
IMPLEMENTING SNMP
ON DEC-ALPHA OSF/1 SYSTEM

Dissertation Submitted to
JA WAHARLAL NEHRU UNIVERSITY -

in partial fulfilment of requirements
for the award of the degree of

Master of Technology
in

Computer Science & Techn~logy

by

SUNIL VUA Y A_ KUMAR GAD DAM

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110 067
January 1997

JAW AHARLAL NEHRU UNIVERSITY
School of Computer & Systems Sciences

New Delhi - II 0067

CERTIFICATE

This is to certify that the dissertation entitled
-

Implementing SNMP On DEC-ALPHA OSF/1

System

which is being submitted by Mr. Sunil Vijaya Kumar Gaddam to

the School of Computer and Systems Sciences , Jawaharlal

Nehru University, New Delhi for t~e award of Master of

TechnoloS'ily in Computer Sciences & Technology, is a record of

bonafide work by him under the supervison and guidance of

Prof.B.S. Khurana.

This work is original and has not been submitted in part or full any

University or Institution for the award of any degree.

/~- s -?r
Prof. B. S. Khurana

(Supervisor)

Acknowledgements

The present· work is not a result of my effort alone. The following persons have lent

their helping hands in giving it the final shape. I sincerely acknowledge their

contribution.

I want to express my heartfelt gratitude to Prof.B.S. Khurana, SC&SS, JNU for his

scholarly guidance and encouragement during my Project Work.

I wish to thank Prof. G. V. Singh, Dean, SC&SS, JNU for extending lab facilities and

Prof. P. C. Saxena for his valuable comments.

I thank my friends Sanjay, Sanjeev, Paulraj, Joy, Bala, Vivek, Narendra and Subba Rao

for their help.

I acknowledge the financial assistance provided by UGC.
'

I'm grateful~'! all of them.

(Sunil Vijay Kumar G.)

ABSTRACT

The unprecedented growth of networks world wide· and the diversification in the

underlying hardware technologies have made the maintenance, . management and

monitoring of networks a major issue. Further, Network Management has assumed

far greater importan~e with the steady growth of networks and data

communications in recent times. With the ever increasing complexity and

heterogeneity in the area of networking, there arises a need to keep the network running

consistently at all times.

The Simple Network Management Protocol (SNMP) consists of simply composed set of

network communication specifications that cover all the basics of network management

in a method that poses little stress on an existing network. Network elements supporting

SNMP provide management information to the management station on receipt of

periodical query messages. The Finite State Machine (FSM) residing over the network

elements (agent) interrupts these messages and provides means for access and control of

the various management objects. Each SNMP agent maintains a conceptual set of

variables specific to its functionality and depending on the request from the SNMP

manager it either sets or gets the value of that particular variable.

This project report describes the Implementation of an SNMP Manager developed for

an agent supporting BSD Unix system (OSF/1). It studies the various issues involved in a

Central Network Management Station(CNMS) and it implements tools required by the

SNMP Protocol(core of SNMP) such as MIB tree loading, Encoder and Decoder that use

SNMP specific Basic Encoding Rules (BER).

I. Introduction

2. Network Management
2.1 Motivation ·
2.2 OSI Network Management Model
2.3 Level of Management Protocols

Contents

2.4 Centralised Management Vs. Decentralised Management
2.5 Polling Vs. Alerts

2.5 .I Reliable detection of failures
2.5.2 Complexity and performance of the ME
2.5.3 Response Time for problem detection
2.5.4 Volume of network management traffic
2.5.5 Ease of configuration
2.'5.6 Potential to over-inform the NMS

2.6 Management Paradigms
2.7 Asynchronous Communication
2.8 The SNMP Network Management

2.8.1 Components of SNMP Management System
2.9 Summary

3. SNMP- The Management Protocol for TCPIIP Networks
3.1 Motivation
3.2 SNMP Architecture

3.2.1 Managed Nodes
3.2.2 Network Management Stations
3.2.3 Network Management Protocol

3.3 Elements ofSNMP Architecture
3.3.1 Scope of Management Information
3.3.2 Representation of Management Information
3.3.3 Operation Supported on Management Information
3.3.4 Form and Meaning of Protocol Exchanges
3.3.5 Definition of Administrative Relationships

3.4 Proxy Management
3.5 Use of Transport Service
3.6 Instance Identification
3.7 Protocol
3.8 summary

4. Structure and Identification of Management Information
4.1 Definition of Management Information

4.1.1 SMI
4.1.2 MIB

4
4
5
7
7
8
9
9
10
II
II
II
12
12
13
13
14

15
15
15
16
16
17
19
19
20
20
21
22
23
23
24
25
30

31
31
31
32

4.2 Structure of Management Information 35
4.2.1 Names to identify Managed Objects 35
4.2.2 Syntax to define Object Types 36
4.2.3 Format of Managed Objects 38

4.3 Summary 39

5. Design and Implementation of SNMP on OSF/1 system 40
5.1 Major criterion in designing of an SNMP Manager 40
~.2 Design considerations 41
5.3 Modules specific to SNMP - 41

5.3.1 MIB tree-loading 41
5.3.2 Encoder and Decoder that use SNMP specific Basic

Encoding Rules(BER) 42
5.4 Representation 43
5.5 Implementation 44

5.5.1 Configuration - 44
5.5.2 Mechanism 44
5.5.3 Space versus Time 45
5.5.4 Description of Important Routines 45

5.6 Summary 47

6. Conclusions and Future Extensions 49
6.1 Conclusions 49
6.2 Comment & Extensions 49

REFERENCES

APPENDICES

1
Introduction

The field of computer networks has been undergoing rapid growth. While

interconnecting a collection of autonomous computers was the main theme of 70's, in

80's various economic factors and technological advantages made internetworking

feasible. Internet working is a scheme that . provides universal communication -services
-

by interconnecting a collection of autonomous computer networks, irrespective of

the underlying networking hardware. The rationale for such an internetworking are: no

single computer network can serve all users, users desire universal communication.

Thus in an Internet although each network might consist of an entirely different

underlying technology, all hosts attached to those networks have a common view of the

network. This is the power of Internet abstraction. But such an abstraction makes

network management quite difficult because of the following reasons:

* because of the Internet abstraction in computer networks there are quite a lot

of different hardware products available in the market, and to develop a management

technology that works on aU these products is difficult

* different administrations; all networks are not under the same administration

* the comlexity involved in an Internet is more complicated than in a simple

computer network

The Simple Network Management Protocol (SNMP) was designed in mid-1980's as

an answer to the communication problems between different types of networks. SNMP

was developed because Internet users needed a simple, reliable, inexpensive way to

manage network devices. Its initial aim was to be a band-aid solution to internetwork

management difficulties until a better designed and more complete network manager

became available. However, no better choice became available and SNMP became the

network management protocol of choice. The SNMP, put forth and promoted by

Internet Activites Board (lAB), provides communication between the management

station and the managed node interms of abstract objects.

SNMP, as the name suggests, shows a simplified approach to the Internet management.

The way it works is very simple: It exchanges network information through messages,

technically known as Protocol Data Units (PDUs). From a high level perspective, the

message (PDU) can be looked at as an object that contains variables that have both

titles and values.

There are five types of PDUs that SNMP employs to monitor a network: two deal with

reading terminal data, two deal with setting S{;tting terminal data, and one, the trap, is
. I

used for monitoring network events such as terminal start-ups or shut-downs.

Therefore, if a user wants to see if a terminal is attached to the network, he would use

SNMP to send out a read PDU to that terminal. If the terminal was attached to the

network, the user would receive back the PDU, it's value being "yes, the terminal is

attached''. If the terminal was shut off, the user would receive a packet sent out by the

terminal being shut off informing them of the shut down. In this instance a trap PDU

would have been dispatched.

Because SNMP emphasizes simplicity it uses a connection less protocol to limit the

amount of network overhead. SNMP~built on the Simple Gateway Management Protocol

(SGMP), a protocol .unit was used primarily to manage internet routers. SNMP

' provides tools for tracking workstations, compiling statistics and resetting network

links remotely. Network managers can also use SNMP to check paths for data packets.

The Advantages of SNMP

The largest advantage to using ~NMP is that its design is simple, hence it is easy to

implement on a large network, for it neither takes a long time to set up nor poses a lot of

stress on the network. Also, its simple design makes it easy for a user to program

variables they would like to have monitored, for in a more low-level perspective each

variable consists of the following information:

* the variable title

* the data type of the variable (eg. integer, string)

2

* whether the variable is read-only or read-write

* the value of the variable

The net result of this simplicity is a network manager that is easy to implement and not

too stressful on an existing network.

Another advantage of SNMP is that it is in very wide use today. This popularity came

about when no other network managers appeared to replace the "band-aid"

implementation of SNMP. The result of this is that almost all major vendors of

intemetworking hardware, such as bridges and routers, design their products to support

SNMP, making it very easy to implement.

Expandability is another benefit of SNMP. Because of its simple design, it is easy for the

protocol_ to be updated so that it can expand to the needs of users in the future.

The ramification of this will be seen later on.

This report describes the implementation of a Network Manager (SNMP Manager) on

the Dec Alpha OSF/1 system. The salient features of the tools are:

* Mlli tree loading for network elements with an SNMP agent simultaneously using

asynchronous communication;

* Encoder and Decoder that use SNMP specific BER

In chapter 2, the various issues in a central network management station are discussed. In

ch(\pter 3, the Internet management framework(the major issues in the network

management) and its associated management protocol 'SNMP', are dealt with. The·

structure and identification of management information used for TCPIIP based Intemets

are covered in chapter 4. Chapter 5 describes design and implementation of tools

developed for SNMP Manager. Chapter 6 talks about conclusions and futqre extensions.

3

2.1 Motivation

2
Network Management

The success of the protocol suite has given birth to Internets -- large communications

infrastructures involving computers, media specific devices and a host of other

network devices. Because of the open nature of the protocol suite, these internets are

heterogeneous in nature. The need to keep such networks running, and the need for

traffic and utilisation data which is useful in designing, and planning new networks

and extensions, makes network managef!lent essential. However the vastness,

heterogeneity involved, complexity and the interrelatedness of the components in the

internets make the management of these networks quite difficult. Typical problems faced

by technical staff are:

* equipment additions and changes that often lead to configuration errors.

* increased scale makes format adhoc tools impartial

* increased heterogeneity makes proprietary tools uimsable

* wider range of staff expertise requires more sophisticated tools which are easier to

use

* different administrations; makes effective management difficult because of the

complicqted interactions that it requires.

/

What is network management?

Network management can be broadly defined as that functionality which allows

one to debug problems m a network, control routing, find computers that violate

protocol standards. The following section describes the OSI network management can

be taken as ideal model for network management.

4

2.2 The OSI Network Management Model

The functional approach to OSI network management is to view the problem as five sub

problems:

* Fault Management- detecting, diagnosing, and recovering from network faults.

* Configuration Management - defining, changing, monitoring, ·and controlling

network resources and data.

* Accounting Management - recording usage of network resources

* and generating billing information

* Performance Management - controlling and analysing the throughput and error

rate of the network(including historical information)

* Security Management - ensuring only secured and authorised access to network

management system and network resources.

To support these

Service(CMIS)

different views, a Common Management lnfonnation

and associated

Protocol(CMIP) are introduced.

protocol

Orthogonal ·to

Common Management lnfonnation

the functional decomposition, the

management service provides three types of usage which can be used to accomplis~ the

five management functions listed above. They are

* monitoring, in which management information. is retrieved;

* control. in which devices are manipulated; and

* reporting, in which devices report abnof1!1al events.

In OSI parlance, System Management consists of managing the OSI porting of a

system. Each layer consists of a Layer Management Entity(LME), which knows

about the protocol operating at that layer. The LMEs communicate with a System

Management Application Entity(SMAE) using a local mechanism, which in turn

5

SMAE SMAE
.

LME ' A ~ .---·- ' LME .. A '
LME ' p 1- - • p 1 LME

LME •s
I 1--

S a
l

LME .
LME 1 T ~ -- T i LME

LME lN - N, LME

LME 1 Df - - -- - Df 1 LME
I

LME 'Ph
t. 1- ... --- .. • Ph 1

'
LME

Fig. 2.1 OSI Network Management

uses CMIP to communicate with other SMAEs. By . this process of abstraction, OSI

layer management is accomplished.

As depicted in the figure 2.1 the SMAE has access to the LME at each layer. Further, the

SMAE is a user of the OSI application layer in order to access CMIP. This architecture

is general enough in that the same protocols and mechanisms used for normal data

transfer at the application layer can be used for network management.

The OSI Common Management lnformation(CMD is based on - a connection

oriented model before management activity occurs an application association is

formed between the two management entities. Following this there are

several services:

* get, which is used to retrieve specific management information;

* set, which is used to manipulate ~anagement information.

* action, which is used to perform some imperative command;

* create, which is used tp crea~e a new instance of a management object;

* delete, which is used to delete an instance of a management object;

* event-report, which i-s used to rep0rt ex-traordinary events;

All of these services may be perfoimed in a confirmed fashion, while set, action and

event-report can be used in non-confirmed form also. In order to specify the

management objects of interest, the service employs two concepts : Scoping and

Filtering. Management infotmation is organised in a hierarchical structure. Scoping

occurs by identifying a particular node in the tree with a depth. This marks a subtree

rooted at that node and of the specified depth. Next an arbitrary boolean expression is

applied to the attributes of the management information held within that subtree. This

is called Filtering. Once the management information is Scoped and Filtered the

desired management activity occurs. Beyond this basic model, the key issues of how

management information is structured and defined, is not clearly mentioned. In the

following sections a qualitative analysis of network management models as seen from

different perspectives is given.

6

2.3 Level Of Management Protocols

Earlier most of the hardware vendors used to provide their own proprietary network

management solutions that work for their products. Needless to say, such solutions will

not work for another hardware platform. Also these protocols assume

homogeneous environment i.e., same underlying network technology and generally

operate at common like level. So such solutions work only within a single network.

However an Interne~ management protocol is different from usual network management

in that it has to work in heterogeneous networks~ This makes manJfatory that any

Internet management protocol work and application level. Such a protocol offers several

advantages:

-* they are independent of underlying hardware.

* they are uniform

* they can control gateways across an entire TCPIIP Internet without having direct

attachment to every physical network or gateway.

Having the management protocol work at application level has one serious drawback: as

the protocol depends on the underlying transport services, if the transport service goes

wrong the management ceases to fu·nction.

2.4 Centralised Management Versus Decentralised Management

Network management can be classified into two types:

Centralised and Decentralised management. In a centralised monitoring station data

collection and analysis are centralised by using a single network monitoring station. All
'

the ~lements in the network will be monitored only by this management station. In a

decentralised management model the whole domain of network elements will be

divided into convenient sub-domains with one NMS for each subdomain.

Monitoring could then be done in a hierarchical fashion, with NMS of each sub

domain reporting to a central NMS.

7

The advantage of a decentralised management model is that less traffic is generated

because the MEs in the same sub-domain would report to their own NMS only a hop or

two away, rather than a central NMS several hops away. Other advantages over a

centralised system include greater reliability, and a smaller probability of the NMS being

a bottleneck in the data collection process. •

The problem with decentralised is the division· into sub-domains which is often very

difficult, mainly because of administrative reasons. Also it requires on NMS for each

sub domain which may prove to be costly for a NMS may generally require a

dedicated work stations. Though such a problem can be overcome say by installing

the NMS over the backbone routers/gateways, such an effort is not advisable for the

simple reason that management function should not burden the primary functionality of

a functions.

Failure of the NMS in a centralised mode will seriously affect the management

functionality, but this can be taken care of by duplicating the NMS software on two or

three other hosts. With such an arrangement at the most a monitoring data over a short

time will be lost, which does not pose any serious degradation to the monitoring

function.

2.5 Polling Versus Alerts/Traps

There are two methods of transferring network management information from the

MEs to the NMS: request-response driven polling and unsolicited sending of alert by

the MEs. In a Polled system,· the NMS periodically sends each ME a request for

network management information pertaining to that entity. On receipt of the request

the ME responds to the desired data. On the other hand in an alert based system Alerts

or Traps are delivered by theMEs on their own to the NMS, because of the occurrence

of some event at the ME. The following factors are to be considered when choosing these

methods:

8

~.b. 1 He/latJie detection of failures

The NMS should be informed of any failures that occur. The NMS that polls the ME for

management information can more readily determine failures in the ME or the network

than an alert based system. A lack of a response to a query indicates failures.

In the case of an alert-based system the NMS assumes that the ME is good when it

does not receive an alert, even when a failure has occurred and the alert message cannot

be generated by the failed ME(e.g. a power failure) or the alert message is generated

but cannot reach the NMS(e.g. network partition).

Alerts will not be delivered when the ME fails (e.g. a power failure) or the network

experiences some problems(e.g. it is congested or partitioned). However, these are

precisely the type of information lhat at the NMS must receive. The lack of an alert

will cause the NMS to assume that the network or the ME is in a healthy state.

2.5.2 Complexity and performance of the ME

A management protocol that imposes less complexity on an ME will free more of its

resources for its primary function. A polling system allows the NMS to initiate a poll

when it is a in position to receive management traffic from an ME. There is no need to

introduce any extra intelligence in to the ME to handle the the initiation of

communication with the NMS or any retransmissions.

On the other hand an alert based system requires that the ME alerts the NMS whenever a

monitored event occurs. This introduces an added complexity in the ME because the ME

··has to initiate alert messages to the NMS.

Performance inpact on ME: In a polled sytem, there is no need for the ME to generate an

aletrt every time a monitored event occurs. It merely takes note of the monitored event

whenever it occurs, and responds to a· poll with the entire set of events that have occured

during the last sample interval. The performance impact of responding to a poll

periodically is minimal, as long as the polling interval is not too frequent (eg. hourly

compared to one minute intervals).

9

In an alert-based sytem, the ME must generate im alert every time a monitored event

occurs. This involves forming the alert packet and sending it to the NMS. This places an

overhead on the ME depriving a possibly loaded processor of CPU cycles that could

otherwise be used for its primary function.

2.5.3 Response Time for Problem Dectection

The time interval between the occurence of a problem and its detection should be

minimized. In a poll based system the NMS may have to poll a large number of MEs,

each for many parameters. It may be a while before the NMS can complete a cycle and

poll a particular ME again. If an ME should fail immediately after it responds to a poll,

there could be a significant delay before it tis polled again. During this intergval, the

failed ME is assumed to be in good health.

A NMS could either use sequential or parallel polling. In sequential polling, the ~MS

waits for any outstanding requests to be responded before polling the next ME. In parallel

polling the NMS can have a certain numbner of outstanding requests pending. Thus

for the same number of MEs, the polling cycle for a particular ME can be smaller since

the NMS spends less time in a busy waiting state.

