) 

Hp - pH - ~ { ~ p + p ~ ) 

( H, p ) - ~ { p, P } 

Thus we get the equation of motion for p 

i A p = [H,~ - ~ {r, p 1 

where {r 1 p l stands for the anti-comnutator. 

( 2.17) 

This equation of motion is very instrumental in finding 

the nacroscopic polarization and hence the amplitude of the 

laser field, which will be shown in the following chaptersr 



CHAPTER 4 

MACROSCOPIC POLARIZATION 

Now we will compute the macroscopic polarization P by 

statistical suilliln tion of the microscopic dipole 100men ts of 

all active atoms. 

We have just described in the previous chapter that a 

single atom pumped to a level 'a' at a time to is described 

at time t by a density matrix {operator) p( a,t
0
,t) which is 

the solution of the eqUation of motion (2:.17) and which 

satisfies the initial condition 

p( a, t., t) 
0 

p( a) ( 3.1) . 

where 1 0 

p( a) -
0 0 

' 

the atom ia state a. 

The corresponding contribution to the expectation value 

of the dipole rooment at time t is given by 

< p> = T [p(t 1 t) 1 p] . r o 
{ 3 •. 2) 

,... . 
from the property of density matrix where p' J.s the operator 

! , :. 
corresponding to the transition dipole moment 
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o1 is the Pauli natrix. 

The above equation (3.2) may be written employing (2.16) 

( :;. 3) 

Different atoms i are JUmped to level 'a' at different time 

t
0
i. Thus the macroscopic polarization is given by 

P(r1 t) = ~ 
toi'z:-t 

where sum is extended over all active atoms per unit volume 

which has been pumped to 1 evel 'a' upto time t (i.e. for all 

Writing 

equation (J.I,.) becomes 

( :;. 5) 

Let us define A.. ( t ) d t = average number of atoms a o . o 

pumped- to level 'a' .during t
0

- t
0
+dt

0 
per unit volume over r. 

This is known as average tnmping, rate density we have omitted 

the r dependence in the rotation. 



Then we can write 

p( a, t) -· --

as 
p( a, t) I A ( t ) p( a, t

0
, t) d t 

a o o ( J. 6) 

-oo 

Taking into account the initial condition ( 3.1) and differen­

tiating (3.6) w.r. t
0 

time we get the equation of motion for 

p( a,t) as 

or 

t 

1ft. p(a,t) = i A.
8
(t) p( a)+ /t J 1 A.

8
(t

0
)p(a,t

0
,t)dt

0 

i /r p( a,t) 

t 

= i X. ( t) p I a a+ 
-oo 

-00 

and using (2.17) we get 

i -/t p( a,t) i A a p( a) + ( H, p( a, t) 1 - ~ {r, p( a, t )} 

. ( 3. 7) 

Similarly taking into account the possibilities that 

there are atoms being excited to the lower 1 evel 'b' and 

introducing the corresponding rate ~· the average pumping 

rate density we define for the two 1 evel system 
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p( r' t) = p ( a, t) + p( b, t ) 

the eqUation of nx>tion for pCr, t) is in the two 1 evel system 

is given by 

1 ~ = iA. + [H,p]- ~ [r,p} ( 3. 7a) 

where ~ is the pumping rate DBtrix given by: 

Here A.is the representation of 'atom pump reservoir' 

just as r represents the 'atom has reservoir'. The energy 

imput due to A. can be comp-ensated for the energy loss due 

to r and leads oo steaQ)r state solution, we may write 

~( r,t) p( a,t) + (i b1 t) 

t 

J A.a(t
0

)p(a1 t
0
,t)dt

0 
+ 

- CXI 

t 

J ~( t
0

) p( b1 t
0
,t) dt

0 

- CXI 

t 

J [A a( t
0

) p( a, t
0

, t) + 

(j.S) 
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From the d-efinition of A. a' ~ and the form of the single 

atom operator r, the diagonal elements of p(r,t) have the 

following pf\ysical interpretation. 

p (r,t) - N {r,t) aa a population density of 

level a 

~{r,t) = poJXllation density of 

level b 

And the density of population inversion is given b.Y 

p ( r,t) -
a a pbb( r, t) N ( r, t) 

a. 
- Nb(r,t) 

N(r,t) 

Using equation (2.16) we get 

\ . 

P( r, t) - Tr[p(r,t) p] 

- d[pab(r,t) + p~( r,t)] ( 3. 9a) 

Now we have complete set of equations of the self 

consisting theocy which are given below. 

The following equations detennine the electric field 

E{"z, t) 
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E( z, t) - L An( t) un( z) -- 12 L An{t)sin(~z) -- = L' 

~(t) - E {t) cos (w t + <pn{ t)) n n 
L 

p ( t) 
n f p(z,t) u (z) dz_ 

n 
0 

S ( t) sin [w t + CP. ( t)] n n n 

and the following equations determine how polarization depends 

on the e1 eetric field 

i ~ iA. + [H,pl- ~ [p r,p] 
·-

where 

H 

-- ( 3.10) 
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-E( r,t) ~ 

P<r,t) 

Now this dependence of polarization on electric field E{z,t) 

is non-linear. The problem is to find a simultaneous solution 

of these two sets of equations corresponding to stea~ state 

solution. We rmy write equation ( 3. 7a) in the following 

natrix form. 

