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CHAPTER 1

INTRODUCTION

Lasers are one of the biggest achievements made in the

second half of the twentieth century.

Lasers are quantum generater working in the optical
region of the spectrum and so they may be called an extension

of the maser principle to the optical domain.

The principle on which lasers opération is based is the
amplification of electromagnetic oscillétions_ by ineans of a
forced or induced radiation of atoms and molecules, Einstein
had predicted this kind of radiation as long as 1917 while
studying the equilibrium between the energy of atomic gystems
and their radiatic‘m.{ Therefbre, it will be ndt.wr:@pg ‘to say )

that the history of creation of lasers begins just as early, |

We present hér{e'a theoretical descfript.;on of the oﬁera—
tion of nnltixrbd’e'vl“‘éisér oscillétion. This app-roéch is parti-é
cularly suitable for gaseous lasers of the type suggested by
Schallow and 'I‘owness1 and f.u'st realised experimentally by

Javan, Bannet and }kirr:lot,t,2

1, AL, Schallow and C,IL 'Tdees, Phys. Rev. 112, 1540 (1958)
2, A, Javan, W,R, Bennet and D. R. Harr:.ott, Phys. Rev, Let.ters
6, 106 (1961) ‘ G : '
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The equations obtained are also useful in describing

some of the features‘ of solid state Lasers,

We consider a classical electroxﬁagnetic field in &
high - Qmultimede cavity, acting on active medium consisting
of collection of atoms, The atoms are described by the laws
of quantum mechanics whereas .el.ectromagnetic field is described
by Maxwell's equations, We do not consider the phenomenon
of noise due to‘ spontaneous emission, thermal density or .
quantum fluctuation, The intrinsic line width of the laser
field, resulting from‘spohtaneous .emission etc, ca'n only be
obtained by taking into account the field quantization,
Javan and Co-workers' have obtained a high degree of Speétral
purity which suggests that the exclusion of the phenomenon of

noigse in the semi-classical theory is a good approximation,

A macroscopic electric polarization P(r,t) is produced
in the active medium due to interaction between the el ectro-
magnetic field and the atoms in the cavity, This macroscopic
polarization acts as a source in the electromagnetic field
in éccomam,e with the Maxwell's equations, The amplitude
and freqhency of possible osci]_."lations is obtained by the

condition of self consistency (that the ficld produced should

%s T.S. Jaseja, A, Javan and C,H, Townes, Phys, Rev, Letter
10, 165 (1963) - ‘
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be equal to the field assumed), Our calculation includes
non-linear effect which describes the phenomenon of frequency

pulling and mode competition,

We have assumed that only two atomic states 'a' and 'b!

. contribute to the laser action, We further make the simpli-
fication that the vector character (polarization) of the
electric field is ignoied. In our calculation cavity is
employed with windows of the Brewsters angle type so that the

optical configuration favours one plane of polarization,

The cavity of the Fabry Perot type used by Javan, Bennet
and Harriott is not enclosed by a reflecting wall and S0
contains a continuum of modes, However Fox and Li'! have shown
that there are descrete sets of quasimodes for which the loss
due to diffraction leakage is small, The cavity modes of
highest Q are the even symmetric ones whose circul2ar frequencies

are given by

— amc
f‘ln - L

where ¢ is the velocity of Light, L is the distance between
the reflecting planes (L ~ 100 cm) and n is a large integer,

of the order of 2 x 106'.' Fox and Li have shown that the mode

1, A.G. Fox and T, Li, Bell System Tech. J. 40, 61 (1961) -
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of the next highest Q differ by 1 mc/sec from the former
modes, Our discussion will be specifically aimed at the

mode of highest Q,

The basic model for the laser is schematized in the
Fig, 1.1 we have N0 active 2 level atoms per unit volume all
coupled to the lager field by an electric dipole moment, It
can be imagined that each atom i is being coupled to its own
" Pumping Reservoir® Rpi‘ Similarly each atom i is coupled to
its own "Loss Reservoir" RL,i which describes the damping of
the levels 'a' and 'b' due to (non laser) transition to other
levels and to atomic collvision_.‘ The laser field is also
coupled to a 'Field Loss Reservoir' RL,F which describes the
damping of the laser modes due to transmission through the
semi-transparent mirror, diffraction losses, losses due to

finite conductivity of the walls etc,

The laser system formed by the active atoms and the field
(broken line box in the fig., 1) represents an 'open system'
which int‘eﬁ:hanges energy with the pump ahd loss reservoirs,
In the condition of stable oscillation above threshold, it is
a system which is far from thermodynamical equilibrium; this

is one of the reason why it is theoretically _interesting.
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We have discussed the fundamental assumptions and the
basic philosophy of the semiclassical theory in chapter 2
and then using thé Maxwells equations we obtained the frequency

and amplitude equations of the field in terms of polarization,

Chapter 3 describes how with the help of Schrodinger
equation, microscopic polarization can be obtained in a two
level atom system, At the end of this ¢chapter we have intro-
duced the density matrix fomalism and deduced the equatibn
of motion of density matrix, which is instrumental in our

further calculation in the following chapters.,

Macroscopic polarization has been calculated in chapter 4
with the help of density matrix, At the end of the chapter
we have obtained a get of rate equations for diagonal and off

diagonal el ements of the density matrix,

The rate equations mentioned above have beén solved in
chapter 5 uy agsuming the population inversion density inde-
pendent of time which helps in calculating macroscopic pqlarifr
zation P(r,t), This chapter also determines the linear
equation in E and conditions of laser oscillation; and then
expression for critical population Inveréion Density:is'obtained
' Frequency Pulling“EffecQ' has been discussed at the end of

the chapter,
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Chapter 6 contains how rate equations of linear appro-
ximation are modified when we consider the time-dependence
of population inversion density., We have pr‘esented the steady
state solution of rate equations which defines the population
inversion density in non-linear approximation, Next we have
obtained the diagonal matrix element which helps in obtaining’
the field equation which is non-linear in E, Solving this
non=-linear field equation in the steady-state we get the

expression for intensity of laser oscillation in one mode,

Mode competition phenomenon has been discussed in
chapter 7, In this chapter amplitude equation has been derived
assuming the probability of oscillation of more than one mode,
At the end of the chapter we have discussed a simple case of
two modes.oscillation and shown how under ceptain circumstances
one mode suppresses the other and when both modes oscillate |
simultaneously, The phenomenon of mode competition has also
been explained with the help of phase-space diagram in linearized
approximation, |

We have concluded our discussion of the semi-classical
theory in chapter 8 profiecting its success and failure in
explaihj,ng certain important features of lasers. A more
illuminating theory is required to explain the finer details

of the laser problem, which is nothing but the quantum theory,



CHAPTER 2
EL ECTROMAGNETIC FIELD
(a)  BASIC ASSUMPTIONS AND PHILOSOPHY

In a laser an electromagnetic field is in resonance with
the atomic transition between two levels enclosed in an optical
cavity resonator, The resonance of the field with the atomic
transition gives rise to stimulated emission; the emitted
radiation is again in resonance and gives rise to further
transition in other atoms and in this manner a kind of chain

reaction or photon avalande starts,

The field in a cavity is characterised by a discrete
sét of eigen modes, The atoms taking part in laser operation
are eXCited.by a pumping mechanism, This pumping causes
"electronic transition, to a large number of excited states
of which same pairs will be in resonance with the cavity
modes, These transition will amplify the field if ihe popula-
tion of atoms in the upper level is more than the population
in the lower level, In themmal equilibrium, lower level is
more populated than the upper level, Hence the reverse
situation which is the pre-~requisite of laser operation is

called “"Population Inversion',
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Another important requirement is that in a cavity there
are large number of mod es competing with the energy in the
frequency range of atomic transition, To get the laser action,-
this is reduéed to a small number by employing, instead of a

cavity a laterally open system with mirrors at the ends,

When the amplification by the resonant transition exactly
compensates the losses in the cavity due to imperfect reflcc-
tion etc,, the laser oscillates in a steady-state, If the
gain is higher than the loss, the intensity increases untill
a new stable state is reached, Thus it is important to consi-
der the non-linear properties of the laser, because the outpt

iﬁtensity is determined by the saturation behaviour,

Let us consider angemble of excited two level atoms,
upper state |¢a>> lower state |¢b>> placed between the mirrors
of a laser cavity at time t = 0, We assume that at this
initial time there exists a small electric field in the cavity,
The atoms will respond to this electric-field and begin to
oscillate as tiny dipoles, These atomic dipoles add up to
give a macroscopic ‘polarization per unit volume, The macro-
scopic dipole moment now drives the field i,e, acts as a

source of radiation, The theory of laser action as formulated by

Lamb ! may be summerised in the following three Bteps,

oy S

1, W.E, Lamb, Phys. Rev., 134, A 1429 (1964)
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1. Assuming an initial field E(r,t) acting or an atom ( say
the ith atom) injected into the laser cavity, we calculate
the atomic polari_zation< P; > accoring to the laws of

quantum mechanics,

2, These atomic dipoles add up to give a macroscopic dipole

moment per unit volume

N

Mryt) = Z <»pi(r,t)>
. A=1 ' ’

where N is the number of lasing atoms per unit volume in the
Cayity at time t, If the excitation is uniform we may write