In parallel polling increasing the number of MEs results in more management traffic as

well as reduced performance. In large networks, the NMS is limited by the number of

polls that it can process in unit time. The larger network also requires the time-outs to

be larger to accommodate responses that are still in transit. Also a response could·

already have been received, but was queued while waiting to be processed. As a result,

the time to detect a failure is increased.

However, alerts allow the NMS to be notified immediately of any problem in the ME

once it occurs. This eliminates the delay imposed by polling a large numbers of MEs, for

a large number of parameters.

10

2.5.4 Volume of Net Management Traffic

The amount of network management information that is transferred between the ME

and the NMS, Polling many parameters on many machines results in a large amount of

network management traffic flowing across the network and into the NMS to be

stroed. One way around this is to use hierarhcal polling, where the NMS polls a set of

intermediate stations for the general status of the machines that they poll. This

localizes the management traffic, but results in increased time to failure detection.

In an alert based system as alerts are sent out only when errors are detected. By

eliminating the need to transfer large amounts of healthy status information, network and

system resources will be less heavily loaded.

2.5.5 Ease of Configuration

It should be relatively easy for the NMS to configure the MEs. In a poll based system

the ME only responds to the request it receives, so long as it is an authorized party.

Thus, the number of NMSs or the identity of the NMS which polls a particular ME

can be changed without any need for reconfiguration of numerous MEs.

In an alert based system the remote ME need to be configured to report

management information to specific destinations. So the ease of configuring the NMS to

manage an ME is quite difficult.

2.5.6 Potential To Over-Inform The NMS

The use of piling allows the NMS to directly conirol the amount of management traffic

across the network. There are no retransmissions unless the NMS asks for them. Thus,

three is less chance that the NMS will be flooded with management packets at a time

when it cannot handle them.

In an alert-based sytem the NMS could be flooded by an excessive number of alerts.

For example in situations when an MN experiences along burst or errors, causing it to

send an equally long burst of alerts to the NMS. This flood of information places an

extra burden on the network, as well as the NMS. It could even prevent the NMS

II

from disabling the ME that is generating the alerts, because all available network

bandwidth into the NMS or the NMS itself, is saturated with incoming alerts.

In a polled system, the NMS need only be informed in a single poll response that the

uptime for the vacillating link is less than the poll interval or that a burst of errors

was rec~ived.

2.6 The Management Paradigms

Depending on the paradigm used for network management there are several forms a

network management protocol can take. Basically there are two important network

management paradigms:

The remote debugging paradigm and the remote execution paradigm. In the remote

execution pardigm the management protocol is used to exachange program fragments

which are executed on the managed node. For example protocols that use a remote

execution paradigm incorporate commands like reboot etc., into the Protocal. In the

remote debugging paradigm each managed node is viewed as having several variables. ,

By reading the values . of these variables the MEs are monitored. By changing the value

of these variables the managed node is controlled. The advantage of this paradigm are:

* Stability: The approach is stable for if in future if new management information or

new commands are to be incorportaed in can be simply done adding a new list of

variables without changing the basic structure.

* Simplicity: The approach is fairly simple and thus doesn't burden the MNs.

* Flexibility : The approach is flexible since simply by changing the semantic

interpretation of the values that a variable can take management functionality can

be changed.

2. 7 Asynchronous Communication

Any communication between the Manager and the MN will be asynchronous in

nature, from the Manger's point of view. A Manager needn't wait for a response after

sending a message to a managed node; because of the non dertermiriistic nature of

12

response . time over a . network.it is not wise to wait for a response, without doing

anything else. So ideally it can send other messages or do other activities after sending a

message. Also because the manager has to communicate with multiple MNs it can be

afford to block itself waiting for a resonse to come back from a specific MN.

2.8 The SNMP Network Management Model

Because SNMP emphasizes simplicity, it uses a connectionless protocol to limit the

amount of network overhead. From a philosophical point of view, it is preferable to have

the management protocol associated with SNMP decide issue, such as the number of

retries and timeouts, rather than have a connection-oriented transport protocol decide

these issues. Similarly, SNMP developers made a concious decision to place management

functions in the network management station that manages network functions rather than

in the devices that are managed. This decision contrasts with OSI network management

proto9ols discussed in section 2.1 where the network management station and devices

share a more peer-to-peer relationship.

2.8.1 Components of SNMP management system

The components of an SNMP management system include the Network Management

System(NMS), network agents, protocol data units, the Management Information Base

(MIB) and the Structure of Management Information (SMI).

The Network Management Station (NMS) monitors and controls the SNMP agents

found within devices. An NMS can use a SNMPST AT command to interrogate the

variables associated with a particular device as found in the SNMP database known as the

Management Information Base(MIB).

SNMP Manager software software generally consists of an application that generates

specific SNMP commands to a network device (the agent) and receving responces from

the agent including information on critical network events.

13

Agents D 1---------~·~~--~~

Workstati'on

Network Management Station
Get request I I

Get next response = = =
Set response

Terminal Server

Fig. 2.2 SNMP Network Management

Network agents are devices such as routers or bridges that are to be managed on an

SNMP network. These agents monitor network information such as the number of

connections, packets transmitted, or error conditions at their specific locations. They

provide this information to network management stations when they are polled and

information is requested using the User Datagram Protocol(UDP)~

Agents and Managers communicate with protocol data units (PDUs). Generally, the

managers send commands (GetRequest, SetRequest, etc.) and receive responses from the

agents (a GetResponcse to a GetRequest, a Trap) to tell a manager that a major event has

occured.

Fig. 2.2 illustrates how· SNMP network managent works. About MIB and SMI we will

discuss in later chapters. SNMP components are extensively discussed in[7].

2.9 Summary

Depending on the mechanisms used to achieve the goal of network management a

model can be classified in many ways. A brief and qualitative analysis of such classes

is given in this cahpter. One important point to be stressed here is that when all else

fails the manager should keep on functioning smoothly; otherwise the very purpos~ of the

mangement is in jeopardy. The elements SNMP architecture and Internet management

frame-work and the corresponding management protocol are discussed in the next

chapter.

14

/

3
SNMP - The Management Protocol For TCPIIP Networks

3. 1 Motivation

The Internet management framework focuses on the critical need for operational

network management capabilities in the Internet. These immediate needs mandate the

development of a system based on proven and well-understood practices rather than

catering to every theoretical requirement. The framework is based on the philosophy

of minimal requirements, which can be designated as the fundamental ·axioms of

the framework, elaborated below:

The impact of adding network management to managed nodes must be

minimal representing a lowest common denominator.

In this chapter, the major issues in the network management with reference to

SNMP are dealt. In sections 2 and 3 the SNMP architecture and elements of it's

architecture are discussed, where as in sections 4 to 7 deal with the mechanism adopted

by SNMP. Section 8 gives the summary. At the end of this chapter the reader will

appreciate the underlying well thought out engineering decisions.

3.2 SNMP Architecture

A network management system consists of the three basic components:

* several managed nodes, each containing an agent; .·

* at least one Network Management Station(NMS) ; and

* a network management protocol, which is used by the management station and

the agents to exchange management information.

15

3.2.1 Managed Nodes

A managed node refers to a device of some kind falling into one of the following

categories:

* a host system, such as a workstation, terminal server, or printer;

* a gateway system, or

* a media device, such as a bridge, hub, or multiplexor;

All these devices have some sort of network capability. As can be seen, the potential

diversity of managed nodes is quite high, spanning the spectrum from mainframes to

modems. The first two categories implement the Internet suite of protocols, whilst the

primary function of devices in the third category is media_dependent.

Another fundamental point to be taken note of is that the impact of adding network

management to managed nodes must be minimal. Any managed node can be

conceptualised as containing three components:

* useful protocols, which perform the function desired by the user

* a management protocol, which permits the monitoring and control of the managed

node; and,

* management instrumentation, which interacts with the implementation of the

managed node in order to achieve the monitoring and control.

. The instrumentation acts as GLUE between the useful protocols and the management ·

protocol. This is usually achieved by an internal communications mechanism in

which the data structures for the useful protocols may be accessed and

manipulated at the request of the management protocol.

3.i.2 Network Management Stations

A network management station refers to a host system which is running

16

* the network management protocol and

* network management applications

The network management protocol provides the mechanism for management and the

network management applications determine the policy that is used for management.

An analogy helps to understand the concept in better way: the protocol is very much

like an environment provided for debugging and just as how to debug and when to

debug is the programmers botheration; how to manage and when to manage is the

management application's botheration.

One should see to it that the managed nodes have the minimal impact of network

management. As a consequence, the burden is shifted to the management station:

Thus, it is expected that the host systems supporting a management station be relatively

powerful in comparison to the managed nodes. Such an approach is logical and

pragmatic; for

* In an Internet there will be many managed nodes than managed stations and it is

better to require significant functionality form a small percentage of devices rather

than the vast majority.

* As the requirement on MN side is very small, adding network management to

the vast majority of NMs need not necessarily be adding another memory

board or a faster processor.

The management station run by the operations staff of a large network is termed a

Network Operations Centre(NOC). There is no fixed relationship between managed

nodes and NOCs. There might be many network elements assigned to a single NOC

station, but there might also be one or many NOC stations for each network element.

3.2.3 Network Management Protocol

Any network management protocol should be powerful enough to allow the following

management operations

17

* a monitoring operation, which allows a management station to examine what is

happening at a managed-node;

* a control operation, which allows a management station to control the managed

node;

* a traversal operation, which allows a management station to determine which

variables a managed node supports; and

* a trap operation, which allows a managed node to report an extraordinary event to a

management station;

How a management protocol accomplishes all these depends on the network

management paradigm that particular protocol uses. A thorough treatment of how SNMP

achieves this is given in section 3.7. For the sake of completion and flow, it is briefly

discussed here. The network management protocol in the Internet standard network

management framework uses a remote debugging paradigm. Each managed node is

viewed as having several variables.

Monitoring and Control

By reading the value of variables the managed node is monitored and changing the

values of the variables means controlling the node.- Such an approach is used

because it is straight forward to build a simple, general and if required, extensible

protocol.

Traversal

As already noted the diversity of managed nodes is quite high and as a consequence

different managed nodes contain different management variables. Given this

background there must be an efficient means for a management station to determine

which variables are supported. Hence is the need for traversal operation. There is

eyen more basic need for traversal operation. The NMS should be provided with an

efficient means to traverse tables. More specifically the traversal mechanism should

be able to

18

* Retneve a specihc column or a row m a table

* Browse through a table or the whole set of management variables

Traps

The advantages and disadvantages of polling and traps are extensively dealt in section

2.5. In the Internet standard network management framework the model used is trap

directed polling. When an extraordinary event occurs the managed node ·sends a

single and simple trap to the NOC stating the gist of the Event. The NOC is then

responsible · for initiating further interactions with the managed node in order to

determine the nature and extent of the problem. This has proven to be effective

and flexible; the impact on the managed nodes remain small; the impact on the

network bandwidth is minimised; and problems can be dealt with in a timely fashion if

the NMS happen to be intelligent it may weigh the information content of a trap using

heuristic rules and past experience and may either decide to proceed with further

questioning or simply ignore it.

3.3 Elements of the SNMP Architecture

The SNMP architecture articulates a solution to the network management problem in

terms of the following aspects:

1) the scope of the management information communicated by the protocol.

2) the representation of the management infqrmation communicated by the protocol,

3) operations on the management information supported by the protocol,

4) the form and meaning of exchanges among management entities and

5) the definition of the administrative relationships among management entities.

3.3.1 Scope of Management Information

The scope of the management information communicated by operation of the SNMP

is exactly that represented by instances of all non-aggregate object types defined in

Internet standard MID.

·19

3.3.2 Representation of Management Information

Management information communicated by operation of the SNMP is represented

according to the subset of a ASN.l language that is specified for the definition of

non_aggregate types in the RFC on Structure of Management Information (SMI). The

SNMP uses an extended subset of ASN.l for describing managed objects and for

describing the protocol data units used for managing those objets. It should be noted

that different implementations of the protocol will use different internal representations
/

and the actual layout of each data structure depends on the programming language,

language compiler and the machine architecture of each platform. Finally when

management information is sent over a network SNMP used only a subset of the basic

encoding rules of ASN .I namely all encoding use the definite-length form. A more

elaborate discussion can be found in [1].

3.3.3 Operations Supported on Management Information

Only four ope~ations are available in the protocol:

* get, to retrieve specific management information

* get-next, the basic and only traversal tool, to retrieve management information via

traversal;

* set, to manipulate management information;

* trap, to report extraordinary events.

SNMP models all management agent functions as alterations or inspections of variables.

Thus a protocol on a logically remote host interacts with the management agent resident

on the network elements in order to retrieve (get) or alter(set) variables. This type of

support has two distinct advantages:

I) It has the effect of limiting the number of essential management functions realised

by the management agent to two: one operation to assign a value to a specified

configuration or other parameter and another to retrieve such a value

20

2) A second advantage of this decision is to avoid introducing into the protocol

definition support for imperative management commands; the number of such

commands is in practice ever-increasing and the semantics of such commands are in

general arbitrarily complex.

The strategy implicit in the SNMP is that the monitoring of the network state at any

significant level of detail is accomplished primarily by polling for appropriate

inform~tion on the part of the monitoring centre(s). A limited number of unsolicited

messages(traps) guide the timing and focus of the polling. The exclusion of imperative

commands from the set of explicitly supported management functions is unlikely to

preclude any desirable management agent operation. Currently most commands are

requests either to set the values of some parameter or to retrieve such a value and the

function of the few imperative commands currently supported is easily

accommodated by this management model. In this scheme, the imperative command

might be realised as the setting of a parameter value that subsequently triggers the

desired action. For example, rather than implementing a reboot command this action

might be invoked by simply setting a parameter indicating the number of seconds until

system reboot.

3.3.4 Form and Meaning of Protocol Exchanges

The communication of management information among management entities is realised

in the SNMP through the exchange of protocol messages. The complete description of

these messages is given in Rose[!]. Consistent with the goal of minimising

complexity of the management agent, the exchange of SNMP messages requires only an

' unreliable datagram service, and every message is entirely and independently represented

by a single transport datagram. While this report specifies the exchange of messages

via the UDP protocol, the mechanisms of the SNMP are generally suitable for use with

a wide variety of transport services.

21

3.3.5 Definition of Administrative Relationships

The SNMP architecture admits a variety of administrative relationships among entities

that participate in the protocol. The pairing of an SNMP agent with some arbitrary set

of SNMP Managers is called an SNMP community. Each SNMP community IS

named by a string of octets, that is called the community name for said community.

Authentication

SNMP offers only trivial authentication that is the

community name is placed clearly in an SNMP message. IF

the community name corresponds to a community name known to the receiving SNMP

entity the sending SNMP ~ntity is considered to be authenticated as member of that

community.

Authorisation

Authorisation determines the level of access to an authenticated member of the

community. Authorisation is done using what is called as community profile. For

any network element, a subset of objects in the Mill that pertain to that element is

called a SNMP Mill view. The names of the object types represented in a SNMP Mill

view need not belong to single sub-tree of the object type name space. An element of

the set {READ-ONLY, READ-WRITE} is called an SNMP access mode.

A pairing of a SNMP access mode with a SNMP Mill view is

called an SNMP community profile. A SNMP community profile

represents specified access privileges to variables in a specified MID view. For every

variable in the Mill view in a given SNMP community profile access to that variable is

represented by the profile according to the following conventions:

I) if said variable is defined in the Mill with Access: of none it is unavailable as an

operand for any operator.

22

2) if said variable is defined_ in the MIB with Access: of read-write or write -only and

the access mode of the given profile is READ-WRITE, that variable is available

as an operand for the get, set and trap operations.

3) otherwise, the variable is available as an operand for the get and trap operations.

4) in those cases where a write-only variable is· a operand used for the get or trap

operations, the value given for the variable is implementation specific.

3.4 Proxy Management

So far the discussion assumes that all managed nodes support the Internet management

protocol. However, in the cases of media devices which appear on the network such as

repeaters and bridges this need not be the case. In add_ition if host or gateway systems,

which implement other protocol suites, but not the Internet suite of protocols are on the

network, then they too cannot be managed. Such devices are termed FOREIGN

devices. The management framework provides a scheme to manage such foreign

devices. A special agent termed a PROXY AGENT acts on behalf of the foreign device.

When the foreign device is to be managed the management station contacts the proxy

agent, and indicates the identity of the foreign device. The PROXY AGENT then

translates the protocol interactions it receives from the management station into

whatever interactions are supported by the foreign device. So if the foreign device

supports a different management protocol, the proxy agent acts as an application

gateway.

There is room for efficiency in the use of PROXY AGENT : caching of management

information. If a managed node is being asked the same management questions

frequently and if the answers don't change as frequently a proxy agent might be placed

between the managed node and several NMSs so as to minimise tht: processing burden

on the managed node.·

3.5 Use of Transport Service

The transport requirements of SNMP are modest. This is consistent with the

fundamental axiom of the management framework. Network management usually

23

occur in a trouble shooting or fire-fighting mode. The management application

entity 1s in the best position to decide what the reliability constraints are on for

management traffic. The lowest common denominator is a connectionless-mode

transport service, so this is what is preferred for use in SNMP. This choice allows the

management station to determine the appropriate level of retransmission in order

. to accommodate lossy or congested networks. However, the mechanisms of the

SNMP are generally suitable for use with a wide variety of transp_ort services.

3.6 Instance Identification and Lexicographical Ordering

Instance identification is important for traversal operation, especially while

traversing a table. SNMP identifies an instance of an object by cGncatenating a suffix to

the Object Identifier. The form of suffix is calculated according to

1. Only in~tances of leaf objects may be identified. Thus table and row objects are

not manipulated, as aggregates, in SNMP. ·

2. If the object is not a column in a table, the suffix is simply O(zero)

3. Otherwise, the object is a column in a table. The textual description of that table in

the correspondent MID defines how the suffix is formed, by selecting those
'

columns necessary to make the suffix unique for that column.

Using object identifiers to name instances has a powerful advantage a

lexicographical ordering is enforced on all object instances. This means that for

instance names a and b one of three conditions consistently holds : either a,b , a=b ,

a>b. Having such a lexicographical ordering of instances allows one to browse through

the entire object tree just by following a link. Infact the get_next operator uses this

lexicographical ordering and is the most powerful operation provided by SNMP. Using

the get_next operator and some simple logic one can manipulate the tabular objects and

can retrieve information as though an aggregate type is provided. Thus the clever

naming 6f the instances obviated the use of aggregate types, implementation of which

would have been a burden on the managed nodes. Not supporting the aggregate type

is also reasonable, for rarely do managers want to retrieve a table as a whole.

24

3. 7 Protocol

SNMP is an asynchronous request/response protocol. An SNMP entity needn't wait for a

response after sending a message. It can send othe~ messages or do other activities.

Further the request /response might be lost by the undeilying transport service, it is up

to the sending SNMP entity to implement the desired level of reliability. There are four

primitive protocol interactions.