• • 0 Paa pab A H Hab Paa Pab a a a 
i - i + -

• 
Pba pbb 0 ~ lba 'bb Pba pllb 

pab H Hab a a 

-
pbb ~a 8bb 

Ya 0 Paa Pab @laa Pab '¥'. 0 
a 

1 
+ --2 

0 "' b Pba pbb ~a pbb 0 yb 

whence 



H Hab y 0 A 0 
a a a a 

H • r -- and A.= I --
~a ~b 0 yb 0 ~ 

Taking the off di~gonal tenn of the above natrix equation 

I 

ipab 

or 

substituting from { 3.10) for Haa' fbb and fbb we have 

• 
1 pab 

or 

we may write the above 
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where 

Hence equation of :rootion is 

or 

Similarly for diagonal element we get 

and 

Hence we have the following off-diagonal and diagonal equations 

of mtion ofor the element p corresponding to ( 3. 7a) 



CHAPTER 5 

LINEAR THEORY 

The equations of motion 

• 
pab - - iwopab - "tab pab + i v·ab(pab- pbb) ( 3.11) 

A. ( * ) P aa z a - '¥a P aa + i V ab P ab - P ab ( 3.12) 

• 
pbb ~ - lJ> pbb - i v ab ( p ab - p~b) 

can be solved by an iterative perturbation series in powers 

of interaction V ab• The first order solution will be linear 

in a z,t) and the higher order perturbation series correspond 

to non-linear solution. But this method is applied in rore 

complicated case where we consider the atomic notion and 

Doppler broadening is taken into account. We will present 

here a nore accurate solution by a different iteration method. 

We define the linear approximation as that in which 

N ( potulation inversion density) is assumed to be given and 

to be time independent; although the exact theor,y will be that 

in which N{ z 1 t) mu~.t be,deriyed from the simultaneous solution 

of the equation of motions above. .. . 
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ACcording to our linear approximation 

N = N( z) 

The higher (non-linear) approximations are then obtained by 

iteration, starting with the linea~ approximation. Substitu­

ting pab- pbb = N(r1 t) = N(zJ in equation (3.11) we get 

• 
Pab + 1 00o Pab + "tab Pab - i V ab( Paa- Pbb) 

or 

R. H.S. of equation { 4.1) is linear in pert-urbation. Let us 

assume to begin with that only one IOOde n is excited, then 

from (1.9a) 

Now 

E(z,t)· 

d E(z,t),fi 

Substituting for ~(t) from(l.6) 

Substituting this in {4.1) we get 

( 4.la) 
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id = ~ E (t)u {z) x 
~n n n 

exp(-i(oo t.r<P. (t)+exp i(w "t+<P. (t)) 
[. n n n n ]N( z) 

2 

--
(~2) 

In the above the first exponential is close to resonance 

with the atomic transition (wn z w
0

) and the second exponen­

tial is anti-resonant. Hence we may neglect the second expo-

nential implyimg the rotating wave approximation. 

Now setting 

~( t) exp(-i w t) n 

where ~( t) is slowly varying 

- - i w ~( t) 
n 

-iw t 
e n 

Hence equation of motion (4.2) becomes 
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-iw p + ( iw +Y b) p b nab o a a 
~ E ( t) u ( z) N( z) exp [- i( w t+ ~ ) ) ;en n n · n n 

or 

-id 
~ 

which contains a resonant denominator. 

Substituting the above result in (3.9a} and (l.lla) 

given below 

p( r, t) 

we get, 

p { t) 
n 

L 

d [p + p* ] 
- ab ab 

L' 

J P(z,t) un{z) dz 

0 

Pn(t) f d{pab+P~b)un{z) dz 
0 

c.c) 

(c.c stands for complex conjugate). 

( 3.9 a) 

( l.lla) 



where 
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L 

Nn - J· N{z,t) u~(z) dz 
0 

( 4. 5) 

which in general depends on t (sine e we have written N( z, t)) 

but in our linear theory it does no.t depend on time. We have 

P (t) - C (t) cos(w t + <p) + S (t) sin(w 't+ cp) 
n n n n n n n 

and writing 

1 = .C(w -w ) n o ( 4. 6) 

we can rewrite equation ( 4. 4) in the following manner 

writing the complex conjugate 

Now 

- i N exp(-i( w t.t- cp,J ) n n ... 
"'t' b+i( W -OJ ) + c. C 

a o n 

is found to be 

[(w
0
-w )cos(w t+<P. >+"€ bsin(w t+CP. )] _ 2N n n n a n n 

n ·- yab2- + (w- w )2 
o n 

Putting this value in ( 4. 4) we g_et 



p ( t) 
n 
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E N (oo -oo )cos(oo 't.t- ~ ) nn on n n 

1''2ab + ( oo -w ) 2 o n .. 

Comparing the above with equation .(1.17) 

C (t) cos(oof..t.<p,) + S (t) sin(oot+ cp) 
n n n n n n 

d2 -· 
- ~ E N (w- OJ ) cos(OJ t + <P. )/(yab2 +<w -w ) 2 

/11 nno n n n on 

equating the coefficients of cos and sin, we get 

and 

s ( t) 
n 

E N(OJ-OJ) n n n o 
v2 +<OJ -OJ } 2 
•ab n o 

Using ( 4.6} we have 

d2 -
c ( t) = r- E N ( w -w ) l ( OJn- w

0
} n "11 n n n o 

d2 -
Sn( t) =: - ~ E N "tab L( OJ - w ) 'n, n n n o 

( 4. 7) 
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The above equation are linear in En• From ( 1. 21) 

- -
We have seen that for laser oscillation 

Therefore 

PUtting the value of S from (4.8) in the above relation, 
n 

we get 

d 00n 
-r- - E N yab t:(w - w ) m 2&

0 
n n n o 

or • 
E oon (I) d2-n ..!L.liN yb.C(oo- (.I) ) r - -2~ + 2&' n ·a n 0 n 0 -

or / 
'i1iE (J) d2 -n -- n [ 1 wo)] ( 4.9) ·E - -y '%- i'A'i Nn Y ab l,( 00n-

n 0 . 
At the saturation value of field· E = 0 and putting this condi-, n 

tion in the equation (4.9) we get the cordition for laser 

oscillation at frequenc~ wn• 
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wn 1 
--[--

2 On 

or 

or 

. ( 4.10) 

The critical density of population inversion Nne is obtained 

by evaluating equation ( 4.10) at resonance wn = w
0

• 

at w = w • n o~ 

Hence 

or 

Nne -· _, 

1 1 

y~ 

1 -
<>n 

( 4.11) 

This is the expression for critical density of population 

inversion. 

