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CHAPTER- I 

.~INTRODUCTION 

Most of the genera in ·ecological systems 

contain many species of organisms and these 

spec:ies va.ry greatly_ in their abundance from 

very common to very rare. .Frequently, lt is 

found through experimental co.llections that 

singleton species are numerous, and species 

with successively more repre~entatlves., double­

tons with two• trebletons with three, ••••••• 

and so on; are usually progressively less 

numerous. This relative abundance of differe.nt 

species within a genera is repeatedly obs~rved 

,by taxonomists experimentally. Some of the well 

known observations, for example,, are: 

1. Corbet's results(l) on Malayan butter 
flies; 

2. W.llll.ams• results(2) on moth species 
obtained by means of a light trap at 
Rothamsted; 

3.. Saunders' observations <3 ) en the bird& 
of QtJaker Run Valley, western New York 
State; 
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2. 

4. Preston and/ Norris • data (4 ) on the Breed-
/ r 

ing birds of the Frith (·Preston Laboratory 
g~ounds); 

s. Dirk • s data ( $') on Moths in a light trap at· 
Orono, Maine, and 

6. Seamans• data<6> on moths in a light trap 
at Lethbridge, Alberta. 

As soon as one attempts to study these data, 

the question immediately arises: how are the abun ... 

dances of the different species distrib\lted? Atte• 

mpts to answer this question have led to the deve• 

lopment of few species abundance relations and 

other related material. A brief summ.ary'1s as 

follows.: 

lii Corbet(l) gave the relation between the 

numbet- ·Of species S and the number of individuals 

n in each of the s species as 

s = em 
n 

where, C and m are constants. 

• • • • •• • • [1] 

II. Williams(2) suggested the use of the series 

• • • • • [2) 

where the tems give the number of species- repre­

sented by 1. 2 1 3, •••• , individuals (or the 
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fiequencies of different species), respectively ..• 

III. P1sher<7> gave the distribution 

( ) 2 3 
$ ~ -« log l-x = ax + q~ + «j + ••••• [3aJ · 

and 

The different terms in the series (3a] give the 

frequencies of different species. S is here the 

total number of species and N is the total number 

of individuals in the collection,. and « and x are 

constants characteristic of the collection. Once 

s and N are known for a particular collection, ex 

and x can be calculated using equat1ons.[3] end 

the series giving the frequencies of different 

species is then known for that collection. Thus, 

the salient feature of F1sheJ''e distribution is 

that for any collection whose total number of 

species S and the total number of individuals N 

are known, the series Oiving the frequencies of 

different .species can be predicted. 
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lVil Preston (a) proposed the distribut.lon 

• • • • • • [4] 

where n
0 

ls the number of species belonging to 

the modal oetaue, n is the number of spee_ies 

belonging to an octaae distance. a oetaaes from 

the modal octaae and •a• is a censtant calculated 

from the e.xperimental data. As noted in Chapter 

III, the tems "octave" and • •model octave" 

have a very .simple meaning. It will also be seen 

from the discussion in that Chapter that Preston 

graduated the abscissa in his plots as the loga­

rithm of the number of individuals per species and 

the ordinate as the frequencies of different 

species. Therefore. the expression [4] given by 

Preston(&) is actually a log normal distribution. 

4 

,- \ · Now. as regards the suggestion of Corbet (l) • · 

we note that Corbet himself pointed out that his 
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~elation· cannGt be a "·true representative for any 

/ rqndom sample, because his sample was biased in 

the direction of too many species with small 

numbers, and too small numbers of individuals for 

the commoner species. 

The difficulty with the su.gge.stion of 

Wi111ams(2) ls that the sum of all the tems in 

his series is infinite, calling for an infinite 

nwnber or species in the collection. Fisher 

·recognized this and gave a distribution based on 

a more sophisticated methematlcal approach. He 

started with the po.isson distribution by taking 

the tauilil)et'of'individuals of any species as the 

poisson variate. Since the collection contained 

a heterogeneous population, the mean of t-he pois­

son was.not a tr\ie.rnean -~!the population and that 

itself called for a distribution. Therefore,_ 

Fisher (?) assumed x2 distri'bution for the mean 

of the poisson. The .resulting distribution J:'';··; 

thus becam.e a compound poisson distribution. This 

resl;llted in the series set out 1n equation [3], 

Which fitted the observed data. 

Now, the fisher series explained the 

Williams data satisfactorily and also essentially 

5 



Corbet's(l) data, barring few deviations. But 

the detailed investigations of Preston (S) • which 

were c:ax-ried out subsequently, lead to a different 

picture. Preston analysed six different sets of 

data, each from a different genera, and observed 

that all of them followed a log nosmal C\l"e. 

Therefore, it 1s implied from this that the distri• 

bution which ls actually the more extensively 

valid one, is not the Fisher: distribution, but 

rather the standard log normal distribution given 

by Preston. 

It is of much inte.fest to develop a conce­

ptual basis, either in the form of a complete 

theory or atleaet as a theoretical model, from 

which the distribution followed by the relative 

abundanee of species within a genera could be 

prope".lY understood. If this could be done much 

light would be thrown into the natu.re of multi• 

species systems and their interactions, which in 
. . 

turn would enable us to understand ecosystems a.nd 

their course of evolution on a precise quantita• 

tive basis. 



./.. k".f'irst attempt in this direction was made. 
/ . 

by Kenda11(9 ). He considered a simple stochastic 

model which allowed for the birth and death as 
• 

well as the immigration processes for the popula• 

tion. He was able to obtain a probability distri-. 

bution for the population which was analogue to 

that of Fisher given in equations.(3] above. This 

result was, however, obtained for a single species 

model. 

The p.l."oblem was taken up within a multi­

species framewo.rk by Kerner(lO). He assumed the 

dynamics of the mult1speeies system to be ~J.iven 

by the coupled Lotka-Volterra equations. Uncter 

the assumption of a constraint, he was able to 

develop the statistical mechanics of these equa­

tions. This then led to a population distribution 

for each ·of the component species which was preci­

sely the '12-distribut~on. assumed by Fisher for 

the so-called intrinsic abundance of species which 

he fed into his po~sson distribution. 

Significaat as it is, the work of Kerner 

raises two problems. One is that it does not 

lead to a full explanation of the Fisher reeult 

7 



a_s given by equations [3) above, but leads only 
·'"• I 

to an understanding of an intermediate result, 

The second problem 1s that, in view of the resu­

lts of Preston. the distribution which needs to 

be ekplained is not the x.-2 or the eornpoYnd poisson 

d1st:r1but1on of Fisher; but the lognormal distri­

bution given by equation [4]. 

in the present thesis, we consider this 

problem afresh. OUr starting point is to assume 

that the multispecies ecosystems which are o_f 

interest to us may be described by a set of equa­

tions which contain interaction& between species 

.in the Gompertz form. ·Models characterised by 

such interactions have been discussed for two and 

three species systems earlier(ll). We next deve­

lop the s·tatistical mechanics of our equations in 

a manner which is an~logus to that of Kernar. It 

will be seen that tne population distributions 

that we obtained from here are preclsely of the 

lognol'lflal form. F'Qr deta1.1s and concluding 

remarks on this matter, we refer to the .last 

Chapter of this thesis. 