Mr,t) = N< plr,t) >

¥
3, This polarization P(r,t) drives the laser field according

to Maxwells equa tion,

We assume each atom 'éanlvés in a field prepared for it
by all the other atoms,' then look for the field produéed by
many such envolving atoms, In this way the laser problem is
similar to that of a feammgnet in which each spin sees a
mean magnetic field due to all the three spins and \aligns
itself accordingiy s thus contributing to the average magnetic
ficld, There each laéer atom interacts with the electromagnetic,

field produced by all the other atoms that have contributed

to the field via stimulated emission.
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Both semi-classical and quantum theory of the laser are

based on a number of assumptions, These are listed below,

1, Two Level Atoms

We assume only two level systems take part in the

transition that gives rise to laser radiation,

2, Electric Dipole Approximation

The interaction between the two level atoms and the
radiation field is treated in the electric dipole approxima-
tion, This is justified by the fact that optical wave length

are much greater than atomic dimension,

3. Absence of Direct Interatomic Interaction

The direct interaction among the atoms of the active

medium is neglected, They interact via the common radiation

field,

4o Rotating Wave Approximation

In the expression of the type

eJ,( W - wo) t-yt e--.i.( RN tyt
+ . -—
w - wn— iy W+ wn.. iy

where wo, ¥ correspond to atomic frequency and line width,

w the mode frequency, the second term (anti-resonant) is
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neglected as compared to the fifst term (resonant) because
the mode is close to resonance l&)o«-wnl € Y whereas

(go°+wn) >> y. The neglected termm is both smrll (due to
denominator} and rapidly oscillating, This approximation is

known as 'Rotating Wave Approximation',
(b) FREQUENCY AND AMPLITWE EQUATIONS

The intensity of the electromagnetic field in the laser
is very high there it is justified to consider the electro-
mgnetic field classically; this is in agreement with the
correspondence principle which states that :' quantum mechanics
goes over to classical mechanics for large quantum number,
It is very helpful for many purposes to treat the electro-
riagnetic field ih classical terms i,e. it‘ is not quantiged

and treat the atoms quantum mechanically,

Condier the equationé for the field due to a given
macroscopic polarization Br,t), The el ectromagnetic field

in a cavity is detemined from Maxwells equations

IxE = ...g% (1.1)
Tx®E = -j""?t' (1,2)

(=1
ot

<
oot
H
o



e

where
D = soE + P
B = uh

J = oE

(1.3)

0 is the equivalent ohmic conductivity which is introduced

here as a purely phenomenological parameter to represent the

damping of the laser intensity which arises from the field

losses due to imperfect reflections in the cavity and mirrers

and other causes,

Equation (1,2) may be written as

'V'?x'ﬁ:o"-n--é%(eoﬁ.p?’)
or
3x'f{= o'E...so-é%‘ﬁq-%T’

Equation (1,1) may be written as

- 0o - ' O =
HVxE = --é-fp.oH = ..-;:.OEEH

Taking the curl of equation (1,4a) we obtain

Tx(¥xH) = "7x(—u'olaat-ﬁ)

-ucvé%(vx?l)

(1i4)

(1, 4a)

(10 5)
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From above

= - o E
Vx H = OE+SOEE”' -é'E'p
or )
3 - oF
EE(VX H) = 3t (OE+8 v, atﬁ)
or
2(TxT) = 2o Lo XE, T
ot % _ ot a2 a2
From equation (15'5)
D (s_.Tv_. Ux(¥YxE)
at_'(V.x H) = - - m
) _ ’ "o
From equation (1,6) and (1,7)
wVx{(VxE) :*%OE+609—§+%P
- I'Lo . a’t at'
or ,
- - 3E | 3°E %P
-Vx(VxE) = op, 55+ imy8, 2+,°;5—t-5
or = o : : Zp
ok - a~E o S U e o“P
o P_'O 5t woeo“'ggé"*v x(VxH) = - i, o
or ) h
- - oF &°E 3°P
Vx({(VXE)+pnoOs+ie — = - ——
AERARRETES SENN ~ Rt

Since solution of the laser fi_eld will be practically

menochromatic, we can write

(1.75

(1.8)
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where w is the mean angular frequency of oscillation of P
which’ be latter identified with frequency w of the laser
field, This ap‘pmximation essent’ially means that the polari-
zation P contains parts which oscillate with frequency within
a narrow range only, Let us confine our attention to éxial

mode and expand the electric field in terms of a complete set

of such modes,

Bz,t) = Z An(t) Gn(z)

= /2 A(t) sin(k2z) (1.9a)
where '
nm _ h
c

kn :1 -L— —_

Here L is the laser length ( # 100 cm), 9 is the eigen
frequency of the cavity mode, and the coordinéte system intro-
duced is one with the léser axis along the z axis, The
electronagnétic field is transverse in nature, hence we have
two modes for each kn‘ But for convenience we assume that
one mode is suppressed by Brewster's windows and only one
mode for each k_ is considéred. Simidarly we can expand

polarization '?(z,t) in the cavity eigen-functions as
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Plz,t) = Z T’n(t) ﬁn(z) (1.9)

where ﬁn( z) satisfies

Vx (9x En(z))_ goeonﬁ u(z) = o (1.10)

and the boundary conditions.

Substituting equation (1,9a) and (1,9) in equation (1,8)
- and using equation (1,10) we get

2 -
d An( t) o dAn( t) w2

2 -
2 ts, et ﬂr} A () = N Pp(t)  (1.11)

where the driving force P (t) is the proflection of the

inhomogeneous source term P z,t) on the mode n

L -
Pn(t) = I P(z,t) un(?z) dz (1.11la)
. o
We see that the unknown mode amplitudes An(t,) in equation

(1.11) obey the equation of motion for the driven damped

ha rmonic oscillator,

Consider the simple time dependence of An( t) i.e.

iwt

An(t) = Ae
substituting the above in equation (1.11) the L.H,S, is

obtained as equal to
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- wgelwt + K iwelwt + 2 elmt
€ n
) 0 -0
= eiwtf' (- w4+ iy 02)
€ n
- o -
The factor
2, . O 2 _ . 9 _
~0% + dw =4 B2 = (ﬂn+w)(ﬂn w) - i —- W (1,12)

o o - o

Now resonance interaction can take place when w = ‘Qn .
Thus egkpression (1,12) becomes

| o
z 20(f~ @)+ dw O

= 20[(2- o) + 4 -2-58’; ] (1,13)

The half-width of the resonancesis given by
Aw = 2

o

The cavity Q value is defined in the usual wgy

Q = ﬂrﬁi‘raction of stored energy dissipated per

unit time )
—t/"Cn
Since the energy decays e s where Th is the mode life time,
5 w

_ . n _ n
Q = Kty T AR = A w
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Hence
. W (
= ow = e = %o ,
Q = Aw = m; = 5 , (1.14)

equation (1,14) is introduced into equation (1,11} to

eliminate o and result obtained is

a2 alt) o dAlt) w2
o tg Ta * ﬂﬁ A(t) = —;—Pn(t)'

‘ (1.15)
equation (1,15) will bec ome @ differential equation for the
determination of An( t) after imposing the séif consistency
requirement, The total output energy cannot exceed the
energy supplied by Optical pumping and a saturation effect is
obtained, A steady state solution corbesponding to the
stable amplitude of oscillation can only be obtained from a

non=-linear theory,

This non-linear difflerential equation can be solved
by a classical method - "Méthod of slowly varying amplitudes
and phages" due to Krylov and Bogoliubov. The following

"ansatz" is made for the forlution Solulion
An(t) = E(t)cos (o t+ cph‘t)) (1,16)

Resolving the projection of the driving polarization Pn( t)
into a component in phase with the electric field and a

component #/2 out of phase we get ansatz
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Pn(t) = cn(t) cos[wnt+ cpn(t)]

+ sn(t) sin[wnt + q)n(t)j (1.17)
where En(t), q:‘r(t), Cn( t) and Sﬁ(t) are slowly varying compared
to ccs wnt and sin wnt.' The ansatz (1.16) and (1.17) are
introduced in (1,15) and since En( t), cpn( t) are slowly verying

E sy 99 0E, -Q; ’ %;
can be neglected,

Since

1\‘(1:) = En(t) cos (wnt + o (t))

Therefore
d Ah(t) .
o2 = - (wn+ cpn(t))Ensin(wnt-;-cpn(t)) +
E_cos (0 t+ glt) (1.18)
and
d2a (t) ' . . .
_:‘t‘g = cos(wnt + cpn(t)) [5‘_-. §n(w§ + 2wnq>n(t)+q>§(t)]

- sin(wnt + Qn(t)) [EnZ( Qn+%}f) + Enq’n( t) ]

-

neglecting the underlined terms in the above relation we

we get
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d2An( t) | | 2 . .2
e = cos(w t+o (t))[- x'i‘n(c:o{1 + 20 ¢ (t)-g2(t)]

- sin(w tro (t)) [2énwn] (1.19)

Now we put equations (1,17), (1.18) and (1.19) in equation
(1.15) and obtain

cos(a t + '<pn(t)) {."En( wi+2wn+ 6n( t)+€p§( t) J-sin(w teo (t)) x

| (2fi:nwn)+ -&:\- I::ncos(wntp%(t)) - -gn- (wn+q.2n(t) )En X

—

sin( w t+ Qn( t)) + 'ﬂﬁEnco s( w, t (pn( t))

= &

2
= 5 [Cn( t) cos( @ t+ @n(t) )+Sn( t )sin( w te g t)) ]

Neglecting the underlined terms, and rearranging we get

coslu,tre, () [E {(w220 & (232 e)) £1] —

) . w
. " ) n
sin( w tr (pn( t)) [ZEnwn-g- En]

%

w2 2

w ( .
= cn(t)cos( w t+ (t))+ o sSn(t) sinw trg (t))
" (1.20)

Equating the coefficient of sin in the above equation we get

w W
LU

Qn n

2 .