1) The manager retrieves management information from agent.

2) The manager traverses a portion of the agent's view.

3) The manager stores management information with the agent

4) The agent reports an extra ordinary event.

All these operations are shown in fig 3.1. These operations are subject to the

community profile(authentication and authorisation) used by the sending SNMP entity.

Messages

Communication among protocol entities is accomplished by the exchange of

messages, each of which is entirely and independently represented within a single UDP

datagram using the basic encoding rules of ASN.1 [Rose]. A message consists of a

versiOn

identifier, an SNMP community name and a protocol data unit(PDU). A protocol

entity receives messages at UDP port 161 on the host with which it is associated for all

messages except for those which report traps (i.e., all messages except those which

contain the Trap (PDU). Messages which report traps would be received on UDP

port 162 for further processing. An implementation of this protocol need not accept

messages whose length exceeds 484 octets. However, it is recommended that

implementations support larger datagrams whenever feasible. [I] gives the asn.l

definition of the SNMP. We will now briefly discuss about the use of authentication

and the data field viz., PDU.

25

The Manager retrieves management information from the Agent :

manager network agent

time ---+
+----- get-responce

.·

The Manager traverses a portion of the Agent's view :

manager network agent

get-request __ --t~· .. ~

time ---+

+----- get-responce
.··

The Manager stores management information with the Agent :

manager network agent

get-request __ ~

time ---+
+----- get-responce

.· .·

The Agent reports an extraodinary event:

agent network manager

tra...__~

time

Fig. 3.l.Communication between Manager & Agent

. I

PDUs

The PDUs data type is actually one of two other ASN.l types; a PDU which is ·used for

the majority of operations and the trap-PDU which is used for traps. The fields of PDU

data type are now

described.

requested-id: An integer-value used by a manager to distinguish among outstanding

requests. This allows a management application, if it so desires, to rapidly send several

SNMP messages. The incoming replies can then be correlated to the correspondent

operations. further, this provides a simple but effective, means for_· identifying messages

duplicated by the network(or operations duplicated by retransmissions).

error-statu~: If non-zero, this indicates an exception occurred when processing the

request. The values are :

* tooBig, the · agent could not fit the results of an operation into a single SNMP

message;

* noSuchName, the requested operation identified an unknown variable

name(according to the community profile);

* badValue, the requested operation specified an incorrect syntax or value when

trying to modify a variable;

* read Only, the requested operation tried to modify a variable that according to the

community profile, may not be written; and,

* genErr, otherwise.

error-index: if non-zero, this indicates which variable in the request was in error. this

field is non-zero only for the error no such name, badvalue, and readonly. In this case it

is the positive offset into the variable-bindings field (the first variable is said to be at

offset 1).

variable-bindings: A list of variables each containing a name and value. The value

portion of a variable is not meaningful for GetRequest-PDU and GetNextRequest-PDU

data types; by convention the value is always an instance of the ASN.l DATA TYPE

26

null. However, the receiving SNMP entity should simply ignore whatever value is

supplied by the sending SNMP entity.

Get Request PDU

Upon receiving a GET request PDU for each variable in the request the named instance

is retrieved in the context of the community profile. IF the instance does not exist, a

get-response is returned with error noSuchName, otherwise, a get- response is returned

identical to the request but with the value portions of the variables filled in accordingly.

GetNextRequestPDU

Upon receiving a GET-NEXT request PDU for each variables in the request, the

instance lexicographically following the named instance, in the context of the

community profile is retrieved. If the end of the lexicographically space is reached, a

get-response is returned with error nosuchname. Otherwise, a get response is

returned identically to the request but with the name and value portions of the variables

filled in accordingly.

Both the get and the get-next operators work sequentially. For example, if an error occurs

while processing the first variable in a request, the remainder of the operands are not

processed.

An Illustration of GET and GET_NEXT

Suppose a manager is interested in the value of two variables

sysDescr.o

sysName.o.

The former is defined in the Internet standard MIB and the latter is defined in MIB-II.

Therefore it is possible that the call

get(sysDescr.o,sysN ame.o)

27

might fail because the agent does not support the object type associated with the

second operand. The solution is to issue

get(sysDescr ,sysN arne)

instead. If the agent supports MIB-II, then the names and values of

sysdecr.o

sysName.o

will be returned. Otherwise , the names and values of

sysDescr.o

ifNumber.o

will be returned. Since the name of the sysName and ifNumber are different, the

manager can easily determine that the sysName object is not available.

Set Request PDU

For each variable in the SET requested PDU received, the named instance is

identified, in the context of the community profile. If the instance does not exist , a

get-response is returned with error noSuchName. If the instance does exist but does

not permit writing, a get-response is returned with the readOnly. If the instance exists

and permits writing, but the value supplied in the request is poorly-formed(wrong

syntax) or poorly-valued (range error), a get-response is returned with error

badValue. Otherwise, all of the variable are updated simultaneously, and a get

response is returned identical to the request.

Get Response

The manager checks its list of previously sent requests to locate the one which matches

this response. IF no record is found the response is discarded. Otherwise, the manager

handles the response in an appropriate fashion.

Traps

The fields of a trap-PDU are now described:

28

enterprise: the value of the agent's sysObjectld

agent-addr: the value of the agent's Network Address

generic-trap: one of a few extraordinary events

* coldS tart, the agent is (re-) initialising itself, and objets in its view may be altered

(e.g., the protocol entities on the managed node are starting);

* warmstart, the agent is reinitialising itself, but the objects in its view will not be

altered;

* linkDown, an attached interface has changed from the up to the down state (the first

variable identifies the interface);

* linkUp, an attached interface has changed to the up state(the first variable identifies

the interface);

* authenticationFailure, an SNMP message has been received from an SNMP entity

which falsely claimed to be in a particular community;

* egpNeighborLoss, an EGP ·peer has transitioned to state down(the first variable

identifies the IP address of the EGP peer); and

* enterpriseSpecific, some other extraordianary event has occurred, identified m the

specific-trap field(using an enterprise-specific, e.g., private, value).

specific-trap: identifies the enterprise Specific trap which occurred, otherwise this value is

zero.

time-stamp: the value of the agent's sysUpTime MID. object when the event occurred.

variable-bindings: a list of variables containing information about the trap.

Sending Trap-PDU

When an exception event occurs, the agent identifies those managers which it sends

traps to, if any. For each manager, it selects an appropriate community and sends a

Trap-PDU to that manager. Upon rece1vmg a Trap-PDU, the manager handles the

message in an appropriate fashion.

29

3.8 Summary

The SNMP architecture is modelled in to three groups of managed nodes, management

stations and the supporting management protocol. In perspective, the fundamental

axiom of the Internet management framework is based on the notion of universal

deployment:

If network management is viewed as an essential aspect of an Internet, then it

must be universally deployed on the largest possible connection of devices in the

network.

By taking a minimalist approach, the management framework enjoys significant

leverage in terms of economy of scale. As there are many more agents than

management stations, minimising the impact of management on the agents is more

attractive solution to the problem.

A second important tenet in network management is:

When all else fails, network management must continue to function, if at all

possible.

This tenet mandates that many of the functions traditionally found m the transport layer

be directly addressed· by the applications in the management station since it is

only applications which know the reliability requirements of each operation. So the

transport service must not be helpful.

30

4

Structure and Identification of Management Information

In the previous chapter, the network management concepts related to the SNMP

-were discussed. The management information is represented by a separate syntax which

is independent of the machine architecture and language. In this chapter, the

representation scheme of management information is described.

4. 1 Definition Of The Management Information

SNMP mandates that management information at a managed node be stored according

to the conventions set forth in Internet-standard SMI. If one views the whoJe

management information at a managed node as a database, the SMI defines the Schema

-for that database. The database is called Internet-standard Management Information

Base (MIB). A brief description of SMI is given here

4.1.1 SMJ

Management information is stored in terms of variables termed Managed Object. A

managed object is described using an ASN.l macro defined in the SMI. This macro

basically consists of two definitions: TYPE NOTATION and VALUE NOTATION.

The type notation defines the syntactical type (such as an ASN.l INTEGER), the

access to the object (whether read-only or read-write or write-only or not accessible),

and the status of the object (whether mandatory or optional or obsolete /depreciated).

The value notation specifies the actual name given to the object. All objects are

given an authoritative name using an unique object identifier.

The syntax of an object is defined using the data type called OBJECT SYNTAX. This

can be any of the following data types: simple ASN.l types such as INTEGER, NULL

etc., application-wide data types such as IpAdress, counter etc. and simply constructed

types such as List and Table etc. [RFC 1155] gives elaborate details about SMI.

31

Objects as defined in SMI are just templates. More than just the name of an object is

needed for management. It is the instances which are to be manipulated. So in

addition to an object name an instance identifier is to be defined. Though the SMI

doesn't specify any instance for non-tabular objects, a '.0' append to the object name

represents the instance. For tabular objects rows are distinguished by using a set of

columns which are sufficient to uniquely represent a row.

4.1.2 MIB

The Internet standard MIB describes those objects which are expected to be implemented

by managed nodes running the TCPIIP. The criteria in fi.xing these objects are

* the object must be essential for either fault or configuration analysis.

* due to lack of secure authentication framework, any control objets must have weak

properties.

* the object must have evidenced utility.

* the object must not be easily derivable from other objects.

* the object must be sufficiently general in nature as to be found on many different

platforms.

Using these criterion in MIB-II a revised version of an earlier MIB called MIB-I, a total

of 10 groups are defined, each group corresponding to a protocol in the Internet suite.

·A brief summary of each group is given below. The MIB-II is elaborately described in

[RFC 1156].

(I) System Group

The system group is mandatory for all MNs and contains information regarding the

system (MN) such as system description, system uptime, system location etc. In all, the

group contains seven variables.

32

(i~) Interfaces Group

This group contains generic information on the entities at the interface layer. At the top

level the group has objects: one denoting the number of interface attachments on the

node the second a table with detailed information such as no. of packets arriving at an

interface, no. of errors etc., about each of the interface attachment. The ·group is

mandatory for all MNs.

(iii) Address Translation Group

The group contains address resolution information and corresponds to Address

Resolution Protocol(ARP). In fact the group contains a single table used for mapping

ipaddress into media specific addresses. The greup is marked depreciated in MIB-11.

(iv) IP Group

This group is ·mandatory for all MNs. The group corresponds to the IP layer and

contains several scalars and four tables. Typical scalars are:

ipForWarding- acting as a gateway or host

iplnHdrErrors- datagrams discarded due to format errors etc.,

The tables to be maintained are:
/

ipAddrTable- to keep track of the ip addresses associated with the MN.

ipRountinTable- to keep track of the ip routes associated with the MN.

ipNetToMediaTable -to keep track of the mapping between IP and media -

specific addresses.

(v) ICMP Group

This group is mandatory for all MNs. The group corresponds to the ICMP protocol

used at IP layer and consists of 26 counters. The group can be summarised as:

33

~ for each ICMP message type, two counters exist, one counting the number of

times-this message type was generated by the local IP entity, the other counting the

number of times the message type was received by the local IP entity.

~ there are four additional counters which keep track . of the total number of ICMP

messages received, sent, received in error or not sent due to error.

(vi) TCP Group

The TCP group ts mandatory for ~II MNs. The group co~espon~s to the TCP

layer and contains several scalars and table. The scalars maintain information relevant to

TCP layer such as number of open connections, no of segments retransmited etc., The

table is used to keep track of applications ~ntities which are using the TCP.

(vii) UDP Group

This group is mandatory for all MNs which implement UDP. The group corresponds

to the UDP and has four counters and a table. As in TCP group the table keeps track

of application entities using UDP.

(viii) EGP Group

This group is mandatory for all MNs which implement the Exterior Gateway

Protocol(EGP), a reachability protocol used between autonomous systems.

(ix) Transmission Group

This group is introduced in MJB-ll as a place-holder for media specific MIBs. These

MIBs start out in the experimental space and may ultimately be placed in the Internet .

standard MID.

(x) SNMP Group

This group is introduced in MIB-ll and is intended to keep track of the various counters

and any configuration parameters that are relevant to SNMP. This group facilitates

monitoring the information about the management activity at each MN.

34

4.2 Structure of Management Information

Managed objects are accessed via a virtual information store, termed the Management

Information Base or Mill. Objects in the Mill are defined using Abstract Syntax

Notation one (ASN .1). Each type of object(termed an object type has a name, a syntax.

and an encoding. The name is represented uniquely as an OBJECT IDENTIFIER. An
'

OBJECT IDENTIFIER is an administratively assigned name. The syntax for an object

type defines the abstract data .structure corresponding to that object type. For example~

the structure of a given object type.might be an INTEGER or OCTET STRING. The

encoding of an object type is simply how instances of that object type are represented

using the object's type syntax. Implicitly tied to the notion of an objects syntax and

encoding is how the object is represented when being transmitted on the network.

4.2.1 Names to Identify Managed Objects

Names are used to identify managed objects which are hierarchical in nature. The

OBJECT IDENTIFIER concept is used to model this notion. An OBJECT IDENTIFIER

can be used for purposes other than naming managed object type: for example, each

international standard has an OBJECT IDENTIFIER assigned to it for the purposes of

identification. Iri short, OBJECT IDENTIFIER are a means for identifying some

object, regardless of the semantics associated with the object.

An OBJECT IDENTIFIER is a sequence of integers which traverse a global tree.

The tree consists of a__root connected to a number of labelled nodes via edges. Each

node may, in tarn, have children of its own which are labelled. In this case, we may

term the node a subtree. The root node itself is unlabeled, but has at least three

children directly under it: one node is administered by the International Organisation

for Standardisation (OSD, with label iso(1); another is administered by the International

Telegraph and · Telephone(ITTCC)

Consultative Committee, with label ccitt(O); and the third is jointly administered by

the ISO and the CCm, joint-iso-ccitt(2). The Internet subtree of OBJECT

IDENTIFIER starts with the prefix: 1.3.6.1

35

The four nodes specified under the Internet subtree of OBJECT IDENTIFIERS are:

directory OBJECT IDENTIFIER::={ Internet 1 }

mgmt OBJECT IDENTIFIER ::= { Internet 2}

experimental OBJECT IDENTIFIER::= { Internet 3 }

private OBJECT IDENTIFIER::= { Internet 4}

1) Directory

The directory(1) subtree is reserved for use in future that discusses how the OSI

Directory may be used in the Internet.

2) Mgmt

The mgmt(2) subtree is used to identify objects which are defined in the standard

management information base. So an OBJECT IDENTIFIER under the mgmt subtree

would be accessed using

{mgmt l}·or 1.3.6.1.2

3) Experimental

The experimental(3) subtree is used to identify objects used in Internet e_xperiments.

4) Private

The private(4) subtree is used to identify objects defined unilaterally. Initially, this

subtree has at least one child:

enterprises OBJECT IDENTIFIER::= { private 1}

The enterprises(I) subtree is used, among other things, to permit parties providing

networking subsystems to register models of their products.

4.2.2 Syntax To Define Object Types

36

Syntax 1s used to define the structure corresponding to object types. ASN.l

constructs are used to define this structure. The ASN.l type ObjectSyntax defines

the different syntaxes which may be used in defining an object type .

. (i) Primitive Types

Only the ASN.l primitive types INTEGER, OCTET STRING, OBJECT

IDENTIFIER, and NULL are permitted. These are sometimes referred to as non

aggregate types.

(ii) Constructor Types

The ASN.l constructor type SEQUENCE is permitted, providing that it is used to

generate either lists or tables.

For lists, the syntax takes the form:

SEQUENCE { <type!> , ... ,<typeN>}

Where each <type> resolves to one of the ASN.l primitive types listed above.

Further, these ASN.l types are always present (the DEFAULT AND OPTIONAL

clauses do. not appear in the SEQUENCE definition)

For tables, the syntax takes the form:

SEQUENCE OF <entry>

Where <entry> resolves to a list constructor.

(iii) Defined Types

New application-wide types may be defined, so long as they resolve into an

IMPLICITLY defined ASN.l primitive type list, table, or some other application-wide

type. A few of the application-wide types used are:

· * NetworkAddress

This CHOICE represen_ts an address· from one of possibly several protocol

families.

37

* lpAddress

This application-wide type represents a 32 bit Internet address. It is represented

as an OCTET STRING of length 4, in the network byte-order. When this ASN.l

type is encoded using the ASN.l basic encoding rules, only the primitive

encoding form shall be used.

* Counter

This application-wide type represents a non-negative integer which

monotonically increases until it reaches a maximum value, when it wraps around

and starts increasing again from zero.

* Gauge

This application-wide type represents a non-negative integer, which may

increase or decrease, but which latches at a maximum value.

* . Time Ticks

This application-wide type represents a non-negative integer which counts the

time in hundredths of a second wince some epoch. When object types are

defined in the MIB which use the ASN.l type, the description of the object type

identifies the reference epoch.

* Opaque

This application-wide type supports the capability to pass arbitrary ASN .I

syntax. A value is encoded using the ASN.l basic rules into a string of octets.

This is tum is encoded as a OCTET STRING in iffet double wrapping the

original ASN.l value.

4.2.3 Format Of Managed Objects

An object type definition consists of five fields:

OBJECT:

A textual name, termed the OBJECT DESCRIPTOR, for the object type, along with its
corresponding OBJECT IDENTIFIER

38

SYNTAX:
The abstract syntax for the object type. This must resolve to an instance of the ASN.l
type ObjectSyntax.

DEFINITION:

A textual description of the semantics of the object type.

ACCESS:

_ One of read-only read-write, write-only or not accessible.

STATUS:

One of mandatory, optional or obsolete

In order to facilitate the use of tools for processing the definition of the MIB, the

object type macro may be used. This macro permits the key aspects of an object type to be

represented in a format way.

4.3 Summary

The structure of the management information is represented in a well defined manner.

Grouping the management information in such a fashion facilitates the easy access of

the objects through some identification mechanism. All the management

information is represented by machine independent and language independent syntax

called ASN.l

39

5

Design and Implementation

The previous chapters discuss the fundamental concepts of network management and

the mechanism to identify the management information. In this chapter I delve

into the intricacies involved in the implementation of an SNMP Manager.

5.1 Major criterion in the design of an SNMP Manager

As discussed in the earlier chapters, at least one SNMP Agent should reside on each of

the managed nodes and at least one SNMP Manager should be on Network Management

Station. The nodes of- a network management station may manage by any of the

following: a workstation, gateway, router, bridge or a multiplexor. Whenever any agent

is residing on a particular network element, it is expected to support certain objects

whose status or values may be queried by the SNMP Manager at any time. What

variables a particular managed node supports is largely dependent on the type of

network element. By default the SNMP Manager contains certain standard objects with

definitions and syntaxes of these objects well defined in a store called the Management

Information Base(Mlli).