The frequency equation is 

(w + ~- n )E n n n. n 

Substituting for C
0 

from (4. 7) in the above equation and 

neg]. ec ting q,nEn, we get 
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(4.12) 

Nn corresponding to threshold of oscillation at wn is obtained 

from ( 4.10) 

-- 1 soft 
Nn o; Y. ab/i. ( 00n- (1.) )d 2 

0 

-
and putting this value of Nn in {4.12) we get 

or 

w - n n n 

Writing 

s 

We get 

"'n sr2 s,l( (wn "'o) .e(0o> 
- 2so Jr ~Yab . .e:<;6'?:;~) ~ 

(w- w ) n o 
Yab 

(4.13) 

Equating (4.13) represents the linear pulling effect. 

From (4.13) 

..Sw + Sw n o 



or 

w + sw = sw + n n n o n 

(A) 
n ( 4.14) 

The above equation ( 4.14) means that the frequency of laser 

oscillation in toode n is the weighted average of the mode 

frequerey ~ and the atomic transition frequency w
0 

with 

weights 1 and S respectively. For a gas laser the atomic 

line width is greater than the mde width. Hence S ~ 1 

toode width · · . 
{Since S - atomic l~ne width ) for a gas laser, ty pica! 

value of which is of the order 10-1 to 10-2• Thus from 

( 4.14) wn : n i.e. laser oscillation frequency is very close 

to Ioode freqt1C:mcy. If we regard the 100de and atom as 

coupled oseillater, we see that the oscillator with sntlller 

line width {large Q) pulls the frequency of oscillation 

Close to its own. This is known as 'Frequency Pulling'. 

If M IOO<les are excite~ at laser frequency wn where 

n = 1,2, •••• ,N; we nust replace ( 4.la) by 

vab 
d 

-Ai 
M 

L 
n=l 
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~linear rotating wave approximation 

id -- ~ 

M 

L 
n=l 

E ( t )u ( z) N( z) n n · 
yab+ilw -w o n 

This is the solution in linear theory •' 

X 

(4.16) 



CHAPTER 6 

NOI\L IN EAR THE<RY 

(a) STEAilY STATE SCLU'llON OF THE ATOfvUC EQUATION 

In the linear approximation theory we had assumEd 

as time independent and ca~culated corresponding value of 

pab. The next order approximation which will be nonlinear 

is obtained by assuming the J)Opulation inversion density 

( Paa- pbb = N(z,t)) as slusly varying in time. Thus at aey 

given time pab is still given by 

id 
==-21\ 

M 

L 
n=l 

E ( t) u ( z) 

"t :+i(w ~00 ) N(z,t) x 
a · o n 

Here N(z) of equation (4.16) is replaced by N(z,t). Thus 

M 
.~ 
L 

n=l 

exp[-i(oo t + cp ) J . n n 

E (t) u (z) __ n ___ ..-n.__ __ x 

( 5. 2) 

substituting the above solution in the diagonal equations 

(3.12) and {3.:13) one can solve for Paa- pbb• 
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From ( 4.la) 

. M 

- -~ L 
n=l 

En(t) u (z) cos(c.o t + cp) 
n n n 

From ( 4.la) and {t.,. 3) we get . 

v ab P-al> 

and 

v abpl'~ 

Thus 

M 

n~ 
1d2 

-(p -pbb) -aa 2fi2 

c.c of 

M 
~ 
L_ 
n=l 

E ( t) u ( z) cos( w 4 EP. ) x m m m n 

M 

L 
m= 1 

M 

E u ( z}cos( w t+<P. )( p -Pbb) x m.m m m aa 
~ 
L 

m=l 
M 

[~ 
L 
n=l 



--5~ 

Applying rotating wave approximtion, we get 

L
M EEUU 

mnan 
( "tab+f( W -"'J X 

n=1 ° 

{ 5.3) 

Writing 

d2 M M EEUU i{(w-w)t+~-<P,} ·""" L £ -.r;+~(: ~"' J e . m n m n +C,c = R 
qn- m = 1 n = 1 ° n 

( 5.4a) 

Equation {5. 3) beComes 

Putting the above in the diagonal rate equations (3.12) and 

( 3.13) written below 

We get 
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. 
Paa - 7l - l' p + R( pbb a a aa 

These are the rate equations for the population densities 

Paa and pbb of level a and b. The first two terms represent 

the pumping and damping rates respectively associated with 

the atom reservoir. The ~ast tenm represents the effects 

of induced emission and absorption which decreases the 

population of 1 evel a and increases the population of 1 evel 
f' 

b, when there is PC>IUlation inversion i.e. when { p aa-P~b) > 0 

It will be shown in the following that R ~ 0 and· that R c~n 

be interpreted as induced transition rate. It can be seen 

from ( 5. 4a) that R is quadratic in the mode amplitude 

(E 1 E· >~ hence it is proportional to intensity. m n . 

Vve observe from (5.4a) that if 100re than one 100de is 

excitai, R contains pulsating component corresponding to 

( c.o - c.o ) • They will 1 ead to the pulsation effect and the 
m .n 

poia rization would contain coll".bination tones voJhich is the 

characteristic of a nonlinear oscillator. For a typical 

gas laser ( c.om c.on) ~ yab (because the separation between 

the axial mode is of the order of 150 nc, whereas "t'ab ,., 10 nc); 

so the W].sating components are small and they will be 

neglected here. Thus m = n can be substituted, because then 

pulsating component ( exp 1 l = 1). 
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Form_ n, we may write (5.4a) after putting for 

complex conjugate 

or 

M 

::2 L 
n=l 

E E u u 
[ --n n n n ] 

y + i( w -w ) + c • c 
ab o n 

M , 

y t:( w - w ) E2 u 2 ~ ab n o n n 
n . 