8 



The material presented in this thesis is 

planned as follows. In Chapter II, we discuss 

the experimental and theoretical a·nalysis arising 

out of the works of Corbet, Williams and Fisher. 

Chapte.r III is devoted to the results of ,reston. 

In Chapter IV we develop, following Kerner, the 

statist.ieal mechanics of the Lotka-Volterra model 

leading to the rx..2 distribution required by Fisher. 

Finally, in Chapter V, we discuss our own multi• 

species model and develop its statistical mecha• 

nics, which leads to the lognormal distribution 

suggested by the analysis of Preston. 

9 



10 
Q!AfTE!l •.II ·. . . . ~ ·- u . l 

Any animal or plant population ln \he wild 

state consists basically of a ve~y large number of 

individuals. the incU.vlduals .are classified by natu­

ralists into species.. The numDe:t of individuals with­

ina species is enang1ng wlth time beca~se of the intra­

and inter-species interactions. A& a result of these 

1nteract.1ons, eaeh species estatlishes an uneasy 

balance of numbers among all the othe:ts. J!."esultino 

1n a pattern of relative abundance foil different 

species in the given population. 

lt has been found that if a ~andom sample of 

individuals ls tak•n from a mix·ed wild populat.lon of 

animals co.ntaining a large number of species, there 

appears to be a matnematieal order 1.n the relative 

abundan~e of the different species represen~ed.. In 

general more species are represented by one individual 

than by two, more by two than by three, and.so on. 

Since order eagnot be ma1nta#.ned out of chaos by tbe 

mere process .of sampling, we must tnter that there ts 

some ordet in the .relative abundance of the specie$ 

in the population itself. 
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The first object of the present study, discu-
,r-' ' ~ :- ' ' ' 

ssed in this and the next Chapter, is to review the 

existing literature which establishes the above menti­

oned order 1n the relative abundance of d1fferent 

species in any population. While doing this review, 

we also discuss certain mathematical series that have 

been suggested at various times to fit the observed data 
. ' ' 

and to' see what light the stru~ture o.f these . series. can 

throw on the pattern of frequency distributions in,the 

populations sampled. 

t Corbet "s Observations 

In i9421 Corbet(l) pointed out that in a large 

collection of butterflies which he had made in Malaya, 

the 9031. individuals included 620 species. Of these, 

118 species were each represented by only a sing,le 

/ 

individual (call~d singletons). seventy-four were repre­

sented by two individuals (doubletons); fo.rty-four by 

thJree individuals, and so on. 

An attempt wa.s then made by Corbet to find a 

mathematical expression that would fit this data. He 

found a relation between S which is the number of 

species· and n which 1s. the number of 1nd.1viduals per 

species in any of the S species. The relation is, 



. c 
s = -=nr n . . . - . . . . . 
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[ll 
,,., .... 

where m and c are .constants. Bquation [11 can also be 

written as 

log 6 + m logft = loge • • • • • • [2] 

This ·latter. is a straight line equation. 

Corbet himself pointed out that hls sample was 

.not' .a truly random one, as ·more attention was pa.id to 

the cet.ching of a rare species than a common one. When 

about twenty-f.ive individuals of eny one species had 

been captured, little effort was made to obtain others. 

Thus, ·the sample was biased in the direction of too 

many species with small numbers, and too small numbers 

of individuals for the commoner species... Hence equation 

[1] cannot be a true distribution for a random sample. 

). . Williams • Observations 

C:w:B. Williams(2) conducted random smapling of 

Lepidoptera by means of a light .... trap at Rothamsted 

6xperimenta.l Station, about 25 m11es north of London,. 

His experimental data were published in the group of 

papers by Corbet, Williams ancS Fisher (1943). (?) He 

was struck by the fact that there were usually great 

numbers of spet1esrepresented by singletons, a mueh 

less nwnbet of species represented by doubletons and 
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still fewer species repre~ented by three, four and so 
" t c . . on. He also noticed· that if N be the .number of species 

represented by singletons, the number represented by 

doubletons was f , the number represented by three was 

f and· so .9.n. · ~ence in the c.ollection, if the observa• 
/ 

tions were val!d.indefinitely1 we should have a series 
I 

1 •. 1 
N(l+2+3+4+•·•••u) •• • • [3] 

where the different terms represent, respectivelv, the 

number .of species represented by 

• • • • individuals. 

This series doesnot conform well to the expe.ri­

mental observations when the size ' , of the sample is 

increased. Furthermore, this being a harmonic series, 

the sum of its terms is infinite, calling for an 1nf1 .... 

nite number of species in the collection. Williams 

himself recognized this. It .is clear from here that the 

intez·pretat1on of the frequency dtstribution of species 

and individuals r-equires a more sophi.sticated theore•.1-

cal an~ mathematical reasoning. 

-3. The Use of tne Poisson Distribution 

So, we begin at a more basic level. For this, 

consider any random sample from a homogeneous ecosystem. 

Let each of these samples have the capa(:ity to contain 
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• N 1ndiv1d\l~ls in total. Now the probability of ooser-

ving n individuals of a speeie.s in any sample is given 

by the binomial distribution 

• • • • • [4] 

where P .is the probability of finding a single ind1v.1-

dual in the sample. Now if N is very large and P is 

very small, but that the mean of this distribution 

NP s m J.s of moderate magnitude, and furthermore., it 

n is negligibly small compared to N, the expression 

which may be written in the fo~ 
- n 

P(n) ~ At (1 - jHl - i ) •••••• 

{. (n§ll) ( , m)N-n 
•• ,. • < 1 - . ) ( 1 - N) [ s .l 

goes over, as N becomes indefinitely large, to 

n .-m 
P(n) -------+·> m .e .. · . n' ' . • • • • • • • .[6]' 

This is the well known Poisson distributlon·with n, 

the number observed in any sample, as the poisson 

variate and m as the mean or the expettat1on value of 

the d1$tribut1on. 
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-4 · The Analysis ,of Fisher 

The above distribution was the starting point 

for, Fishe:r•s analysis for the interpretation of 

Corbet's and Williams • d~ta ( 1• 2 ). Accord1.ng to him, 

if successlve,, independent, equa.l samples ~e taken 

from. a homogeneous ecosystem, the numbers observed can 

be related to the poisson series 

-m n e m 
n: . . .. . . .. • [7j 

where. as noted earlier, m is the expected number and 

n is the ntamber observed in any sample, In general the 

probability that a species w.ill be represented by n 

individuals is then 

• • • • • • • (8] 

n = o, 1, 2, • • .• • • • • 

Now, tn the present distribution, m 1s the mean 

number of individuals pet species. But in the actual 

population,. the number of individuals per species varies 
• from a very small number, s~y. of the order of one to a 

very large number, of the order of lakhs and millions. 