This store of objects is a very generalised database and may query sufficient

information from specialised network elements like a router. Network elements like

routers support a host of other variables whose information plays a crucial role. In order

to the information regarding these objects be queried by the network management

station, the list of the objects supported by that particular network element is added to

the MIB at the NMS. However, adding list of objects to MIB will result in other

managed nodes also being queried, even though they don't support such objects. This

would result in unnecessary network congestion and the very" purpose of network

management is lost.

So each. such list of objects supported by network element called Private MIB is given

an enterprise specific number and whenever the management station polls that

40

particular node, it sends request for objects in standard Mill as well as the objects

under the enterprise specific class corresponding to the number allocated to it. Thus

it is seen that elements specialised in particular tasks can be queried about information

related to those objects.

5.2 Design Considerations

Thekey aspects that influenced the design are:

* Asynchronous communication with the agents- Any communication with

an SNMP entity should be asynchronous as one can not predict the response

time over a network.

* Protocol specific constraints.

* Collection and storage of data.

* Processing of data and fault detection.

This Project implements tools required by the protocol(SNMP) such as MIB tree

loading, Encoder and Decoder that use SNMP specific Basic Encoding Rules(BER).

5.3 Modules specific to SNMP

5.3.1 M/8 tree-loading

The foremost step in communicating with SNMP agents while implementing an

_ SNMP manager is to formulate the Mill tree in memory. An Mill object is basically

represented by an object with data fields: the name of the object, the ASN. I

Objectidentifier, the syntax of the object, the child and sibling links and the important

"next-link" for the net_next operation.

Forming the Mill tree in_volves four major steps:

1) reading the entire set of objects into memory(probably from a text

file).

41

2) forming the child and sibling links that are requirt:d to maintain and traverse a

tree structure.

3) connecting the entire set of Mill objects

lexicographical ordering.

by the next link, using

4) storing Enumerated information about a set of given MIB tree Objects.

Once the Mill tree is formed next logical step is providing some tools that ,allow one to

search for different objects in all Possible ways. These details are given in the

implementation part.

The syntax is represented as an Object having two data fields, one for storing

information about Enumerated Syntax and the other for simple syntax. The various

functions associated with this object are:

a Parsing routine - to read the value into the object from a string.

an Encode routine - to encode a value of the associated syntax into a SNMP

value structure

a Decode routine - to complemen! the above routine .

. a Print routine - to print the value in appropriate format, according to the

syntax on the console.

5.3.2 Encoder and Decoder that use SNMP specific Basic

Rules(BER)

Encoding

These tools are written in a very generic way so that given a structure of any complexity,

valid according to SNMP specific ASN.l and BER, one can use the same decoding or

encoding tool without the need for recompiling. An Information Structure ts

maintained for all the fields in every ASN.l structure that is to be encoded or decoded.

The Information Structure essentially reflects the ASN.l tag, class;

primitive/constructive information and other information related to the internal

representation(C language Rep). At present, these information structures are generated

manually, but the process can be automated. In such tools the user gives an ASN.l

42

structure, and the tool returns an equivalent internal representation, and a set of

functions one for encoding and one for ·decoding. These functions actually use the

Prototype encoding and decoding routines. Other details are discussed in implementation

part.

5.4 Representation

In deciding the representation for agents, and requests which are forwarded to the

agents, the major concern was to achieve

* Management Protocol Independence

* Extensibility

Each agent is represented as a set of features that are characteristic of a network

element. Typical features are name, network address, network address type, MIB tree

etc. To avoid protocol dependency, first some generic functions, that are required

for Management activity to take place, are identified. Typical functions identified are:

* authentication function - to authenticate properly the sending Management

quenes;

* formMessage- to form a protocol specific message from an abstract request;

* encodeMessage - to convert protocol specific gtessage into the protocol

specific serialised packet;

* sendPacket- to send the serialised packet over the network;

* decodeMessage - to decode the packet received over the network into a

protocol specific message;

* optimizePacketSending - to take care of appropriate buffering so as to

make the process of polling efficient;

Apart from these, some other functions which do any kind of pre-processing or

interfacing with user are attached to the agent. These approach makes the design Object

Oriented. That is, a Management Protocol supported by a particular agent, will have it's

43

own set of functions. For example, if two agents support different manag~ment

protocols, they will have different set of functions attached to thein. Simil,arly if an agent

supports two management protocols, it will have two sets of functions - one for each

management protocol. Such a representation allows, with minor changes, easy adoption

to the advention of any new management protocols.

Since SNMP is used here as here as the Management Protocol, all these functions are

written assunring,SNMP.

Secondly the services offered by the management protocol are made transparent to the

user. The user is given some highly generalised services. Some of these services are not

supported directly by the underlying Management Protocol. Towards this end an
-

abstract Request List is defined. This finally comes down to a generic reuse, which is

represented by typical features such as names of variables, frequency with which the

variables have to be polled, number of retries and time-out, file where the information

received is to be logged etc.

5.5 Implementation

, 5.5~ 1 Configuration
r

The request/response Manager is implemented on DEC-ALPHA work station with

OSF/1 OS version 2.0. The environment consists of 2 DEC workstations and 4 X

terminals connected over Ethernet. Only DEC-ALPHAl station run an SNMP agent in

the background. The project is implemented using C language, and the Berkeley

Socket interface for transport services. Though C++ could have been a better language,

especially because of the inherent Object Orientedness involved in the project, C is

used for the lack of resources and time. However, all efforts have been put to see that

the implementation is object oriented and data driven.

5.5.2 The mechanism

_The complete Manager program is implemented as a single Unix Process. Sending,

receiving and processing are all done in a single process sequentially, giving top

44

priority to sending. This is working well for the configuration described above. Care is

taken not to cause any problem even, if there are too many agent. For this distributed

computing is simulated using the Unix processes and Inter Process Communication(JPC).

5.5.3 Space versus Time

It is decided that any NMS requires a dedicated and some times more than one Work

Station. So stress is given to speed rather than conserving memory. Whenever it is felt

that buffering will increase speed, it has been employed without hesitation. For

example using two processes one for sc11ding and another for receiving resulted in

duplicating of data structures, though this could have been avoided using a more powerful

IPC which would be inefficient speed wise. Shared memory could not be used because

of the inherent limitation of the OS on the size. Similarly since an agent is polled for

the same queries periodically, all queries as they are finally dispatched over the

network i.e., in byte stream form are buffered. This resulted in saving lot of CPU time.

In Th. following section a detailed description of important functions, starting from

main is given.

5.5.4 Description of Important Routines

The whole source code is given in Appendices. So, for more details reader can refer

Appendices. However, the important routines are explained here briefly.

init_snmp()

Gets initial request ID for all transactions.

snmp _open(session)

Sets up the session with the snmp_session information provided by the user. Then opens

and binds the necessary UDP port. A handle to the created session is returned (this is

different than the pointer passed to snmp_open()). On any error, NULL is returned and

snmp_errno is set to the appropriate error code.

free_request_list(rp)

45

Free each element in the i_nput request Ust.

snmp _close(session)

Close the input session. Frees all data allocated for the session, dequeues any pending

requests, and closes any sockets allocated for the session. Returns 0 on error, 1

otherwise.

snmp_build(session, pdu, packet, out_length)

Takes a session and a pdu and serialises the ASN PDU into the area pointed to by

packet. out_length is the size of the data area available. Returns the length of the

completed packet in out_length. If any errors occur, -1 is returned (for error index).

If all goes well, 0 is returned.

snmp_parse(session, pdu, data, length)

Parses the packet received on the input session, and places the data into the input pdu.

length. is the length of the/ input packet. If any errors are encountered, -1 is

returned. Otherwise, a 0 is returned. It authenticates message and returns length if valid.

snmp_send(session, pdu)

Sends the input pdu on the session after calling snmp_build to create a serialised packet.

If necessary, set some of the pdu data from the session defaults. Add a request

correspondiiJg to this pdu to the list of outstanding requests on this session, then send

the pdu. Returns the request id of the generated packet if applicable, otherwise 1. On any

error, 0 is returned. The pdu is freed by snmp_send() unless a failure occurred.
/

snmpJree_pdu(pdu)

Frees the pdu and any malloc'd data· associated with it.

snmp _read(jdset)

Checks to see if any of the fd's set in tne fdset belong to SNMP. Each socket with it's fd

set has a packet read from it and snmp_parse is called on the packet received. The

resulting pdu is passed to the callback routine for that session. If the callback routine

46

returns successfully, the pdu and it's request are deleted. If it finds error it prints

"Mangled packet". But there shouldn't be any more request with the same reqid.

snmp_select_info(numfds,fdset, time-out, block)

Returns info about what SNMP requires from a select statement. numfds is the number

of fds in the list that are significant. All file descriptors opened for SNMP are OR'd into

the fdset. If activity occurs on any of these file descriptors, snmp_read should be called

. with that file descriptor set. The time-out is the latest time that SNMP can wait for a

time-out. The select should be done with the minimum time between time-out and any

other time-outs necessary. This should be checked upon each invocation of select. If a

time-out is received, snmp_timeout should be called to check if the time-out was for

SNMP. (snmp_timeout is idempotent) Block is I if the select is requested-to block

indefinitely, rather than time out. If block is input as I, the time-out value will be

treated as undefined, but it must be available for setting in snmp_select_info. On

return, if block is true, the value of time-out will be undefined. snmp_select_info returns

the number of open sockets. (i.e. The number of sessions open).

snmp _timeout()

snmp_timeout should be called whenever the time-out from· snmp_select_info

expires, but it is idempotent, so snmp_timeout can be polled (probably a cpu

expensive proposition). snmp_timeout checks to see if any of the sessions have an

outstanding request that has timed out. If it finds one (or more), and that pdu has

more retries available, a new packet is formed from the pdu and is resent. If there are no

more retries available, the callback for the session is used to alert the user of the time-

out.

5.6 Summary

In summary, the design is object oriented in nature and easily extensible. Program flow

is data driven and all functionalities are implemented in the mostgeneric way possible.

Speed is given prime importance than space; this is justifi-able because of the enormous

47

magnitude of the management functionality. The next chapter gives conclusions and

future extensions, which could not be implemented because of time constraints.

48

6

Conclusions and Future Extensions

6.1 . Conclusions

The SNMP Manager implemented over the BSD Unix(OSF/1) environment with a

minimal set of variables in the MIB and Manager program is run on a DEC-ALPHA2

work station which is connected to 4 X-terminals over Ethernet. DEC-ALPHA I station

run an SNMP Agent in the background. The Manager program was able to

successfully communicate with the SNMP agent running on DEC-ALPHA I.

SNMP Manager sends get or getnext request to retrieve Management information from

any connected SNMP agent. For example

get ipForWarding.O and get iplnHdrErrors.O responses will be like this:

ipForWarding.O = l(host)

iplnHdrErrors.O = 0

SNMP basic functionality is provided. In future, there is an enormous potential for.

extensions in the development of Manager.

6.2 Comments & Extensions

Magnitude of the Network Management Traffzc:

Network Management skews the data being retrieved. So as possible the traffic generated

by the management functionality should be minimum. Care has been taken to minimise

the management traffic, by classifying the requests to be dispatched and grouping

them within a single SNMP message. Right now the maximum limit on the no. of

variables sent within a single packet is set at 5. If the user wants change it, he has to

change the corresponding macro definition and recompile it.

49

Such a scheme causes some problems. Imagine that 5 SNMP variables are being

requested using a single packet. Even if one of them is not supported by the agent on the

other side he sends a error packet. So eventhough seven variables are there we couldn't

get that information. Intelligence have to be incorporated to deal with such situations.

Heuristics will help a lot here.

Controlling

The program allows the user to specific variables in the Mill tree, but it is upto the

receiving SNMP agent to authenticate it and take the decision whether to honour it or

not.

Private M/Bs

The program works well with the private Mills. The program takes any input regarding

SNMP variables from files. By manipulating these files and rerunning the program, one

can use this as a generic tool. However, if one feels that such a process is laborious,

he can develop a user interface that interacts with the user and send SNMP messages

very easily.

Artificial Intelligence tools

The field of AI has a wide range of arsenal. Using various AI techniques one can port

this to real time situations, which would be very useful in proactive network management.

Important fields within network management where AI methods can be used are

Planning and designing to help in future expansions, fault diagnosis. Using Graphic

User Interface(GUI), one can make up with intuitive visual representation.

Right now the program is developed as a group of programs which are tightly bound

together, i.e., the functionalities are not clearly dissected. One very good extension is to

develop a black board like architecture using a scheduler. Information comes from over

the network and many experts such as diagnose expert, a fault isolation expert, a designer

etc., are given access to the information by the scheduler. Each expert will work

50

independently and comes into the picture whenever his expertise is t}le need of the hour.

However, time and infrastructure would be the major criterion for such extensions.

Distributed management

Finally as the number of the network elements to be monitored become large,

Distributed management models have to be used. Basically there are many managers

who supervise agents who come under his purview. If a manager wants to know

something about an agent who is under a different Manager, he has to communicate

with him. So some sort of protocol has to be designed for Manager-Manager

communication. One can implement a prototype Network Monitor using SNMP as the

underlying protocol. One can always extend this by adding network management

applications such as Network Monitoring, Network Control, Network Operation Centre

On-Line(NOCOL), etc. By reading values of variables the managed node is monitored

and changing the values of the variables means controlling the node.

51

References

[1] Marshall T. Rose, "The Simple Book: An Introduction to Management of TCPIIP
based Internets", Prentice-Hall, EngleWood Cliffs, New Jersey.

(2] Request For Comments(RFC) 1155, "Structure and Identification of Management
Information for TCPIIP based intemets".

[3] Request For Comments(RFC) 1156, "Management Information Base for Network
Management of TCPIIP based intemets".

[4] Request For Comments(RFC) 1157, "A Simple Network Management
Protocol(SNMP)"

[5] Request For Comments(RFC) ~089, "SNMP over Ethernet"

[6] Request For Comments(RFC) 1161, "SNMP over OSI"

[7] Stan Schatt, "Understanding Network Management: Strategies & Solutions", Applied
Networking Series Windcrest/McGraw-Hill.

(8] Douglas E. Comer, "Intemetworking with TCPIIP: Principles, Protocols, and
Architecture" vol.1, Prentice-Hall, Engle Wood Cliffs, New Jersey.

[9] Andrew S. Tanenbaum, "Computer Networks", Prentice-Hall, EngleWood Cliffs,
New Jersey.

(10] William Stallings, "Data and Computer Communications", Prentice-Hall,
EngleWood Cliffs, New Jersey.

[11] Darren L.Spohn, "Data Network Design", McGraw-Hill Series on Computer
Communications. ""

[12] Kornel Terplan, "Communication Network Management", Prentice-Hall Computer
Communication Series.

[13] Allan Leinwand & Karen Fang, "Network Management: A Practical Perspective",
Addison-Wesley, Don Mills.

[14] Ulysess Bfack, "Computer Networks: Protocol Standards and Interfaces", Prentice
Hall EngleWood Cliffs, New Jersey.

[15] Ulysess Black, "Network Management Standards: The OSI, SNMP and CMOL
Protocols", Ulysess Black Series On Computer Communications.

[16] Richard Stevens, "Unix Networking Programming", Prentice-Hall, EngleWood
Cliffs, New Jersey.

[17] Maurice Bach, "The Design of Unix Operating System", Prentice-Hall, India.

[18] Chris Brown, "Unix Distributed Programming", Prentice-Hall, EngleWood Cliffs,
New Jersey.

/**
* jnu_snmp.c- send snmp requests to a network entity.

**/
#include <sys/types.h>
#include <netinet/in.h>
#include <stdio.h>
#include <ctype.h>
#include <errno.h>

#include " .. /jnusnmp/snmp.h"
#include " .. /jnusnmp/snmp_impl.h"
#include " .. /jnusnmp/asn 1.h"
#include " .. /jnusnmp/snmp_api.h"
#include " .. /jnusnmp/snmp_client.h"

extern int errno;
int command= GET_REQ_MSG;
int snmp_dump_packet = 0;

main(argc, argv)
int argc;
char *argv[];

struct snmp_session session, *ss;
struct snmp_pdu *pdu, *response;
struct variable_list *vars, *vp;
int arg, ret;
char *gateway= NULL;
char *community = NULL;
int status, count;

ini.t_mib();
I* usage: snmptest gateway-name community-name */
for(arg = 1; arg < argc; arg++){

if (argv[arg][O] == '-'){
switch(argv[arg][1]){

}

case 'd':
snmp_dump_packet++;
break;

default:
fprintf(stderr, "invalid option: -%c\n", argv[arg][l]);
break;

continue;

if (gateway== NULL){
gateway= arg.v[arg];

} else if (community== NULL){
community= argv[arg];

} else {
fprintf(stderr, "usage: snmptest gateway-name community-name\n");
exit(!);

Apendix[A]

if (community== NULL)
community = "public"; /* default to public >t!'f

if (!(gateway && community)){
fprintf(stderr, "usage: snmptest gateway-name community-name\n");
exit(I);

bzero((char *)&session, sizeof(struct snmp_session));
session.peername = gateway;
session.community = (u_char *)community;
session.community_len = strlen((char *)community);
·session.retries = SNMP _DEFAUL T_RETRIE-S;
session.timeout = SNMP _DEFAULT_TIMEOUT;
session.authenticator =NULL;
snmp_synch_setup(&session);
ss = snmp_open(&session);
if (ss ==NULL){

fprintf(stderr, "Couldn't open snmp\n");
exit(-1);

while(I){
vars=NULL;
for(ret= 1; ret != 0;){

\

vp = (struct variable_list *)malloc(sizeof(struct variable_Iist));
vp->next_ variable = NULL;
vp->name =NULL;
vp->val.string = NULL;

while((ret = input_ variable(vp)) == -1)

if (ret== 1){
I* add it to the list*/
if (vars ==NULL){

/* if first variable */
pdu = snmp_pdu_create(command);
pdu->variables = vp;

} else {
vars->next_ variable = vp;

vars =vp;
} else {

I* free the last (unused) variable */
if (vp->name)

free((char *)vp->name);
if (vp->val.string)

free((char *)vp->val.string);
free((char *)vp);

status= snmp_synch_response(ss, pdu, &response);
if (status== STAT _SUCCESS){

switch(response->command) {
case GET_REQ_MSG:

printf("Received GET REQUEST ");
break;

case GETNEXT _REQ_MSG:
printf("Received GETNEXT REQUEST");
break;

case GET_RSP _MSG:
printf("Received GET RESPONSE ");
break;

case SET_REQ_MSG:
printf("Received SET REQUEST");
break;

case TRP _REQ~MSG:
printf("Received TRAP REQUEST");
break;

printf("from o/os\n", inet_ntoa(response->address.sin_addr));
printf("requestid Oxo/ox errstat Oxo/ox errindex Oxo/ox\n",

response->req id, response->errstat, response->erri ndex);
if (response->errstat == SNMP _ERR_NOERROR){

for(vars = response->variables; vars; vars = vars->next_variable)
print_ variable(vars->name, vars->name_Iength, vars);