0 

The st.eady state solu~ion of ( 5. 5) and ( 5.6) is found 

• • 
by setting p = pbb = o. a a 

Thus 

R( pbb- p ) - y . p + A.. 0 aa _ a .aa a 

or, 

Solving the above sinultaneous eqUation we get 



Therefore 

N : 
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"AaR + A.ayb- ~ 

"{a l'b + R¥' a + Ry b 

R~ + "ta~- ·\,_R 

l'al'b+ R1 a + Ryb 

A.aR + hayb - R~ - R~ - l'iaYb + Rl\.a 

11'a"tb + R(ya + yb) 

A.a~b -- "€ a~ + 2.'l.( A. a - ~) 

Ya"tb + R(ya+ Tb) 

assuwing 48~ = A.ab we can write 

N 
A.ayb + Ya~ 

Ya~b + Ryab 

Dividing the denominator and numerator by yayb 

N 

where 

( 5. 8) 
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am 

1 ..!..+.!.. -~ 
"~a+ Yb 2'lab 

Ir; 
.,;- - 't a+ 'tb -y·a lJ, YaYb YaYb 

Thus in the nonlinear theocy the poiXllation inversion density 

is given by ( 5.8). This relation explain good a number of 

phenomena of nonlinear theory_ of laser. In the absence of 

the field when R = 0 we get from ( 5.8) 

Thus h~re N(o) represents zero field inversion density which 

is the conseqUence of equilibrium between the Jlll!lping and 

loss rates. 

We may say that in the presence of the field, the 

R 
inversion density is reduced by a factor 1 + R • This is 

s 
the effect of the induced emission i.e. the reduction 

increases with the intensity because R is proportional to 

·the intensity and as R increases the reduction factor 

(1 + ~ ) also increases. This is the nonlinear saturation 
s 

effect which prevents the exponential growth of the intensity 

which is found in linear theocy. This nonlinear saturation 

effect detenn.ines the stable amp~itude of oscillation of 

laser. 



-59-

We may calculate p ab in this nonlinear a pprox.ina tion by 

substituting N(z,t) for Paa- Pbb in the equation (5.1). 

Hence in the nonlinear awroxinntion 

1d 
-2K N(o~ t 

(1 + R) n = 1 
s 

This diff!'ers from the linear appiroxination (4.16) only 

b.y the substitution 

N(z.) 
i .... 

(b) FIELD EQUATION 

R 
1 + ir 

s 

• 

We have obtained the solution ( 5. 8) and ( 5. 9) of the 

atomic rate equations. In order to find corresponding values 

of c and s we must substitute ( 5. 9) in the equation for n n . .· . 

polarization ( 3.9) and equation (l."lla). The values sn and 

C in· the nonlinear theory differ from that of the linear 
n 

theor,y only due to difference in the value Nn in the two 

app.roximation. This calculation will help us in explaining 

some of the aspects of gas laser. 



In the linear approximation we had written Nn as 

1 

Nn J N(z,t) u~( z) dz 

0 

In the nonlinear approximation we must repl aee N(z, t) by 

1 + 

-· 
and Nn by N~ ( say) • Hence 

N' 
n 

L 

I 
0 

u 2( z) dz 
n (5.11) 

Let us consider the case in w~ic h only one rode is excited 

(say n) with sufficiently weak intensity i.e. R is well 

below the saturation. Hence 

Thus we may 

1 
R 

1 + 'R 
s 

R 
R s 

expand 

<< 1 

. -1 

- (1 + ~) 
s 

Higher order tenns are neglected. 

R 
1- R; + ••• ( 5.11) 

Putting ( 5.11) in equation ( 5.10} and taking the value of 

R and f-- ~ we get 
s 
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d 2 'li2 L 

N' N- ab .t(oo- 00 ) r N(O) u4 (z) E2 dz ( 5.12) n .fi~ X n 0 n n 
a b 0 

where 
L 

N - J N(o) ~(z) dz 

0 

and 

is the p.Imping rate which is 

either constant or slowly varying that is it changes little 

with wave length. 

We know that 

Then 

L 

I N(o) u4 (z} 
n dz 

0 - L 

J N(o)u 2(z) 
n dz 

0 



L 

I u 4 (z) dz: n 
0 
L 

J u~(z) dz 

0 

L 
4 I sin4 ( T) dz -2 L 

0 --
L 

2 I- sin2 ( T-> dz L 
0 

L 

I sin4 ( !!.'!!! )dz 
L 

2 0 

r L 

I sin2 ( !!!!! ) 
L 

dz; 

0 

2.. 
2L 

From ( 5.12) we have 

Putting the value of the integral from (5.13) in the above 

equation we find 
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d2y2 

' N' N [1 ab E2 l (w- wo) ] n -62y~yb n n 2L 

or 

N' - N [1 - v~ L(w - (.1.) ) In] .n '-· n 0 
( 5.14) 

where 

I ..l. d2 E2 
n 2L ..n2ya)fb n . ( 5.15) 

In here is a measure or' the intensity of the laser field of 

the mode n and it is a dimensionless parameter. 

Within the apQroximation 

·write 

Thus 

N' n 
N ,... 

