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CHAPTER = I

ANTRODUCTION

Most of the genera in ecological systems
ﬁantain many species of organisms and these /
species vary greatly in their abundance from
very common to very rare. Frequently, it is
found through experimental collections that
>s£ngleten speciés are numerous, and species
with successively more representatives, double-
tons with two, trebletons with three, ......,
and so on, are usually progressively less
numerous. This relative abundance of different
species within a genera is repeatedly observed
by taxonomists experimentally. Some of the well

known observations, for example, are?

1. Corbet's results(l) on iMalayan butter
flies, _

2 Williams!® results(z) on moth species -
obtained by means of a light trap at
Rothamsted;

3. Saunders’ observations(a) on the birds

of Quaker Run Valley, western New York
State; |



4, Preston and/Norris data(4) on the Breedw
ing birds ‘of the Frith {Preston Laboratory
grounds); ,

5, Dirk's data(s) on Moths in a light trap at:

Orono, Malne, and
6. Seamans'! datacé) on moths in a light'trap
at Lethbridge, Alberta.
o As soon as one attempts to study these data,
the question immediately arises: how are the abun-
dances of the different species distributed? Atte-
mpts fo answer this question have led to the deve-
16pment of few species abundance relations and
other related material. A brief summary is as
follows: _
I éerbet‘l) gave the relation beéween the
 number of species S and the number of individuals

n in each of the S species as

c. ’

S o =t - T A T {11
n™ \

where, C and m are constants.,

11, Williams(2> suggested the use of the series

ﬂ(l*%"‘%"‘onibc) .q"." [2]

where the terms give the number of species repre-

sented by 1, 2, 3, ...., individuals (or the
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fquuencié; of different species), respectively.

I11. Fisher(7) gave the distribution

X 2 a3 ‘ .
5 el Iﬁg(lnx) = X 4 %" P %"‘ + svs 6 [38} ’
and
N = %’?:i‘ = XX 4 axz + &83 Pansena [3b]

The different terms in the series [3a] give the
frequencies of different species. S is here the
- total number of species and N is the total number
of individuals in the colleﬁtian, and @ and x are
constants characteristic of the collection. Once
§ and N are known for a particular collection, a
and x ean be calculated using equations [3] and
the series giving the frequencies of different
specles is then known for that collection. Thus,
the salient feature of Fisher's distribution is
that for any collection whose total number of
species S and the total number of individuals N
are known, the series ¢giving the frequencies of

different species can be predicted.



Ivy Preston(s) proposed the Qistribution

A= no e&»(aR)? . 4 . e s {4]

where n, is the number of species belonging to
the modal octame, n is the number of species
belonging to an octame distance, R oc¢tames from
the modal octame and 'a' is a constant calculated
from the experimental data. As noted in Chapter
I1I, the terms ''octave'' and ''model octave''
have a very simple meaning. It will also be seen
from the discussion in that Chapter that Preston
graduated the abscissa in his plots as the.laga—
rithm»af the number of individuals per specles and
the ordinate as the frequencies of different
~specles. Therefore, the expression [4] given by

Preston(s’ is actually a log normal distribution‘

v

ﬁf“-} Now, as regards the suggestion of Corbet(l)
we note that Corbet himself pointed out that his

s



- relation cannot be aiéiae representatiﬁe for any
rgndom saﬁpie, because his sample was biased in
the direction of too many speciles ﬁith small
numbers, and too small numbers of individuals for

the commoner species,

The difficulty with the suggestian of
w111;ama(2) is that the sum of all thé termsg in
his series is infinite, calling for an infinite
number of species in the collection. Fisher
‘recognized this and gave a distribution based on
a more sephisticatéd methematical approach. He
- started with the poisson distribution by taking
the ﬁuﬁbeﬁ‘éf‘individuals of any species as the
poiﬁsan variate. Since the collection contained
a heﬁeragenéaus population, the mean of the pois
son was not a true mean of the papulation and that
itself called for a distribution, Therefore,

" Fisher (7) assumed X2 distribution for the mean
of_the poisson. The‘resulting distribution 7=
thus became a compaund poisson distxibutién. This
resulted in the series set out in equation [3],
which fitted the observed data.

Now, the Fisher series explained the
 Williams data satisfactotily and also essentially
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Cethet's(l)‘data, barring few-deviatibns. But

the detailed investigations of Qreston(a), which

were carried out subsequently, lead to a different

picture. Preston analysed six different sets of

da:e. each from a different genera, and observed

that all of them followed a log normal curve.
Therefore, it is implied from this tha£ the distri-

bution whiech is actually the more extensively
valid one, is not the Fisher distribution, but

| rather the standard log normal distribution given

by Preston.

It is of much interest to develop a conce-
ptual basis, either in the form of a complete
theory or atleast as a theoretical model, from
which the distribution followed by the relative
abundance of species within a genera could be -
properly understood, If this could be done much
light would be thrown into the nature of multi«
specles systems and their interactions, which in
turn would enable us to understand ecosystems and
their course of evolution on a precise quantitae
tive basis,



L A first attempt in this direction was made.
by Kendall(g). He considered a simple staehastie»
model which allowed for the birth and death as
well as the immigration processes for the popula~
tion. He was able to obtain a probability distri-
bution for the population which was analogus to
that of Fisher given in equations [3] ebove. This
result was, however, obtained for a single species
model,

The problem was taken up within a multi.
species framework by Kbrner(ic). He assumed the
dynamiés of the multispecies system to be given
by the coupled Lotka~Volterra equations, Under
the assumption of a constraint, he was able to
develop the statistical mechanics of these equa=
tions. This then led to a population distribution
for each of the component species which was precie
sely the‘x?udistributgon-assamed by Fisher for
the so~called intrinsic abundance of species which
he fed into his poisson distribution.

Significatt as it is, the work of Kerner
raises two problems. One is that it does not
lead to a full explanation of the Fisher result



as given by equations [3] above, but leads only

to ah understanding of an intermediate result.

The second problem is that, in view of the resu-
1ts of Preston, the distribution which needs to

be explained is not the X2 or the compound poisson
distribution of Fisher, but the lognormal distri-
bution given by equation [4].

In the present thesis, we consider this
prebiem afresh. Our starting point is to assume
that the multispecies ecosystems which are of
interest to us may be described by a set of equa-
tions which contain interactions between specles
in the Gompertz form. - Models characterised by
such intera#tiogé have been discussed for two and

{11). We next deve-

three specles systems earlier
lop the statisticai mechanics of our equatioﬁs in
a manner which is analogus to that of Kernar. It
will be seen that the population distributions
that we obtained from here are precisely of the
légnormal form. For details and concluding
remarks on this matter, we refer to the last

Chapter of this thesis.