w — . 1 -

-ég-Sn(t) = - 2B 0

o :

or E
w - ' B
- sn(t) = ..2En... w

® n G
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or

EGt) + 2 £ E(t) = - 2 L5 (¢) (1.21)
equation (1,21) is obtained by putting w, ¥ w, because only
that part of P which oscillate with @, ® w will be important

as the distance A between the cavity eigenf-fumtion is much
larger than the width of the cavity resonan’ce:, Aw £ A - Bquating
the coefficient of cos in the equétion (1.20) we get

n — 2 5 ! . -
-g-:-cn(t) = -VEn(wn+2wn q>n(t)+cp§(t) )

)
or wz
En[nﬁ- (o + o (t))2]) = -éi‘- c (t)
or w2
. . — n
En(nn_ + o + g(t) )( & ~w = ( t).) = 5 e (t) |

The frequency of oscillation W is very close to the cavity

eigen frequency nn and we get

(ﬂn-l- w, + cpn(t)) 2 2w

Hence

n "cn( t)

1
ol
I

E(R-
n' "n

o = 9(t))

or 2
- ¢ (t)) = C (t)

ol
l

En( ﬂn -
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or

( ¢ ( = 1% '
wn+ (pn t)-ﬂn)En = --2-5:;0({3) (1.22)

Thus we get the two conditions

. . 1 wn 7 i | 1 wn

En(t) + -2-6;; En‘t) p— S -é -é-;- Sn(t) (1.21)
o (t) - 9 JE(t) == LB c (p) (1

[wnfq’n TR T T T 2% n 1.22)

These equations determine the amplitude En and the frequency

W i =
wn hen Pn s knowr_\.

“Yakis

525-375:54




CHAPTRR 3

MICROSCOPIC POL ARIZATION

After .t‘inding the freciuenCy equaticn (1,22) and amplitude
equation (]:f&l) we will proceed to i‘ind\ the microscopic pola-
rization with the help of Schrodinger ec}t\lation for a 2 level

systems,

-

According to our assumption (1) we may represent an

~active atom by a two level system ( Fig, 3.,1)

l¥a>

(J.Ja- (A)b = W,

, 6>
Fig. 3.1

Let Ha = Hamiltonian for a free atom

The stationary eigen functions of the two states |y, > and
|44, > respectively satisfy

. HAwa( x) = A waﬂra( x) _
| | (2,1)

H A"Fb( x) = A wbv,[fb(x)
together with
:%ﬁdmz'f%%¢t= 1
‘ m | (2.2)
yh‘axjfbdvc = 0
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and

= Gy = W (2.3)

The corresponc_iing time dependent wave t‘uncti_on is given
by
1lfa( Xst) = 1#‘8( x) exp(f-lwat)
| (2.4)
Pplx,t) = z{fb( x) exp'(-iwbt)

1

In the Weiss Kopf-Wigner approximation ' the decay level

'a' and 'b' takes place exponentially

¥
#a(x,t) = 'e{ta(x)exp[—-i(wa- i -2-3 )t]
- o (2,5)

| : y
P! Xpt) = ¢l x)exp[—i(wb- i -515’- yt]

where

1 - —_ :
X T T, ( = life time)

Now we introduce the atomic loss reservior by phenomene-

logical replacement

b 4
W =W == i -2
a a 2
i Y.z.b
wb._v-) (.ob - :

1, W, Heitler, The Quantum Theory of Radiation, 3rd Edition
Oxford University Press (1954) P, 182,
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Hamiltonian of atom interacting with the laser field may be

Written in the dipole approximation

"1
:

H = HA+6V (2,7)

where ~ :
AV = «exElr,t) ' (2,8)

and r is a fixed point' in the atom,
Let at the initial time t = to the atom is pumped to
level a, T_hexi .
‘Mx,to) = Wa( x) (2.9)
Under the influence of pertufbation (AV/) transition to level

b is possible due to induced emission and so the wave func-

tion at a latter time t becomes

Uxtd = alt)y (%) + bl ) (x) (2,10)

This state may be represehted by a column vector

a(t)
> =
,”f t ~\b(t)

Time dependent Schrodinger equation is
in %g = Hy

w %

or

(H A+'r1V) ¥
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Substituting for ¢ from (2,10) we get

e bYy) = aw g+ by VY VY

ia

Taking the vector product of above with zp': and ’#’f, res-
pectively and using the relation (2,2) we get

and

awa + bVab + avaa

ib = bmb + .aVba + beb
Thus we have
ia = wad+ Vabb
(2,11)
ib = Vbaa + wbb
where
R ' ok - d
valb is the matrix element I «@vw dg = V’l‘)a= -E(ryt) X
Since
' AV = wexE(r,t)

V = - 22 Hryt)
Now
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I"’;W”"b'd"’ = ‘%Iﬁ"%“

or

-/%J‘t[f’;exﬁfbd't

_e. g

where

d = J-w";exzifbd'c = equ;vadmée< X p >

and is known ag" Transition Dipole Moment",

In deﬂuc_ing (2,11) we have made use of the fact Vo=

Vp

dipole moment in a stationary state vanishes, This becomes

b = ¢ which means that the expectation value of electric

obvious due to the fact that dipole moment operater has
negative parity whereas, due to 'definite parity of a stationary

state, the probability distribution has a positive parity,

The expectation value of the electric dipole moment in

the state Y x,t) (= a(t)v#a(x)+b(t)¢*b(x)) is given by

<p> = e< ;{]rlxl\z{r>

il

- e IWXW¢ :@%H( " Y b¥ g Ix(ay _+ by, )dw ]
= el jfaff W;wadgog-“ f?téb$;a¢ix¢£ad¢ +

a#b.[ "V;x '([libfi't + b*Db J‘ \”'f; X ﬁfbd'r:]



= ela*b I '4’; x Yyde + ab”‘f #fl') x ¥, dv

= a%*b I ¢ , * I
e tp';xz[fbd'c+abe ﬂlixt[radq:

= 2"bd + ab®d
= d.i a”b + al;*)
Therefore '
< p> = dlafb + ad%) | (2,12)

Now equation (2;11) can be written in the following matrix

form,
Y
- i 2
d a Qa n 2 Vab a
i T = Yb (2.13)
b Vba e i Z b

Here we have introduced damping terms Ya and Y by replacing

o, and w, according to (2,6), We write (2,13) in the following

b
form
a [° T 2 |
ig = [H- il -2-)] (2.14)
\b -~ \b
where
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i1
£
o

and
_ Y’a

Let us now define a density metrix (operator)

a |
plt) = (a* %)
b -
aa* abﬁ‘ 'al2 ab"ﬁ
bb* a*b b2

ba®

&

From the property of a density matrix we know that

1

Trp(t)

i, e,
jal2+ (b2 = 1
p(t) may be written in the

and this is only time when I' = 0O,

matrix element form as



“aa

Pha Pbb

Thus

a*b = Pp, 2nd ab* =

pab

ats
a:.- b

ab*

Ip]®

(2.15)

Substituting from (2,15) in equation (2,12) we get the dipole

moment in terms of the element of the density metrix

L p> = d(pba+ pab)

— 5
= d(pab + paP)
because p is a Hermitian matrix.

Thus
— 5
<p> = dlpp+ fy )

We have

Therefore

e

'&d't';'p = (a* b*) 4+

or

(2,16)

(a*  b¥)



d . 3 2 X S
ia-‘-_‘-p = i (2 b*) & (¥ b*)

-
\

Using (2,14) for the first term and using Hermitian conjugate
of (2.,14) for the second term in 'the above equation we get
T

N L]
Ny

= H-pH-3(Forp3)

= [Hpl - 5 { pepl
Thus we get tlr;e eciuation of motion for g

t4e = mA-% e (2.17)
where {I'yp} stands fo.'z" tl;e anti-commtator,

This equation of motion is very instrumental in finding
the macroscopic polarization and hence the amplitude of the

laser field, which will be shown in the following chaptersy



CHAPTER 4
MACROSCOPIC POL ARIZATION

Now we will compute the macroscopic polarization P by
statistical summation of the microscopic dipoie moments of

all active atoms,

We have just described in the previous chapter that a
single atom pumped to a level 'a' at a time to is described
at time t by a density matrix (operator) p(a,to:t) which is
the solution of the equation of motion (2,17) and which

satisfiegs the initial condition

p( a’togt) b= P( a) (301) .
where 1 | 0
pla) =
(o] 0

the atom im state a,

The corresponding cbntribution to the expectation value

of the dipole moment at time t is given by
< p> = T.lelt st)s Bl - (3.2)

from the property of density matrix where ﬁ{is the operator

corresponding to the transition dipole moment



dol = e<k xab> °1

0, is the Pauli matrix,

1

The above equation (3,2) may be written employing (2,16)

Zp> = d[pab( ast st) + p’;b( a,to,t)]_ (3. 3)

Different atoms i are pumped to level 'a' at different time

toi’ Thus the macroscopic polarization is given by

Plryt) = Z; T.[payt,;st). ] (5.4)
t t . |

oi
where sum is extended over all active atoms per unit volume

which has been pumped to level 'a' upto time t (i,e, for all

ty; < t).

Writing

Z p(a’toi,t) = p( a’t)

equation (3,4) becomes
Plryt) = Tr[P( ast) PJ (3.5)
Let us define A (t ) dt = average number of atoms
pumped to level 'a' during to- to+d1;0 per unit volume over r,

This is known as average pumping rate density we have omitted

the r dependence in the rotation, .