We know that 

1 

N 

1 

1 + R rr; 

1 

= 1 - ~ we llily 
5 



;t(w - w ) n o 
1 

Therefore 

Thus 

N'­n 

-N .JI-1( ) I .,.. (l) - (.1.) 
n o 

In· the linear theocy we had obtainEd 

s 
n 

d2 
- ~. N y b £,(co - w ) 

/ll n a n o (I,.. 8) 

In the nonlinear theory Nn IIIlst be repl o.c ed by N~ 

given by equation { 5.16). Thus 

- -1 
N l. -(wn- UJo) l.{ ~n- 00o) En ~ab, 

( wn- wo) 2+( l+In )"'t~. 

or 

d2 N Enyab 
-..tr 

- (wn- w0 ) 2+(l+In)y~ 
( 5.17) 

equation (4.8) can be written as 

N "tab Et< 
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Thus comparing ( 5.17) of the nonlinear theory with the 

equation ( 4.8) of the linear theory we see that the effective 

resonance width has increased by a factor /l+I due to induced n 

emission. 

Substituting for S n from ( 5.17) in .the amplitude equation 

given below 

we get 

• 
E. + n 

• n 
E + ...!L E 

n 2% n 

or 

• 

or 
~ 

E 
n -r 
n 

S2 
n E - -2~ n 

If we take w : n I then we get n· -n 

1 o; -

This is a nonlinear d~fferential equation and has a steady 

-- "' 
state solution En = o. We get En or In by setting R. H.S. 

/- equal to zero. Thus 
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1 d2 
N 

"t'ab - ~ 0 
~ -(w- w) 2+ y~(l+I0) n 0 

or 

1 d2 - yab . N - - so/fl % (w- wo )2+y~( l+In) n 

or 

s-'fl o· yab 

~d2 N (w- oo ) 2+'¥·2 ( l+I ) n o ab n 

or 
"tab ~ d2 N' 

( 00 - ooo) 2 + "t~ ( l+In) ~ n e6fi 

or 

(oo- w )2 + ~2b(l+I ) N 
y~ --n o a n 

Nc 

where 

or 

or 

sAl 
...2- - Critical inversion Density 
d2~ 

-
- '1;1;2 .!:! --- llab -

Nc 
(oo - oo )2 - "tab2 n o 



Therefore 

I 
n 

N 
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- 1- ( 5.18) 

In particular at resonance i.e. at w ::: w, equation ( 5.18) n o 
redu:es to 

( 5.19) 

That ~s the dimensionless intensity In of mode n is equal 

to the fractional excess of the inversion density over the 

critical inversion. 

when N = N we have I = 0 c n · 

which is in agreement with the definition of the threshold. 

~ is called the Relative Excitation 
Nc 

Equation ( 5.18) suggests that the intensity decreases out-

side the resonance by the square of the ratio of deturing 

( wn- w
0

) to the width "t.ab. 



CHAPTER 7 

MODE COMPETITION 

(a) MULTI-1\'!CDE 

Uptil now we have discussed the laser oscillation in 

only one mode (say n) and found some interesting results. 

Now we will see what happens. when there is possibility of 

excitation of more than ·one modes. We will use here also 
R 

the same approximation R <<. ~ 

Thus 

1 

1 
R 

+a 
s 

s 

1 - !._ 
R s 

taking only first order term whe·re 

R 

and 

We know that 

N' n 

L 

I 
0 

M 

~ yab L(wn- w0 ) E~ u~(z) dz 
n=1 

u 2 (z} dz 
n 



L 

J 
0 

rJ 0 ) (1 - ~ )u2 (z:} da 
'"s n 

L 

= f 
0 

L M 

i;f L 
o n = 1 

y t:(w - w ) x: ab n o 

-:::~ N ... 
N(o)d2y~ 

[ .-n2y ~"t~ 
L 

J-
0 

The first two tenns are written with the help of equation 

( 5.14) and ( 5.!15) and then rewritting the above 

d2 2 -
E t(w- w ) N -

L 
2 

I. N{O) L 
4}2 

0 

A\2..~ v n . n o 
1 a•b ·· 

y2 M 
-!!L ~· ·· £(w -w )a2 u 2 E2 dz 
y-~ .·. m o ..... m n m a b . . m -n · - - · 
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-· N 3 -- - 2t l:(w - w ) N E2 -n o n 

L 

;t(oom- w
0

) r N(O) uti u~ E~ dz 

0 

( 6.la) 

We know that· 

Therefore the integral of the last term may be written 

L 

J Jo> ~- sin2< K z) ~ sin2(K z) dz 
L m L m 

0 

L 

.;,: 1 J N( 0 ) [1 - cos( 2Kmz) - cos( 2Knz) + - i:2 
0 

(6.1) 

If N(o) is either constant or slowly varying, then only 

the first and last terms within brackets given an appreciable 

contributio~~ 

Let us now define 
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L 

N2(m-n) - f f N(O) cos 2(Km· Kn) z dz 

0 

and we have seen that for m = n 

L ~ 

N ~ I Jo> u~{z) dz 

0 

L 
2 I N{O) sin2(K z) dz - -L m 

0 

L 
1 r N{O) {1- cos a K z) dz - -L n 

0 

L L 
1 I N(o) 1 r N{o) cos { 2Knz) L dz. -- r J 

0 0 

L 
1 J Jo> dz t' 

0 

Since second integral is zero. 