The material presented in this thesis is
planned as f@llows. In Chapter 1I, we discuss
the experimental and theoretical analysis arising
out of ihe works of Corbet, Williams andAFisher.
Chapter 111 is devoted to the results of Preston.
In Chapter IV we develop, following Kerner, the
. statistical mechanics of the Lotka-Volterra model
leading to thé %2 distribution required by Fisher.
Finally, in Chapter V, we discuss our own multi-
species model and develop its statistical mecha-
nics, which leads to the lognormal distribution
suggested by the anélysis of Preston.
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ON RELATIVE ABUNDANCE OF SPECIES

Any animal or plant papulatien'in tﬁe wild
state génsisté h&sicaily‘af a very large number of
.:indiviﬂuals. The ihdiviﬂualé are classified by natue
'vfaizsts'inte species. The number of individuals withe
in a species is changing with time because of the intra-
and inter-speciés interactions. As a result of'theae‘
intexaetiens, each species estaklishes an uneasy
balance of numbers among all the bthers. resulting
in a pattern of relative abundance for different
species in the given pepulation. |

It has been found that if a random sample of
individuals is taken from a mixed wild pepulétian of
animals containing a large numbei of species, there
appears to be a mathematical ordey in the relative
abundance of the different speclies represented. In
general more species are represented by one individual
than by two, more by two than by three, and so on.
Since order cannot be maintained out of chaos by the
mere process of sampling, we must infer that there is
some order in the relative abundance of the species

in the population itself,
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The first object of the present study, discu=
sseHKZn‘tﬁig aﬁd the next Chapter, is to review the
exiéting literaturé whieh esﬁablishes the above menti-
oned order in the relative abundance of different
species in any papulation. While doing this review,

we also discuss cextain mathematical series that have
been suggested at various times to fit the observed data
and to see what light the structure of these. series can
thxow on the pattern of frequency distributions in the

‘ papulations sampled.

4. Corbet's Observations

In 1942, Corbet(i) pointed out that in a large
collection of butterflies which he had made in Malaya,/
the 9031 individuals included 620 species. Of these,
118 species were each represented by only a single
individual {called singletons), seventy-four were repre-
sented by two individuals (deubletons), fcrty~four by

three ind1V1dualﬁ, and so on.

An attempt was then made by Corbet to find a
mathematical expression that would fit this data. He
found a relation between S which is the number of
species and n which is. the number of individuals per

species in any of the S species. The relation is,
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, c
S = ﬂﬁm (w' B 8 & @ 8 & & [l]

where m and ¢ are constants, Equation [1] can also be

written as

légs + 0 lagn. = l@ge AR [2]
This latter is a straight line equation.

"~ . Corbet himsglf pointed out that his sample was
not a truly randem.ane,.as'more attention was paid to
the catching of a rare species than a comm;n one, When
about twenty~five individuals of any one specles had
been captured, little effort was made to obtain others.
Thus; the sample was blased in the direction of too
many epeclies with small numbers, and too small numbers
of individuais for the cémmener species. Hence equation

[1] cannot be a true distribution for a random sample.

2. Williams' Observations

CyB. Williams(2) conducted random smepling of
Lepidoptera by means of a light-trap at Rothamsted
Experimental Station, about 25 miles north of London,
His experimental data were published in the group of
papers by Corbet, Williams and Fisher (1943).(7) He
was struck by the fact that there were usually great
numbers of species represented by singletons, a much

- less number of species represented by doubletons and

I
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still fewer species represented by three, four and so
on. He also noticed'thé% if N be the number of species
represented by singletons, the number represented by
doubletons was‘g s the number represented by three was
g and-se,@ﬁ.l Hence in the @éllectian, if the observa

tions were vali&.indefinitaly,'we should have a series

N ( l*%*%‘*%* t.oorno) L N I T T [33

where the different terms represent, respectively, the

number of species represented by
1, 2, 8,4, « « + . + . ., individuals.

This series doesnot conform well to the experi-
mental observations when the size of the sample 1is
increased. Furthermore, this being a hammonic series,
" the sum of its terms is infinite, calling for an infi-
nite number of species in the collection, 'Williams
himself recognized this. It is clear fromvhere that the
interpretation of thé frequency distribution of species
and individuals requires a more sophisticated theoresi-

¢al and mathematical reasoning.

2. The Use of the Poisson Distribution

S0, we begin at a more basic level. For this,
consider any random sample from a homogeneous ecosystem.

Let each of these samples have the c¢apacity to contain

1
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N individuals in total., Now the probability of obser=
ving n individuals of a species in any sample is given

by the binomial distribution
P(n) = N, (p)" ()N L, (8]

where P 1s the probability of finding a single indivi-
~ dual in the sample. Now if N is very large and P is
very small, but that the mean of this distribution
NP 2 m is of moderate magnitude, and furthermore, if

n is negligibly small compared to N, the expression

P(n) & Ne (P)N (1-p)Nen o
n o m)N-n
= N(¥-1) (N-2). ..o (Ve ) (R) ——Rp—

which may be written in the fomm

-.n
P(n) « 2+ (1 - §m “2) e,

RO PRNCESS B A

goes over, as N becomes indefinitely large, to

n _«~n

n? N I T A ) [5}

B

P(n) ——e——>

This is the well known Poisson distribution with n,
the number observed in any sample, as the poisson
variate and m as the mean or the expectation value of

the distribution.
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The above distribution was the starting point
for Fisher's analysis for the interpretation of
 Corbet's and Williams® data{1*2), According to him,

if sucecessive, independent, equal samples be taken
from a bomegeneausveeesystem, the numbers observed can

be related to the poisson series

~m.n - .
e n :
’ a! . L4 . L » 2 . L] [7]

where, as noted earliex, m is the expected number and

n is the number observed in any sample. In general the
probability that a species will be represented by n
individuals is then

P ewm mﬂ,

n = ST T £

ﬂa, 192, e s F s 8 e

Néw, in the present distribution, m is the mean
number of xddividuals per species. 8ﬁt in the ac¢tual
population, the number of individuals per species varies
from a very small number, Say, of the order of one to a
very large number, of the order of lakhs and millions.
Hence the quaﬁttty m which is the expectation value of
the Poisson distribution cannot be the expectation for
all the species. That is, if the material sampled were

tervgoncons v if Un Aownplas were
Ataken, we should have a mixture of distributions
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corresponding to different valueé of m. The same is
“true of the numbers of different organisms observed
in a single sample, if the different species are not
equally abundant. Hence if equation [8] is to explain
the species - individuals pattern correctly, the
parameter m itself may follow a distribution.

Therefore, for the variable m, Fishér (73 assum;d
the well known X2 distribution, which is of the form

df = modem poK pk=l o=0/P g0 L, 9]

k)
df here being the element of frequency or probability
with which m falls in ﬁhe infinitesimal range dm. The
parameters P and k are related bY'J%*.a P, where M is

the mean valué of m and k measures inversely the varia-
bility of m. Thus‘a large value of k would be expected
if the densities of various species differed only sliw
ghtly from one another, and a small value of k would
be expected if thare were pronounced differences in
;heir densities.