Hence the quantity m which is the expectation value of 

the Poisson distribution cannot be the expecta·t1on for 

all the species. That is, if the material sampled were 
We-Ylr"(J~J'UUTJA/.> ey .i.f.. Ltn~ ~w;~ we.Y<R... 

taken, we should have a mixture of distributions 
A 
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corresponding tQ differe.nt values of m. The same is 

true of the numbers of different organisms observed 

in a single sample, if the different species arenot 

equally abundant. Hence if equation [8] is to explain 

the species - individuals pattern cor.rectly, the 

parameter m its~lf may follow a distribution• 

Therefore.. for the variable m, Fisher (?) 
~ assumed 

the well known ~ distribution, which is of the foJm 

• • • ••• [9] 

df here being the element of frequency or p.robability 

with which m falls in the infinitesimal range dm. The 

parameters P and k are related by · ~-- = P, where M is 

the mean value of m and k measures inversely the varia­

bility of m. Thus a large value of k would be expected 

if the densities of-various species differed only sli­

ghtly from one another, and a small value of k would 

be expected if th~re were pronounced differences in 

their densities. 
' 

If we multiply this expression (9.} by the 

expression given ln [8]. which is the probability of 

observing just n organisms, and integrate with respect 

to m over its whole range from o to .. , we will have 



1.7 

/". ___..- . 
-k -mf· p . -m n.t-K-1 

P e e m dm . n! 

-m(l+l) e lf dm 

• • • (10] 

Putting m c.l;A-> = • ' 

dm = . dt 
C P~1 .) • 

and , 

and substituting these lnto equation [10], we have 

p-k[Ck+n) 
= (. ) • • k•.l • n. 

so that we finally get 

• • , • • • [11] 



where n is now a negative binomial variate. This 

nomenclature arises from the similarity which the 

above expression bears with the negative binomial 

expansion 

18 

For convenience. let us introduce the variable 

X e ( I~ i) such that C> < X < 1. 

Then. 

(k+n-l)A (1-X}k xn 
P n = · · · ( k I) •' ' ' • . • • n. 

Since we are not interested in the nu$bet of specie& 

.re:presented by zero members ·in the . collection. the 

zero class denoted by P0 is to be excluded., where 

• • • • • [12] 

We note that -n!ocPn • 1. 

If we exclude Po fro~ the sum here, the right hand side 

is no more unity. But we do have 

• 1. 
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The exclusion of P0 ftom the swn thus necessit­

ates the use of 
/ 

. , 1 . Pn. 
'Pn °1-P 

0 
, • • • (13] 

which are now the properly normal.t.sed quantities. By 

collecting terms independent of n into a single const­

ant c, we can write 

where, 
k c = .· (1 - JC). 

[I - Ci-x}R] 

In natural communities it ts usually found that 

the differences tn abundance among the species are 

extremely great. This led Fisher, to propose that by 

lett1ng.k-+ o tn ·the formula for pnl an approxima­

tion to.species-abundance proportions might be obtained. 
~ 

Allowing k -+ o in equation [13] to give the 

limiting fo~ of pnl• we get 

• 11m P 1 rtn) xn - xn 
"n-~o ·n •Y7 - Y n 

for n • 1, 2• 3, •••••• 

where, lirn 
y = k-+ 0 c 

y can be evaluated by noting that 
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n 
The expression X .x. is the probability that n 

a species wi.ll be represented in the collection by n 

individuals,. The expected frequency of species with 

n individuals is then 

• • " • • (14] 

where S 1s the total number of species in the colle­

ction and we have put 

Sy = c • 

This expression in equation [14) gives the 

distribution of species containing different numbers 

of individuals and it may be,written as 

«Jt2 4XX3 
QCXJ 2• .~' • • • • • • • 

the successive terms being the number of species with 

1,. 2,, a. • • . • • individuals per species. This series. 

has an infinite number of terms, is discontinuous and 

is convergent.. The sum of all the terms to infinity 

gives the total number of species, !,.e., 

s • - « log· (l•x ) e . • • • • ·• (1?] 
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The corresponding series for the total number of indi• 
I' 

viduals .in all -/pecies of the same abundance elass is 

(IX, cx2., cxx3, .......... ·etc., •••••• [16] 

This is a geometric series with a constant multiple x. 

As x is less than unity the se~ie& is convergent, and 

the sum to infinity (N) or the total number of indivi­

duals in all the s species is 

2 . 3 No«X+CIX,+«X +•••••••• 

2 . 
. e X ( « + «X + ClX + • • • • ., • .. ) 

The quantity in the bracket is a geometric 

sequence with .x as qu.otient whose summation is 

• • • N . «X 
:= l- X 

for lxJ < 1 

• • 

Equations (l.S] and [17] lead to 

and 

N 
X=Ff+« 

. . . (1+~) 
.$ = « loge 

• • • 

• • • • 

[17] 

[18] 

Now, by knowing the values of the total number 

of species S and total number of individuals N in a 

particular collection, the values of .(1 and x can be 

?77Lj-{_D4-3) 
fr95S 
~e 

TH-8~ 



calculated using equations [ 18.]. These relationships 

enable the serios to be fitted to any set of obsetved 

data. The constant ex· has been fou.nd to be e measure 

of the diversity of the populatio.n and l.s low when the 

number of species is low in relation .to the ·number of 

individuals. and high when the number of species is 

high. IA othe.rwords, when « is high, abundant species 

are very m\ach less common than sparse ones. and.when « 

is low,, abundant species are relatively more C()fD11\on. 

The magnitude of x depends only on the size of 

the sample takeri from the parent community. thus, if 

we increase the area from which a collection is taken 

or prolong the durat.J.on ·of operation of a light trap for 

insects. the only effect w111 be to change the value·of 

x, provided the sample still comes from the sarne parent 

community. 

When Fisher's distribution was fitted to Corbet's 

uncorrected data of 9031 individuals in 620 species. it 

gave a value .of x • 0.991 and an expected nwnber of 

species represented by singletons a& 135 species. which 

i~ considerably more tha.n the observed 118. The calcu• 

lated and observed values for the difference n1 - n4 
.were 14,5 and 142, .and for n5 - n13 were 145 and 157. 

Here n1 is the number of species re.presented by singletons 
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n4 is'the numbex- of species represented by 4 1ndtv1-
r 

dual$ each.tancl simil_arly tor n5 and n13• Thus the 

estimated number of'·species is too high for the rare~. 

becoming too low for the commoner species [for fuller 

calculations see Fisher et al., (?} 1943, PP• 43). 

In a similar way, the extensive data of · 

W1111ams(2 ) on the capture of about 15.609 Lepidoptera 

of about 240 species in a light-trap at Rothamsted was 

also fitted to ~isher•s distribution. For both common 

·and rare species the calculated values·are very close 

to the observed values. The calculated number of spe ... 

eies with one individual is slightly larger (40.14) 

than the observed (3;). By calculation there should 

be 116.9 species with 10 or fewer individuals and the 

.observed number was 115. But in the case of Hete.roptera 

with 1414 individuals of 57 species,.the fit-is not so 

good as in ease of Lepidoptera. The observed number of 

species represented by only one individual is 18 a.r.d 

the calculated one is less than 12.. ln general th.ne 

were rather more of the rarer species than the calculatec 

sertis indicates and fewer of the commoner species. It 

is clear from here that the results of Fisher•s mathema• 

tical theory seem to fit the data Qf Corbet(l) and 

Williams<2> reasonably, but they are not satisfactory 
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enough to be considered as a conclusive proof of the 

applicability of the Fisher d1strS.but1on to observa­

tional data in ecosystems. 