Thus at m = n 

L 

N ::: . f. J .N(O) dz = ~N0 ( s~) 
0 

(6~2) 

( 6. 3) 

dz 

Neglecting the first add last tenn of. equation (6.1) we 

get 
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0 0 

lL N(o) [(1 - cos 2Kmz) + 
L2 

l L l -- r r 

1 1 
2 r 

L 
r 
J 

0 

L 

I 
0 

!.
2 

cos 2(K -K ) z.]dz m n 

N(O) (1 - cos 2K z) 
m dz + 

N(o) 2(K - K )z dz cos m n 

Using ( 6. 2) and (6.3} we get 

L 

I N(O) u 2 u 2 dz l [ - 1 . - L N +· 2 N2( m-n) ) m n 
0 

Putting ( 6.1 .. ) in ( 6.la) we get 

M 

-~: _, l(w-, m 
m n 

We have shown in ,t}1e linear approximation that 

d2 
S = --- N ...,abL(oo - oo

0
) En n · ~- n ~ n 

(6.4) 
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Now in our nonlinear theory Nn of the above equation must be 

rep.!l.aC ed by ~Tt .. ·n • 

Thus 

s 
n 

-
.t{ oo - oo ) N E 2 -n o n 

Substituting this value of sn in the amplitude eqUation 

We get 

• 
~ -

• 
E 
n 

-- - s -n 

wn d2 - d2 - 2&0 
[- Ar ~'~ab t ( 00n- oo ) E N - ,fi' y b ;l_( oo -o n . a n 

d2 y2 
N E2E -~ t(oo- \ - wo, ,fi2 il~xb n n n 

a . 

'¥2 M 
d2 1 d2 ab L L(w_ lr "t.ab l (wn- wo) L' - -..b2 "'I.· a."¥ b m 

mTn 

ooo) 

wo) X 

3 2Lx 



Writing 

(IJ n 
2&0 
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d2 
N 1:· b t(w- w ) AC a n o 

w 
E ( n 
n 2e

0 

= E ·.ex n n 

d2 )1,2 

~ 
~ Yab 

and writing 

- - l3n• E~ 

and 

(IJ 
n 

2e
0 

- - e E2 E mn n m . 

( 6. 5) 

Sb E E - -n 2% n 

fl. 
Nt(w- w ) n ) 

n 0 -2% 
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We can express ( 6. 5) in terms of a ' {3n and e as n mn 

M 
E a E - (3n E3-

mz;_n ema E E2 { 6. 6) n n n n n m 

where n = 1,2,. •• ,M 

where 

w d 2 
N 2 

n 
an 

n l(w- wo) 
n 

re:n yYab -- ~ 0 ab n 

wn d41',3 
2. N 

Pn 
ab L 2(w- wo) 

2&0 -1\~'a"~b n 2 L 

emn 
wn d4"t~b 

t;(w- w ) L(w- wo) 
1 {Nt- 1 N ) 

2&0 -1}3.¥' y m o n L' 2 2(m-n) 
a b 

,..... 6nm N· 

If we compare the value of a with reference to (4.9) 
n 

we see that it represents the overall gain. Hence the 

condition of laser oscillation in mode n is an~ 0. The 

first term in ~ represents the gain due to balance between 

the atom pump and loss reservoir and the amplifying effect 

of induced emission. The second term of an represents the 

lass due to field lQ.ss reservoir. Thus we mly say 

a -= gain (Atom reservoir + Induced Transition 
n 

- Loss (field Reservoir) 
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~'n is a parameter known as saturation parameter. We can 

explain it by considering a single IOOde n. Then (6.6) 

becomes 

• 
E n a E - J3. E

3 
n n n n 

( 6. 7) 

E3 corresponds to E I of which represents a nonlinear n n n 

saturation effect according to ( 5.12). From equation (6. 7) 

we can find the intensity of single IOOde laser oscillation 

i~ the steady state (En = 0) 

a E a E3 
- 0 n n ,.,..,n n 

or 
E (a - f3. E2 

) n n n n 0 

- 0 

gain - D.oss ( 6. 8) 
Saturation parameter 

The parameter emn represents the nonlinear saturation effect 

on the coupling between different modes. 

{ b) TWO lvK:lDES 

Now we shall discuss what happens when we consider the 

possibility of m:>re than one cavity mode. We study the 

following nonlinear coup! ed diftterential equation { 6. 8) 



• 
E n 
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a E - {3 E
3 

-n n n n 

where n = 1 1 2, ••• ,M 

We take the case when only two adjacent IOOdes (1 1 2) above 

threshold are excited. Equation (6.6) then becomes 

where e = 612 ~ 621 > 0, ~1 > 0 and {31 > 0 

Let us introduce the intensity parameters 

X = Ef and Y =' E~ ( 6. 9a) 

substituting from (6.9a) in equation (6.9) we get 

• 
x = 2X( 0). - 131 x - eY) 

(6.10) 
f 

Y zy( 0!2 - ex - f3
2
Y) 

Let us find the steady state solution of equation ( 6.10) i.e. 

when X = 0 1 Y = 0 

Thus from equation (6.10) we obtain 
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0 :::: 2X( 0'"1 - f31X- eY)-

( 6.11) 

0 - 2Y(cx2 - ex- f3
2
Y) 

ACcording to (6.9a) only solutions in the first quadrant 

(x~ 0 1 y~ 0) make senses. From (6.11} we see that onl~-

four ty,pes of stationary solutions·are possible 

{1) 

(2} 

y 0• , 

X -· 0• , a - f3 Y 2 2 

(4) In the steady state simultaneous oscillations in 

both the mdes are achieved when 

0 
( 6.12) 

or 

(6.1:;) 

solution (1) represents laser oscillation in mode· 1 above 

and solution ( 2) represents in mode 2 above. They represent 

the single roode operation in either mode with the other 
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mode suppressed. Solution ( 3) is the trivial solution 

which is unstable above threshold. Solution will exist if 

the straight &ine L1 and L
2 

intersect in the first quadrant. 