} else {
fprintf(stderr, "Error in packet. \nReason: o/os\n", snmp_errstring(response->errs tat));
if (response->errstat = SNMP _ERR_NOSUCHNAME){

for(count =I, vars = response->variables; vars && count!= response->errindex;
vars = vars->next_ variable, count++)

if (vars){
printf("This name doesn't exist: ");
print_objid(vars->name, vars->name_Iength);

}
printf("\n");

} else if (status== STAT_ TIMEOUT){
fprintf(stderr, "No Response from o/os\n", gateway);

}else { /*status== STAT_ERROR */ .
fprintf(stderr, "An error occurred, Quitting\n");

if (response)
snmp_free_pdu(response);

int
ascii_to_binary(cp, bufp)

u_char *cp;
u_char *bufp;

int subidentifier;
u_char *bp = bufp;

for(; *cp != '\0'; cp++){
if (isspace(*cp))

continue;

}

if (!isdigit(*cp)){
fprintf(stderr, "Input error\n");
return -I;

subidentifier = atoi(cp);
if (subidentifier > 255){

}

fprintf(stderr, "subidentifier %d is too large (> 255)\n", subidentifier);
return -1;

*bp++ = (u_char)subidentifier;
while(isdigit(*cp))

cp++;
cp--;

return bp - bufp;

int
hex_to_binary(cp, bufp)

u_char *cp;

}

u_char *bufp;

int subidentifier;
u_char *bp = bufp;

for(; *cp != '\0'; cp++){
if (isspace(*cp))

continue;
if (!isxdigit(*cp)){

fprintf(stderr, "Input error\n");
return -1;

sscanf(cp, "%x", &subidentifier);
if (subidentifier > 255){

fprintf(stderr, "subidentifier %dis too large (> 255)\n", subidentifier);
return -1;

*bp++ = (u_char)subidentifier;
while(isxdigit(*cp))

cp++;
cp--;

return bp - bufp;

input_ variable(vp)
struct variable_list *vp;

u_char buf[256], value[256], ch;

printf("Piease enter the variable name: ");
fflush(stdout);
gets(buf);

if (*buf == 0){
vp->name_length = 0;
return 0;

}
if (*buf == '$'){

switch(buf[I]){
case 'G':

command = GET _REQ_MSG;
printf("Request type is GET REQUEST\n");
break;

case 'N':
command= GETNEXT_REQ_MSG;
printf("Request type is GETNEXTREQUEST\n");
break;

case'S':
command = SET _REQ_MSG;
printf("Request type is SET REQUEST\n");
break; ·

case 'D':
if (snmp_dump_packet){

snmp_dump_packet = 0;
printf("Tumed packet dump off\n");

} else {
snmp_dump_packet = I;
printf("Tumed packet dump on\n");

break;
case 'Q':

printf("Quitting, Goodbye\n");
exit(O);
break;

default:
fprintf(stderr, "Bad command\n");

return -I;

vp->name_length = MAX_NAME_LEN;
if (!read_objid(buf, value, &vp->name_length))

return -I;
vp->name = (oid *)malloc(vp->name_length * sizeof(oid));
bcopy((char *)value, (char *)vp->name, vp->name_Iength * sizeof(oid));

if (command== SET_REQ_MSG){
printf("Piease enter variable type [ilslxldlnloltla]: ");
fflush(stdout);
gets(-buf);
ch = *buf;
switch(ch){

case 'i':
vp->type =INTEGER;
break;

case's':
vp->type = STRING;
break;

case 'x':
vp->type = STRING;
break;

case 'd':
vp->type =STRING;
break;

case 'n':
vp->type = NULLOBJ;
break;

case 'o':
vp->type = OBJID;
break;

case 't':
vp->type = TIMETICKS;
break;

case 'a':
vp->type = IPADDRESS;
break;

default:
fprintf(stderr, "bad type \"%c\", use \"i\", \"s\", \"x\", \"d\", \"n\", \"o\", \"t\", or \"a\" .\n", *buf);
return -1;

printf("Please enter new value: "); fflush(stdout);
gets(buf);
switch(vp->type){

case INTEGER:
vp->val.integer = (long *)ma1loc(sizeof(long));
*(vp->val.integer) = atoi(buf);
vp->val_len = sizeof(long);
break;

case STRING:
if (ch == 'd'){

vp->val_len = ascii_to_binary(buf, value);
} else if (ch == 's'){

strcpy(value, buf); ,
vp->val_len = strlen(buf);

} else if (ch = 'x'){
vp->val_len = hex_to_binary(buf, value);

vp->va1.string = (u_char *)malloc(vp->val_len);
bcopy((char *)value, (char *)vp->val.string, vp->val_len);
break;

case NULLOBJ:
vp->val_len = 0;
vp->val.string = NULL;
break;

case OBJID:
vp->val_len = MAX_NAME_LEN;;
read_objid(buf, value, &vp->val_len);
vp->val_len *= sizeof(oid);·
vp->val.objid = (oid *)malloc(vp->val_len);
bcopy((char *)value, (char *)vp->val.objid, vp->val_len);
break;

case TIMETICKS:
vp->val.integer =(long *)malloc(sizeof(long));

*(vp->val.integer) = atoi(buf);
vp->Val_len = sizeof(long);
break;

case IPADDRESS:
vp->val.integer = (long *)malloc(sizeof(long))~
*(vp->val.integer) = inet_addr(buf);
vp->val_Ien = sizeof(long);
break;

default:
fprintf(stderr, "Internal error\n");
break;

} -
} else { /* some form of get message */

vp->type = NULLOBJ;
vp->val_len = 0;

return 1;

/***
* jnu_api.c - API for access to snmp.
**/

#include <stdio.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <netinetlin.h>
#include <sys/socket.h>
#include <netdb.h>

#include " . ./jnusnmp/asn l.h"
#include " . ./jnusnmp/snmp.h"
#include " . ./jnusnmp/snmp_impl.h"
#include " . ./jnusnmp/snmp_api.h"

#define PACKET_LENGTH 4500

#ifndef BSD4_3
#define BSD4_2
#endif

#if defined(FD_SET) II defined(BSD4_3)
#define HAVE_FD_MACROS

· #endif

#ifndef HA VE_FD_MACROS

typedef long fd_mask;
#define NFDBITS (sizeof(fd_mask) * NBBY) !* bits per mask */

#define FD_SET(n, p) ((p)->fds_bits[(n)/NFDBITS]I= (I « ((n)% NFDBITS)))
#define FD_CLR(n, p) ((p)->fds_bits[(n)INFDBITS] &=-(I« ((n)% NFDBITS)))
#define FD_ISSET(n, p) ((p)->fds_bits[(n)INFDBITS] & (I « ((n) ~ NFDBITS)))
#define FD_ZERO(p) bzero((char *)(p), sizeof(*(p)))

#endif /* HA VE_FD_MACROS *I

oid default_enterprise[] = {I, 3, 6, I, 4, I, 3, I, I};/* enterprises.jnu.systems.jnuSNMP */

#define DEFAULT_COMMUNITY
#define DEFAULT_RETRIES
#define DEFAULT_TIMEOUT
#define DEFAULT_REMPORT

"public"
4
IOOOOOOL
SNMP_PORT

#define DEFAULT_ENTERPRISE default_enterprise
#define DEFAULT_TIME 0

/*Internal information about the state of the.snmp session. */
struct snmp_internal_session {

int sd; /* socket descriptor for this connection */
ipaddr addr; /* address of connected peer*/
struct request_list *requests;/* Info about outstanding requests */

);

/* A list of all the outstanding requests for a particular session. *I
struct request_list {

struct request_list *next_request;
u_long request_id; /* request id */
int retries; /* Number of retries *I
u_long timeout; /* length to wait for timeout *I
struct timeval time; /* Time this request was made */
struct timeval expire; /* time this request is due to expire */
struct snmp_pdu *pdu; /* The pdu for this request (saved so it can be retransmitted */

};

I* The list of active/open sessions. */
struct session_list {

struct session_list *next;
struct snmp_session *session;
struct snmp_internal_session *internal;

};

struct session_list *Sessions = NULL;

u_long Reqid = 0;
int snmp_errno = 0;

char *api_errors[4] = {
"Unknown session",
"Unknown host",
"Invalid local port",
"Unknown Error"

};

static char *
api_errstring(s~mp_errnumber)

int snmp_errnumber;

if (snmp_errnumber <= SNMPERR_BAD_SESSION && snmp_errnumber >= SNMPERR_GENERR){
return api_errors[snmp_errnumber + 4];

} else {

return "Unknown Error";

/* Gets initial request ID for all transactions. */
static
init_snmp(){

struct timeval tv;
gettimeofday(&tv, (struct timezone *)0);

srandom(tv.tv _sec "tv .tv _usee);
Reqid = random();

/* Sets up the session with the snmp_session information provided by the user. Then opens and binds the necessary
UDP port. A handle to the created session is returned (this is different than the pointer passed to snmp_open()). On
any error, NULL is returned and snmp_errno is set to the appropriate error code. */
struct snmp_session *
snmp_open(session)

struct snmp_session *sessiori; .
struct session_list *sip;
struct snmp_internal_session *isp;
u_char *cp;
int sd;
u_long addr;
struct sockaddr_in me;
struct hostent *hp;
struct servent *servp;

if (Reqid == 0)
init_snmp();

I* Copy session structure and link into list */
sip = (struct session_list *)malloc(sizeof(struct session_list));
slp->internal = isp = (struct snmp_internal_session *)malloc(sizeof(struCt snmp_internal_session));
bzero((char *)isp, sizeof(struct snmp_intemal_session));
slp->internal->sd = -1; I* mark it not set*/
slp->session = (stJ-ud snmp_session *)malloc(sizeof(struct snmp_session));
bcopy((char *)session, (char *)slp->session, sizeof(struct snmp_session));
session= sip->session;
I* now link it in. *I
slp->next = Sessions;
Sessions= sip;
I* session now points to the new structure that still contains pointers to data allocated elsewhere. Some of this

data is copied to space malloc'd here, and the pointer replaced with the new one. *I

if (session->peername != NULL){
cp = (u_char *)malloc((unsigned)strlen(session~>peername) + I);
strcpy((char *)cp, session->peername);
session->peername =(char *)cp;

I* Fill in defaults if necessary */
if (session->community_len != SNMP _DEFAUL T_COMMUNITY _LEN){

cp = (u_char *)malloc((unsigned)session->community_len);
bcopy((char *)session->community, (char *)cp, session->community_len);

} eise {

session->community _len = strlen(DEFAUL T _COMMUNITY);
cp = (u_char *)malloc((unsigned)session->community_len);
bcopy((char *)DEFAULT_COMMUNITY, (char *)cp, session->community_len);

session->community = cp; /* replace pointer with pointer to new data*/

if (session->retries == SNMP _DEFAULT _RETRIES)
session->retries = DEFAULT_RETRIES;

if (session->timeout == SNMP.:._DEFAULT_TIMEOUT)
session->timeout =DEFAULT_ TIMEOUT;

isp->requests =NULL;

- /* Set up connections *I
sd = socket(AF _INET, SOCK_DGRAM, 0);
if (sd < 0){

perror(" socket");
snmp_errno = SNMPERR_GENERR;
if (!snmp_close(session)){

fprintf(stderr, "Couldn't abort session: %s. Exiting\n", api_errstring(snmp_errno));
exit(l);

return 0;

isp->sd = sd;
if (session->peername != SNMP _DEFAULT_PEERNAME){

if ((addr = inet_addr(session->peername)) != -1){
bcopy((char *)&addr, (char *)&isp->addr.sin_addr, sizeof(isp->addr.sin_addr));

} else {
hp = geth.ostbyname(session->peemame);
if (hp == NULL){

fprintf(stderr, "unknown host: %s\n", session->peername);
snmp_errno = SNMPERR_BAD_ADDRESS;
if (!snmp_close(session)){

fprintf(stderr, "Couldn't abort session: %s. Exiting\n", api_errstring(snmp_errno));
exit(2);

return 0;
} else {

bcopy((char *)hp->h_addr, (char *)&isp->addr.sin_addr, hp->h_length);

isp->addr.sin_family = AF _INET;
if (session->remote_port == SNMP _DEFAULT_REMPORT){

servp = getservbyname("snmp", "udp");
if (servp !=NULL){

isp->addr.sin_port = servp->s_port;
} else {

isp->addr.sin_port = htons(SNMP _poRT);

} else {

}
} else {

isp->addr.sin_port = htons(session->remote_port);

isp->addr.sin_addr.s_addr = SNMP _DEFAULT_ADDRESS;

}

me.sin_family = AF _INET;
me.sin_addr.s_addr = INADDR_ANY;
nle.sin_port = htons(session->local_port);
if (bind(sd, (struct sockaddr *)&me, sizeof(me)) != 0){

perror("bind");
snmp_errno = SNMPERR_BAD_LOCPORT;
if (!snmp_close(session)){

}

fprintf(stderr, "Couldn't abort session: o/os. Exiting\n", api_errstring(snmp_errno));
- exit(3);

return 0;

return se~sion;

/* Free each element in the input request list. */
static
free_request_list(rp)

struct request_list *rp;

struct request_list *orp;

while(rp){
orp = rp;
rp = rp->next_request;
if (orp->pdu !=NULL)

snmp_free_pdu(orp->pdu);
free((char *)orp);

/* Close the input session. Frees all data allocated for the session, dequeues any pending requests, and closes any
sockets allocated for the session. Returns 0 on error, I otherwise. */
int
snmp_close(session) ·

struct snmp_session *session;

struct session_list *sip = NULL, *oslp = NULL;

if (Sessions->session = session){ /* if first entry */
sip = Sessions;
Sessions = slp->next;

} else {
for(slp = Sessions; sip; sip = slp->next){

if (slp->session ==session){
if (oslp) /*if we found entry that points here*/

oslp->ne,xt = slp->next; /* link around this entry */
break;

oslp =sip;

!* If we found the session, free all data associated with it */
if (sip){

if (slp->session->co.mmunity !=NULL)

free((char *)slp->session->community);
if(slp->session->peername != NULL)

free((char *)slp->session->peername);
free((char *)slp->session);
if (slp->internal->sd !=-I)

close(slp->internal->sd);
free_request_list(slp->internal->requests);
free((char *)slp->internai);
free((char *)sip);

} else {
snmp_errno = SNMPERR_BAD_SESSION;
return 0;

return I;

/* Takes a session and a pdu and serializes the ASN PDU into the area pointed to by packet. out_length is the size
of the data area available. Returns the length of the completed packet in out_length. If any errors occur, -I is
returned. If all goes well, 0 is returned. *I
static int
snmp_build(session, pdu, packet, out_length)

struct snmp_session *session;
struct snmp_pdu *pdu;
register u_char *packet;
int *out_length;

u_char buf[PACKET_LENGTH];
register u_char *cp;
struct variable_list *vp;
int length;
long zero = 0;
int totallength;

length = *out_length;
cp =packet;
for(vp = pdu->variables; vp; vp = vp->next_variable){
· cp = snmp_build_ var_op(cp, vp->name, &vp->narne_length, vp->type, vp->val_len, (u_char *)vp-

>val.string, &length);
if (cp ==NULL)

return -I;

totallength = cp - packet;

length= PACKET_LENGTH;
~p = asn_build_~eader(buf, &length, (u_char)(ASN_SEQUENCE I ASN_CONSTRUCTOR), totallength);
1f (cp ==NULL} ·

return -I;
bcopy((char *)packet, (char *)cp, totallength);
totallength += cp - buf;

length = *out_length;
if (pdu->command != TRP _REQ_MSG){

/* request id */
cp = asn_build_int(packet, &length,

(u_char)(ASN_UNIVERSAL I ASN_pRIMITIVE I ASN_INTEGER),

(long *)&pdu->reqid, sizeof(pdu->reqid));
if (cp ==NULL)

return -I;
I* error status *I
cp = asn_build_int(cp, &length,

(u_char)(ASN_UNIVERSAL I ASN_pRIMITIVE I ASN_INTEGER),
(long *)&pdu->errstat, sizeof(pdu->errstat));

if (cp == NULL)
return -1;

I* error index *I
cp = asn_build_int(cp, &length,

(u_char)(ASN_UNIVERSAL I ASN_pRIMITIVE I ASN_INTEGER),
(long *)&pdu->errindex, sizeof(pdu->errindex));

if (cp ==NULL)
return -I;

} else { /* this is a trap message *I
I* enterprise *I
cp = asn_tmild_objid(packet, &length,

(u_char)(ASN_UNIVERSAL I ASN_pRIMITIVE I ASN_OBJECT_ID),
(oid *)pdu->enterprise, pdu->enterprise_jength); -

if (cp ==NULL)
return -1;

/* agent-addr *I
cp = asn_build_string(cp, &length,

(u_char)(ASN_UNIVERSAL I ASN_pRIMITIVE I ASN_OCTET_STR),
(u_char *)&pdu->agent_addr.sin_addr.s_addr, sizeof(pdu->agent_addr.sin_addr.s_addr));

if (cp ==NULL) .
return -1;

I* generic trap */
cp = asn~build_int(cp, &length,

(u_char)(ASN_UNIVERSAL I ASN_PRIMITIVE I ASN_INTEGER),
(long *)&pdu->trap_type, sizeof(pdu->trap_type));

if (cp ==NULL)
return -I;

I* specific trap *I
cp = asn_build_int(cp, &length,

(u_char)(ASN_UNIVERSAL I ASN_PRIMITIVE I ASN_INTEGER),
(long *)&pdli->specific_type, sizeof(pdu->specific_type));

if (cp =NULL)
return -1;

I* timestamp *I
cp = asn_build_int(cp, &length,

(u_char)(ASN_UNIVERSAL I ASN_PRIMITIVE I ASN_INTEGER),
(long *)&pdu->time, sizeof(pdu->time));

if (cp ==NULL)
return -1;

'if (length < totallength)
return -1;

bcopy((char *)buf, (char *)cp, totallength);
totallength += cp - packet;

length= PACKET_LENGTH;
cp = asn_bui1d_header(buf, &length, (u_char)pdu->command, totallength);
if (cp ==NULL)

return -1;
if (length< totallength)

return -1;
bcopy((char *)packet, (char *)cp, totallength);
totallength += cp - buf;

length = *out_length;
cp = snmp_auth.:...build(packet, &length, session->community, &session->community_len, &zero, totallength);
if (cp ==NULL)

return -1;
if ((*out_length- (cp- packet))< totallength)

return -1;
bcopy((char *)buf, (char *)cp, totallength);
totallength += cp - packet;
*out_length = totallength;
return 0;