4



Then we can write

p(a,rt) = Z p(a,toi,t)
+ ,

as \ ‘
playt) = I ?»a(to) p(a,to,t:) e, (3,6)

Taking into account the initial condition ( 3,1) and differen-

tiating (3,6) w.r, t, time we get the equation of motion for

playst) as
t ‘
0 _ s 0 . :
igpelat) = 4 ha(t) fla) + 5 I i ha(to)p.(a,to,t)dto
or
t
i dast) = i n(t) +j A () i 2 olayt pt)dt
ot &9 a Pa a o Jt Pt art,s o
and using (2,17) we get |
i g'af pla,t) = i L pla) + [Hyplaygt)] - % ifyplast)}

(3.7)

Similarly taking into account the possibilities that

there are atoms being excited to the lower level 'b' and
introducing the corresponding rate 7"1)’ the average pumping

rate density we define for the two level systenm
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p(?,t) = p(a’t) + P(b,t)

the equation of motion for p(T,t) is in the two level system

is given by
Y i '
ige = in+ [Hpl -3 fryp) . (3.7a)
where A is the pumping rate matrix given by

A 0
a

0 M

Here A is the representation of 'atom pump reservoir'

A= Apla) + Ay D) =

just as T represents the 'atom has reservoir', The energy
imput due to A can be compensated for the energy loss due

to ' and leads b0 steady state solution, we may write

i
4 |

plret) = plast) + plbyt)
' I ?sa(to)p( a,to,t)dto +

- 0

t _
f 7\.b( to) el b,to,t) dt,

t
f [r(t)elast st) +

- 0 -

hb( to) p( b,to,t) _]dto (3.8)
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From the definition'of Ra’ hb and the form of the single
atom operator I'y the diagonal elements of p(r,t) have the

following physical interpretation,

paa(r,t) = Na(r,t) = population density of
level a

(r,t) = Nb(r,t) = population density of

Phb
level b

And the density of population inversion is given by

N

paa( I‘,t’.) - pbb( r’t) = Na( r’t) - Nb(r,t)
= N(P’t) (509)

Using equation (2,16) we get

S

Mr,t) = T.[p(r,t) B]
= d[’pab(r,t) + p‘;b(r,t)] (3,9a)

Now we have complete set of equations of the self
consisting theory which are given below,.
The following equations determine the electric field

E(z,t)
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o wn
(wn o ﬂn)En = T 2e, Cn
. g “n
E L v E = e e ©
n 2Qm n 28‘0 n

E(z,t) = Z An(t) un(z) = ,/f- Z%(t)sin(knz)

%(t) = En(t.) cos (wnt + @n(t))
L .

P(t) = [ P(zt) uz) az
o

= t
Pngt) Cn( t) cos[mn + q>n(t) ] +
s (t) s.m‘[wnt + Qn(t)]'
and the following equations determine how polarization depends

on the electric field

i -g% = iA+ [Hypl - % {p Typl

where

©a 0 0 vab
H = H°+V.z" = +
: 0 Wy, A" ab 0
wa Vab

( 3.10)



Vab - J"’I’;Vﬂﬁb dv = VJ;a = -E(r’t)’ﬁ

Pegt) = dlogbret) o oly(red] = Tle(re)5]

Now this dependence of polarization on electric field E(z,t)
is non-linear, The problem is to find a simultaneous solution
of these two sets of equations corresponding to steady state
solution, We may write equation (3,7a) in the following

mtrix form,

Paa pab 7\a 0 Haa Hal:) Paa Pab
i = i + | ‘
Pba  Ppb 0 M, Ba  Hp/\Pba Pub

Haa Hab ,
B a Hop
[ Y a 0 P aa P ab paa P ab Ya 0
+
Pba  Pob Pha "

whence



Haa ~ab ¥a 0. Ma
H = s T = and A =

Hba th- . 0 ¥p 0

Taking the off diagonal temm of the above matrix equation

¢
ip,p © Haap ab * HpPpp- Paallab = Pablibb

i i
= 3 %Pa T 3 Papip

or
1P = HPap = Papfhp + HapPob = Paallab
i
-2 F'ab(Ya + Yb)
substituting from ( 3,10) for Héa’ H, and H, we have

i Pab — “aPab = Pap®p * Vabfbp = paav'ab
i ,.

or

- - ' j_ )
Lp = Paplogr @) + Voleym 0,0 = 5 Paplvgwy)

we may write the above
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Lpgy = pgplo, - ‘“_b) * Vbl Ppp= Pag)= 1 Pap¥ap

where
¥, + %
. — a b
Yab = — 3

Hence equation of motion is

ie, Pab % * Vb Prp Paa) = & Pap¥ap

or

Pap = =i @p p = Pop¥ap + 1 V(e o~ Ppp) (3.11)
Similarly for diagonal el ement we get

. - ‘ «
Paa = Mo~ Y3 Paat 1 Vy (pab" Pab)

and
{)bb = Ny = %Py + 3 Vgleg, - P

Hence we have the following off-diagonal and diagonal equations

of motion ofor the element p corresponding to (3,7a)

Pap = =1 WoPop = ¥abPab * ‘wab(paa" pbb) (3.11)

. — — ; - % | | :
Paa = M= ¥aPan *+ 1 VaplPa - Php) (3.12)

Pob = M = ¥p Ppp+ 1 Vapleg- o) (3.13)



CHAPTER 5
LINEAR THECRY
The equations of motion

_Pab = - iwopab - 'K/ab Pab + 1 v'ab(pab- pbb) (3.11)

" e - | . i - s
Paa = 7"a ¥g Paa* Vab (pab pab) (5.12)
Pob = M= Yp Ppp = 1 Vg (P = Pp) (3.13)

can be solved by an iterative perturbation series in powers
of interaction Vab‘ The first order so‘lut'ion will be linear“
in B z,t) and the higher order perturbation series correspond
to non-linear solution. But this method is applied in more
complicated case where we consider the atomic motion and
Doppler broadening is taken into account, We will present

here a more accurate solution by a different iteration method,

We define the linear approximation as that in which
N (population inversion density) is assumed to be given and
to be time indebendent; although the exact theory will be that
in which M(z,t) must be derived from the simultaneous solution

of the equation of motions above,



According to our linear approximation

N = Nz)

The higher (non-linear) approximations are then obtained by
iteration, starting with the linear approximation, Substitu-

ting p_j = Py = N(ryt) = N(z) in equation (3,11) we get

‘;ab + Lo Pyt Y By = 1 V(e - p)
or

g':ab v oy v,) py = 1V, Nz) (4.1)

R, H.S., of equation (4,1) is linear in perturbation, Let us
assume to begin with that only one mode n is excited, then

from (1,9a)

E(zy,t) = %(t)un(z)
Now |

V;b = - E(z,t),%
\' = - d A%‘(t) u' (z)
ab = 4 ‘n n

Substituting for Ah(t) from (1,6)

Vap = —:% E (t) :cos(wnt + Qn(t)un(Z) (4e1a)

Substituting this in (4.1) we get



-l

bab + i((no+~gab)pab = - i% En(t)un(z)cos(wnt-rcpn(t)N(z)

2 eyl (2) x

expi-ilw t+o (t)+éxp ilw tro (t))
i LI L n_n IN( 2)

2

- % Ex;(t) un(z)[exp-i(wnt+¢n(t)) *

exp i(wnf»l-cpn(t) )] N(z) (4.2)

In the above the first exponential is close to resonance
with the atomic transition (wn x wo) and the second exponen—
tial is anti-resonant, Hence we may neglect the second expo~

nential implyimg the rotating wave approximation,
Now setting
Pab(t) = &t) expl-i wnt)
where &(t) is slowly varying
-iw t

‘;ab.(t) = —indt)e O

= - i wnpab(t)

- Hence equation of motion (4,2) becomes
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. . _id . .
—1wnpab+(1wo+yab} Pb = TR En(’c)un( z)N( z) exp[-i( ® t+ cpn) ]

or

pab[Yab+i( W ~w ) ] = 1-2% En( t) un(z) expl[-i( w t+q) ]

_ _id En(t)un(z)
Pab = T Ty +ile-w )]

N(z) exp[-i(wr;hcpn)] (443)

which contains a resonant denominator,

Substituting the above result in (3.,9a) and (1,112a)

given below

Pr,t) = d[pab"_' p’;b ] (3.9a)
L ..
Pn(t) = I P(z,t) un(z) dz (1.113)
o
we get,
L
Pn(t) = J. d(pab-l-p’;b)un(z) dz
o .
L

_id En( t)un( z)N(z)

= d e
Jo 2h | Y‘ab"'ﬂwo"wn)

exp[-i( @ t+ cpn) ]un(z)dz +

c,c]

(c.c stands for complex conjugate),



il

‘._ep[-l(wti- )J ,
:d%E(t){-ll\ - @T+cc}(4.4)

Y. b+1lw -

where L

—

-Nn = j N(z,t) uﬁ(z) dz v (4.5)
o .

which in general depends on t (since we have written N(z,t))

but in our linear theory it does not depend on time, We have
‘Pn(t') = Cn(t) cos(wnt + q;n) + Sn(t) s:.n(wnt+ cpn)

and writing

1 .
12,02
(R e xS

= ﬂ(wn—wo) (4.6)

we Ccan rewrite equation (4.4) in the following manner

writing the compl ex conjugate

Now v
- i 1—\:-';‘ exp[-i(wnt.;.q;n)]
: . — + C,C
Y ptileg-u ) :

is found to be

— o [(wy=w Ycost w trg d+y psinlw t+q ) ]
n 2 PRY
Yop * (u)o u.n)

Put ting this value in (4.4) we get



a2 EnNn(wo-wn)cos(}wnt-r o)

Pn(t) = - 5

, —w )2
¥op + (w-0 )<

N ~ ; N
_ a2 ity Sin(opteey)

v§b+ (o~ wn)2

Comparing the above with equation (1,17)