As opposed to the Fisher dist~:1but1on which 

fitted the then existing observational data, Preston(a) 

gave a new suggestion, namely, that the log-normal dis ... 

trlbut1on would be a better fit for the observational 

data than any other distribution. The fuller details 

of Prest·on •s approach are discussed in the next Chapter .• 



CHAPTt;R - III 
/ 

PRESTON'S ANALYSIS 

The species abundance data reveal that the. 

collections 1n all cases contain many rare species 

and a few abundant ones, although, of course, in terms 

of numbers of 1nd1vid'.!~ls those of the few commoft spe .. 

cie& far outnumbet' those of the many ;rare species. In 

any case, in view of the large variation in the numbers 

of individuals per species., it is convenient. to plot 

these nt.tmbers on a logarithmic scale. Preston(&) con­

sidered the number of species n1, n2, ••••• , and in 

general nl', represented J:espective1y by one individual, 

tWo individuals, ...... and in general r 1ndiv1duals, 

i.e., he considered the different species frequencies. 

He then plotted these nr against the corresponding r, , 

choosing of course. -a logarithmic scale for r. Preston 

found it convenient to introduce a few othel:" technica­

lities in his analysis. We review these technicalities 

now: 

Since we are dealing with the z-elat1ve abundance 

of species, we .frequently come across facts like, say, 

one species is twice as abundant as another. This led 

Preston to gl'aduate the abeissa as equal increments .in 
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Table-t: Preston's scheme for grouping .species freque.ncies according 

Name of 
tbe 

Octave 

-----
A 

~ 

c 
D 

E 

f 

G 

K 

Column-II 
Arithmetic 
grouping of 
the no. of 
individuals 
per species 

1 - 2 

2 -4 

4 - 8 

e - 16 

16 - 32 

32 .. 64 

64 - 128 

128 - 256 

-

to '' Octaves " 

. Column-III . 

Corresponding 
1ogar1 thmlc· 
g-rouping 

0-. 1 

1. - 2 

2 - 3 

3 - 4 

4 - 5 

5- 6 

6· - .., 
7 - 8 

-- ·- - etc - -

· Column-!V 

Number of species ·belonging 
to that. octave 

-~{j;::f.ar.:;.equ.enct) -
Half of + Xil + Hall of 

1 ·- 2 

2 3 4 

4 5., 6, 7 8 

8 9-15 16 

16 17-31 32 

;a2 33-63 64 

64 6.5-127 128 

138 119-255 2·56 
' 

- - --etc -· --
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the logar1 thms of the number of inc:U.viduals repre­

senting a species and he used as such increments the 
. 

•octave•, i.e., the interval in which the representa-, 

t1on doubled.. ln other words the midpoint of each 

octave is double that of the preceding octave. •vtt.b 

this the abclssa became simply a scale of octaves which 

is equivalent te taking tt logarithms to the base 2*'. 

The actual details of this grouping are presented in 

tab.le I. 

This table clearly shows the relationship betw­

een arithmetical grouping and the corresponding loga­

rithmic grouping. For instance; 1n the case of octave 

B, the arithmetic group is 2 to 4 and the corresponding 

2 4 1ogarithm1e group is 1 to 2 [since 1og2 == 1 and loo2 · 

= 2 1og2 ~ = 2]. The way in which the number of species 

belonging to each .octave is calculated is shown in the 

same table I, column IV., for instance, if a species 1-e 

represented by 5, 6 or 7 individuals., it clearly falls 

in octave c. '!.f a species is represented by 8 ind1v1• 

duals, octave C 1s credited with half a species, and 

octave D is credited with the other half. Iti a similar 

way all other octaves are composed. All spec.1es falling 

in, say, one octave may be thought of as having roughlY 

the s.ame degree of abundance, in comparison w1·th those 
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falling in any ·other octave. Note that octaves below 

A will correspond to fractional numbers and will thus 

not correspond to any physically observable situations. 

This is indicated in the plots (see figures 1·6) by 

dtawing the curies in this region by broken lines. 

Preston(S) calls his Y-axis• to the left of which is 

this broken line, as the n ve.11 line'' • It should be 

remembered, however, that doubling the size of the 

sample will double the number of species belonging to 

each octa'le which results in shifting the curve by one 

octave to the t'ight. In other ·words, an octave which 

was hitherto not observable has become observable now. 

It is thus clear from here that if this process of 

doubling is continued; all the species that exist in 

the system will become observable and the corresponding 

curve will be a true representative of the system. Of 

course, the log normal nature of this curve does not 

change as it shifts to the right, the only change be1nt 

in the constants n0 and possibly •a• (introduced below) 

which will obviously have numerical values characterised 

by the size of the sample chosen. 

In all, Pr~ston (a) orouped six different sets 

of data in this manner and plotted with abscissa as the 

scale of octaves and the frequency of species (i.e •• 
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the number of species belonging to a particular octave) 

&$ the ordinate. He/observed that each curve exhibits 

a maximum in some octave to the right of the first one 

and the observed octave frequencies first increase and 

then dec.rease. The mode of this set of data is that 

value which occurs with maximum frequency. Therefore, 

the octave which corresponds to the- maximum in the grap_tl 

cctntaining maximum number of species is known as the 

modal octave. for convenience, the plots obtained by 

Preston are all reproduced at the end of this Chapter 

in Figures 1 to 6. The figure captions in these figures 

identify the data plotted. 

The maln point that emergeG fx-om this analysis 

is that in all cases the data is -well f1t.ted by a symme­

trical normal curve truncated on the left.. The general 

equation of such a curve is 

• • • • [1] 

whe.re n;0 is the number of species in the model octa~e, 

n (R) is the number in an octave distance .R octaves fx-om 

tbe model octave and 

• • • • • [2] 

where ~ ls the measure of the mean square deviation of 

the population from .it•s mean value. 
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We thus have 

· ... ·, .. R = • • • • [3] 

where 1 are the numbers of individuals. the logarithms 

to the base 2 of which are plotted along the x.axis and 

1* ·1s the particula.r value of i corresponding to the 

peak of tlie curve. Preston took for any 1 correspond­

ing to any octave the mid-value within that octave. 

1* is thus the mid-value for the model octave. Note 

that 

i2 .. flog/' - 1og21* r 
and is given by 

• 

• 2 = f!l • 

- 2 . .1 n(R) R. dR 

.... 
1 n(R) dR 

, .. 
"or; 

= .2a3 .. 
non 

8 

• • [4) 

1 •- •.• [sl 
2a2 

Note also that the total number of species N for 

the .system is g1ven by 

~ nfi 
/ n(R) dR a ~Q~ 

a = N • ·• .. • [6] 
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Table-II! calculated values of a, n0 , N and the 
observed value of the total number of 
species for cases analysed by Preaton11 

.i I r - I •t Observed total 
Case a no N number of species 

1n the pa.t-ticular 
sample analysed. 

1 0.194 10 91 80 

2 0.207 48 410 349 

3 0.205' 42 363 226 

4 0.227 35 273 240 

5 0.152 33 384 271 

6 0.160. 30 332 291 
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This N should be the total number theoretically . 

available for observati~n. ln practice, the presence 
.) 

of the veil line will imply that the actually observed 

number is smaller. Now since the quantities a and n0 

can be calculated from the curves fitted to the data, 

the theoretical value of the total number of species 

for the system oan be calculated .frOJ1l equation [6), 

The difference between this and the observed value will 

give an estimate of how .much of the system was missed 

out 1n any particular sample. In table 11, we present 

the calculated values of a, n0 , N as ~ell as the obser­

ved values (in the given samples) for N, for all the six 

cases analysed by Preston. Note that the value of a in 

all these cases is close to about 0.20. 