If we multiply this expression [9] by the
expression given in [8], which is the probability of
observing just n organisms, and integrate with respect

to m over its whole range from o to e, we will have
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e

p-k e"m/? e B dm

fm mkm-»l eﬁﬂl(l#%) dm
o

pok kenel  m G52 g, L, [10]

® (k=1)! n! g

Putting m (—EEL) = ¢,

and

and substituting these into equation [10], we have

-k
P
P, o= - ' e '
| (k=1)2 n¢ (~=5>)

5 QF e-¢ ¢k+n-1 4

k+n
p '
(P«'ssl ) '

N S 3
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where n is now a negative binomial variate. This
nomenclature arises from the similarity which the

above expression bears with the negative binomial

expansion | .
. -k n
L1 - uZ*i (ken=1)? 3 pz .

For convenience, let us introduce the variable
X = ( y2§’) such that 0:< X < 1.

Then,

(ken-1)2 (1-X)% X
(kﬂ-i) !ni

- Pp=
Since we are not interested in the number of species

répresented by zero members‘in the,eei&ectien, the

zero class denoted by Py is to be excluded, where

P = (1~ X)K . e [12]

L
L
®

We note that
. o®

If we exclude Po from the sum here, the right hand side
is no more unity. But we do have

(PI+P ).tiindn)
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The exclusion of P, from the sum thus necessit

ates thé use of

*

'P“)' = 1 “"pg s N z.l’ 2, YY) O. o # [13]

which are now the properly normalised quantitiés. By

"collecting éexms independent of n into a single constw

ant C, we can write

| In natural communities it is usually found that
the diffezenceé in abundance among the species are
extremely‘greatg‘ This led Fisher, to propose that by
letting‘k ~=> 0 in the formula for Pnl an appraximaa'
tion to species-abundance proportions might be obtained.

Allowing k —> o in equation [13] to give lhe
l1imiting form of P 1, we get

for n = 1’ 2, 3’ peesen

where, y = klim c

¥y can be evaluated by noting that
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_ n ,
The expression 135~ is the probability that
a species will be represented in the collection by n
individuals., The expected frequency of species with
n fndividuals is then | |
n "

Ny =Sy sk L L. L. [14]

where S is the total number of species in the ¢olle-
ction and we havé patv

Sy =a .
| This expression in equation [14] gives the
distribﬁtian of species containing different numbers
of individuals and it may be written as

2 ..3
ax X
@x, 4--2—”"@3", Y T SRR

the successive terms being the number of species with
1, 2, 3, «sess Aindividusls per species., This series
| has an infinite number of terms, is discontinuous and
is convergent. The sum of all the terms to infinity

gives the total number of species, i.e.,

Smwa logélﬁx)v e« o« [15]
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The corresponding series for the total number of indi-

viduals in all égecies of the same abundance class is

ax, 'axz,, axs,‘v esssasee @G, o % 8 v e @ [16]

This is a geometric series with a constant multiple x.

As x 1s less than unity the series is convergent, and

the sum to infinity (N) or the total number of indivi-
duals in all the S species 1s

Noax + ax2 + ax3 4 sovvennn

= X (“ 4 X 4 dxz + 0‘..105’01 )

The quantity in the bracket is a geometric

sequence with x as quotient whose summation is

%sz} | for lx]\< 1

N
Ay
(1%%%)

N ¢ 1)

f

Now, by knowing the values of the total number
of species S and total number of individuals N in a

particular collection, the values of a and x ¢an be

5774 (043

G355 TH- ’
v 823
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calculated using equations [18]. These relationships
enabIE'thé saeries to be fitted to ahy set of observed
data. The constant a has been found to be a measure
of the diversity of the population and is low when the
number of species is low in relation to the number of
ihdividuals, and high when the number of species is
high, In otherwords, when @ is high, abundant spec¢ies
are very much less cnmman.than sparse ones, and when a

is low, abundant species are relatively more edmmon.

The magnitude of x depends only on the size of
the sample taker from the parent community. Thus, if
we increase the area from which a collection is taken
or proleng the duration of operation of a 1light trap for
insects, the bnly effect will be td change the value of
X, provided the sample still comes from the same parent

community.

When Fisher's distribution was fitted to Corbet's
uncorrected data of 9031 individuals in 620 species, it
gave a value of x = 0,997 and an expected number of
species repreSented by singletons as 135 species, which
is considerably more than the cobserved 118, The calcu-
lated and observed values for the difference Ry =~ N,

\ were 145 and 142, and for Ay - nyq Were 145 and 157.

Here ny is the number of species represented by singlétons
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ng is the number of species represented by 4 indivi-
déals each”and similarly for ng and n,,. Thus the
estimatéd number of species is tap high for the rarer,
becoming too low for the commoner species [foxr fuller

calculations see Fisher et al,,(7) 1943, pp. 43)s

, In a similar way, the extensive daté of
Williams(g) on the capture of about 15.609 Lepidoptera
of about 240 species in a light-trap ét\Rothamsééd was
also fitted to Fisher's distribution. For both common
‘and rare species the calculated values are very close
to the observed values, The calculated number of spe-
cles with one individual is slightly larger (40.14)

than the observed (35). By calculation there should

be ilésg'species with 10 or fewer individuals and ihé
observed number was 115. But in the case of Heteroptera
with 1414 individuals of 57 species, the fit is not so
good as in eése of Lepidoptera. The observed numbexr of
species represented by only one individual is 18 and

the calculated one is less than 12, In general thexe
were rather more of the rarer species than the calculate«
seriks indicates and fewer of the commoner specles. It
is clear from here that the results of Fisher's mathema-
tical theory seem to fit the data'qf Corbet(;)'and
Williams(z) reasonably, but fhey are not satisfactory

/
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- enough to be considered as a conclusive proof of the
applicability of the Fisher distribution to observa=

‘tional data in ecosystems.

As opposed to the Fisher distribution which
fitted the then existing obgervational data, Preston(8)
gave a new sﬁggestion, namely, that the log~normal dise
tribution would be a better fit for the observational
data than any other distxibuiian. The fullexr details

of Preston's approach are discussed in thevnext Chaptexr.
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CHAPTER = III

PRESTON'S ANALYSIS

‘The species abundance data reveal that the.
¢ollections 15 all cases contain many rare specles
and a few abundant ones, although, of course, in temms
of numbers of individuals those of the few common spe-
¢ies far outnumber thase'ef the many rare species. In
any case, in view of the large variatian in the numbers
of individuals per species, it is convenient to plot
these numbers on a logarithmic scale. Preston(a) conw
‘-sidared_the number of species Rys Doy sesesy and in
general n,, represented respectively by one individual,
two individuals, .... and in general r individuals,
i.e.,'he_cansidetad the differeﬁt species frequencies,
He then plotted these Ry against the corresponding r, .
¢hoosing of course, a logarithmic scale for r. Preston
found it convenient to introduce a few other technica-
iities in his analysis. We review these technicalities

nows

Since we are dealing with the relative abundance
of species, we frequently come across facts like, say,
one species is twice as abundant as another, This led

Preston to graduate the abcissa as equal increments in



SN .
‘Table=-I: Preston's scheme for grouping species frequencies according
o - to ' Octaves ™" | -

Column-I _Column-II _ Column-IIL _________ Column-IV _
' Arithmetic ' : ' ' 7 S
Name of grouping of Corresponding Namber of species belonging
Othe , ghgina.voi logarithmic - to that octave ¢ '
ctave ndividuals grouping . g'requenezz A
- ~_per species o " Half of + \11 + Half o