C -

n(t) cos(wnt+q>n) + Sn(t) sxn(wnt + _q’n)
- E N (w- w ) cos(w t )/ 2 +(w —w)?
= A "n“n" o n R AP M

‘ d2 -— . ‘
- % En Np¥op sin( w,t + cpn)/‘xgbdwb-wn)z
equating the coefficients of cos and sin, we get

,d2 E N(w—' wo)

Cn( t) = n_n n 5
Yib-l-( wn—wo)
and
~ - d2 En Nn ¥ab
Sn( t) - = /F" V2

Yib-f( W @)

-

Using (4,6) we have

%T EnNn(wn-wo) !;(wn- wo) (4.7)

cn( t)

. ‘ _ d2 0 - ‘ ‘
, Sn(t) = -5 E, Ny ¥op L0~ @) (4.8)
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The above equation are linear in E . From (1.21)

. w
n 2Qn n _ Zso n

We have seen that for laser oscillation:

Wn ~ ‘Qn
Therefore
. w (.0
R L = e
En + 2Qn En e Sn

o

Putting the value of Sn from (4.8) in the above relation,

we get
. w w -
. 'n - d n .
Ea* 35 5 T R 28 En Np Yab £‘(wn = )
or .
E w, w 2 -"
n —_ n n d
S e b e N ¥, 2w « w)
E 2Q, 260757 n *ab **"n o
or s
L‘;En _ w

|
=
—

3 T Gl |
B m - R E e SRt el )

At the satgration' value of field én = 0 and putting this condi-
tion in the equation (4,9) we get the condition for laser

oscillation at frequencyg Whe



~47-

or 5
42 —
_é‘_ g -e—o-n ND Yab)ﬁ. (w - )
or
a2 = ‘ 1 |
=h N Y £L(wn- w,) 2 an— -+ (4.10)
[4) .

The critical density of popuiation inversion N . is obtained

by evaluating equation (4,10) at resonance W = W

(1]
' 1 . 1
n () n (s) - 2 2
: (wn wo) +Y2&b Yab
Hence
e x I oo 1
eo nc Yib Qn
or
- e A Y
Ne = =2 (4,11)
dQQn

This is the expression for critical density of population
inversion,

The frequency equation is

. . — n
(wn"' P ‘Qn). B T T

‘Substituting for‘ Cn from (4,7) in the above equation and

neglecting ansn, we get



4,9~

. . w, 2 -
: - . .n_d -
(wn" ﬂn) /2‘; - 26, A Ny (wn w’o) £.(wn" wn)/{‘);

(4.12)
Nn corresponding to threshold of oscillationat W, is cbtained
from (4.10) -
- _ e A
N L 2

n"'"Qn Y

) - 2
2( ® wo)d

and putting this value of Nn in (4,12) we get |

“n dé ea« ,( “n- wo),f ('wn"/wo)

(w - n ) —  ew  cmes -
non 26, X Qi,p a(%wo) Fa
or
0 - 0 = _ % (o - w,)
n n 2Qn Yab
Writing
w
S = n_
200 3p
We get
W - H = - S‘wn- w ) (4.13)
Equating (4.13) represents the linear pulling effect,



or

= iy4
wn + Swn Swo + .

- + Sw :
@ = iﬁg-—?- (4.14)

The above equation (4.,14) means that the frequency of laser
oscillation in mode n is the weighted average of the mode
frequency % and the atomic trahsition frequency w, with
weights 1 and S respectively, For a gas laser the atomic
line width is greater than the mode width, Hence S <1
(Since s = g?;ggiémiiltige TITh ) for a gas lééer, ty pical
value of which is of the order lofl to 1072, Thus from

(4.14) oy, & 8 i,e, laser oscillation frequencjr is very Close
to mode frequency, If we regard the mode and astom as

coupled oscillater, we see that the oscillator with smaller
line width (large Q) pulls the frequency of oscillation

close to its own, This is known as 'Frequency Pulling',

If M modes are excited at laser frequency @, where
N =152,...0sN; we mist replace (4.1a) by '
M ‘ .
\'s = -/% Z En(t) un(z) cos(wnt + <an (4.15)

ab =
: n=1
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Jm,linear rotating wave approximation

_ iy Z En(t)un(z)N(z) | X
Pab = = & A ¥ o NS =0
expl-ilw t + ¢ )] (4.16)

This is the solution in linear theory,



CHAPTER 6
NOMLINEAR THECRY
(a) STEADY STATE SOLUTION OF THE ATOMIC EQUATION

In the linear approximation theory we had assumed

as time independent and caiculated corresponding value of
Pabe The next order approximation which will be nonlinear
i_s obtained by assuming the population inver‘sion density

(paa- Pop = N(z,t)) as slusly varying in time, Thus at any

given time pab is still given by

M
E (t) u(z)
id A n n o
P = - E e N(z,t) x
ab 2R [ ¥ bt i( w,, wn)

exp[-i(w,;t + @n)] - | ~ (5.,1)

Here N(z) of equation (4,16) is replaced by M(z,t), Thus

. - M
, | E(t) ul(z)
— id - n n
Pab = ~ 2R (paa pbb) z T X

Y t i “’b“wn)
exp[-i(wnt + tp‘n)] (5.2)
substituting the above solution in the diagonal equations

(3.12) and (3,13) one can solve for p_. = ¢,



From ( 4‘01a)

_ 4
Vab = "R

Z En(t.)_ un(z-) cos( Wt s+ @)

n=1

From ( 4,1a) and (4,3} we get

Vab Pab = (paa- pbb)

M

Py

M
Z Em(t.) un{z) cos(wmteqzh) X

m=1

id?2

t) u (z)

E(
E.; p —
n= ab

ikw =) exp[-J.(w t-t-@n)]

and
M
V. e* = = )-jﬂz Eu(z) cos(w tyro ) x
abPab ~‘Paa Ppb oh2 s m m 0St G+ Oy
. m=1 - .
.,M En( t) un( z) i .
ccon exp[-ilw ts+o
N : 1 Yab""i{wo-rwn) i n n '
Thus
i( * Vv = 9—2— . Eu(zjcos(w t+o ) )
Pab~Pab’Vab = ~ o2 L mom 2 /COS O Oyt PPy X
- m=1 ’ .
[ I [-i(a_teg) he.c]
VA - — exp(-ilw tiq ) Jrc.c
' nL-——l Y gp+ @0 )
M
2 ‘ -i (co t+<p )
= 9‘_._.2. Z Eu (Z)[e ‘ +
02 S 1

-ilw t+q: )



M
Eu (z) -i(w t+ro )
i nn e n n +c.c}

=L X ab"'i(wo—wn)

Applying rotating wave approximation, we gZet

M M S
EEuu
. % — d2 X mnnmn
iVoplPgp Pop) = - 2 > > Kvabﬁfwo-wn) x

m=1 n=1

o -0 )teg g}

n .
Writing
M M | . .
4z Z Z “m'n mn ; eli(wm"“’n)t“{’m"q’n}_!_c c =R
/ . r 41l W = . T
_kﬁQ m=1l n=1 Xab °on
. ( 50 48)
Equation (5,3) becomes
o LA — - .

Putting the above in the diagcnal rate equations (3,12) and

(3.13) written below

. — L]
Paa ™ A - ¥aPaa * i Vab( Pab ~ panb)

— . : e
Ppp = My = ¥pPpb = * Vopl Pap = Pop)

We get



paa = 7"3 - Xapaa + R( pbb - Q-aa) (5-5)
Pop = Mp = MpPpp + RP,, = Ppp) (5.6)

These are the rate equations for the popul ation densities

Paqg 2N Py OF level a and b, The first two terms represent
the pumping and damping rates respectively associated with
the atom reservoir. The last term‘represents the effects

of induced emission and absdr;)tion which decreases the
population of level % and incCreases the population of level
b, when there is population inversion i.e. when (paa-pbb) >0
It will be shown in the following that R2 0 and that ﬁcan
be interpreted as induced transition rate, It can be seen

from (5,4a) that R is quadratic in the mode amplitude

(Em’Eh)’ hence it is proportional tc intensity,

We observe from (5,4a) that if more than one mode is
excited, R contains pulsating component corresponding to
(QEF'?h)' They will lead to the pulsation effect and the
poia rization would contain cembination tones which is the
- characteristic of a nonlinear oscillator, For a typical

gas laser (wm- wn) 2 Yab (because the separation between

the axial mode is of the order of 150 mc, whéreas ¥ab ~ 10 mc);

so the pulsating components are small and they will be

neglected here, Thus m = n can be substituted, because then

pulsating component {(exp { } = 1),
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~For m = n, we may write (5,4a) after putting for

compl ex conjugate

R = <— )} - [-- nann L oc.c)
w2 [ ¥ o Hilw ~=w ) ¢
4h n =1 ab n’
M 2 .2
_ a2 2(En un} (Yfab)
2 > (- 2
4 n=1 xib‘*(wo wn)
or
M

T or2 L ¥ab n Y’ “n ¥y 7

The steady state solution of (5,5) and (5.6) is found

by setting Paa = Ppp = Oe

Thus

R( Ppp~ P aa): = ¥aPaa* "a =0
R(paa"v' pbb)gj","fbpbbf*' AN =0

ory

PoalB¥) ~Rppy = A :
- ' (5.7)

_PaaR + pbb(R"'Yb) : A

Solving the above simultaneous equation we get



Ppb

Therefore

N = Paa Ppb

MR+ A%y - By

Yalp* RYa + R‘fb

Rip + ¥y = AR

‘é’a“{b-i- RYa + RYb

AR r Ay, = RAy = Riyy = Y0 + R

a

K'{b

V¥p + Rly, + %)