We conclude this Chapter by .noting that the distJ:i­

bution given by equation (1) can be conveniently written 

in the fo.rm 

••• (7] 
N 

n ·(log2
1

) = ··---
. tS '(21C 

which,.aside from the trivial difference of the logari­

thms being taken to the base •2• in:Stead of the base •e• 

is identl.cal to the standard lognormal distribution. We 

shall return to this expre.ssion in the last Chapter of 

this thesis. 



Figure 1: Species abundances in a collection of birds of 
Quaker Run Valley, Western New York State. 
Data from SaundersC3 l {1936). 

- - ----- ----- --- --- ~ -- -- --
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Species abundance in a collection of moths 
caught ln a light trap at Orono, Maine. 

Data from Dirks(S) (1937). 



flqure 3: Species abundances in a collection of female moths 
in a light trap at Orono. Maine. 

Data from Dirks ( S) (2937). 



figure 4.: Species abundances in a collection of moths in 
a light trap at Rothamsted, England • 

. Data from Williams (2 ) (1943). 
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Figure 55: Species abundances i.n a collection of moths 
caught in a light trap at.Saskatoon, SaSkatchewan. 

Data from King. 



Figure ,6!. Spec.ies abundances in a collection of moths caught 
in a light trap at Lethbridge~ Alberta. 

Data from Seamans<6 >· 
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CHAPTER - IV 

STATISTICAL MECHANICAt. APPROACH TOTH! 

LOTJ<A-VOLTERRA MODEL 

In this Chapter, we shall develop the stati­

stical. mechanics of the mult1spec1es ecosystem. the 

·dynamics of which J.s given by the coupled Lotka• 

Volterra equations. We shall see that, under a con­

straint. this set of equations possesses a constant 

of·mot1on. We then construct a phase space, such that 

our system belongs to an ensemble 1n this .space on a 

surface <;haracter1sed by this con-stant of motion. The 

reqwisite t.iouville theorem, the condition for· the 

ensemble to be in ·statistical equilibrium; a.s well as 

the erogodic hypothesis are then discussed. .Following 

this, microcanonical ensemble is constructed. The 

possibility of there being .a u temperature u fo.r the 

system is then noted. this enables us to construct 

the Gibbs canonical ensemble for any subsystem ot the 

, system.. As an application, the probability distribu­

tion for the number of individuals in any species is · 

then worked out. This distribution is seen to be the 

~2 distribution used by Fisher and discussed ift the 

Introduction and the second Chapter of this thesis. 



1. THE LOTKA-VOLTERRA MODEL 

The basic equations of the Lotka-Vo1terra 

model for a system of n interacting species-with 

populations N1, N2, •••••• , Nn aref 

dN 
df-= 

where s, r e 1, 2,, 3• ••••••• n. 
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The first term involving the c;onstants Er on the 

right hand side here expresses how the species Nr 

propagates 1£ left to itself 1n a given environment. 

The remaining terms express the interaction of species 

y with all other speci.es.. The constants «sr are 

assumed to be antisymmetric with 

• • • [2] 

This ·of course 1nip11es that the self-interaction te.rms 

are absent, i.e., 

"rr • o, for all r • • • • {3] 

The quantities ~;1 are such that during binary colli­

sions of species r and s, the ratio of s•s lost (ol' 

gained) per second to r' s gained .(or lost) ts ·'51113;1• 

We define the steady state of our assembly to 

be characterized by that set of populations Nr s:, qr 



fo.r which ·~ a Q for all r, so tha.t the def~ning 
equations for qr are 

• • • • [4] 
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It is assumed that at steady state cond1t1ons, none 

of the q values wlll vanish. Now we define 
N 

vr !a log f or Nr ~ qr evr • • • [5] 
r 

Clearly, as Nr -+ qr• vr -+ 0 so that vr 1s a 

measure of the deviation from equilibrium. The 

rate equation [1] may be expressed 1n terms o.f the 

dv . vs 
13,. crf- • Er I!Sr + ~ «sr qs e . ·.... [ 6] 

and by expressing Er flr through equation [4] we 

have 
dv ( v 

'r It r • i «sr qs ce . s - 1 ~ • • • • 

If we multiply both sides of this equation by­

qrfevr- 1~ and sum over all t, we find 

d. { ( Vr l l 
Tt l ~ fjr qr ( e ... v..-) J 

[7] 

the double sum vanishes because «sr a.re antisymme• 

trieal in s and r. Then, we find 



G = E f'r qr ( e v,. • v r ))· • Cont = tGr .... [ 8] r ,.. ( 
. ./ 

so that G is our desired constant of motion. 
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Now 'the $QUat1ons of motion [7] may be wr.itten 

canonically in te.rms of G as follows : 

• .. • • [9] 

where 

BquatioAs [9] are the canonical forms of [7.1 in terms 

of G. 

Tbe.fact that·G as given by (8] is a sum of 

individual terms, each relating to a separate species 

is of considerable importance. each Gr in [8] has a 

miairntllJl t3rqr (; Yr> when vr = 0 or when Nr = qr' the 

equilibrium value of Nr• To say that G is a constant 

of the motion implies that 1f the system 1s started 

off with G e G0 , then the value G
0 

will be maintained 

indefinitely. This result G • G0 may also be used, 

as will be done later, to define a constant sutface 1n 
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the phase space fo• the system described by the set 

of equations [ 1]. ,;, 

I<erner(lO) built the statistical mechanics of 

the system [1] by imagining a Gibbs ensemble for lt 

in the following way. He considered all possible 

c.opies of the system controlled by the dynamical 

equation [1], where each such copy corresponded to 

one of the possible sets. of initial values of (vr) 

consistent with the constant G. The state of each 

such copy was represented by a potnt in the carte­

sian space of the variables Cv1, v2, •••••t vn)• 

called the phase space. The collection of all such 

points then defined the ensemble. 

2. THE LIOOVILJtE ,THS,OREM ~0 TH§. CONDITION FQ}\ 

STAJ:ISTICAL EQYILIBR!~ 

Now• let us denote the density of the points 

in the ensemble by 1 (v1, H•••• vn) at the point 

(v1, •••••; vn) in the phase space. Clearly• the 

total aumber of copies of the system, 1.e •• the total 

number of· pointa in the ensemble, has to be a constant. 

· This conservation property immediately leads to the 

equation of continuity for,J>(v1, •••••• , vn) which 1s: 
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=0 • • • • (10) 

.Expanding the derivative under the summation 

sign, we get 

= 0 •• • • [11] 

In v1e\v of equation (7]., which implies that . -

vr is independent of vr• we have 

I + E ,., ~;~ = 0 • 
v r v r • ·• • • • [12] 

which ls simply the relation 

I= Q • • • • . .. ' . • [13] 

We have thus proved the Liouville theorem. 

This implies that a given element of volume of phase 

space, though changing it's shape, maintains a uniform 

size, as the motion of its points unfolds, thus giving 

the desirable uniformity propet:tY to the phase space(. 

Let us now consider our actual system which ts 
. , 

characterized by the constant G = G0 • The ensemble for 

the system will thus be an ensernble over a surface of 

constant G in the phase space.. We then presume the 
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density function p to be a function of G alone. The 

depen'denee .of P on any othel:' variable is thus only via 

G. Then we have 

~- M!,l§ rv; 1if bVr • • • • • • ·• [14] 

and substi tutlng this in the second term 1n ,quat1on . 