-2 0=-1
-4 1-2
-8 2.3 5, 6, 7 8
- 16 3-4  9als 16
-32 4-5 16 17-31 32
32 - 64 5-6 32 33-63 64
64 - 128 6 -7 f 64 65-127 128
128 - 256 7-8 138 139-255 256

- 2
3 4

0 & N

T H om Mmoo oW >
& @ & b

3¢
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the logarithms of the number of individuals repre-
senting a species and he used as such increments the
‘oétave‘, i.e., the interval in which the representa=-
tion doubled. In other words the midpoint of each
octave is double that of the preceding:octave. With
this the abcissa became simply a scale of octaves whicb
“4s equivalent to taking "logarithms to the base 2";  ;
The actual details of this grouping are presented in
table I. o

This table c¢learly shows the relationship betw-
‘een arithmetical grouping and the corresponding loga-
rithmic grouping. For instance, in the case of octave
B, the arithmetic group is 2 to 4 and'the'coxrespon&ing

' logarithmic group is 1 to 2 [since log,” = 1 and log,*

- 2 10922 = 2], The way in which the number of species
belonging to each octave is calculated is shown in the
same table I, column IVy For 1ﬂstancé, if a species is
represented bi 5; 6 or 7 1ndividuais; it clearly falls
in octave C. If a species is represented by 8 indivi-
duals; octave C is credited with half a species, and
octave D is credited with the other half. If a éiﬁilar
way all other octaves are composed. All species falling
in, say, one octave may be thought of as having roughly

the same degree of sbundance, in comparison with those
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o

falling in any other octave: Note that octaves below
A will correspond to fractional numbers and wiil thus
not correspond to any physically observable situations.
This is indicated in the plots (see figures l«6) by
drawing the cur¥es in this region by broken lines.
Prest@n(a) calls his Y-axis, to the left of which is
this broken line, as the ttyoil 1line' . It should be
remembered, however, that doubling the size of the
sample will double the number of species §elonging to
each octave thch results in shifting the curve by ocne
‘octave to the right. In other words, an octave which
was hitherto not observable has become observable now.
It is thus clear from here that if this process of
doubling is continued, all the species tbat exist in
the system will become observable and the corresponding
curve will be a true representative of the system, Of
¢ourse, the log normal nature of this curve does not
change as it shifts to the right, the only change being

in the constants n_, and possibly 'a' (introduced balow)

o
which will obviously have numerical values characterised

by the size of the sample chosen.
In all,‘Prqston(a) grouped six different sets
of data in this manner and plotted with abscissa as the

scale of octaves and the frequency of species (i.e.,
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the number of species belonging to a particular octave)
as the ordinate, Hé”%ﬁserved that each curve exhibits
a maximum in some octave to the right of the first one
and the observed octave frequencies first increase and
then decrease. The mede of this set of data is that
value which occurs with maximum frequéncy; Thereforeg
the octave which corresponds to the~maximum'iﬂ'the graph
containing maximum number of species is known as the
modal oétave.‘ For convenience, the plots<abtained by
Preston are all reproduced at the end of this Chapter
| in Figures 1 to 6. The figure captions in these figures
identify the data plotted. |

The main point thét emerges from this analysis
is that in all cases the data is well fitted by a symme-
trical normal curve truncated on the left. The general

equation of such a curve is

n(R) - no e—(aﬂ)2 . . . . . . [1]

where n, is the number of species in the model octale,
n{R) is the number in an octave distance R octaves from

the model octave and

32 = ""'Lg-' . " » . . * [2]
20

where ¢ is the measure of the mean square deviation of

the population from it's mean value.
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We thus have

where i are the numbers of individuals, the logarithms
to the base 2 of which are plotted along the Xeaxis and
i* is the particular value of i1 corresponding to the
peak of tﬁe.curve. Preston took for any 4 correspand;
ing to any octave the mid-value within that octave.

i* is thus the mid-value for‘the‘model octave, Note
that | |

v

e - 2 |
R:"’ = ;lagzi - lOQQi* } ’ . . . [4 .]
and is given by

400
I nr) R2 dR el

st . e nag-—-— ﬁiﬁ‘ibc[SJ
J/ n(R) dR nol® 28
= ‘32.

Note also that the total number of species N for
the system is given by

}"ncn)dn n-i‘%fi—ﬁﬁ N (3
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Table-Il: Calculated values of a, n,, N and the
observed value of the total number of
species for cases analysed by Preston,

““Observed total
numbexr of species

'3399. a L N in the particular
sample analysedf
1 0,194 10 9 80
2 0.207 48 410 349
3 0. 205 42 363 226
4 0.227 35 273 240
5 0.152 33 384 21
6 o i{»@’ 30 3 | 291
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This N should be the'total number = theoretically
 available for observatien. In practice, the presence
of the veil line will imply that the actually observed
_ number 1is smaller. Now since the quantities a and n
vcan be calculated from the curves fitted to the data,
the theoretical value of the total number of species
for the system can be calculated from equation [6].
The differenée between this aﬁd the observed value will
~ give an esti@ate of how much of the system was missed
out in any particular sample¢‘>1n table II, we present:
ihe calculated values of a, n,, N as well as the obsere
ved values (in the given samples) for N, foxvall the six
cases analysed by Preston. Note that the value of a in
all these cases is close to about 0.20.

We conclude this Chapter by noting that the distri-
bution given by equation [1] can be conveniently written

in the form

22
CE
- ;1°Q§ - log,t*}
4 N 71
: o Y2n

wbich,,aside-fr@m the trivial difference of the logari-
thms being taken to the base '2' instead of the base ‘e’
is identical telthe standard lognormal distribution, We
shall return to this expression in the last Chapter of
this thesis, |
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Figure 1: Species abundances in a collection of birds of

Quaker Run Valley, Western New York State.

Data from Saunders( ) (1936).
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Figqure 2. Species abundance in a collection of moths
- caught in a light trap at Orono, Maine.

Data from Dirks(ﬁ)‘ (1937)0.
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Fiqure 3: Specles abundances in a collection of female moths
in a light trap at Orono, Maine. ‘

Data from Dirks(S) (2937).
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Figure ¢

Species abundances in a collection of mcths'_
caught in a light trap at Saskatoon, SaSkatchewan.