Let us now discuss the solution{!.,..) in some detail. Sol­

ving (5.12) we get the steady state solution in the simul-

taneous two modes operation as 

where ( 6.15) 

y 

Let us investigate the stability of these modes. For 

this consider small derivation from the steady state solution 

for X and Y.· 

We write 

Hence 

. ; 

substituting for X and Y from above in equation {6.10) we 

get 
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Neglecting nonlinear terms in e's we get 

• 
el - 21-)(..,8

1 
e1 - exe

2
) 

• 2(-Yee1 - Y[j2e2) e2 

or 

• 
-2x<f'l el + 6e

2
) A 

"1 

• -2Y(f32e
2 

+ ee1 ) e2 

or 
• 
el -- --zx.a1 e1 - 2Xee2 

r 
(6.16). 

e2 - -2.Yf'2e 2 -- 2Yee1 

Writing in nntrix form 

. 
2X/11 2X6 el -el 

-
• 2Ye 2Y[j

2 e2 -e 2 

i.e. 
y - ~ 



where 

y =· 
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• X = I 

2X6 

and A 

Now we solve the matrix equation for the eigen value A. 

Then 

AX- ?\X - 0 

{AI - A) X 0 

or 
1 0 

0 1 

or 

0 

2Y6 

or 

-·2X6 

-2Y6 "Jt-2Y {a
2 

zxe 

2Yf3 2 

2X6 

-e 

= 0 

0 

0 

2 

The above ~stem of homogeneous equations have non-trivial 

sol uti on if and only if 
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-2X6 

0 

-2:Y6 

which is the secular equation 

The solutions are 

A =· 2(xt3l+Y(32) ± [4(-""l,+YJ32)2-4,4XYJ31(32+ 4·4XY62)~ 
2 

·We have seen that steady state solution is obtained 

when f1.13z ¢. e2 when 131 132 > e2 both roots ~ and ~ are 
- -

positive in \\hich case two mde solution is stable. This 

conlition suggests that mde coupling is weak which is 

us.Iicnly satisfied in a laser. When (31 {32 <. 62 one of the 

roots is positive and the two mdes solution is unstable. 

This is the case of strong coupl.ing and the presence of one 

mode supp,resses the other one and the solution is one or other 
I 

of those in ( 1) and ( 2}. The behaviour of two modes laser 



is illustrated in the Fig. (7.1). The figure is for the 

case c;_ = a 2 213
1 

= 13i• Both x, Y are non-zero as long as 

~ < 1 i.e. 1ft> e {weak coupling) and when ~· > 1 i.e. 

e > fJ one goes to ~ and the other goes to z.ero (strong 

coupling). 

(c) PHASE R.. ANE ANALYSIS IN LINEARIZFD APPROXIMATION 

The behaviour of t~o modes laser oscillation can also 

be weil un!erstand qualitatively by studying the nature of 

the phase-plane trajectocy of the coup! ed linear equation 

(6.16) which is the linearized approximation of the nonlinear· 

coupt61 equations ( 6.10). The nature of the phase-plane 

trajectory will describe phenomenon of roode compi.etition 

(i.e. which IOOde is suppressed and which mode is quenched 

and whether both IOOdes exsist. 

Olr aim is to show that how far the above linearized 

approximation explains the nature of roode com.p,etition. 

The linear coup! ed equations ( 6.10) are. 

where 



-

X,Y 

4 
!:"' --------------·- ---

~ 

!!!:. • a~ 

0 
0 1·0 2·0 

eJFJ 

riG· 'I·l The behavtour of' the two intensities X, y 
in two- mode operation· 



X 
~.81 ... cx2e 

~{32- e2 
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• , 

We have solved the secular equation and found the cha ractel'­

istic roots ( 6.19) ~ and 1\.
2 

in the previous section. 

Therefore solution of (6.10} is 

el 
~t 

ae + be 
A.2t 

( 6. 20) 

• ~t ?tot 
e2 ce +~de 2 

solving for e 
~t 

and e 
A.2t 

we get 

~t de1 - be
2 e ad- be 

arvi 
A.2t ae

2
- ce1 e - aa- be 

we can write 

e 
~t 

K(de1 - be
2

) 

A.2t 
K(ae

2
- ce1} e -

where 

K 
1 

ad- bC 



Taking lo~ of both sides of the above. equation 

or 

or 

or 

or 

where 

\ -· log[K(de1 -· be2) ] - -· 
~ log{K( ae2 - ce1 ) l 

.. 
w 

\/'A2 
_.K ---K 

A 
log[K(d e1 - b.e2) J 2 

( 6. 21) 



' 
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W and Z are the new variables corresponding to a rotation 

The nature of the phase plane trajectory deperd.s upon 

the nature of the roots ~ and x
2

• We discuss below the 

different conditions in which we get different nature of the 

roots and consequently the behaviour of the traj ector.y 

which describes the mode comp~tition. 

Case 1 

a
1 

1 (i.e. nDd e 1 well above threshold) 

a = 0~'4 (mode 2 having snaller gain) 
2 

131 = /32 = 2 and e = 1. 

Putting the above values in ( 6.19) we get the fOllowing two 

roots ~· = 1.81 and A2 = -2.33. Thus the two roots are 

real, unequal and opposite in sign. Therefore according 

to (6.21) the phase curve is eyperbolic (Fig.7.2) ani we 

find that of the' two eigen JOOdes one suppresses the other 

as time increases. This is the case of only one mode 

oscil1a tion. We can infer the same result from W - Z 

phase space diagram Fig. 7.2). 

Case 2 When --
CX:t = 1 and et

2 
= 1 (i.e. both IOOdes are well above 

threshold) 

131 = {32 ·=· 2 

e = .1 



PHASE:- PL.ANE TRATECTOBY 

w 

z 
Figure "1·2· ?\ 1 , 1\ 2 r-ea.l, unequal a opposite in sign-

w 

z 

Figure '!·3· )\,, >. 2 real, unequal and posilive. 



We get ~ = 2 and A2 = ~ • 
In this case the two roots are realy unequal ani pc:>sitive 

and thus the phase curve is a parabola (Fig. 6.2). Thus 

as time increases both the eigen JOOdes grow. This is the 

case of si.TJ~Ultaneous oscillation in both modes i.e. IOOde 

coupling is weak. 