[12], we get 

=0 • • • • (15] 

1n view of the constancy of G. 

This immediately gives us the result 

I= o • ·• • • • ·• . • [16] 

which we obtain by substituting equation [15] in 

equation [12]. This is the condition .for our ensem­

ble to be in statistical equilibrium. 

In order to proceed further with our system in 

a·situation of statistical equ111brit.un, we parametrlse 

out phase density as 

• • • • • • [17] 
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where 6"stands for the standard Dirac delta function 

and P.0 is a numerical constant. G0 .is the 1n1 tial 

value of G, defining a constant surface in the phase 

space. The ensembles .Characterized with density fun­

ctions of this ·kind are the well known microcanonical 

ensembles. 

.... , 
The ensemble average of any function f Cv1, v2, 

v ) of phase coordinates is now defined to be n 
..... 

.. I Pfdt 
f c _-.. ·----.... ·• • • .. • (18] 

l Pdt. 
-oo 

the integrals be.ing over all of phase space. 

The eleml)nt of volume dt. can be represented as . 

dG _. dt. = dsdn = ds .........,;:_::.;;::o.. __ 
1 'Y"GJ 

where ds 1s an element of area on a constant G surface 

and dn is an increment of length normal to the surface, 

which can be written as I ~G I where dG is the differ-

ence in G values two neighbouring constant G surfaces. 

Therefore, with this result and the equation [17], the 

expression [18] goes over to 
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t = .t;o t ~~(G ,-.Go~ ds ~~a}. 
/1'0 '- (G - G0 ) ds ·J :~I 

• . ' . • • [19] 

Note that these integ~als are surface integral& over 

Let us now choose for f; the function fr given 

by 

We note first that since 

~ ~ 
<•r denoting a unit vector in the Vr direction and n . 
a unlt normal vector to the surface G = constant), the 

. A 
direction cosines of n are 

so that 
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1'\ --"> 
= n • vr ds. 

Here, Yr denotes the vector to the point (O, •••• O, 

"r• .9 ••••• o). Then calling the denominator 1n equa­

tion [19] as ~0, the ensemble average of Tr is 

T = ~0 I n . Vr ds • ·10 I div Vr df 

Yo = --- • for $ll y l6o • • • • [20] 

where y0 denotes the total volume enclosed by G0 • 

Note here that we have used Gauss• divergence theorem. 

This expression ~ in, equation [20] is a constant 
·0 

for all values of y (i.e .• , for all species).} Thus the 

mean Tl" for any species is the same as for any other. 

This result is analogus to the equipartition 

theorem which states that the energy of a system of 

particles 1s equally distributed among all the degrees 

of freedom of the particles in the system. It 1£ 

! KT per degree of freedom, where K is the Boltzmann 

constant and T is the absolute temperature of the system. 

Since the idea of equipartition prevails in our- biolo­

gical system as well, as evidenced by the properties 
• of Tr• the possib.111ty of defining a 'temperature • 

for the system opens up immediately. Once a tempera­

ture is defined; a cononical ensemble can also be 
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defif!pd. We shall do precisely this in the follow1n~Jt 

but first we shall show by an example that our system 

admits of the ergodic hypothesis as well. 

3. THE ERGODIC HYPOTHESIS 

We define a function Dr as 

D.. :: .o.g_ = y -~ ~-~~ • 
... IVr rf qr ~ • • • [21] 

Let us calculate the ensemble average of Dr• 1. e., 

M! . d$ 

' tvr J :'7 :al 

Iince the 

-• D • • r 

-or, Nr 

! (n. vr) ds 
so =--------

Ao 

• } I div v .. d't 
.L-\.0 ... 

= o. 

divergence of a unit 

• Yr t:: .~ 1 I 
a qr -· • • 

vector is :ze.ro. 

= 0 • • • • ·• [22] 

• • • • .(23] 
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In __ )~-therwords the ensemble average of Nr is 

equal to the steady state value of Nr, namely qr• 

We can now show that the ·time average of Nr is also 

qr• We have from equation (1], 

( Nr 
fir a\ ( log . ~ = £r IJr + i «sr Ns'"> 

Integrating with respect to t on both sides, between 

the limits 0 to r, we get, 

, 
Now, as T _...,the left hand side vanishes and remem-

bering that the time average of N6 i.s nothing but, 

T ,,. Lt J. ' 
Ns =t.- · / N8 Ct.) dt, we simply get 

To 

By comparing this with equation [4], we arrive at the 

result 

• • • • • [24] 

Thus, by combining equations (23] and [24], we 

see that the time averag~ of population Nr 1s precisely 

equal to the ensemble average of the same. The ergodic: 

hypothesis, first advanced by Boltzmann, states that a 
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time average of a macroscopic quantity is, under equi-
.. 

librium conditions, the same as an ensemble average. It 

is clear from our result that our biological system is 

ergodic. 

4. THE CANONICAL ~ENSSMBLE 

Our biological system consists of n species in 

general. If we we.re to consider subsystems of this 

general system. which would consist of say, --)) nwnber of 

spec.ies; whe.re 1 ~ ~ ' n, it would be convenient to 

work with the Gibbs canonical ensemble instead of the 

microcanonical ensemble that was discussed in the pre-

. ceding paragraptJs. The -canonical ensemble can of course 

be defined for any subsystem which is in equilibrium with 

the larger system of which it 1$ a part. This equilibri­

um is established once we identify the temperature for 

the system and ensure that the temperature of the sub­

system is the same as that of the full system. The 
-existence of the quantity Tr• which is the same for any 

y, ma .. kes 1t clear that we can indeed define a •tempera­

tur-e' in our ease as well. If we now denote this tempe­

rature by the symbol o, and consider the subsystem con­

sisting of )) number of species, we can construct our 

canonical ensemble which is characterized by thedensity 

functlon 
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where, Pj is normalised: 

'v (v1, v2, •••• •, vj ) d'tv here .represents the 

probability that a member of the ensemble lwh1ch is in 

statist1¢a1 equilibrium) chosen at random will be found 

ln the volume element dt~ around the point (v1, v2, ... 

~) ) in the -)) -dimensional subspace of our subsystem. 

The canonical average of al)y function f is now given by · 

Note that the fac;tor 

• • • • (2~] 

is the well known Gibbs phase integral •. 

We now calculate the canonical average of the 

function Dr• defined in equation [21] • We havea 

. I ~ ,-G /e dt. 
- av; 
Dr • -------------------1 e-G/e d 't 

• [26] 

where for convenience, we have dropped the subscript Y. 
By making the substitution, 
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into equation [26], we have 

d t 

d t 

or, 

• 0 • • • • (27] 

Therefore, ae for mlcrocanonieal ensemble, we get for 

canonical ensemble : 

-or Nr = qr• 
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In a similar manner, we consider the function 

Tr = Vr a!; . The ensemble average now is• 

I v ..A§ e -Gle dU: 
- '1: av . -( T = . ·.. r . . • 

r -Gfe 1 e d vr 

We now make the substitution, 

-into the Tr expression, and by simplifying we have, 

-r • e r • .. • • • [28] 

This result i.s consistent with the earlier result 

obtained in expression [20]. In order to get .an .in­

sight into the meani.ng of the temperature e, we con­

side;r; the ensemble average of or:2• 

We have 

Therefore, 

• • • • (29] 
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,F 

Here we make 1fhe substitution., 

V· 
where, Gr • Yr ( e X' - Vr ) 

~ .:.... . <lir - Yr ( e r - 1 ), 

and 

With these substitutions. we ha~e 

--
The first and second integrals in the right hand side 

_of the aboveJequat1on are zero. Therefore, we have. 