Data from King.
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CHAPTER - IV

STATISTICAL MECHANICAL APPROACH TO THE
LOTKA~VOLTERRA MODEL

~ In this Chapter, we shall develop the stati-
stical me@hanics of the multispecies ecosystem, the
 ‘dynamics of which is gi#en by the ctoupled Lotka-
Volterra equations. We shall see that, under a con-
straint, this set of equations possesses a constant
of motion. We then construct a phase space, such that
our system belongs to an ensemble in this space on a
surface characterised by this constant of motion. The
reqﬂisite Liouville theorem, the condition for the
ensembie to be in statistical equilibrium, as well as
_the exagodiclhyp@thesis are then discussed, Foiléwing
this, microcanonical ensemble is constructed. The '
possibility of there being a ' temperature' for the
system is then noted. This enables us to construct

the Gibbs canonical ensemble for any subsystem of the

-, system, As an application, the probability distribu-

tion for the number of individuals in any species is -
then worked out. This distribution is seen to be the
X? distribution used by Fisher and discussed in the
Introduction and the second Chapter of this thesis.
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1. THE LOTKA-VOLTERRA MODEL

The bésic equations of the Lotka-Volterra
model for a system of n interacting species with

?qu18t19ﬂs Ni’ N2. ‘Ciidi“ Nﬂ aref

dNt A T NN |

where S’ I = 1' 2’ 3’ eessnrng I

The first term involving the constants €, on the
-right hand side here expresses how the species Nr
propagateé if left to itself in a given environment.
The remaining terms express the interactiaﬁ of species
y with all other species, The constants Gg, are

assumed to be antisymmetric with

asr = ""’mrs » . ) * » . [2]
This of course implies'that‘the'seifeintétactian terms
are absent, i.e., \

@y, = 0, for all r A £

The quantities 3;1 are such that duiing binary colli-

sions of species r and’S, the ratio of 5's lost {(or

gainea) per second to r's gained (or lost) 1s.$§1/§;1i
We define the steady state of our assembly to

be characterized by that sef of populations Nr = q,



41

for which %%r_ = O for all r, so that the defining

equations for qp are
er 3!, 4 g asr QS = Q . e . e [4]

It is assumed that at steédy state Qanditieas, none

of the q values will vanish., Now we define
N ,

v, 2 log a-i- or N, =aq, e'r ... [5_]_
Cleaxly, asARr >y Vyp => 0 so that v, is a
measure of the deviation from equilibrium, The -
rate equation [1] may be expressed in terms of the
Vg a6 ¢

By - € B + £ a5y 9g e’ ... [6]
aﬁd by expressing €r By through equation [éj'we

have
Br T = $ %r 9 Ees-*,l%«.» » oo (7]

If we multiply both sides éf‘this equation by

vy
qrfe T . 13 and sum over all r, we find

S lrea (o7 -v)]

- fs @, dg G fevsalgf evra-l} = 0

the double sum vanishes because @, are antisymme~

o
trical in s and r. Then, we find



42

v L . Ve o ) L can ‘
G = % ar#qr i e "= vr) = Cont = ZGr «ss[8]

. ./ .
so that G is our desired constant of motion.

Now the equations of motion [7] may be written
canonically in terxms of G as follows ¢

. @... 9 v
o plerds ( ve
Vx,‘a g Be ge 13

5 .
where g Yer = mx:-r- = - Yo z

Equatiens [9] are the canonical forms of [7] in terms
of G

L The;fact that G as given by [8] is a sum of
individuai terms, each relating to a separate species
is of considerable importance, Each G, in [8] has a
‘miﬂimum qui (s'yr) when Ve = O‘or when Nr.a Ay the
equilibrium value of N.. To say that G is a constant
of the motion implies that if the system is started
off with G = Go' then the value Go will be maintained
1ndefinitely. This result G = G° may also be used,

as will be done later, to define & constant surface in
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the phase spéce for the system described by the set
of equations [1].

Kernercla) b&iit the statistical mechanics of
the system [1] by imagining a Gibbs4ensemble for it
in the following way. He tonsidered all possible .
copies of the system controlled by the dynamical
equation [1], where each such copy corresponded to
one of the possible sets of initial values cf-(vr)
consistent with the constant G. The state of each
such copy was represented by a point in the carte~
~ sian space of the variables (Vs Vou eeeeey V),
called the phase space. The collection of all such
points then defined the ensemble.

IHE LIOUVILLE THEOREM AND THE CONDITION FOR
STATISTICAL EQUILIBRIUM

2.

Now, let us denote the density of the points
in the ensemble by P (v}, «cvssy Vv,) at the'point
(vl, chesay vn) in the phase space. Clearly, the
total mumber of coples of the system, i.e., the total
number of points in the ensemble, has to be a constant.
- This conservation property immediately leads to the
equation of continuity forP(vyseesces,y v,) which is?
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{ (Vl seaey Vn) , d 9, P(V geney V )
%% t+§a-;;r 1 n

ae : . L o‘ 0[10] .

~ Expanding the derivative under the summation

sign, we get

OF
2.

. a dv,, .
s . o pa
2 ;vr%%--rgl’-?;; = 0,... [1]

r
In view of equation [7], which implies that
9? is independent of Ve We have

3V, _ S
§%+z-ﬂﬂ-wze. B # 3

| which is simply the relation
% = Q . o« ¥ e e . [13]

We have thus proved the Liouville theorem.
This implies ihat a given e;emeﬁt of volume of phase
space, though changing it's shaﬁe, maintains a uniform
size, as the motion of iﬁs'points.unfelds, thus giving'
the desirable uniformity property to.the_phase Space.

Let us now consider our actual system which is
characterized by the constant G = Go' The ensémﬁle for
the system will thus be an ensemble over a surface of

ceonstant G in the phase space. We then presume the
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density function P to be a function of G alone. The
depenidence of P on any other variable is thus only via

G, Then we have

- %8 . . A £7

- and substituting this in the second term in aquaiion,
[12], we get

-‘f%%;%‘%’é-%—

g,g{ G |
=26 ;%{;
= Q . . » » [153
in view of the eonstancy of G.

This immediately gives us the result
% = 0 . . . 3 [ * . . [ 16 J

which we obtain by substituting equation [15] in
equation [12]. This is the condition for our ensem-
ble to be in statistical equilibrium, |

In order‘to proceed further with our system in
a situation of statistical equilibrium, we perametriée

ouxr phase density as

PePe8@=G) . o o « o« o [17]
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where §-stands for the standard Dirac delta function
and Py 15 a humetical constant. Gy is the initial
value of G, defining a constant surface in the phase |
space, The ensembles tharacterized with density fun-
ctions of this kind are the well known microcanonical

ensembles,
| The ensemble average of any function £ (v,, V,,
""'.Vn) of phase coordinates is now defined to be

+e0
[ PfdT
=

f © . » - » * » [ 18 ]

*’m "
J PaL

e O

the integrals being over all of phase space.

The elemént of volume dT c¢an be represented as .