Case 3 · When 

1 

1 and e = 1 

2 
we get ~ = 2 and A.2 = - 1 

The two roots are real, unequal and opposite in sign. Thus 

with increase of time one eigen mode decays and the other 

grows. That is only one JOOie oscillation is possible, which 

is the case of strong coupling. The p)ase space diagram is 

similar to Fig. { 7 • .3). 

It is interesting to note that the nature of mode compe­

tition which we obtained by the phase-plane analysis of 

linearized equations is well in agreement with' the nature 

obtained by Lamb 1. by the direct numerical analysis of exact 
-

nonlinear eq11a ti ons. 

----------------------------------·------------------·---------1. W. E. Lamb, Plzy. Rev. 1.34 A 1429 ( 1964) 



CHAPTER 9 

CONCLUSION 

In the semiclassical theory presented here we have 

treated the interaction of each atom separately with the 

field causetlby all atoms. Our approach neg! ects both 

atom-atom correlation and atom-field correlations. To 

treat the atom independently is justified for large field 

because one atom can influence the amplitude very little. 

lbwever, for a full treatment of laser one Will have to take 

into account the quantum'nature of.the field. 

The semiclassical theory presu~~ fails close to thres- · 

hold as the assumption of atomic independence is invalid there • 

The laser oscillation are assumed to take place at a set of 

discrete frequencies wn and consequ-ently the line width of 

the laser is neglected. By including the classical noise 

...-··· 

( i) a finite line width is obtainect. The line width obtained 

by the quantum theory is however twice that of obtained from 

classical theory. This difference is cdue to the spontaneous 

emission noise which has not been considered in the semi-

classical theory. 

-------------------·-----------------------------( i) Lamb, lV.E. Jr. Theory of optical rraser,. in Quantum opti<ts 

and El.ectronicsi Editors c.De Witt, A. Blendin and c. 
c. Cohen- Tannendji Gordan and B reach Science publication 

Inc. New Yo rl<- 1965. 
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This is the main deffects of the· semi-classical theory. 

Another consequence of the absence of spontaneous 

emission is that, in the serniclasical theory we have to 

assume that there already is a field present in the initial 

state, otherwJise the excited atoms could not decay. In 

order to describe the growth of oscillations from an initial 

state when no radiation is present, we need quantum theory 

of laser. 

The semiclcssical theor,y considers the electromagnetic 

field classically and hence question of photon distribution 

does not a rise.· Recently experimental wori( in the field of 

photon counting has provided ample justification for consi-

dering the quantum nature of the field. This has been done 

recently by \Ville's ( 1 1 2) Fleek. 

We conclude that the semiclassical theory is able to 

explain most features of laser operation. It is invalid 

very close to threshold and questions that depends essentially 

on the quantum nature of the field, like the line width and 

photon statistics, demand a quantu~mechanical treatment. 

Thus the semiclassical treatment provides the most useful 

1. Wille's C.R., Quantum theory of Laser model, P.tws.Rew. 
~~ 406 ll966}. 

2. Wille's C.R.'; QUantum theory of a gas laser, Phys. Rev. 
156, .320 ( 1967):. 
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·The first application of laser system in the field 

were reported, at nearly the same line by Fiaco ard 

Smullin (1963) 1 who recorded back scattered echoes from 

turbidity in the upper atroosphere using a pulsed ruby 

laser system, and by Ligda (1963) who measured back scatter 

from a molecular atmosphere and haze at low a1 tituct~s, am 

from clouds in the troposphere. 

In addition to ~sed laser ranging system continuous 

wave (CW) lasers with or without some form of roodulation 

have proven useful for nnint~ining environmental JBrameters. 

Such c.w. system have been used prinarily for measures of 

atmospheric winds and tu rbulanc e. 

With the laser only sl,ightly 100re than 10 years old we 

are already have examples of semi-operational use of environ­

mental monitoring, for cloud height detection and for urban 

pollution studies. P..s the requirement for environmental 

quality control increases in importance in the coming years, 

there will not doubt be increased emphasis in the operational 

use of lider (light detection and ranging) for mnitoring 

pollution mixing depths, visibility, wind and for chemical. 

analysis of pollutant constitue.t:lts in the atmosphere. The 

ground work. for such develoiJUents has been laid by the research 

and feasibility studies. There will certainly be additional 

applications which will prove visible as laser technology 

advances in the corning y:ears. 
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starting point for most applications of the laser theory. 

APPLICATION OF LASERS IN ENVIRONMENT;.\L MONITORING 

We have discussed some interesting theoretic~! features 

of lasers. 
• Q 

In view of the growing problems of env•l)llllent, 

it will not be impertinent to mention some of the application 

of laser in environmental IOOnitoring. 

Probing the environment with tight is an old technique. 

'!Yndall ( 1869) used an electric lamp to study the polariza-

, tion of light scattered from smoke in his dari<ened nineteinth 

century laboratory. Hllburt (1937) studied atJOOsphertc 

turbidity and molecular sea ttering to a height of 28 km in 

1937 using a search light. Freidland et al (1956) used a 

pulsed searchlight technique for atmospheric probing and one 

of our present day turbid atmosphere model is based on such 

measurement by Elternan ( 1966,1968). 

But it was the invention of the laser b,y ~liaman (1960) 

and of the giant pulse technique by M::Clung and Hellwarth 

(1962) that revolutionized optical probing of the environment 

' This potential was quickly realized by Goyer and Watson ( 1963) 

who considered the possibility of mapping the s~tial and size 

distribution of droplets in cloudes and perhaps wind and turbu­

lance by means of the Doppler frequency shift in back scattered 

light. 
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