I ~ ~vG~ f.-ar/e d- . e I -Grte d - [30] 
~ v • ~ - vr u: Yr · 8 "r • • • • · 
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With this expresst-6n [30], equation [29] becomes 

Therefore, 

e • 

• • .. .[31] 

Thus, e is a measure of the mean square deviation in 

the 'ftumbel."s for each .species from 1 ts equilibrium value .. 

The situation of ttero tempe.rat~re would thus correspond 

to the completely quiet state of the biological systern, 

Clearly, 8 is a :meeau.t:e of the level of excitatio!l of 

the system from its stationary state, 

S. KERNER l)ISTRIB UTION 

We now consider the Gibbs phase integral set out . . 
in equation [2~] to obtain an expression for the proba-

bility that the species y will have its •r in the range 

vr and vr + dvr• We have 
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• n i e-«Gr --
whe.re « • i and n denotes the product symbol. 

y 
-aG •«Y (e r - Vr) 

Since e r = e r 

the expression for Z becomes 

, 

dN r 
·Hr , 

• • • • • • • • [32] 

with this express.1on, the probability that one species 

will have its Vr in the :-ange Yr and Yr + dvr 1s given 

by 

' ·• • • • [33] 
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Transfe.rming the variables vr into a new variable Rr 

Nr such that n~ = , we have, 
... <lr 

• • • [.34] 

With expressions [32] and [34]. the probability that the 

species will have its nr in the range.nr and nr + dnr is 

give.n by 

dnr 
•••• [35] 

This expression [35] is the x2 distribution 

chosen by fisher(?) for the intrinsic abundance of 

species - the expectation value of the poisson distri­

bution, as discussed in the seeon.d ·Chapter. Fisher chose 

this x2 distribu.tion only at a phenomenological level 

and the resul~ing compound poisson distJribution which he 

got from this led to a negative binomial distribution 

used by.h1m to fit the observational data. The result 

of Kerner th'us gives a theoretical reasoning as to why 

the rx.,2 di.stribution should be used. 
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However, as has been noted in the intx-oduction, 

the dist.t"ibutlon which is actually the more extensively 

valid one, is not the Fisher distribution, but rather 

the standard lognormal distribution suggested by Presi\o 

ton(S) (discu.ssed in Chapter III). Intex-estingly 

enough, we find that if Kerner • s app.roach is followed 

within a model where interactions between species are 

of the Gompe.rtz form, a distribution for Nr follows 

which is pree1sely lognormal. We show this in the 

next Chapter. 
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CHAPTER ·• V 

STATISTICAL MeCHANICAL APPROACH TO THE GOMPS.R~Z MODEl.. 

In the previous Chapter, we have discussed the 

application of statistical mechanical techniq\le& to the 

Lotka-volterra model. These techniques can of course be 

tried 'on other models of mult1spec1es ecosystems also. 

We shall do so in the present Chapter, our model will 

· dlffet from the Lotka-volterra model insofa.r as the 

interaction tet:ms between different species are con-cerned. 

Consider for instance the interaction term appearing in 

the equation for the time der.ivative of population N1 of 

the tth species; and representing the interaction between 
... 

the species 1 and, say, j. In the Lotka-vol.terra model 

it is simply ·of the fom NlNj• ln the present model, it 

will be taken as N1 log Nj. Models with such- interaction 

forms; commonly called the Gompertz forms have been disc..a­

s~Jed by several authors. See for .instance Bhat and 

Pande (1980)11, we give a detailed discussion on 2 and 3 

' species ecosyBtems within such a model. This model 

reprodue"s all the good features of the conventional 

f..otta-volterra model. In addition, because of its 

solvability property, 1t is amenable to much morel detai­

led as well as fruitful investigations than any other 
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model. atleast for cases where the nurnber of interact­

ing. species is low enough. We have thought it quite 

usef'ul to try this model for cases whe.te the number of 

interacting species is latge. The stat1st.1cal mechani­

cal technlqu~s for such cases are of course the appro­

priate ones. 

We shall see in the following that our model leads 

to the log normal form for the probability d1strlbut1oft 

for the number of indll/iduals in any species, under an 

approximation, which is qulte an acceptable one so long 

as we confine ourselves to species within one genera, we 

shall show that., this leads directly to an explanation 

of Preston result discussed in Chapter III. 

' 1. StATISTICAL MECHAN·ICS Of THE GOMPERTZ MOOSL 

We now consider the model of n interacting species 

where the interaction tem appearing in the equatJ.on for 

th.e time del"1vat1ve of Nrt and representing the interact­

ion between species r and s, is of the fotm Nr logNs. 

The basic equations of the model are thus 

• • • . ' . . [1] 

r, s • 1, 2, •••• n. 
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Once again, Cisr/are assumed t.o be antisyrnmetric. fol' 

stationary states of the system, ~~ vanishes and the 

population numbers Nr have the steady values qr given by 

Now in terms of the vari.able xl', given by 

1or/1r • • • • • [3] 

equations [1] can be.written as 

• • (4] 

and by exp.ress.ing ~ through equation (2], we have 

• • • r~J 

Multiplying both sides ,of equation [$] by (xr - x;) and 

summing over r, we get 

Due to the antlsyrnmetry of czsr• the right hand side of 

the above equatlo.n vanishes and the equation yields a 

constant of motion or a conserved quantity, given by 

·~· i x.r2 • GeE •X x) = J:G • · ~ r r r r [6] 
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YJt:t/now imagine a Gibbs ensemble for the system 

(4], in a manner analogus to that of Kerner, as the 

colle-ction of all possible copies of the system. each 

copy cor-!:'esponding t9 one possible set of initial values 

for xr• An appropriate phase space - a cartesian coor­

dinate system with xr as the axes, can now be constru• 

c::ted. Each copy of the system is then represented in 

this space by a point. and the ensemble by an ensemble 

of polnts. The constancy of the total number of points 

in the ensemble. along with the dynamics of our model 

as given by eqtAat1ons [1] and [4]• then lead" to the 

requisite Liouville theorem. The e·nsemble for our system 

is of course defined over a surface of constant G in the 

phase space. The condition for this ensemble to be in . 

a state of statistical equilibrium can also be establi­

shed in exactly the same way as in the previous Chapter. 

All th1& enables us to define a microcanonical ensemble 

for our system, the density function. for which 1s chara­

cterised by : 

p = p o • (G - Go) ·• • • • • • [1] 

where, as before, i stands for the standard Dirac delta 

functi·on and P 0 is a numerical constant. 
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The/ensemble average of any ft;tnction f (x1, x2, •• 

•• ,xn) of phase coordinates is now defined to be 

- /Pfdt. 
f • 

/fld't 
• • • • [8] 

the integrals 1\0W being over all of phase space. The 
-

element of volume d 't can be ,:epresented as 

.· . ..J!!..4SL 
d t = d sdn = J 7 G I 

hav.1ng the same meaning as 1n the previous Chapter. 