4G

dl = ’dsdn = ds l‘ Vél

where ds is an element of area on a constant G surface

and dn is an increment of length normal to the surface,

which ¢can be written as "gfél where dG is the differ-

ence in G values two neighbouring constant G surfaces.
- Therefore, with this result and the equation [17], the

expression [18] goes over to
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[Py £ &G - Go) ds ?%-a—}

Py 5 (G- a)és‘dgi

Ed

/g, £ $G | |
= . 58 | » * LN . . . [19]
‘go | VGl

Hote that these integrals are surface integrals over

-

Gﬁﬁat
Let us now choose for f, the function Ty given

by
3G Ny N
Tp = v!‘avr = Vrga’;‘l.%lagqr ’

We note first that singe
ag A A
V6= z%;rvta AT
(Qr denoting a unit vector in the v, direction and n
a unit normal vector to the surface G = constant), the

direction cosines of n are

v |V G |

A
n .V =
¥ o dvr

50 that
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G ds_

- o N -
vy Ve T56] = vy (N.vy) ds

—
= aaVrdSa

-

Here, ¥, denotes the vector to the point (0,.... O,
| Ve O, es+¢0)s Then calling the denominator in equa-

tion [19] as X, the ensemble average of Ty is

- 1., ' ") 3y
Tau—z;-fn.vrdsaﬁfdivvrd{
= "l?‘ 3 for all Y . . . * [20}
v all |

where y, denotes the total velume enclosed by Gye
Note here that wé have used Gauss® divergence theorem.
This expression Efb in equation [20] 1s a constant
for all values of‘y (i.e., for all épecies)@ Thus the

mean T, for any species is the same as for any other.

This result is analogus to the equipartition
theorem which states that the energy of a system of
particles is eqﬁaily distributed among all the degrees
of freedom of the particles in the system. It i§

,% KT per degree of freedom, where K is the Boltzmann
constant and T is the absolute temperature of the system.
Since the idea of equipartition prevails in our biolo-
gical system as well, as evidenced by the propertiés

of ?r' the possibility of defining a 'temperature’

for the system cpené up immediately. Once a tempera~-

ture is defined, a cononical ensemble can also be

-
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defined. We shall do precisely this in the following,
but first we shall show by an example that our system

‘admits of the ergodic hypothesis as well,

3. THE_ERGODIC HYPOTHESIS

We define a function D, as
G r ‘
Dy = Ve = 'yr! <qr-i N -3 8

Let us calculate the ensemble average of Dj, i.e.,

A i
a*Z; J div v, dT

= 0.

8ince the divergence of a unit vector is zero.

: ] £ & _ |
N el 1) = 0 ... . [22]

OI‘, Nr = qr . & » . . » . . . [23]



In otherwords the ensemble average of N, is
equal to the steady state value of Nr’ namely Qg
We can now show that the time average of N, is also

4y« Ve have from equation [1],

d PRy o - : ‘
Pr dt g logk 3 = €p By + L agy Ngo

Intégrating with respect to t on both sides, between
the limits O to T, we get,

B [ NL(T) ) y ., T
% s {30 { = €t v g 1S M0 @]

Now, as T =% =, the left hand side vanishes and remem-

bering that the time average of Ng is hothing but,

Ne =t§:,‘%_ fﬁs(i)-dt, we simply get
)
§'“sr Ng = = éf Pr

By comparing this with equation [4], we arrive at the
resuit_

NS 2 qs . . « e | . . [24]

Thus, by combining equations [23] and [24], we .
see that the time average of population N, 1s precisely
equal to the ensemble average of the same. The ergodic

hypothesis, first advanced by Boltzmann, states that a
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time average of a macreséopic guantity is, under equi-
l1ibrium eonditiods; the same as an ensemble average. It
is ¢clear from our result that our biological system is

ergodic,

4.  THE CANONICAL ENSEMBLE

Our bioclogical system consists of n specles 4in
general. If we were to consider subsystems'of this
geneial system, which would consist of say, Y number of
species, where 1 ) £ n; it would be convenient to
work with the Gibbs canonical ensemble instead of the
microcanonical ensemble that was discuésed in the pre~
. ceding paragraphs. The canonical ensemble can of course
be defined for ény subsystem which is in equilibrium with
the larger system of which it is a part. This equilibri
um is established once we identify the temperature for

the system and ensure that the temperature of the sube
system is the same as that of the full system. The
existence of the quantity fr, which is the same for ény
Y, makes it clear that we can indeed define a 'tempera=-
ture' in our case as well, If we now denote this tempew
rature by the symbol ©, and consider the subsystem c¢one
sisting ef':a number of species, we can'construct our
canonical ensemble which is characterized by the density

function



a(*ﬁalg)

o ( . )
e Ca/8lar,

<0

where, P, is normalised:

P, (vl, Vor sseesy Vv') dT, here represents the

probability that 2 member of the ensemble Jwhich is in

statistical equilibrium) chosen at random will be found
in the volume element dtﬁ; around the point (v;, Vpyeee
v, ) in the V -dimensional subspace of our subsystem.

The canoﬁical average of any function f is now given by -
iy s f=L¢B dT5.

Note tﬁét the factor
Z2fe V0 g1, { . e .'[25_]

is the well known Gibbs phase integral.
We now calculate the canonical average of the
function D, defined in equation [21] . We have:

¢ -G ,
fa%;e /e at

Dy = - « o o+ o [26]

J a“G/e a T

where for convenience, we have dropped the subscript §>.

By making the substitution,
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A {"‘Gr/e : % e""ﬁtle 23_; ;

into equation [26], we have

G 7 - orest
f i %/e g e © d T
- ,

r ® f e-G;-/e Grest/e d 1

where, G = G, + G rost

f *Gr/e; "Grest/e

- -8 ~£ dvx dv d"test
B Mk 7 »8 - rest e
J' / / dv, dvmst

-ty

m -0 Eehat/ er '.j'“ e-Gr/ ° d”r

e 0 . . . . . . [27]

Therefore, 86 for microcanonical ensemble, we get for

canonical ensemble

Ny )
e ) 3 = 0
k g(qr i |
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- In a similar manner, we consider the function
T, = vr-~ﬂg . The ensemble average now is:

3vy
, acg ~G/g
I vy g%; e /0 d\F,

T, =
f4eﬂa/e<a‘vr

We now make the substitution,

5 (. <G/ ) ~Gpre 1. .-Gr/e 3%
e SACEEAR ERRCARE EAUR A

into the ?g expression, and by simplifying we have,

Tr = © . . + * . . [28]

This result is consistent with the earlier result
obtained in expression [20]. In order to get an in-

sight into the meaning of the temperature 8, we con=

sider the ensemble average of D{Q.

We have

2

Di‘z = i%‘%r; *

Therefore, -
(3G ) ~Gpre
I AR
A e v o o [29]

B 2 — -
[ e x/® dv,

-r

E-3



Here we make tﬁe substitution,

- | o 2 2.
sl g §ﬁ§ orve , Bos Gese

' ‘BVVr WX"
Ve
where, Gp =y, (@ " = vy )
aG. . Ve
Vr"Yr(er”l)’
) 326G, 3G |
anc —r = -é-‘-;- + ?t‘ »
ov, r
‘With these substitutions, we have
“ \ ~ar/Q .
J % 3;? } e dv,,
| 3G, = 3G
A 1 e Bl 74 - pd %2 { "Sr/e
e 00

» Brfe
# 9'7x Je dvy o

The first and second integrals in the right hand side
of the abovelequation are zero. Therefore, we have,
4G

I g-—,—,—:{-f O/ 4y wey, [Py ....30]
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With this expressidén [30], equation [29] becomes

©
6 Yy f e r/a dvf
J e /‘dvt

ﬁ 2 &=

o s

¢ Np 32

_ 2 g

s one v gy
Therefore,

2
0 = Y"’?E-;lg

=

‘s
.