- Y M, + 2R( ha - 7\b)

assuming hahb = Rab we can write

N =

Dividing the denominator and numerator by Y ¥

where

T + R w)

7Lavb + Ya"b

¥atp * Rf‘ab

N
1

(0)

R

(5.8)
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Ya Yb
and
XY 2y
éL = i}-+ i}- = -2a_Db - ab . o T
s a ¥ Yatp ¥ ¥ a

Thus in the nonlinear theory the populatibn inversion density
is given by (5.8), This relation explain good a number of
phenomena of nonlinear theory of laser. In the absence of

the field when R = 0 we get from (5,8)

N & N(o)

Thus Here N'©)

represents zero field inversion density which
is the consequence Of equilibrium between the pumping and

loss rates,

We may say that in the presence of the field, the
inversion density is reduced by 2 factor l + é; « This is
the effect of the induced emission i,e, the»reguctiOn
increases with the intensipy because R is proportional to
‘the intensity and as R increases the reduction factor
(1 + é; ) also increases, This is the nonlinear saturation
effectswhich prevents the exponential growth of the intensity

which is found in linear theory, This nonlinear saturation

effect determines the stable amplitude of oscillation of

laser,
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We may calculate pab in this nonlinear approximation by

substituting N(z,t) for Paa Pob in the equation (5,1),

Hence in the nonlinear approximation

—
——

Nte) | i Eu ~ilw tro)

P - e
ab 2R Ypt 10 -0 )

(1 + 3—) n=1
Ry
(5.9)

This difffers from the linear approximation (4,16) only

by the substitution

, (0)
Nz) & —N____ .,

1+§§-,
s

(b) FIELD EQUATION

Ne have obtéined_ the solution (5,8) and (5,9) of the
atomic rate equations, In order to find corrésponding values
of C and S we must substitute (5.9) in the equation for
polarization (3,9) and equation (l.vlla)’. The values S  and
Cn in the nonlinear theory differ from that of the linear
theory only due to difference in the value N in the two
appszimation. This calculation will help ug in explaining

some of the aspectg of gas laser.



Y -

In the linear aﬁproximation we had written Nn as

-

1 :
ﬁn = J N(z,t) uﬁ(z) dz
o .

In the nonlinear approximation we must replzce N(z,t) by

o)

- s -
and N by N} (say) . Hence

R
l+
R
5
— L N(o) .
Noo= u(z) dz (5.10)
? o 1+ ®T
" Rg

Let us consider the case in which only one mode is excited
(say n) with sufficiently weak intensity i.e, R is well

below the saturation, Hence

R
§-<<l
S

Thus we may expand

—_—T fru (1+ER-) = ].-é'{-s- + see (5.11)

Higher order tems are neglected,

Putting ( 5,11) in equation (5,10) and taking the value of

R and -}%-‘, we get
s
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NN = N Wﬁ(mﬂ. wo) I N un(z) En dz (5,12)
aYb ‘c. 0o ' -

where

N = I N(O) uﬁ(z) dz
0 -

and
A
N(O) = 2 . -7:?- is the pumping rate which is

wither constant or slowly varying that is it changes little

with wave length,

We know that

u(z) = /2 sin( M2

Then
L
L [ 0 ut(z) dz
TR n
o ,
L _
o) ul(z) dz
— ‘o ) »
= T _
N(O)ug(z) dz
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From (5,12) we have

N' =

L
| uﬁ(z) dz
o
L
p
. urz‘(z) dz
o
L
f-é- J sin® ( x_x_%z_ ) dz
o
L B
-1—2‘- I sin?( MZ ) 4z
o
L
sin?( B—EZ- )dz
L
2 0
L ‘L
sin?( —ml-f-z—) dz
.o R .
2 -
2L (501J)
— a¥3 - (0)
ab 4 2
N - =3 2(w - w,) J N un(z) dz Ej
. o ‘ )
2 ‘ L \
N1 -,ﬁ' ab Eﬁt(wn- wo) _-];- J N(‘O)u?‘(z) dz]
Yalp - N % :

Putting the value of the intégral from (5,13) in the above

equation we find
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— a2y?
N = N1 - ab Eﬁz(wn- wo)g’r]
‘aYb -

or

No= N [1- Yib 2lg - w) 1] (5.14)
where

I = .2% 42 2. | (5;15)

.n ’ﬁz‘l;‘éb n.

In here is a measure of the intensity of the lasger field of

the mode n and it is a dimensionless parameter,

Within the approximation 1 5 = 1 - %— we may
1l 4+ R s
s
write
1

: S 2, R ~1
[1 - Yob 2(w —uo)In]

Thus

We know that



1
2w - ) =
n~ o _ 2,.,2
(wn wo) +Xab
Therefore
LMo w) = (- 0)24 ¥2
: n (o} n (o] ab
| Thus _
— N ﬂ“l(wn - o.\o) ‘
No= — > (5.16)
(wn - )+ ( l+In)*gab
In the linear theory we had obtained
S a2 (
n =~ -/E—_- n Xab Fé wn - wo) ([,-.8)

In the nonlinear theory En must be replaced by Kr'x

given by equation (5,16), Thus

- “'l ' Y o
a2 Ng (wn"' o’o) -f‘(g’n" ‘.Qo) En¥ab.

S = - .
A - W
n (o~ ) %141 )y2,
_or |
o N E ¥y |
4 . nab (5.17)

S -— —
n A 2 RV
| g , wo),+(l+1n)¥‘ll

equation (4,8) can be written as

S = -
, (wn wo) +’Kab
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Thus comparing ( 5.17) of the nonlinear theory with the
equation ( 4.8) of the linear theory we sce that the effective

resonance width has increased by a factor "/l+In due to induced

emission,

Substituting for Sn from (5.17) in the amplitude equation

given below

| a 5 | @
2Qn n 260 n
we get
é ﬁn E wn d2 v N "gab En
+ = _
noo2g, n 26, B (wn- w°)2+-;g§b(1+1n)
or
En + rﬂh — “h a2 N ¥ab
B 2C, €, A (0~ o) 2+(l+In)¥§b
or A
- “n - h _ % az N
B G, %% A (- w,) 2+(1+In)”3§'ab

If we take W ~ S then we get

. E 2 Y o
2 mn _ 1 d | ab

w kE e 2..,2

“n n % | o (wn- w )5+ ab(lfIn)

This is a nonlinear differential 'equatioh and has a steady
state solution én = 0. We get En or'In by setting R, H,S.

. equal to zero, Thus
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1 a2 = ¥ab
—— - N
PN g? (w—w)+~((l+1)

H
()

or
1 d2 = Y¥ab _
i N
A E,';I (w - W ) +‘yab(l+1n)
or
egh _ _ Y
Q“d2 N o~ w) +~gab(l+1 )
or o p =
: ‘ Yap % d< N
2 2 = —+ab
(0~ )= + L3R (1+1)) = - ¥
or
VY2 L 2 N — :N_- 2
(wn- w,) <+ xab(lq-ln) = = ¥ab
- - - c -
where
_ e A
N, = —2— = Critical inversion Density
d2
%
or
2 — 2 N - ‘ 2
'{ab(l-l-In) = Ygp N (0~ w)
or < 3
2 — 2 Lo - 2 _ 2
¥apln & Y ~ Lo wo) ¥ab
- - c ) - .



Therefore
3 (0=~ w)? '
\{
In = 2_5 - ] - n 0 (5-18)
N -v‘/z
C ab

In particular at resomance i,e, at w = ®, equation (5.18)

reduces to

I = -1 (5019)

n

OZHZ(

That is the dimensionless intensity In of mode n is equal
to the fractional exCess of the inversion density over the

critical inversion,

\ N : N ‘::
when N l\c we have In 0.

which is in agreement with the definition of the threshold,

=2t

is called the Relative Excitation

2

c
Equation (5,18) suggests that the intensity decreases out-

side the resonance by the square of the ratio of deturing

(w,= @ ) to the width ¥ ;.



CHAPTER 7

MOOE COMPETITION

(a) MULTI-MCODE

Uptil nox.v we have discussed the laser oscillation in
only one mode (say n) and found some interesting results,
Now we wili see what happensAwheh there is possibility of
excitation of nblre than -cne modes., We will use here also

¥

R
the same approximation - KL 1,

_ S
Thus
1 R
———E_ — Led R + eee
1 ol 8
S

taking only first order term where

- M
. 4ac 2 .2
R = “th E b tlo - ) B un(Z) dz
n=1 ' -
and
R = 2Kab
* %Va}_éb
We know that
— - N 0) 5
- 1+ .