/* Parses the packet recieved on the input session, and places the data into the input pdu. length is the length of the
input packet. If any errors are encountered, -I is returned. Otherwise, a 0 is returned. */
static int
snmp_parse(session, pdu, data, length)

struct snmp_session *session;
struct snmp_pdu *pdu;
u_char *data;
int length;

u_char msg_type;
u_char type;
u_char *var_ val;
long version;
int len, four;
u_char community[128];
int community_length = 128;
struct variable_list *vp;
oid . objid[MAX_NAME_LEN], *op;

I* authenticates message and returns length if valid */
data= snmp_auth_p~se(data, &length, community, &community_length, &version);
if (data= NULL)

return -1;
if (version!= SNMP _VERSION_ I){

fprintf(stderr, "Wrong version: %d\n", version);
fprintf(stderr, "Continuing anyway\n");

if (session->authenticator) {
data= session->authenticator(data, &length, community, community_length);
if (data== NULL)

return 0;

data= asn_parse_header(data, &length, &msg_type);
if (data== NULL)

return -1;
pdu->command = msg_type;
if (pdu->command != TRP _REQ_MSG){

data= asn_parse_int(data, &length, &type, (long *)&pdu->reqid, sizeof(pdu->reqid));

if (data== NULL)
return -I;

data'= asn_parse_int(data, &length, &type, (long *)&pdu->errstat, sizeof(pdu->errstat));

if (data== NULL)
return -I;

data= asn_parse_int(data, &length, &type, (long *)&pdu->errindex, sizeof(pdu->errindex));
if (data== NULL)

return -I;
} else {

pdu->enterprise_length = MAX_NAME_LEN;
data= asn_parse_objid(data, &length, &type, objid, &pdu->enterprise_length);
if (data== NULL)

return -1;
pdu->enterprise = (oid *)malloc(pdu->enterprise_length * sizeof(oid));
bcopy((char *)objid, (char *)pdu->enterprise, pdu->enterprise_length * sizeof(oid));

four= 4;
data= asn_parse_string(data, &length, &type, (u_char *)&pdu->agent_addr.sin_addr.s_addr, &four);
if (data= NULL)

return -1;
data= asn_parse_int(data, &length, &type, (long *)&pdu->trap_type, sizeof(pdu->trap_type}};
if (data== NULL}

return -1;
data= asn_parse_int(data, &length, &type, (long *)&pdu->specific_type, sizeof(pdu->specific_type));
W(data ==NULL)

return -1;
data= asn_parse_int(data, &length, &type, (long *)&pdu->time, sizeof(pdu->time));
if (data== NULL)

return -1;

data= asn_parse_header(data, &length, &type);
if (data== NULL)

return- I:
if (type != (u_char)(ASN_SEQUENCE I ASN_CONSTRUCTOR))

return -I;
while((int)length > 0){

if (pdu->variables = NULL){

pdu->variables = vp = (struct variable_Iist *)malloc(sizeof(struct variable_list));
} else {

vp->next_ variable = (struct variable_list *)malloc(sizeof(struct variable_list));
vp = vp->next_ variable;

vp->next_ variable = NULL;
vp->val.string =NULL;
vp->name = NULL;
vp->name_length = MAX_NAME_LEN;

data= snmp_parse_ var_op(data, objid, &vp->name_length, &vp->type, &vp->val_len, &var_ val, (int
*)&length);

if (data== NULL)
return -I;

op = (oid *)malloc((unsigned)vp->name_Iength * sizeof(oid));
bcopy((char *)objid, (char *)op, vp->naine_length * sizeof(oid));
vp->name = op;

len= PACKET_LENGTH;
switch((short)vp->t}•pe) {

case ASN_INTEGER:
case COUNTER:

return 0;

case GAUGE:
case TIMETICKS:

vp->val.integer =(long *)malloc(sizeof(long));
vp->val_len = sizeof(long);
asn_parse_int(var_ val, &len, &vp->type, (long *)vp->val.integer, sizeof(vp->val.integer));

break;
case ASN_OCTET_STR:
case IPADDRESS:
case OPAQUE:

vp->val.string = (u_char *)malloc((unsigned)vp->val_len);
asn_parse_string(var_ val, &len, &vp->type, vp->val.string, &vp->val_len);
break;

case ASN_OBJECT_ID:
vp->val_len = MAX_NAME_LEN;
asn_parse_objid(var_ val, &len, &vp->type, objid, &vp->val_len);
vp->val_len *= sizeof(oid);
vp->val.objid = (oid *)malloc((unsigned)vp->val_len);
bcopy((char *)objid, (char *)vp->val.objid, vp->val_len);
break;

case ASN_NULL:
break;

default:
fprintf(stderr, "bad type returned (%x)\n", vp->type);
break;

I* Sends the input pdu on the session after calling snmp_build to create a serialized packet. If necessary, set some of
the pdu data from the session defaults. Add a request corresponding to this pdu to the list of outstanding requests
on this session, then send the pdu. Returns the request id of the generated packet if applicable, otherwise 1. On any
error, 0 is returned. The.pdu is freed by snmp_send() unless a failure occured. */
int
snmp_send(session, pdu)

struct snmp_session *session;
struct snmp_pdu *pdu;

struct session_list *sip;
struct snmp_internal_session *isp = NULL;
u_char packet[PACKET _LENGTH];
int length= PACKET_LENGTH;
struct request_list *rp;
struct timeval tv;

for(slp = Sessions; sip; sip = slp->next){
if (slp->session = session){

isp = slp->internal;
break;

, if (isp == NULL){

\

snmp_errno = SNMPERR_BAD_SESSION;
return 0;

if (pdu->command == GET_REQ_MSG II pdu->command == GETNEXT_REQ_MSG
II pdu->command == GET_RSP _MSG II pdu->command== SET_REQ_MSG){
if (pdu->reqid == SNMP _DEFAULT_REQID)

pdu->reqid = ++Reqid;
if (pdu->errstat == SNMP _DEFAULT_ERRSTAT)

pdu->errstat = 0;
if (pdu->errindex == SNMP _DEFAULT_ERRINDEX)

pdu->errindex = 0;
} else {

/* fill in trap defaults */
pdu->reqid = I; /* give a bogus non-error reqid for traps */
if (pdu->enterprise_length == SNMP _DEFAULT_ENTERPRISE_LENGTH){

pdu->enterprise = (oid *)malloc(sizeof(DEFAULT_ENTERPRISE));
bcopy((char *)DEFAULT _ENTERPRISE, (char *)pdu->enterprise, sizeof(DEF A UL T _ENTERPRISE));
pdu->enterprise_length = sizeof(DEFAUL T _ENTERPRISE)/sizeof(oid);

}

}
if (pdu->time == SNMP _DEFAULT_ TIME)

pdu->time = DEFAULT_TIME;

if (pdu->address.sin_addr.s_addr == SNMP _DEFAULT_ADDRESS){
if (isp->addr.sin_addr.s_addr != SNMP _DEFAULT_ADDRESS){

bcopy((char *)&isp->addr, (char *)&pdu->address, sizeof(pdu->address));
} else {

fprintf(stderr, "No remote IP address specified\n");
snmp_errno = SNMPERR_BAD_ADDRESS;
return 0;

if (snmp_build(session, pdu, packet, &length)< 0){
fprintf(stderr, "Error building packet\n");
snmp_errno = SNMPERR_GENERR;
return 0;

if (snmp_dump_packet){
int count;

for(count= 0; count< length; count++){
printf("%02X ",packet[count]);
if((count% 16) == 15)

printf("\n");

printf("\n\n ");

gettimeofday(&tv, (struct timczone *)0);
if (sendto(isp->sd, (char *)packet, length, 0, (struct sockaddr *)&pdu->address, sizeof(pdu->address)) < 0){
' perror("sendto");

snmp_errno = SNMPERR_GENERR;
return 0;

'

if (pdu->command = GET _REQ_MSG II pdu->command == GETNEXT _REQ_MSG II pdu->command ==
SET _REQ_MSG) {

I* set up to expect a response *I
rp = (struct request_list *)malloc(sizeof(struct request_list));
rp->next_request = isp->requests;
isp->requests = rp;
rp->pdu = pdu;
rp->request_id = pdu->reqid;

rp->retries = I;
rp->timeout = session->timeout;
rp->time = tv;
tv.tv_usec += rp->timeout;
tv.tv_sec += tv.tv_usec I IOOOOOOL;
tv.tv_usec %= IOOOOOOL;
rp->expire = tv;

return pdu->reqid;

I* Frees the pdu and any malloc'd data associated with it. *I
void
snmp_free_pdu(pdu)

struct snmp_pdu *pdu;

struct variable_list *vp, *ovp;

vp = pdu->variables;
while(vp){

if {vp->name)
free((char *)vp->name);

if {vp->val.string)
free((char *)vp->val.string);

ovp = vp;
vp = vp->next_ variable;
free((char *)ovp);

if (pdu->enterprise)
free((char *)pdu->enterprise);

free((char *)pdu);

I* Checks to see if any of the fd's set in the fdset belong to snmp. Each socket with it's fd set has a packet read from
it and snmp_parse is called on the packet received. The resulting pdu is passed to the callback routine for that
session. If the callback routine returns successfully, the pdu and it's request are deleted. */
void
snmp_read(fdset)

fd_set *fdset;

struct session_list *sip;
struct snmp_session *sp;
struct snmp_internal_session *isp;
u_char packet[PACKET _LENGTH];
struct sockaddr_in from;
int length, fromlength;

struct snmp_pdu *pdu;
struct request_list *rp, *orp;

for(sip= Sessions; sip; sip= slp->next){
if (FD_ISSET(slp->internal->sd, fdset)){

sp = slp->session;
isp = slp->internal;
fromlength = sizeof from;
length= recvfrom(isp->sd, (char *)packet, PACKET_LENGTH, 0, (struct sockaddr *)&from,

&fromlength);

1){

if (length == -1)
perror("recvfrom");

if (snmp_dump_packet){
int count;

printf("recieved %d bytes from %s:\n", length, inet_ntoa(from.sin_addr));
for(count = 0; count< length; count++){

printf("%02X ", packet[count]);
if ((count% 16) == 15)

printf("\n");
}
printf("\n\n");

pdu = (struct snmp_pdu *)malloc(sizeof(struct snmp_pdu));
pdu->address = from;
pdu->reqid = 0;
pdu->variables = NULL;
pdu->enterprise = NULL;
pdu~>enterprise_length = 0;
if (snmp_parse(sp, pdu, packet, length) != SNMP _ERR_NOERROR){

fprintf(stderr, "Mangled packet\n");
snmp_free_pdu(pdu);
return;

if (pdu->coltJmand == GET _RSP _MSG){
/ for(rp = isp->requests; rp; rp = rp->next_request){

if (rp->request_id == pdu->reqid){
if (sp->callback(RECEIVED_MESSAGE, sp, pdu->reqid, pdu, sp->callback_magic) ==

/* successful, so delete request -*I
orp = rp;
if (isp->requests = orp){

I* first in list */
isp->requests = orp->next_request;

} else {
for(rp = isp->requests; rp; rp = rp->next_request){

if (rp->next_request == orp){
rp->next_request = orp->next_request;
break;

snmp_free..:.pdu(orp->pdu);

/* link around it */

free((char *)orp);
break; /*there shouldn't be any more request with the same reqid */

}
} else if (pdu->command == GET_REQ_MSG II pdu->command == GETNEXT_REQ_MSG

II pdu->command = TRP_REQ_MSG II pdu->command == SET_REQ_MSG){
sp->callback(RECEIVED _MESSAGE, sp, pdu->reqid, pdu, sp->callback_magic);

snmp_free_pdu(pdu);

/* Returns info about what snmp requires from a select statement. numfds is the number of fds in the list that are
significant. All file descriptors opened for SNMP are OR'd into the fdset. If activity occurs on any of these file
descriptors, snmp_read should be called with that file descriptor set
* The timeout is the latest time that SNMP can wait for a timeout. The select should be done with the minimum

time between timeout and any other timeouts necessary. This should be checked upon each invocation of select. If
a timeout is received, snmp_timeout should be called to check if the timeout was for SNMP. (snmp_timeout is
idempotent)
* Block is I if the select is requested to block indefinitely, rather than time out. If block is input as 1, the timeout

value will be treated as undefined, but it must be available for setting in snmp_select_info. On return, if block is
true, the value of timeout will be undefined. * snmp_select_info returns the number of open sockets. (i.e. The
number of sessions open) */
int
snmp_select_info(numfds, fdset, timeout, block)

int *numfds;
fd_set *fdset;
struct timeval *timeout;
int *block; /* should the select block until input arrives (i.e. no input) */

struct session_list *sip;
struct snmp_intemal_session *isp;
struct request_Iist *rp;
struct timeval now, earliest;
int active = 0, requests = 0;

timerclear(&earliest);
I* For each request outstanding, add it's socket to the fdset, and if it is the earliest timeout to expire, mark it as .

lowest.*/
for(slp = Sessions; sip; sip = slp->next){

active++;
isp = slp->intemal;
if ((isp->sd + I)> *numfds)

*numfds = (isp->sd + I);
FD_SET(isp->sd, fdset);
if (isp->requests){

/* found another session with outstanding requests *I
requests++;
for(rp = isp->requests; rp; rp = rp->next_request){

if (!timerisset(&earliest) II timercmp(&rp->expire, &earliest,<))
earliest = rp->expire~

if (requests== 0) I* if none are active, skip arithmetic */

return active;

/*Now find out how much time until the earliest timeout. This transforms earliest from an absolute time into a
delta time, the time left until the select should timeout. */

gettimeofday(&now, (struct timezone *)0);
earliest.tv _sec--; /* adjust time to make arithmetic easier */
earliest.tv_usec += IOOOOOOL;
earliest.tv_sec -= now.tv_sec;
earliest.tv_usec -= now.tv_usec;
while (earliest.tv_usec >= IOOOOOOL){

earliest.tv _usee -= I OOOOOOL;
earliest.tv _sec += I;

if (earliest.tv _sec< 0){
earliest.tv _sec = 0;
earliest.tv _usee = 0;

/* if it was blocking before or our delta time is less, reset timeout*/
if (*block== 1 II timercmp(&earliest, timeout,<)){

*timeout= earliest;
*block= 0;

return active;

/* snmp_timeout should be called whenever the timeout from snmp_select_info expires,
* but it is idempotent, so snmp_timeout can be polled (probably a cpu expensive proposition). snmp_timeout

checks to see if any of the sessions have an outstanding request that has timed out. If it finds one (or more), and that
pdu has more retries available, a new packet is formed from the pdu and is resent. If there are no more retries
available, the callback for the session is used to alert the user of the timeout. */
void
snmp_timeout() {

struct session_list *sip;
struct snmp_session *sp;
struct snmp_internal_session *isp;
struct request_list *rp, *orp, *freeme = NULL;
struct timeval now;

gettimeofday(&now, (struct timezone *)0);
/*For each request outstandin!;", check to see if it has expired. */
for(slp = Sessions; sip; sip = slp->next){

sp = slp->session;
isp = slp->internal;
orp=NULL;
for(rp = isp->requests; rp; rp = rp->next_request){

if (freeme !=NULL){ /*frees rp's'after the for loop goes on to the next_request */
free((cha.r *)freerrie);
freeme = NULL;

} ~

if (timercmp(&rp->expire, &now,<)){
/* this timer has expired */
if (rp->retries >= sp->retries){

/* No more chances, delete this entry */
sp->callback(TIMED_OUT, sp, rp->pdu->reqid, rp->pdu, sp->callback_magic);
if (orp ==NULL){

isp->requests = rp->next_request;
} else {

orp->next_request = rp->next_request;
}
snmp_free_pdu(rp->pdu);
freeme = rp;
continue; I* don't update orp below *I

I else {
u_char packet[PACKET _LENGTH];
int length= PACKET_LENGTH;
struct timeval tv;

I* retransmit this pdu *I
rp->retries++;
rp-:>timeout <<= I;
if (snmp_build(sp, rp->pdu, packet, &length)< q){

fprintf(stderr, "Error building packet\n");

I
if (snmp_dump_packet){

}

int count;

for(~ount = 0; count< length; count++){
printf("%02X ",packet[count]);
if((count% 16)== 15)

printf("\n");
}
printf("\n\n");

gettimeofday(&tv, (struct timezone *)0);
if (sendto(isp->sd, (char *)packet, length, 0, (struct sockaddr *)&rp->pdu->address, sizeof(rp

>pdu->address)) < 0){

I·

I.
orp = rp;

}

perror("sendto");

rp->time = tv;
tv.tv_usec += rp->timeout;
tv.tv_sec += tv.tv_usec I IOOOOOOL;
tv.tv_usec %= IOOOOOOL;
rp->expire = tv;

if (freeme !=NULL){
free((char *)freeme);
freeme = NULL;

I***
* jnu_snmp_client.c - a toolkit of common functions for an SNMP client.