Thus, © is a measure of the mean square deviation 19’
the numbers $or each species from its equilibrium value.
The situation of zero temperature would thus correspond
to the ccmpieteiquniet state of the biological system,
Clearly, ® is a measure of the level of excitation of

~ the system from its stationary state.
5. KERNER DISTRIBUTION

We‘ngw ¢consider thg Gibbs phase integral set out
in equation [25] to obtain an expression for the proba=
bility that the species y will have its vy in the range
vy and Vp

+ dvr¢ We have
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Z aj?e("“ § GX‘) dT

r

= m }"‘ e-aﬁr dv

where « % ""%" and [T ] denotes the praduét symbol.
Since e T ., o M'E o,
a - I udt
= e S\ o s
A

the expression for Z becomes

i 1 f aﬁf; ; { N, I“Tr N,
{ 9r

Z:..—F‘I_,Le '-'—S —

= MHave)™'F [avp)

=Mz,

where, Zp = {avp)™®"F [Mave) . .. ... .. [32]

with this expression, the probability that one species

will have its v, in the range vy and vy + dvg is given

by A

| . emst/s dv,, ' ' .
P‘tdvr m ——— s « o o+ « o« [33] '

4
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Transforming the variables v, into a new variable ng

L. >
such that ny = ﬁé-;—'

s We have,

3y _ Y 1 XY« 1°nr
o t/0 _ J%r'r *Vr 100

o .. . [34)

= e Yxhy (nz‘)

With expressions [32] and [34], the probability that the
species will have its n, in the range n_ and np + dng is
given by
a¥e=1l  ~aypny
'r o Hrhiz dn, ,

‘ . éé;.[35]

(n.) ) ,
(ave)™ """ Mayy)

This:expression [35] is the %2 distribution
chosen by fisher(v) for the intrinsic abundance of
speeies - the expectation value of the poisson distri- |
bution, as diseﬁssed in the second Chapter. Fisher chose
this X2 distribution only at a phenomenological level
and the resulting compound poisson distribution which he
got from this led to a negative binomial distribution
used by him to fit the observational data. The result
of Kerner thus gives a theoretical reasoning as to why

the m? distribution should be used.
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However, as has been notéd in the introduction,
the distribution which is actually the more extensively
valid one, is not the Fisher distribution, but rather
the standard lognormal‘distribution suggested by Pres+
ten(a) (discussed in Chapter III). Interestingly |
enough, we find~§hat~if'kerne#’s approach is followed
within a model whexe interactiaaavbetwaen species are
of the Gompertz form, a distribution for N, follows .
which is preeisely lognormals We show this in the -
next Chapter, |
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STATISTICAL MECHANICAL APPROACH TO THE GOMPERTZ MODEL

In the previous Chapter, we have discussed the
application of statistical mechanical techniques to the
Lotka-volterra model. These techniques can of course be
tried on other models af‘mﬁltispecies ecosystems also.

We shall do so in the present Chéptez;aur\madel will

- differ from the Letkaﬁvoltérra hodel insofar as the
interaction terms between different species are concerned.
Consider for instance the interaction term appearing in
the equation for the time derivative of population Ni of
the ith species, and repreéenting the interaction between
the species i and, sa%} j. In the Lotka«volterra model
it 4ie simply of the fomrm NiNy. In the present model, it
will be taken as Ny log Hj. Models with such interaction
forms, commonly callied the Gompertz forms have been discu-
ssed by several authors. See for instance Bhat and

Pande (1980)11, we give a detalled discussion on 2 and 3

" species ecosystems within such a model. This model
reproduces all the good features of the conventional
Lotka~-volterra model. In additlon, because of its
solvability property, it is amenable to much more, detaiw

led as well as fruitful investigations than any other
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model, atleast for cases where the numbexr of interact-
ing speeLes is low enough. We have thought it quite
useful to try this model for cases where the number of
interaéting species is large. The statistical mechani-
¢al techniques for such cases are of course the appro-
priate ones.

Wie shall see in thé following»ihat our modei leads
to the log normal form for the probability distribution
for the number of individuals in any specles, under an
approximation, which is quite an acceptable one so long
as we confine ourselves to speciles within one genera; we
shall show that, ihls leads directly to an explanation
of Preston result discussed in Chapter 111,

1. STATISTICAL MECHANICS OF THE GOMPERTZ MODEL

We now consider the model of n interacting epecies
where the interaction term appearing in the equation for
the time derivative of Ngs and representing the interact-
ion between species r and &, is of the form Ny logﬁs.

The basi¢ equations of the model are thus

o

ry 5§ = lp 2’ sses N
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.Dnae again, a

-3 o

sare assumed to be antisymmetric. For
, - dN, .
stationary states of the systenm, agﬁ- vanishes and the

population numbers ”r have the steady values q, given by
€9, + L €y 4 1007 = 0 .. f . [2]
,r r sz r y &« = 5 & %
Now iﬁ terms of the variable xt,*given by

Rrﬂ lagﬂr . . c s e % . [3]
equations [1] ¢can be written as

dxy | .
a%-‘ - Gz‘ + é asr x:S . . . * . [41

and by expressing e, through equation [2], we have

. | e | . |
xr = g ast (xs h.ﬁs) * . . ” * [5]
where n:‘ - 1ggqs. | |

Multiplying both sides of equation [3] by (x,. - x.) and
sumning over r, we get

* L e i & - % ;
& Xp(xp=x ) = & %or (xpox ) (xg = x5)

Bue to the antisymmetry °f'“sr' the right hand side of
the sbove equation vanishes and the equation yields a

constant of motion or a conserved quantity, given by

G&E?%xr ‘*erx) ;"Sgﬁr. o« e [63



63

We now imagine a Gibbs ensemble for the system
[4], in a manner analogus to that of Kerner, as the
collection of all possible copies of the system, each
copy corresponding to one possible set of initial values

for %x.. An appropriate phase space - a cartesian ¢oore

r
dinate system with x . as the axes, can now be constru-
cted. Each copy of the systém is then represented in
this spa¢e by a point, and the éensemble by an ensemble

of points, The constangy of the total number of points
in the ensemble, along with the dynamics of our model

as given by equations [1] and [4], then lead® to the
requisite Liouville theorem. The ensemble for our system
is of course defined a#er a surface of constant G in the
phase space. The condition for this ensemble to be in
a state of statistical equilibrium can also be establi-
shed in exactly the same way as in the previous Chapter.
All this enables us to define a microcanonical ensembie
for'pur~sysﬁem, the density function.for'which is charae

cterised by
P = PQ 5 (G - Go) » * . | » . b [7]

where, as before, & stands for the standard Dirac delta

function and P, is a numerical constant.
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The ensemble average of any function f (X;, X«e

...xn) of phase coordinates is now defined to be

- PfdT
f m mem&- - . - . . [8]

JrPdt
the integtais now being over all of phase space. The
element of volume d T ¢an be i“e‘presented as

s d
[ G
having the same meaning as in the previous Chapter. |

Therefore, with this result and the equation [7], the

dT = dsdn =

expression [8] goes over to

- 4G
I %o £ 56 - &) 4 5]

) . . . . . [9]

Go |§7Gf

Note that these integraié are surface integrals over
Gﬁﬁoe

Let us now choose for £, the function T,» given by
: _ G 2 *
Tr = Xy §;;} = f X" - Xy X ;

We note first that since
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/G = gir% = ﬂlvﬁl ’

where n 4is the unit vector along the resultant and Qr
is the unit vector along x, direction, the direction

Fa
cosines of n are

so that

ds

Y A
—ess 'z X (N . X)) ds
r | ve| r r)

xt_ ‘ax

= (6 . ?r) ds

!