Therefore, with this result and the equation [7J, the 

expression [8] goes over to 

J P0 f b(G .... G0) ds ~ 

f P0 6(G .. G~) ds ·~J~I 

• • [9] 

Note that these integrals are surface integrals over 

G = G0 • 

Let us now choose for f, the function Tr• given by 

fle note firs.t that since 
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• 
A A 

Where n 1s the unit vector along the resultant and xr 

1s the unlt vector along xr direction, the direction 
A 

cosines of n are 

so that 

" " n • x = r 

x" /.; I ~Gf • x,. (rt • i:r> ds 

= <n • ~> ds 

Here xr denotes the veetor to the point (0, o ••.• o, 
•r• ••••• 0). Then if we denote the denominator in 

eqUation [9 j as J.:::.-, the ensembl.e average of Tr la 1 

.- In .• •r ds 
T ··==- so - . , 
r /.:~. o 

T 111 _Yo for all y. 
I' 1:::::. 0 • • • • • • (10) 

Here, we have used Gauss• divergence theo~em and repre• 

set'lted the volume enclosed by G0 as Y0 • This expression 

[10] is a constant for all species y and thus the mean 

Tr for any spec1es.1s the same as for any other. 
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Now as discussed in the previous Chapter, follow­

ing eq~atlon [20], the 1dea of equ1part1t1tm prevails -here as well, as evidenced by the properties of Tl'. 

This opens up the poss1b.111.ty .of defining a temper~ture, 

which then enables us to define a Gibbs canonical ensem• 

ble for o\lr system. Before doing that, however, we show 

by an example that our systems admits of the ergodic 

hy,pothesi.s as well. 

We define a function D as r 

Dr • ~G, = (xr - xr*> 
r • • • ·• 

Let us c:alculate the ensemble average of o,.. i.e., 

i.e., 

or 

= o. 

·(x • JC *) e 0 r r· 

• • • • • • 

[11] 

[12] 

This shows that the ensemble aver.age of xl' is 

equal to the steady state value of •r nilmely •t*• 

Now we can sh~w that the time average of Nr is 

also qr• We have from equation [1] 
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Integrating with fespect to t on both sides, between the 

limits 0 to T, we get 

Now since N are bounded, ,as T ...,.. •• the left hand side 
~ Ns vanishes, and remembering that the time average of log 

is nothing but 

we get 

or, 

N 
log 8 

and t.i1DU9h equation [2], this becomes .. x* xs e 
$ - * OJ: xr = X .I' • • • .. • ,, [13] 

Thus, by combining equations [12) and [.13], we see that 

the t,inte average of xr is pt-ec1sely equal tt · the ensern• 

ble average of the same. Clearly,, our biological system 

ls ergodic. 

/ 
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, THS CANONICAL SNSEMB LE 
.~ . t',. We now define a Canonical ensemble for a sub­

system of olilr general biological system, which would 

consist of, say, ~ number of species, where ~ .Y ,.n. 
This subsystem has to stay ln statistical equilibr.ium 

with the rest of the system. The statistical equilibrium 

between the parts 1& ensured by establishing that. they all 

have the same t temperature e•. 
The density function P for such a canonical system 

is given DY 

-a Je 
~ = e 'VI' • • I • ·• • .. [14] 

where, the sufi1x ~ indi.cates that we are dealing w1 th 

the part containing ~ number ot species. The Canonical 

average of any quantity Dl', where r may refer to any of 

the ~ specie$·, is g.iven by 

- I D e -Gv /f!J d t. 
I) a r ... . . v 
r I e-ov/e ct t 

y 

• • 

Let us take 

D. e ...ML = (X • X * ) r axr · r · · r · • • • [16) 

The canonical average o.f the quantity Or ia then given by 
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-e I ~ f• -4rte i dx,_. 
. n I •::Urte <tx., , . , . 

• 0 

• 0 

or, .. • • • • .[17] 

Let us now consider the ensemble average of the quantity 
2 ' 

Dr • We have 
2 ' -

... 2 I -~ ao l ;: -GJ e . . . /_ 1 •-4/e d ""'-
. Dl' == ~ ax~ i c;. •· , d ~ ~,.. 

= o. 
The suff1x )) has been dropped here since it ls t.Jnimport­

ant t the number ~ could be anything from 1 to n so long· 

as it contains .r. This result 
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• • • (18] 

!hU$ ShOWS that the temperature $ is a aeaS\IJ:& of the 

mean squal'e deviation of "r fl!'om its equilibrium value 
- \ 

I 

•r*• .In an e1eactly similar way. as in the previous 

Chapter, the situation of zero temperature would thus 

correspond to the ,completely quiet state of our biolo­

gical system. In other words, e is a measure of the level 

of excitation of the system from its stat1on-a~Y state. 

Now let us consider the quantity 

z = 

= nr zr, r c 1, 2, •••• , n •••• (19] 

So we have 

Z I ~r/e d r = . e Xr 

• • • [20] 

Note that the expression [19] is the well known Gibbs 

phase integral. 
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3. THE LQGMORMAL DISTRlBUTlON 

We are now in a position to calculate the prgbabi• 

11ty P(xr) dxr for any species r to have its •r in the 

interval between XI' and Xr + dXr. For this. we either 

consider the system with K species or a one component 

system with species r. 1n the former cas~, after a simple 
I . 

1ntt;)9rat1on over all the coordinates other than Xr• and 

1n the latter case ditectly, we get the re.sult 

e -Gr/e dx 
P (xr)dxr et ---z"""'·. -· ·-· .;,r_ 

r 2 
... 1 i xr • x x * 

e e l 2 r r ldX 
= --------------------~~' 

1(2 1t e) e (xr* ) /28 

1 [ .. 12 
1 - g xr - xr• , . = 1@• e) e · dxr ••• [21] 

wnere,of course 

• • • • [22] 

By transferming back to Nr• thz-ough the relation [3]1 

this may also be written as 

P(N,) dNr "' .. 1 . •- 2\s ( logNr - looN/ ]2 dN • • [23 J 
Nr '(~xe) r 
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.,._, ... 

where 

• • • • [24] 

The expression in [23] is the standard log.nonnal 

distribution. 

Let us now consider the approximation in which the 

equilibrium value.of the number of individuals for any 

species within the genera is the same. In that ease the 

function P(xr) multiplied by N, which is the total ,..umber 

of sp,cies in the system, has precisely the same meanini 

as the function n(R) or n(logi) of Preston. In other 

words, we have the result 

n(log1) 
N --!a Cx -. x* 12 

• V2xl' e . · • • [2~] 

where 9 has the same meaning as a2 or ,2 1n Preston's 

notation, and of course 

.. 1 
x = log • 

.1 here is the number of individuals referred to by Nr so 

far in thts Chapter. Clearly, the suffix r has been 

d•opped because the distribution is now the same for any 

r, \Ye have thus established Preston • s X"e&ult for the 

frequency distribution of species within a genera. [Note 
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that the logarithms in [20] are to the base e, whereas 

in the expression of Preston given in equation (7J of 

Chapter III, the logarithms are to the base 2. The 

latter can. however, be converted to the base e without 

any change tn !ts form, except for an overall scale factor 

of 1og2'8 ]. 
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