**I

#include <sysltypes.h>
#include <sys/param.h>
#incit;de <stdio.h>

#include <netinet/in.h>
#include <sys/time.h>·
#include <errno.h>

#include " . ./jnusnmp/asn J.h"
#include " . ./jnusnmp/snmp.h~
#include " . ./jnusnmp/snmp_impl.h"
#include " . ./jnusnmp/snmp_api.h"
#include " . ./jnusnmp/snmp_client.h"

#ifndef BSD4_3
#define BSD4_2
#endif

#if defined(FD_SET) II defined(BSD4_3)
#define HA VE_FD_MACROS
#end if

#ifndef HA VE_FD_MACROS

typedef long fd_mask;
#define NFDBITS (sizeof(fd_mask) * NBBY) I* bits per mask */

#define FD_SET(n, p) ((p)->fds_bits[(n)/NFDBITS] I= (1 « ((n)% NFDBITS)))
#define FD_CLR(n, p) ((p)->fds_bits[(n)/NFDBITS] &= -(1 « ((n)% NFDBITS)))
#define FD_ISSET(n, p) ((p)->fds_bits[(n)/NFDBITS] & (1 << ((n)% NFDBITS)))

. #define FD_ZERO(p) bzero((char *)(p), sizeof(*(p)))
#endif /* HA VE_FD_MACROS */
extern int errno;
struct synch_state snmp~synch_state;

struct snmp_pdu *
snmp_pdu_create(command)

int command;

struct snmp_pdu *pdu; •

pdu = (struct snmp_pdu *)malloc(sizeof(struct snmp_pdu));
bzero((char *)pdu, sizeof(struct snmp_pdu));
pdu->command = comma'ld;
pdu->errstat = SNMP _DEFAULT_ERRSTAT;
pdu->errindex = SNMP_DEFAULT_ERRINDEX;
pdu->address.sin_addr.s_addr = SNMP _DEFAUL T_ADDRESS;
pdu->enterprise = NULL;
pdu->enterprise_length = 0;
pdu->variables = NULL;
return pdu;

I* Add a null variable with the requested name to the end of the list of variables for this pdli. */
snmp_add_null_ var(pdu, name, name_length)

struct snmp_pdu *pdu;
oid *name;
int name_length;

struct variable_list *vars;

if(pdu->variables ==NULL){
pdu->variables = vars = (struct variable_list *)malloc(sizeof(struct variable_Iist));

} else { .
for(vars = pdu->variables; vars->next_ variable; vars = vars->next_ variable)

.
vars->next_ variable= (struct variable_Iist *)malloc(sizeof(struct variable_list)); ·
vars = vars->next_ variable;

vars->next_variable =NULL;
yars->name = (oid *)malloc(name_length * sizeof(oid));
bcopy((char *)name, (char *)vars->name, name_length * sizeof(oid));
vars->name_length = name_length;
vars->type = ASN_NULL;
vars->val.string = NULL;
vars->val_len = 0;

snmp_synch_input(op, session, reqid, pdu, magic)
int op;
struct snmp_session *session;
int reqid;
struct snmp_pdu *pdu;
void *magic;

struct variable_Iist *var, *newvar;
struct synch_state *state = (struct synch_state *)magic;
struct snmp_pdu *newpdu;

if (reqid != state->reqid)
return 0;

state->waiting = 0;
if (op = RECEIVED_MESSAGE && pdu->command = GET_RSP _MSG){

/* clone the pdu */
state->pdu = newpdu = (struct snmp_pdu *)malloc(sizeof(struct snmp_pdu));
bcopy((char *)pdu, (char *)newpdu, sizeof(struct snrnp_pdu));
newpdu->variables = 0;
var = pdu->variables;
if (var !=NULL){

newpdu->variables = newvar = (struct variable_list *)malloc(sizeof(struct variable_Iist));
bcopy((char *)var, (char *)newvar, sizeof(struct variable_list));
if (var->name !=NULL){

newvar->name = (oid *)malloc(var->name_length * sizeof(oid));
bcopy((char *)var->name, (char *)newvar->name, var->name_length * sizeof(oid));

if (var->val.string !=NULL){
newvar->val.string = (u_char *)malloc(var->val_len);
bcopy((char *)var->val.string, (char *)newvar->val.string, var->val_len);

newvar->ilext_ variable = 0;
while(var->next_ variable){

newvar->:1ext_ variable= (struct variable_list *)malloc(sizeof(struct variable_Iist));
var = var->next_ variable;

newvar = newvar->next_ variable;

• bcopy((char *)var, (char *)newvar, sizeof(struct variable_list));
if (var->name !=NULL){

newvar->name = (oid *)malloc(var->name_length * sizeof(oid));
bcopy((char *)var->name, (char *)newvar->name, var->name_length * sizeof(oid));

if (var->val.string !=NULL){
newvar->val.string = (u_char *)malloc(var->val_len);
bcopy((char *)var->val.string, (char *)newvar->val.string, var->val_len);

newvar->next_ variable = 0;

state->status = STAT_SUCCESS;
} else if (op == TIMED_OUT){

state->status =STAT_ TIMEOUT;

return I;

/* If there was an error in the input pdu, creates a clone of the pdu that includes all the variables except the one
marked by the errindex. The command is set to the input command and the reqid, errstat, and errindex are set to
default values. If the error status didn't indicate an error, the error index didn't indicate a variable, the pdu wasn't a
get response message, or there would be no remaining variables, this function will return NULL. If everything was
successful, a pointer to the fixed cloned pdu will be returned.*/
struct snmp_pdu *
snmp_fix_pdu(pdu, command)

struct snmp_pdu *pdu;
int command;

struct variable_list *var, *newvar;
_struct snmp_pdu *newpdu;
int index, copied = 0;

if (pdu->command != GET_RSP _MSG II Pdu->errstat == SNMP _ERR_NOERROR II pdu->errindex <= 0)
return NULL;

I* clone the pdu */
newpdu = (struct snmp_pdu *)malloc(sizeof(struct snmp_pdu));
bcopy((char *)pdu, (char *)newpdu, sizeof(struct snmp_pdu));
newpdu->variables = 0;
newpdu->command =command;
newpdu->reqid = SNMP _DEFAUL T_REQID;
newpdu->errstat = SNMP _DEFAULT_ERRSTAT;
newpdu->errindex = SNMP _DEFAUL T_ERRINDEX;
var = pdu->variables;
index= 1;
if (pdu->errindex == index){ /* skip first variable */

var = var->next_variable;
index++;

}
if (var !=NULL).{

newpdu->variables = newvar = (struct variable_list *)malloc(sizeof(struct variable_list));
bcopy((char *)var, (char *)newvar, sizeof(struct variable_list));
if (var->name !=NULL){

. .
newvar->name = (oid *)malloc(var->name_length * sizeof(oid));
bcopy((char *)var->name, (char *)newvar->name, var->name_length * sizeof(oid));

int

if (var->val.string !=NULL){
newvar->val.string = (u_char *)malloc(var->vai_Ien);
bcopy((char *)var->val.string, (char *)newvar->val.string, var->vai_Ien);

newvar->next_ variable= 0;
copied++;

while(var->next_ variable){
var = var->next_ variable; ·

. }

if (++index== pdu->errindex)
continue;

newvar->next_ variable= (struct variable_Iist *)malloc(sizeof(struct variable_Iist));
newvar = newvar->next_ variable;
bcopy((char *)var, (char *)newvar, sizeof(struct variable_Iist));
if (var->name !=NULL){ .

Iiewvar->name = (oid *)malloc(var->name_length * sizeof(oid));
bcopy((char *)var->name, (char *)newvar->name, var->name_length * sizeof(oid));

if (var->val.string !=NULL){
newvar->val.string = (u_char *)malloc(var->val_Ien);
bcopy((char *)var->val.string, (char *)newvar->val.string, var->vai_Ien);

newvar->neX.t_ variable = 0;
copied++;

if (index < pdu->errindex II copied == 0){
snmp_free_pdu(newpdu);
return NULL;

return newpdu;

snmp_synch_response(ss, pdu, response)
struct snmp_session *ss;
struct snmp_pdu *pdu;
struct snmp_pdu **response;

struct synch_state *state = &snmp_synch_state;
int numfds, count;
fd_set fdset;
struct timeval timeout, *tvp;
int block;

if ((state->reqid = snmp_send(ss, pdu)) == 0){
*response = NULL;
snmp_free_pdu(pd_u);
return STAT_ERROR;

state->waiting = I;

while(state->waiting){
numfds = 0;
FD_ZERO(&fdset);
block= I;

tvp = &timeout;
timerclear(tvp);
snmp_select_info(&numfds, &fdset, tvp, &block);
if (block== I)

tvp = NULL; /* block without timeout */
count= select(numfds, &fdset, 0, 0, tvp);
if (count> 0){

snmp_read(&fdset);
} else switch(count){

case 0:
snmp_timeout();
break;

case -I:
if (errno == EINTR){

continue;
} else {

perror("select");
}

/* FALL1HRU */
default:

return STAT_ERROR;

*response = state->pdu;
return state->status;

snmp_synch_setup(session)
struct snmp_session *session;

session->callback = snmp_synch_input;
session->callback_magic =(void *)&snmp_sy-nch_state;

char *error_string[6] = {

};

"No Error",
"Response message would have been too large.",
"There is no such variable name in this MIB.",
"The value given has the wrong type or length",
"This variable is read only",
"A general failure occured"

char*
snmp_errstring(errs tat)

int errstat;

if (errstat <= SNMP _ERR_GENERR && errstat >= SNMP _ERR_NOERROR){
return error_string[errs tat];

} else {
return "Unknown Error";

/*****************~***

*Abstract Syntax Notation One, ASN.l * a.;nJ.c *

* As defined in ISO/IS 8824 and ISO/IS 8825 * This implements a subset of the above International Standards that
* is sufficient to implement SNMP. * Encodes abstract data types into a machine independent stream of bytes.
***/

#ifdef KINETICS
#include "gw.h"
#end if

#if (defined(unix) && !defined(KINETICS))
#include <sys/types.h>
#include <netinetlin.h>
#end if

#include " .. /jnusnmp/asn l.h"

#ifndef NULL
#define NULL 0
#endif
#define ERROR(x)
I* asn_parse_int- pulls a long out of an ASN int type. On entry, datalength is input as the number of valid bytes
following "data". On exit, it is returned as the number of valid bytes following the end of this object. Returns a
pointer to the first byte past the end
* of this object (i.e. the start of the next object). Returns NULL on any error. */

u_char *
asn_parse_int(data, datalength, type, intp, intsize)

register u_char *data;/* IN - pointer to start of object */
register int *datalength;/* IN/OUT- number of valid bytes left in buffer */
u_char *type;/* OUT- asn type of object*/
long *intp; /* IN/OUT- pointer to start of output buffer */
int intsize; /* IN- size of output buffer */

I* ASN.l integer : := Ox02 asnlength byte {byte}* *I
register u_char *bufp =data;
u_long asn_length;
register long value = 0;

if (intsize != sizeof (long)){
ERROR("not long");
return NULL;

*type = *bufp++;
bufp = asn_parse_length(bufp, &asn_length); ·
if (bufp = NULL){

ERROR("bad length");
return NULL;

if (asn_lepgth + (bufp- data)> *datalength){
ERROR(" overflow of message");
return NULL;

if (asn_length = intsize + I && *bufp == 0) {
I* this will cause a positive 32 bit integer to be returned as negative, which is only OK if ourresult is to be treated as
unsigned- in practice its likely to be OK ... */ ·

asn_length~-;

bufp++;

if (asn_length > intsize){

}

ERROR("! don't support such large integers");
return NULL;

*datalength -= (int)asn_length + (bufp- data);
if (*bufp & Ox80)

value= -1; I* integer is negative */
while(asn_length--)

value= (value<< 8) I *bufp++;
*intp = value;
return bufp;

/* asn_build_int- builds an ASN object containing an ·integer. On entry, datalength is input as the number of valid
bytes following "data". On exit, it is returned as the number of valid bytes following the end of this object. *
Returns a pointer to the first byte past the end of this object (i.e. the start of the next object). * Returns NULL on
any error. */
u_char *
asn_build_int(data, datalength, type, intp, intsize)

register u_char *data; /* IN- pointer to start of output buffer*/
register int *datalength;/* IN/OUT- number of valid bytes left in buffer*/
u_char type; /* IN - asn type of object *I
register long *intp; /* IN- pointer to start of long integer*/
register int intsize; /* IN - size of *intp */

I* ASN.1 integer::= Ox02 asnlength byte {byte}**/
register long integer;
register u_long mask;

if (intsize != sizeof (long))
return NULL;

integer= *intp;

I* Truncate "unnecessary" bytes off of the most significant end of this 2's complement integer. There should be no
sequence of 9 consecutive 1 's orO's at the most significant end of the integer. */
mask= Ox1FF « ((8 * (sizeof(long)- I))- 1);

1

/* mask is OxFF800000 on a big-endian machine */
while((((integer & mask)== 0) II ((integer & mask)== mask)) && intsize > 1){

intsize--;
integer<<= 8;

data= asn_build_header(data, datalength, type, intsize);
if (data== NULL)

return NULL;
if (*datalength < intsize)

return NULL;
*datalength -= intsize;
mask = OxFF « (8 * (sizeof(long) - I));
I* mask is OxFFOOOOOO on a big-endian machine *I
while(intsize--) {

*data++= (u_char)((integer & mask)>> (8 * (sizeof(long)- I)));
integer<<= 8;

return data;

/* asn_parse_string- pulls an octet string out of an ASN octet string type. On entry, datalength is input as the .
number of valid bytes following "data". On exit, it is returned as the number of valid bytes following the beginning
of the next object. "string" is filled with the octet string. Returns a pointer to the first byte past the end of this object
(i.e. the start of the next object). Returns NULL on any error. */
u_char *

-asn_parse_string(data, datalength, type, string, strlength)
u_char / *data; /* IN- pointer to start of object */
register int *datalength; /* IN/OUT - number of valid bytes left in buffer */
u_char *type; /* OUT- asn type of object */
u_char *string; /* IN/OUT- pointer to start of output buffer*/
register int *strlength; /* IN/OUT- size of output buffer */

{
I* ASN.l octet string::= primstring I cmpdstring primstring ::= Ox04 asnlength byte {byte}* cmpdstring ::= Ox24
asnlength string {string)* This doesn't yet support the compound string.*/

register u_char *bufp = data;
u_long asn_length;

*type = *bufp++;
bufp = asn_parse_length(bufp, &asn_length);
if (bufp ==NULL)

return NULL;
if (asn_length + (bufp- data)> *datalength){

ERROR(" overflow of message");
return NULL;

if (asn_length > *strlength){
ERROR("! don't support such long strings");
return NULL;

bcopy((char *)bufp, (char *)string, (int)asn_length);
*strlength = (int)asn_length;
*datalength -= (int)asn_length + (bufp - data);
return bufp + asn_length;

I* asn_build_string - Builds an ASN octet string object containing the input string.
* On entry, datalength is input as the number of valid bytes following "data". On exit, it is returned as the· number

of valid bytes following the beginning of the next object. Returns a pointer to the first byte past the end of this
object (i.e. the start of the next object). Returns NULL on any error. */ ·
u_char *
asn_build_string(data, datalength, type, string, strlength)

u_char *data; /* IN- pointer to start of object *I
register int *datalength; /* IN/OUT- number of valid bytes left in buffer */
u_char type; /* IN - ASN type of string */
u_char *string; /* IN- pointer to start of input buffer *I
register int strlength; /* IN- size of input buffer */

I* ASN.l octet string::= primstring I cmpdstring
* primstring ::= Ox04 asnlength byte {byte}*
* cmpdstring : := Ox24 asnlength string {string}*
This code will never send a compound string./

data= asn_build_header(data, datalength, ~ype, strlength);
if (data= NULL)

return NULL;

if (*datalength < strlength)
return NULL;

bcopy((char *)string, (char *)data, strlength);
*datalength -= strlength;
return data+ strlength;

l
f* asn_parse_header- interprets the ID and length of the current object. On entry, datalength is input as the number
of valid bytes following "data". On exit, it is returned as the number of valid bytes in this object following the id
and length. Returns a pointer to the first byte of the contents of this object. Rt:turns NULL on any error. */

u_char *
asn_parse_header(data, datalength, type)

u_char *data;/* IN- pointer to start of object */
int *datalength;/* IN/OUT- number of valid bytes left in buffer */
u_char *type;/* OUT- ASN type of object*//

register u_char *bufp = data;
register header_len;
u_long asn_length;

!* this-only works on data types < 30, i.e. no extension octets-*/
if (IS_EXTENSION_ID{*bufp)){

ERROR(" can't process ID >= 30");
return NULL;

*type = *bufp;
bufp = asn_parse_length(bufp + 1, &asn_length);
if (bufp == NULL)

return NULL;
header_len = bufp - data;
if(header_len + asn_length > *datalength){

ERROR("asn length too long");
return NULL;

*datalength = (int)asn_length;
return bufp;

I* asn_build_header- builds an ASN header for an object with the ID and length specified. On entry, datalength is
input as the number of valid bytes following
* "data". On exit, it is returned as the number of valid bytes in this object following the id and length. This only

works on data types< 30, i.e. no extension octets. The maximum length is OxFFFF; Returns a pointer to the first
byte of the contents of this object. Returns NULL on any error. *I
u_char *
asn_build_header(data, datalength, type, length)

register u_char *data; /* IN - pointer to start of object *I
int *datalength;/* IN/OUT- number of valid bytes left in buffer */
u_char type; /* IN- ASN ~ype of object *I
int length; /* IN- length of object *I

if (*datalength < I)
return NULL;

*data++ = type;
(*datalength)--;
return asn_build_length(data, datalength, length);

/* asn_parse_length - interprets the length of the current object. On exit, length contains the value of this length
field. Returns a pointer to the first byte after this length field (aka: the start of the data field).· Returns NULL on any
error. */

u_char *
asn_parse_length(data, length)

u_char *data; /* IN - pointer to start of length field */
u_long *length; /* OUT- value of length field */

register u_char lengthbyte = *data;

if (length byte & ASN_LONG_LEN){
-lengthbyte &= -ASN_LONG_LEN; /*turn MSb off*/

if (lengthbyte == 0){
ERROR("We don't support indefinite lengths");
return NULL;

if (lengthbyte > sizeof(long)){
ERROR("we can't support data lengths that long");

- return NULL;
}
bcopy((char *)data+ I, (char *)length, (int)lengthbyte);
*length = ntohl(*length);
*length>>:;: (8 * ((sizeof *length)- lengthbyte));
return data + length byte + I;

} else { /* short asnlength */
*length = (long)lengthbyte;
return data + I ;

u_char *
asn--'build_length(data, datalength, length)

register u_char *data; · /* IN - pointer to start of object */
int *datalength;/* IN/OUT- number of valid bytes left in buffer */
register int length; /* IN- length of object */

u_char *start_data = data;

I* no indefinite lengths sent */
if (length < Ox80){

*data++= (u_char)length;
} else if (length <= OxFF){

*data++= (u_char)(OxOI I ASN_LONG_LEN);
*data++= (u_char)length;

} else { /* OxFF <length<= OxFFFF *I
*data++= (u_char)(Ox02 I ASN_LONG_LEN);
*data++= (u_char)((length >> 8) & OxFF);
*data++= (u_char)(length & OxFF);

if (*datalength < (data- start_data)){
ERROR("build_length");
return NULL;

*datalength -=(data- start_data);
return data;

/* asn_parse_objid ~pulls an object indentifier out of an ASN object identifier type. On entry, datalength is input as
the number of valid bytes following "data". On exit; it is returned as the number of valid bytes following the
beginning of the next object. "objid" is filled with the object identifier. Returns a pointer to the first byte past the end
of this object (i.e. the start of the next object). Returns NULL on any error. */
u_char *
asn_parse_objid(data, datalength, type, objid, objidlength)

u_char *data; /* IN- pointer to start of object *I
int *datalength; /* IN/OUT- number of valid bytes left in buffer*/
u_char *type; /* OUT- ASN type of object */
oid *objid; /* IN/OUT- pointer to start of output buffer *I
int *objidlength; /* IN/OUT- number of sub-id's in objid *I

I* ASN.l objid ::= Ox06 asnlength subidentifier { subidentifier} *
* subidentifier : := {leadingbyte} * lastbyte
* leadingbyte ::= 1 7bitvalue
* lastbyte ::= 0 7bitvalue */

register u_char *bufp = data;
register oid *oidp = objid +-I;
register u_long subidentifier;
register long length; '
u_long asn_Iength;

*type= *bufp++;
bufp = asn_parse_length(bufp, &asn_Iength);
if (bufp == NULL)

return NULL;
if (asn_length + (bufp - data) > *datalength){

ERROR(" overflow of message");
return NULL;

*datalength -= (int)asn_Iength + (bufp - data);

length = asn_length;
(*objidlength)--; /* account for expl!.nsion of first byte */
while (length > 0 && (*objidlength)-- > 0){

subidentifier = 0;
do { /* shift and add in low order 7 bits */

subidentifier = (subidentifier << 7) + (*(u_char *)bufp & -A~N_BIT8);
length--;