L
= [ ¥ G- & uie) e
o s
= I N 0) 2(z) dz (o R_ 2(z) dz
% s
) L M
= N O 9—5 TIL j D, 2w ) x
o S o nu'_': 1
2 2 2
E 1 un dz
1 2 L M
_ T o) g J ,_ | op2
= N~ N 2—’KiYaYb ) ﬂ(wn— cno)uﬁunléln dz
ST 0 n.=0 s met

_' | N(O)szis L | M
- [

= Nuo [ ————= 2w - w Ju? E2 dg
A o n o'’ 'n n +
/ﬂzYaYb on=1 . .-
L 2 M
. (0) 62 Yal?» SN\ , 2 2
I /ﬁ2 3 "fb ‘ E’ !;(c»m-w O) Emuxiun dz ]
o] n -~ .. -

The first two terms are written with the help of equation

(5.14) and (5,15) and then rewritting the above

N' = N-y2 3 E? 2(w - w ) N =
n ab 2L n n o
_ /ﬁg‘aYb

I 0) 42 Yib £(w-w ) u2 E2 dz
A2 ¥ Yb _‘ ym '

n
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2 . :

a2 Ygp o(0) 2.2 o

A2 Y¥p L ac("‘)m'" cl’o) J N up U, Ep 4z
; n -

We know that’

u = /;:2— sin (sz)

u, = /% sin (an)

Therefore the integral of the last term may be written

™o

. . 2 2
s.1n2(km2) i sin (KmZ) dz

j‘L N(o)

L | |
- ]_:]_.2_ J’ N 0) [1 - cos(2K 2) - cos(2k z) +
0

1l o 1
3 cos 2(Km+Kp)z + 3 cos 2( Km-!(n)z,]dz (6,1)

)

Ir N(O) is either constant or slowly varying, then only

the first and last terms within brackets given an appreciable

contribution,

Let us now define
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L

N,(m-n) = %: j n(0) cos 2(K —~ K ) z dz (6.2)

and we have seen that for m=n

L.
I N(O) uﬁ(z) dz

N =
0
L .
= 5- f n{0) sin(K 2z) dz
o - -
L |
= i j MO (1 - cos 2 K z) dz (6.3)
o _
| L
= 11-7 { N0 g ..-:‘-: ][ n¢0) cos (2K z) dz
(4] ) 0
L
= % J N(O) dz
0o

Since second integral is zero,

Thus atm:n

N l J. (0) dz = "N, ( say)

Neglecting the first add last term of. equation (6,1) we

get



-T2~

L L
(0) 2 .2 , i 1 (0)
j N us us dz = I EE N [(L - cos 2sz) +
o . o o :
1 "
3 cos 2(Km-kn)z,]dz
L
1 1 .
= r .‘.[_ T | N(O) (1 - cos 2;(mz) dz 4+
. o
L ( ‘
1 l 'v \ 0) Y 1 74
5 T N cos 2(Km- nn)z dz
0.

Using (6.2). and (6,3) we get

L ,
T {0) 2.2 1= .
j N u_ us dz = 7 [ N4+ 5 Nz(m_n)] (6.4)
o )
Putting (6.4) in (6.1a) we get
2
~ '3 d2 Yab 2
N' = N — £(w — N E2 -
n ) PR 1% W= W) n
¥e) M
d-2 Yab.. AN 1 N 1 2
;-2- Yéxb é ;C(wm- wo) T (N + 3 NZ(H}-E) Em
- m n .

We"have shQWn in ;t;he linear approximation that

d? = ,
5n T T a N ¥ap %(wn - w) By
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Now in our nonlinear theory Nn of the above equation must be

replaced by 1:"1 .

Thus

— a2 = ‘

. 2 -
_ d2 . - 3 d2‘ Yab
(wn u.)o) N Pn
2 M
1 d2 Yap E’ ( (N + L
T =5 3 / A w - wo)N+-2-N2(m_¢,))]
_ A a’b = -

Substituting this value of Sn in the amplitude equation

. wn ,Qn
En & - 26, Sp = 2Q, En
We get
w 2 2 i
- n a= . g - 3
E, = - ""—‘280 [~ X ¥ab t(wn" wo)En_‘J i Yab L(wn wo) 5 X
2
a2z Yap

e 22 - ) NE%E_ -
el ‘{‘(“’n wy) N EJE,

2 1 d2 Yzb M
d< = - 2 ; -
R ¥ab “wn" wo) L 42 ¥2¥p , {‘(wm wo) %
' m#ZEn




Writing
W 2
n d ﬁh
e Ny, 2(w—- @) E = =—= E
2, R ab o 2Q, n
L2
w 2 ¥ - L
d ab n
= E[ -2 = Nglw- w) - x=—
n 2t’:o A ab - n ZQ“
= En‘.‘an
and writing
_ © 4 -
d 3 ,2 3 N 3
{- -2 2w~ w) =z = ]E
250/63 YaYb Yab .. n o0 2 L . n
: 3
= = By En
and .
M d4"/3

“n ab |
) Z; my g Hlar %) Hler e)
m#£n Ya¥p '

(6.5)



We can express (6,5) in terms of s B and 6 as
n n mn

M
n ahEn ﬁh gn ‘ 6mn En Em (6.6)
- n1;;n - )

where o
wd?® = 2.
- n N ) n
o = —_—y 2l = @) - o
n Eegﬂ Yab ab n (4] ZCE
4.3 -
w, Y
—_ n ab ) 3 N
B = 2w - w) = T
n 230 453¥5Yb ) n o’ 2
4.3
w d™y —
— n ab _ . 1 1l
8 = 2w - 0) 2w - w) =(Ny =N )
mn S - n m-
2e ’ﬁ3¥éyb m o’ T 'n o’ L | 2 "2(m-n)
-

If we compare the value of o with reference to (4.9)
we seé that it represents the overall gain, Hence the
condition of laser oscillation in mode n is ah}? 0. The
first term in ah represents thg gain due to balanCe between
the atom pump and loss reservéir and the amplifying effect
of induced emission., The second term of %, represents the

logs due to field 10ss reservoir, Thus we my say

qntz gain (Atom reservoir + Induced Transition

- Loss (field Reservoir)



=75

ﬁn is a par"ameter‘ known as saturation parameter, We can
explain it by considering a single mode n., Then (6,6)
becomes

— 3
E, = of - pE (6.7)

Ei corresponds to Enln of which represents a nonlinear
saturation effect according to (5,12), From equation (6,7)
we can find the intensity of single mode laser oscillation

in the steady state (E = 0)

-

3
[V E =
o‘n n ﬁn n 0

or

2
E - =
n( “n ‘BnEn ) 0
%P Er21 =0
E2 = j'_&_'l_ - gain - loss (6- 8)
n. ,Bn Saturation parameter *

The parameter em represents the nonlinear saturation effect

on the coupling between different modes,

(b) TWO MODES
Now we 'shall digcuss what‘ happens when we consider the
possibility of more than one cavity mode, We study the

following nonlinear coupled differential equation (6.8)'



iy J

1‘3 = - ES o E’ 2
n 0‘!'l En ﬁn n . emn En Em
m#Zn '

where n = l,ZQ.oo,M

We take the case when only two adjacent modes (1,2) above

threshold are excited, Equation (6.6) then becomes

E

H

3 2
o Ey ~ BEy — O ES ..
| : (6.9)
g

2

i

E - gES. E2
oty = ByEy — OE By

where 8 = 6, ® 6,; >0y & > 0 ard By > O
Let us introduce the intensity parameters

X = Ef and Y = E;_ (6.9a)

substituting from (6,9a) in equation (6,9) we get

X = 2X(<x1- By X - oY)
(6.10)

’

Y = 2Y(Q¢2 - 68X - BzY),

Let us find the steady state solution of equation (6,10) i,e,

when X =0y, Y=0

Thus from equation (6,10} we obtain
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6 = 2Xloy - fX - &)
(6.11)
0 = 2Y(a, - 6X = BY)

According to (6.,9a) only solutions in the first quadrant
(x> 0, y2 0) make senses. From (6,11) we see that only

four types of stationary solutions are possible

(1) ¥ = 0; o - FX = 0 i.e. X = %
2

(3) X = Y = 0

(4) In the steady state simultaneous oscillations in

both the modes are achieved when

-~ X & = 0
A A ' ' (6,12)

c:-GX-ﬁzY:O

2

or
Af+ & = o
" (6,13)

%

]

6X + ﬁzY

solution (1) represents laser oscillation in mode 1 above
. and solution (2) represents in mode 2 above. They represent

the single mode operation in either mode with the othee
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mode suppressed, Solution (3) is the trivial solution
which is unstable above threshold, Solution will exist if

the straight dine Ll and L2 intersect in the first quadrant.

Let us now discuss the solution (4) in some detail, Sol-
ving (5.12) we get the steady state solution in the simul-
t.aneou's two modes operation as

B, = o,6
x = P27 %
1:31182 - 6
where 5,8, # 62 (6.15)
y = 2fL-%f "
= ~5
by~ 0

Let us investigate the stability of these modes, For

this consider small derivation from the steady state solution

for X and Y.

We write

Xt) = X+ el(t)

v(t) = §+ e (t)
Hence :

Xt) = ¢(t)

Y(t) = e,lt)

substituting for X and Y from above in equation (6,10) we

get



o

[ X

Neglecting

[ X

[ R4

or

Do

or

€

—
—
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e,)

2(-X8 e, — 6Xe, + ﬁlef - oe,e,

- - -— -— 2
2( 6e,Y - p,e,Y - oee, ﬁzez)

nonlinear terms in e's we get

., O -
..,i X, e 6Xe2)

2(~Y6e1 - Yﬁzez)

~2Xg, e, - 2Xoe,

-2Yp,e, — 2¥oe,

Writing in matrix form

i, e,

2Xﬁl 2X6 -e,
2ve gYﬁz ~e,
AX

(6.16).
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where

e, -e 2Ye 2Y8,

Now we solve the matrix equation for the eigen value A,

Then
AX = 2X = 0
(M -A)X = o
or ‘
: 1 0 -QXﬁl 2X6 ~e1
A - = 0
0 1l 2Y9 ZYﬁz --e2
or
A ' Xe \ |
0 2Xﬁl 2X6 —el
- ' = 0
) A 2YO Zsz —e2
or
= 0
-2Y6 hszﬁzi ‘ -ez

The above gystem of homogeneous equations have non-trivial

solution if and only if



=81

]
o]

-2Y0 2»-2Y32
which is the secular equation
2 , . 2

A 2(Yﬁ2+Xﬁl)2t + 4XYB, B, ~ 4XYO° = 0
The sclutions are

20X8)+Yp,) + [4(XB4YB,) 24 XY B0 4-4XVER]E
. 2 - -

A =

i, e,

o= (X o+ ¥B,) & [(X8) + YBZ)2 + 4XYe? e@Wﬁlﬁz]%
| B - " (6.19)