Here'?r denotes the vector to the point (0, 0.v..0,
| Koy sesee 0). Then if we denote the denominator in
equation [9] as 4;%. the ensemble average of T, is i

- j‘n . X, ds

' ﬁ-faivx a1

- 0 .
T, & s 1 fer all vy. » * . » » [10}
A o -

Here, we have used Gauss' divergence theorem and repre-
sented the volume enclosed by G, as Y, . This expression
[10] 15 a constant for all species y and thus the mean

?r for any species is the same as for any other.



66

_ Now as discussed in the previous Chapter, follow-
ing equation [20], the idea of equipartititn prevails
here as weill, as ;Qidenced by the properties of T ;
This opens up the possibility of defining a temperature,
which then enables us to define a Gibbs canonical ensem~
ble for our system, Before doing that, however, we show
| by an example that ocur systems admits of the grgodic
ﬁypothesis as well. |

We define a function Qr as

Dr = ﬁ% = (xt - xr*) » . * . ' [11]

':Let‘uS'calculate the ensemble average of Dr,' i.04, '

&,,, Ao
e

or | ; = x:"" » e . | . . » [123 :
This shows that the ensemble average of %, 18
equal to the steady~stéte value of x . namely x ¥, |

Now we can show that the time average of Nr is

also q,. We have from equation 1]
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F (g M) = €, + 3 agy logls

Integrating with respect to t on both sides, between the
limits O to T, we get

N, (T) , (T Nt )
%mg {ﬁm} = er“"g“stg%ofx“g sl )df-i

Now since N are bounded, as T =~ e, the left hand side
, . N
- vanishes, and remembering that the time average of log. s

is nothing but

- I |
Ng Ng(t) ..
log ° = ?r__::, a‘f g‘ log ° " dt ,
we get ——

L Ns
0= er""é“sr log

. | Ng
or, §“s: log o - Qr

and though equation [2], this becomes

- A‘ *
xsa xs

* |
or §r = xr . - . » . . » [13}

Thus, by combining equations [12] and [13], we see that
the time aversage of X, is precisely equal tH - the ensem-
ble average of the same. Clearly, our bioclogical system

is ergodic.
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2. THE CANONICAL ENSEMBLE
R

We now define a Canonical ensemble for a sub=-
system of our Qenexal biological system, which would
consist of, say,»*D number of species, where 1< Y 4n.
- This subsystem has to stay in statistical eéuiiﬂbrium
with the rest of the system. The statistical equilibrium
between the parts is ensured by establishing that they all
have the same 'temperature of.

The density function P for such a canonical system
is given by |
B = 6“69/6 . . . . . [24]

where, the suffix V indicates that we are dealing with
the part containing 9 number of species., The Canonical
average of any quantity bt' where r may refer to any of
the 9 speeie3, is given by |
| | G, / e
- J Dy e /8 4 Ly

v = » - . L) » {1&]

,.@d_y
[ e /8 d T,
Let us take
The canonical average of the quantity‘ﬂi is then given by
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dxp ,
br/e '
Jet/® ax,
= 0
- . - x* -
i‘»e-, ﬁr = (_xr ‘ xr) = 0
cri . xr = xr ] * - - » » » u?l?]

‘Let us now consider the ensemble average of the quantity

o 2 Ve |
Bx » VWe have

a .
= ~8f {=t 2. (e r/ejdx /] J e r“'/eclx
f ga"r iﬁ; S , r
3Gp ~Gyp/g °  «Gnrg 976,
g..e{jgi-e z/ ] +0fe r/e;;_g__ dx,
fe“@r/a
= O.

The suffix VY has been dropped here since it is unimport-
ant ¢ the number >, could be anything from 1 to n so long

as it c¢ontains r. This result
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8= D2 = ¥ Xy - X} 2 ... [18]
Thus shows that the temperature © is a measure of the
mean square deviation of x,. from ite equilibrium value
x_r*_ In an exactly similar way, as in the previous
Chapter, the situation of zero temperature would thus
correspond to the complet‘ely quiet state of our biolo-
gical system. In other words, © is a measure of the level

of excitation of the system from its stationary state,

Now let us consider the quantity
z = [/ dRyy sevess X
= mx J 942/@ dax,
« [ 2 Tel, 2, vy n .o, [29]
So we have | |
zZ, = J eﬁef/ ¢ dxy

- [e 5%32‘2 - xgx,F ; /e

) e (Kr* )2/25

= Téﬂa .o . * . i [20]

Note that the expression [19] is the well known Gibbs
phase integral.
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8. IHE LOGNORMAL DISTRIBUTION

We are now in a position to calculate thé probabie
1ity P(xr)dxr for any species r to have its x, in the
interval between X? and Xr + dxr, For this, we either
ccnsider the system with K species or a one ¢omponent
system with species r. In the former case, after a simple
1nté§rgtien over all the coordinates other than Xr; and
in the latter case directly, we get £he result

o5/® 4y
Pxy)ax, = ——g——F-

éi dax,
= *,) <
” (
Verno)e © /28
12
1 -z [ xp - x*] 7
Vén o) '
where, of course
& = (xp-x")? e e e e e e [22]

By transferming back to N, through the relation [3],
this may also be written as |

, a2
1 e“ 'ﬁ% [ logN, - logN;'J :

P(N.) dN, = =~ 23]
P(Ng) dN, N Vero dN, ..[23]




72

where

© = (log N ~1log N . . . . . [24]

The expression in [23] is the standard lognormal
distribution. ,

4.

Let us now consider the approximation in which the
equilibrium value of the number of individuals for any
species within the genera is the same, In that case the

function P(x,) multiplied by N, which is the total number
of species in the system, has precisely the same meaning
as the function n(R)'or n(logi) of Preston. In other
words, we have the result _
. - [X - K’*]z L

n(legi) ﬂm‘ e T N . [25}
where e has the same meaniug as K2 or o2 in Preston's
notation, and of caurse

X = 1@9*,
i here is the number of individuals referred to by N, so
far in this Chapter, Clearly, the suffix r has been
doopped because the distribution is now the same for any
' ry We have tﬁus established Preston's result for the

frequency distribution of species within a genera. [Note
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that the logarithms in [25] are to the base e, whereas

in the expression of Preston given in equation [7] of
Chapter III, the logarithms are to the base 2, The

iatter can, however, be converted to the base e without
any change in its form, except for an overall scale factor

of 1agé° 1
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