} while (*(u_char *)bufp++ & ASN_BIT8); /* last byte has high bit clear */
if (subidentifier > (u_long)MAX_SUBID){

ERROR("subidentifier too long");
return NULL;

*oidp++ = (oid)subidentifier;

I* The first two subidentifiers are encoded into the first component with the value (X * 40) + Y, where: X is the
value of the first subidentifier. Y is the value of the second subidentifier. */
subidentifier = (u_long)objid[1];

objid[I] = (u_char)(subidentifier % 40);
objid[O] = (u_char)((subidentifier- objid[l]) I 40);

*objidlength = (int)(oidp- objid);

return bufp;

I
/* asn_build_objid - Builds an ASN object identifier object containing the input string.
* On entry, datalength is input as the number of valid bytes following "data". On exit, it is returned as the number

of valid bytes following the beginning of the next object.
* Returns a pointer to the first byte past the end of this object (i.e. the start of the next object). Returns NULL on

I

any error. *I
u_char *
asn_build_objid(data, datalength, type, objid, objidlength)

register u_char *data; /* IN- pointer to start of object*/
int *datalength; /* IN/OUT- number of valid bytes left in buffer*/
u_char type; /* IN - ASN type of object *I
oid *objid; /* IN- pointer to start of input buffer *I
int objidlength; I* IN - number of sub-id's in objid *I

I* ASN.l objid ::= Ox06 asnlength subidentifier {subidentifierl*
* subidentifier ::= { leadingbyte I* lastbyte
* leadingbyte ::= I 7bitvalue
* lastbyte ::= 0 7bitvalue *I

u_char buf[1IAX_ OID_LEN];
u_char *bp = buf;
oid objbuf[MAX_OID_LEN];
oid *op = objbuf;
register int asnlength;
register u_long subid, mask, testmask;
register int bits, testbits;

bcopy((char *)objid, (char *)objbuf, objidlength * sizeof(oid));
I* transform size in bytes to size in subid's *I
I* encode the first two components into the first subidentifier *I
op[l] = op[l] + (op[O] * 40);
op++;
objidlength--;

while(objidlength-- > 0){
subid = *op++;
mask = Ox7F; I* handle subid = 0 case *I
bits= 0;
I* testmask *MUST* ! ! ! ! be of an unsigned type *I
for(testmask = Ox7F, testbits = 0; testmask != 0; testmask <<= 7, testbits += 7){

if (subid & testmask){ I* if any bits set *I
mask = testmask;
bits = testbits;

I* mask can't be zero here *I
for(;mask != Ox7F; mask»= 7, bits-= 7){

if (mask== Ox IEOOOOO) I* fix a mask that got truncated above *I
mask = OxFEOOOOO;

*bp++ = (u_char)(((subid & mask)» bits) I ASN_BIT8);

*bp++ = (u_char)(subid & mask);

asnlength = bp - buf;
data = asn_build_header(data, datalength, type, asniength);
if (data== NULL)

return NULL;

if (*datalength < asnlength)
return NULL;

bcopy((char *)buf, (char *)data, asnlength);
*datalength -= asnlength;
return data+ asnlength;

/* asn_parse_null- Interprets an ASN null type. On entry, datalength is input as the number of valid bytes following
"data". On exit, it is returned as the number of valid bytes following the beginning of the next object. Returns a
pointer to the first byte past the end of this object (i.e. the start of the next object). Returns NULL on any error. *I
u_char *
asn_parse_null(data, datalength, type)

u_char *data; /* IN- pointer to start of object */
int *datalength; /* IN/OUT- number of valid bytes left in buffer *I
u_char *type; /* OUT- ASN type of object */

{
I* ASN.l null ::= Ox05 OxOO *I

register u_char *bufp = data;
u_long asn_length;

*type = *bufp++;
bufp = asn_parse_length(bufp, &asn_length);
if (bufp ==NULL)

return NULL;
if (asn_length != 0){

ERROR("Malformed NULL");
return NULL;

}
*datalength -= (bufp - data);
return bufp + asn_length;

I* asn_build_null- Builds an ASN null object. On entry, datalength is input as the number of valid bytes following
"data". On exit, it is returned as the number of valid bytes following the beginning of the next object. Returns a
pointer to the first byte past the end of this object (i.e. the start of the next object). Returns NULL on any error.· *I
u_char *
asn_build_null(data, datalength, type)

u_char *data; /* IN- pointer to start of object *I
int *datalength; /* IN/OUT- number of valid bytes left in buffer */
u_char type; /* IN- ASN type of object */

I* ASN.l null ::= Ox05 OxOO */
return asn_build_header(data, datalength, type, 0);

/***
* Definitions for Abstract Syntax Notation One, ASN.l
* As defined in ISO/IS 8824 and ISO/IS 8825 * asn l.h *
**/

#ifndef EIGHTBIT_SUBIDS
typedef u_long oid;
#define MAX_SUBID OxFFFFFFFF
#else
typedef u_char - oid;
#define MAX_SUBID OxFF
#endif

I

#define MAX_OID_LEN 64 /*max subid's in an oid */

#define ASN_BOOLEAN (OxOI)
#define ASN_lN-:rEGER (Ox02)
#define ASN_BIT_STR (Ox03)
#define ASN_OCTET_STR
#define ASN_NULL (Ox05),
#define ASN_OBJECT_ID
#define ASN_SEQUENCE
#define ASN_SET

(Ox04)

(Ox06)
(Ox!O)
(Ox II)

#define ASN_ UNIVERSAL (OxOO)
#define ASN_APPLICA TION (Ox40)
#define ASN_CONTEXT (Ox80)
#define ASN_PRIV ATE (Ox CO)

#define ASN_FRIMillVE
#define ASN_CONSTRUCTOR

(OxOO)
(Ox20)

#define ASN_LONG_LEN (Ox80)
#define ASN_EXTENSION_ID (Ox IF)
#define ASN_BIT8 (Ox80)

#define IS_CONSTRUCTOR(byte)((byte) & ASN_CONSTRUCTOR)

Appendix[B)

#define IS_EXTENSION_ID(byte) (((byte) & ASN_EXTENSION_ID) == A;SN_EXTENSION_ID)

u_char *asn_parse_int(); ·
u_char *asn_build_int();
u_char *asn_parse_string();
u_char *asn_build_string();
u_char *asn_parse_header();
u_char *asn_build_header();
u_char *asn_parse_Iength();
u_char *asn_build_length();
u_char *asn_parse_objid();
u_char *asn_build'-objid();
u_char *asn_parse_null();
u_char *asn_build_null();
/************************************•········~·········******************

*Definitions for the Simple Network Management Protocol (RFC 1067).*snmp.h*
*********************************'***************************************/

#define SNMP _PORT 161
#define SNMP _TRAP _PORT 162

#define SNMP _MAX_LEN 484

#define SNMP _VERSION_ I 0

#define GET_REQ_MSG (ASN_CONTEXT I ASN_CONSTRUCTOR I OxO)
#define GETNEXT_REQ_MSG (ASN_CONTEXT I ASN_CON~TRUCTOR I Ox!)
#define GET _RSP _MSG (ASN_CONTEXT I ASN_CONSTRUCTOR I Ox2)
#define SET _REQ_MSG (ASN_CONTEXT I ASN_CONSTRUCTOR I Ox3)
#define TRP _REQ_MSG (ASN_CONTEXT I ASN_CONSTRUCTOR I Ox4)

#define SNMP _ERR_NOERROR (OxO)
#define SNMP_ERR_TOOBIG (Oxl)
#define SNMP _ERR_NOSUCHNAME (0x2)
#define SNMP _ERR_BADV ALUE (0x3)
#define SNMP _ERR_READONL Y (Ox4)
#define SNMP _ERR_GENERR (Ox5)

#define SNMP _TRAP _COLDSTART (OxO)
#define SNMP _TRAP_ WARMS TART (Ox 1)
#define SNMP _TRAP _LINKDOWN (0x2)
#define SNMP _TRAP _LINKUP (Ox3)
#define SNMP _TRAP _AUTHFAIL (Ox4)
#define SNMP _TRAP _EGPNEIGHBORLOSS (Ox5)
#define SNMP _TRAP _ENTERPRISESPECIFIC (Ox6)

/***
- * snmp_api.h - API for access to snmp.
**/

typedef struct sockaddr_in ipaddr;

struct snmp_session {

};

u_char *community; /* community for outgoing requests. */
int . community_len; /*Length of COJllmunity name. */
int retries; /* Number of retries before timeout. *I
long timeout; /* Number of uS until first timeout, then exponential backoff */
char *peemame; /* Domain name or dotted IP address of default peer *I
u_short remote_port;/* UDP port number of peer. */
u_short local_port; /* My UDP port number, 0 for default, picked randomly */
I* Authentication function or NULL if null authentication is used */
u_char *(*authenticator)();
int (*callback)(); /* Function to interpret incoming data */
/* Pointer to data that the callback function may consider important-*/
void . *callback_magic;

!* Set fields in session and pdu to the following to get a default or unconfigured value. */
#define SNMP _DEFAULT_COMMUNITY _LEN 0 /*to get a default community name*/
#define SNMP_DEfAULT_RETRIES -I.

#define SNMP_DEFAULT_TIMEOUT -1
#defineSNMP_DEFAULT_REMPORT 0
#define SNMP_DEFAULT_REQID 0
#define SNMP_DEFAULT_ERRSTAT -1
#define SNMP_DEFAULT_ERRINDEX -1
#define SNMP_DEFAULT_ADDRESS 0
#define SNMP _DEFAULT_pEERNAME NULL
#define SNMP _DEFAULT_ENTERPRISE_LENGTH 0
#define SNMP _DEFAULT_TIME 0

extern. int snmp_errno;
/* Error return values */
#defi-ne SNMPERR_GENERR.
#Jefine SNMPERR_BAD:__LOCPORT
#define SNMPERR_BAD_ADDRESS
#define SNMPERR_BAD_SESSION
#define SNMPERR_TOO_LONG -5

-1
-2 /* local port was already in use */
-3
-4

struct snmp_pdu {
ipaddr address; /* Address of peer */

int command; /*Type of this PDU */

u_long reqid; /* Request id */
u_long errstat; /* Error status */
u_long errindex; /*Error index *I

/*Trap information*/
oid *enterprise;/* System OlD */
int enterprise_length;
ipaddr agent_addr; /* address of object generating trap */
int trap_type; · /* trap type */
int specific_type; /*specific type*/

__ u_long time; /* Uptime */

struct variable_list *variables;
);

struct variable_list {

};

struct variable_list *next_ variable; /* NULL for last variable */
oid *name; /*Object identifier of variable*/
int name_length; /* number of subid's in name */
u_char type; /* ASN type of variable */
union { /* value of variable */

} val;

long *integer;
u_char *string;
oid *objid;

int val_len;

I* struct snmp_session *snmp_open(session)
* struct snmp_session *session;

* Sets up the session with the snmp_session infonnation provided by the user. Then opens and binds the
necessary UDP port. A handle to the created session is returned (this is different than the pointer passed to
snmp_open()). On any error, NULL is returned and snmp_errno is set to the appropriate rror code. */
struct snmp_session *snmp_open();

/* int snmp_close(session)
* struct snmp_session *session;
* Close the input session. Frees all data allocated for the session, dequeues any pending requests, and
closes any sockets allocated for the session. Returns 0 on error, I otherwise. */
int snmp_close();

/* int snmp_send(session, pdu)
* struct snmp_session *session;
* struct snmp_pdu *pdu;

* Sends the input pdu on the session after calling snmp_build to create a serialized packet. If necessary, set
some lif the pdu data from the session defaults. Add a request corresponding to this pdu to the list of
outstanding requests on this session, then send the pdu .. Returns the request id of the generated packet if
applicable, otherwise I. On any error, 0 is returned. The pdu is freed by snmp_send() unless a failure
occured. */
int snmp_send();
/* void snmp_read(fdset)
* fd_set *fdset;

* Checks to see if any of the fd's set in the fdset belong to snmp. Each socket with it's fd set has a packet
read from it and snm-p_parse is called on the packet received. The resulting pdu is passed to the callback
routine for that session. If the callback routine returns successfully, the pdu and it's equest are deleted. */
void snmp_read();
/*void
* snmp_free_pdu(pdu)
* struct snmp_pdu *pdu;

* Frees the pdu and any malloc'd data associated with it. *I
void snmp_free_pdu();

I* int snmp_select_info(numfds, fdset, timeo;.~t, block)
* int *numfds;
* fd_set *fdset;
* struct timeval *timeout;
* int *block;
* Returns info about what snmp requires from a select statement. numfds is the number of fds in the list that
are significant. All file descriptors opened for SNMP are OR'd into the fdset. If activity ccurs on any of
these file descriptor5, snmp_read should be called with that file descriptor set.
* The timeout is the latest time that SNMP can wait for a timeout. The select should be done with the
minimum time between timeout and any other timeouts necessary. This should be checked upon each
invocation of select. If a timeout is received, snmp_timeout should be called to check if the timeout was
for SNMP. (snmp_timeout is idempotent)
* Block is I if the select is requested to block indefinitely, rather than time out. If block is input as l, the

timeout value will be treated as undefined, but it must be available for setting in snmp_select_info. On
return, if block is true, the value of timeout wiil be undefined.
* snmp_select_info returns the number of open sockets. (i.e. The number of sessions open) */

int snmp_select_info();

/* void snmp_timeout();
* snmp_timeout should be called whenever the timeout from snmp_select_info expires, but it is

idempotent, so snmp_timeout can be polled (probably a cpu expensive proposition). snmp_timeout checks
to see if any of the sessions have an outstanding request that has timed out. If it finds one (or more), and

that pdu has more retries available, a new packet is formed from the pdu and is resent. If there are no
more retries available, the callback for the session is used to alert the user of the timeout.
*I
void snmp_timeout();

I* This routine must be supplied by the application:
* u_char *authenticator(pdu, length, community, community_len)
* u_char *pdu; The rest of the PDU to be authenticated
* int *length; The length of the PDU (updated by the authenticator)
* u_char *community; The community name to authenticate under.
* int community _len The length of the community name.
* Returns the authenticated pdu, or NULL if authentication failed. If null authentication is used, the
authenticator in snmp_session can be set to NULL(O). *I
*This routine must be supplied by the application:
* int callback(operation, session, reqid, pdu, magic)
* int operation;
* struct snmp_session *session; The session authenticated under.
* int reqid; The request id of this pdu (0 for TRAP)
* struct snmp_pdu *pdu; The pdu information.
* void *magic A link to the data for this routine.
* Returns I if request was successful, 0 if it should be kept pending. Any data in the pdu must be copied
because it will be freed elsewhere. Operations are defined below: *I
#define RECEIVED_MESSAGE l
#define TIMED_OUT 2
extern int snmp_dump_packet;
I***
* snmp_client.h

**I
struct synch_state {

int waiting;
int status;

I* status codes *I
#define STAT_SUCCESS 0
#define STAT__:ERROR I
#define STAT_ TIMEOUT 2

int reqid;
struct snmp_pdu *pdu;

};

extern struct synch_state snmp_synch_state;

struct snmp_pdu *snmp_pdu_create();
struct snmp_pdu *snmp_fix_pdu();
char *snmp_errstring();
/***
* Definitions for SNMP (RFC 1067) implementation. *snmp_impl.h

**/

#if (defined vax) II (defined (mips))
I*
* This is a fairly bogus thing to do, but there seems to be no better way for
* compilers that don't understand void pointers.
*I

#define void char

#endif
I* Error codes: */ ·
/*These must not clash with SNMP error codes (all positive). */
#define PARSE_ERROR -I
#define BUILD_ERROR -2

#define SID_MAX_LEN 64
#define MAX_NAME_LEN

#ifndef NULL
#define NULL 0
#endif

#ifndefTRUE
#define TRUE
#endif
#ifndef FALSE
#define FALSE 0
#end if

#define READ I
#define WRITE 0

#define RONL Y OxAAAA .
#define RWRITEOxAABA
#define NOACCESS OxOOOO

64 I* number of subid's in a·objid *I

I* read access for everyone *I
I* add write access for community private */
I* no access for anybody *I

#define INTEGER
#define STRING
#define OBJID
#define NULLOBJ

ASN_INTEGER
ASN_OCTET_STR
ASN_OBJECT_ID

ASN_NULL

I* defined types (from the SMI, RFC I 065) */
#define IPADDRESS (ASN_APPLICATION I 0)
#define COUNTER (ASN_APPLICA TION I I)
#define GAUGE (ASN_APPLICATION 12)
#define TIMETICKS (ASN_APPLICA TION I 3)
#define OPAQUE (ASN_APPLICATION 14)

#ifdef DEBUG
#define ERROR(stri.ng) printf("%s(%d): %s",_FILE_, _LINE_, string);
#else
#define ERROR(string)
#end if

I* from snmp.c*/
extern u_char sid(]; /* size SID_MAX_LEN */

u_char *snmp_parse_var_op();
u_char *snmp_build_ var_op();

u_char *snmp_auth_parse();
u_char *snmp_auth_build();

	TH66680001
	TH66680002
	TH66680003
	TH66680004
	TH66680005
	TH66680006
	TH66680007
	TH66680008
	TH66680009
	TH66680010
	TH66680011
	TH66680012
	TH66680013
	TH66680014
	TH66680015
	TH66680016
	TH66680017
	TH66680018
	TH66680019
	TH66680020
	TH66680021
	TH66680022
	TH66680023
	TH66680024
	TH66680025
	TH66680026
	TH66680027
	TH66680028
	TH66680029
	TH66680030
	TH66680031
	TH66680032
	TH66680033
	TH66680034
	TH66680035
	TH66680036
	TH66680037
	TH66680038
	TH66680039
	TH66680040
	TH66680041
	TH66680042
	TH66680043
	TH66680044
	TH66680045
	TH66680046
	TH66680047
	TH66680048
	TH66680049
	TH66680050
	TH66680051
	TH66680052
	TH66680053
	TH66680054
	TH66680055
	TH66680056
	TH66680057
	TH66680058
	TH66680059
	TH66680060
	TH66680061
	TH66680062
	TH66680063
	TH66680064
	TH66680065
	TH66680066
	TH66680067
	TH66680068
	TH66680069
	TH66680070
	TH66680071
	TH66680072
	TH66680073
	TH66680074
	TH66680075
	TH66680076
	TH66680077
	TH66680078
	TH66680079
	TH66680080
	TH66680081
	TH66680082
	TH66680083
	TH66680084
	TH66680085
	TH66680086
	TH66680087
	TH66680088
	TH66680089
	TH66680090
	TH66680091
	TH66680092
	TH66680093
	TH66680094
	TH66680095
	TH66680096
	TH66680097
	TH66680098
	TH66680099
	TH66680100
	TH66680101
	TH66680102