-We have seen that steady state solution is obtained
when g, B, # 6° when g, B, > 62 both. roots A and A, are
- positive in which case two mode so;ution is stable, This
condition suggests that mode compling is weak which is
’usx’i;mly' satisfied in a laser, WhenA ﬁ1,£32< @° one of the
roots is positive and the two modes solution is unstable,
This is the case of strong coupling and the presence of one
mode suppresses the othfer one and the solution is one or other

of those in (1) and (2). The behaviour of two modes laser
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is illustrated in the Fig. (7.1). The figure is for the

case o = a2 2@1 = ‘62". Both X,Y are non-zero as 1o_ng as

%< 1 i,e, > 6 (weak coupling) and when -g> l i,e,
@ > B one goes to % and the other goes to zero (strong

coupling),

(c) PHASE PLANE ANALYSIS IN LINEARIZED APPROXIMATION

The behaviour of tgo modes laser oscillation can also
be well un«ferstand qual itatively by studying the néture of
the phase-plane trajectory of the coupled linear equation
(6,16) which is the linearized approximation of the nonlinear
coupl ed equations (6.10), The mature of the phase-plane
trajectory will describe phenomenon of mode compietition
(i,e. which mode is suppressed and which nbde is quenched

and whether both modes exsist,

Qur aim is to show that how far the above linearized

approximation exp_iains the nature of mode competition,

The linear coupl ed equations (6.10) are

&, T =2%5, ¢ - 2Xee,

e, = --2Yﬁz—e2 - 2Y0e,

where



o . : 1 L L
o 10 20

e/p

FieT1The behaviour of the two intensitics X, Y

in two-mode operation-
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x = afi- % v o %A - 9°

We have solved the secular equation and found the character-

istic roots (6.19) M and A, in the previous section,

Therefore sclution of (6,10) is

2\11:. : 7\21',
el = ae 4+ be .
(6,20)
. t x.t
e. = ce?‘1 4 de 2
2
At At
solving for e and e we get
S de, - be,
- ad - bC
and
At ae_ - Ce

e2 — 2 1
- ad - bC

we can write

7\1t

e = K(del— be2)

At

e? = K(ae, - Cel)

2

where

K = 1
- ad - bc -



Taking log: of both sides of the above. equation

or

Allog[K( ae, = cel)] = hzlog[l((del - bez)]

or

or

or

where

=
ot
I

loz [K(del - bez)]

N

At = log [K( ae, - cel)]

log[k(de, ~ bez)]

1

Nge

1og[K(ae, - ce;)]

' N ‘ Ve
1og[K(ae2 -'gel)] = 1og[x(del - bez)]
VA
2 _— -
[K(aez--cel)] = K(del be2)
/A
(de, - be,) = Kll 2 (ae, - ce )?‘1/7'£2
1 22 7 T K 2 1
. /A
W = K zhl 2
K' = K(?&l/?»z- 1)
w = del--be2 and Z = aez‘--cel

(6.21)
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W and Z are the new variables corresponding to a rotation

of e]_ and e2 Plane.

The nature of the phase plane trajectory depends upon
the nature of the roots A, and A,. We discuss below the
different conditions in which we get diff erent nature of the
- roots and c0nsequent15" the behaviour of the trajectory

which describes the mode compgetition,

Case 1
q =1 (i,e, mode 1 well above threshold)
@, = 0.4 (mode 2 having smller gain)

'ﬁl::ﬁz:zand 6=1,

Putting the above values in (6,19) w_é get the following two
roots 2\1 = 1,81 af\d 2;2 = =2,33. 'fhus the two roots are
real, unequal and opposite in sign.> Therefore according

to (6,21) \'the phase curve is hyperbolic (Fig,7.2) amd we
fiﬁd that of the two eigen modes oné suppresses the other
as time increases, 'This is the case of only one mode
oscillation, We can infer the same result from WaZ

phase space diagram Fig, 7.2).

Case 2 ihen
o = 1land % = 1 ('i.e.. both modes are well above
threshold)
B = By=2

&

i
I



PHASE - PLANE _TRATECTORY

z
Figure 1.2. A, , A, real, unequal & opposite in sign

A

Figure 7.3. A, A, real, unequal and positive.
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We get 2&1=Zand ?\2:32-,

In this cage the two roots are realy unequal ard positive
and thus the phase curve is a parabola (Fig, 6.2). Thus
as time increases both the eigen modes grow, This is the
case of simultaneous oscillation in» both modes i,e, mode

coupling is weak,

Case 3 When

q = az = 1

By = B, = l and 6=1
— — 2
wegethl—zandkz_..g

The two roots are real, unequal and opposite in sign, Thgs
With increase of tiine one eigen mode decays and the other
grows, That is only one mode oscillation is possible, which
is the case of strong coupling, The phase space diagram .i_.s
similar to Fig, (7.3).

It is interesting to note that the nature of mode compe-
tition which wé obtained by the phase-plane analysis of
linéarized equations is _well‘ in agreement wi‘th ‘the néture
obtained by Lamb 1 by the direct numerical analysis of exact

nonlinear equations,

1, W,E, Lamb, Phy. Rev. 134 A 1429 (1964)



CHAPTER 9

CONCLUSION

In the semiclassical theory presented here we have
treated the interaction of each atom separately with the
field causelby all atoms, Our approach neglects both
atom-atom correlation and atom-field correlations, To
treat the atom independently is justified for large field
because one atom can influence the amplitude very little,
However, for a full treatment of laser one will have to take

into account the quantum nature of the field,

The semiclassical theory presuumbtvfails close to thres-
hold as the assumption of atomic independence is invalid there,
The laser oscillation are assumed to-take place at a set of ~7
discrete frequencies wn and consequently the line width of
the laserAis neglected, By including the classical noise
(i) a finite line width is obtained, The line width obtained
by the quantum theory is however tﬁice that of obtained froﬁ
classical theory, This difference is due to the spontaneous
emission noise which has not been considered in the semi-

classical theory,

(i) Lamb, W.E, Jr, Theory of optical maser, in Quantum opti€s
- and El ectronice; Editors C,De Witt, A, Blendin and C,
€, Cohen- Tannendji Gordan and B reach Science publication
Inc, New York 1965,
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This is the main deffects of the semi-classical theory.

Another consequence of the absence of spontaneous
emission is that, in the semiclasical theory we have to
agsume that there already is a field present in the initisl
state, otherwise the excited atoms could not decay, In
order to describe the growth of oscillations from an initial
state when no radiation is present, we need quantum theony.

of laser;

The semiclassical theory considers the electromagnetic
field classically and hence‘question of photon distribution
does not arise, Recently experimental woﬁc in the field of
photon counting has provided ample justification for consi-
dering the quantum nature of the field, This has been done

recently by Wille's (1,2) Fleek,

We conclude that the semiclassical theory is able to
explain most features of laser operation, It is invalid
very close to threshold and questions that depends essentially
on the quantum nature of the field, like the line width and
photén statistics, demand a quantum-mechanical treatment,

Thus the semiclassical treatment provides the most useful

1, Wille's C,R,y, Quantum theory of Laser model, Phys,Reg,
147, 406 (1966,

2, Wille's C,R;; Quantum theory of a gas laser, Phys, Rev,
156, 320 (1967}.
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-The first application of laser system in the field
were reported, at nearly the same line by Fiaco and
Smullin (1963}, who recorded back scattered echoes from
turbidity in the upper atmosphere using a pulsed ruby
laser gystem, and. by Ligda (1963) who measured back scatter
from a mol ecular atmosphere and haze at low altitudes, and

from clouds in the troposphere,

In addition to pulsed laser ranging system continuous
wave (CW) lasers with or without some form of modulation
have proven useful for maintaining environmental parameters,
Such C,W, system have been used primarily for measures of

atmospheric winds and turbulance,

With the laser only slightly more than 10 years old we
are already have examples of semi-operational use of environ-
mental anitoring, for cloud height detection and for urban
pollution studies, As the requirement for environmental
quality control increases in importance in the comihg years,
there will not doubt be increased emphasis in the operational
use of lider (light detection and ranging) for monitoring
pollution mixing depths, visibility, wind and for chemical
analysis of po‘llutant constituents in the’ atmosphere, The
ground work for such developments has been laid by the research
and f‘easibiiity sﬁudies‘. There will certainly be additio.nal

applications which will prove visible as laser technology

advances in the coming years.,
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starting point for most applications of the laser theory,
APPLICATION OF L ASERS 1IN ENVIRONMENT,L"L MONITORING

We have discussed some interesting theoretical features
of lasers, In view of the growing problems of env&r_gunent,
it will not be impertinent to mention some of the application

of laser in environmental monitoring,

Probing the environment with Light is an old technique,
Tyndall (1869) used an electric lamp to study the polariza-
,tion of light scattered from smoke in his darkened nineteinth

century laboratory, Haulburt (1937) studied atmospheric
turbidity and molecular scattering to a height of 28 km in
1937 using a search light,. Freidland et al (1956) used a
pulsed searchlight technique’f‘or atmospheric probing and one
of our present day turbid atmosphere model is based on such

measurement by Elterman (1966,1968),

But it was the invention of the 1éser by Miaman (1960)
and of the giant pulse technique by McClung and Hellwarth
(1962) that revolutionizéd optical probing of the environment
This ﬁotential was quickly realized by Goyer and Watson (1963)
who congidered the possibility of mapping the spatial -and size
distribution of droplets in cloudes and perhaps wind and turbu-

lance by means of the Doppler frequency shift in back scattered

light,
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