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CHAPTER I

The problem of harvesting of oxe 6? more species
of populations from multi-species ecosystems is of much
practical relevance., It is important to know how harve-

sting could be done either for brief periods at different
| times or in a continues manner, such that the vasic |
stabllity characteristics of the ecosystem, which is
being interfered with in this process, do not get dis-
turbed, It is obvious that harvesting in an arbitrary
way, as regards either the rate of harvesting or the
total amount to be harvested, will gemerally leave the
system destabiiized and, as a result, many or all the
specieéfégﬁid otherwise coexist in the ecosystem may face
extinction., Given any harvesting procedure, it may be
expected, however, that within certain constraints, the
ecosysfem being subjected to this process may be capa=-
ble of sustaining itself without any of its eompon@nt
species getting exterminmated. The objective of the
present thesis is to investigate these constraints in
some given situations where the relevant ecosystems
are well defined and the harvesting procedures are

properly paranmcteriged.



As our first example, we chose an ecosystem with
two compdting Species (the competition exists here
between the two species as well as between individuals
of the same species - represented by certain self-inter-
action terms), The method used is the graphical method
which employs "isoclines"™. The main results that we
obtain from here concern the derivation conditions
under which the ecosystem preserves stable equili-
brium under what is often called "ﬂf;portionalﬂ (or
"gonstant effort") harvesting. It is seen that the
system is able to maintain Qtable equilibrium under
this harvesting only if it satisfied conﬂifiona of
stable eqdilzbrium even in the absence of hérvasting.
We then show that this basic result can be derived in
a more algebraic way without 1nvolving any graphical
techniqneé, by coﬁsidering the conditions of stable
equilibrium for the system with and without harvest-
ing and by.raﬁuiring that the equtlibnﬁum populations
be always positive. The advantage of looking at the
problem in this way is that generalization to harve-
sting in multi-species systems is then possible, We
fillustrate this point by considering in detail a com~
peting three-species model., The conditions under which
the system can be subjected to harvesting without. .-

losing its property of stable equilibriaﬁ are then
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obtained. These conditions are, admittedly, not
expressible in as simple and elégant a form as in
the two species case, but their usefulness is never-
theless no lesé. . |

We next téke ap the two-species systems
where the species are prey and predator., The first
example is that of thevoriginal Lotka-Volterra model.
We discuss harvesting in this model with simple but
1nteresting and useful results. Ke:then counsider the
prey-predator model which 1nc1ndes.prey self-inter-
‘action, giving thereby a carrying capacity to the prey.
It is convenient to discuss harvesting in this model

bing the isocline method once more.

Some recent developments in literature have

led to an extention of this approach to a larger
class of prey«pﬁ&@ator models which possess not only
solutions of the stable equilibrium type but solhtieus
also including unstable equilibria and the associated
limit cycles leading to sustained oftlilations in the
system, We conclude the present thesis with a gene-
ral discussion of such mepdels and the problem of
harvesting therein, In this context, we discuss

the harvesting problem in detail in Holling's model.



CHAPTER II

2,1 Our objective in this Chapter is to study
harvesting especially vis-a-vis the stabilify of a
dynamical system which models the competing Species.
We shall confine ourselves to just two specles and
investigate the harvesting policies which retain the
stable coexistence of these species., The approach is
to describe the full non-linear topology of the phase
plane in }hich the point representing the two yoéula-
tions move and thereby present a global stability

analysis,

In deriving the governing system of noti-.
linear differential equations, we first specify the
growih of each population in the absence of the other,

We agsume that it is logistic. Thus,

* L
— —- 1Y) f N =0
b“ — gifﬁ = AN, <x‘l v ( q} h&' )
: dl
) d” b ¢
s e AN (o)
7 >
where and dencte the two species;
and are positive constraints with the usual mean-

ings of Malthusian growth rates and self-regulatory
factors., To take into counsideration their competi-

tion for the same resource, factors must be augmented
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which retard the growth rate of each species in the
presence of the uthér. We assume that they are propor-
tional to the size of both populations. Therefore,

the full governing system for two competing speéiea

is ,
, L
N| = ﬁ‘\ N! . @\‘ N\ - a’\1 N\ M’-
No= RN - O NN - G N, (1)

p

Kapoor {1980) considers this system and studies
harvesting at length using the isocline method. We
preseat 1t herg in order to provide the requisite
‘bage for subaéquent investigation and then show that
his resalts can be derived by using neighbourhood
stability analjsis which is readily amenable to
n-species generalization.

To begin with, we draw the isoclines for the
systen, Thesé are the straight lines corresponding
to Ei = 0 and N2 = 0, and are therefore, given simply

by

/&‘—Q

— . — . —' N = A
HNI”G’\D,NL'O ’ &1 O\,L‘N\ 07-7- 2 0(2)

When we plot these lines, four non-degenerate situa-
tions arise (see Fig, 1). Ve nov let

v 2 G - M (5)




Therefore, for situation I; M, i,M, <41 @ I
M1, My7) 5 for [w Myat, M7l omd for
M‘7)7 M?_L"

Using Hi'and H, as the axes, we are now in a
position to depict these non-degenerate situations
on the M,-M, plane. Fig. 2 shows that the first
quedrant is fragmented into four regions correspond-
ing to these situations, In situation I, N, alone
will surwive; in II, 32 alonme will survive; in I1I,
both Ny and N, will coexist 1ndexin1te1y‘and in 1V,
which describes an dnstahle saddle point, either of
the species will suwvive, depending on the initial
_populétions. This figare also shows the five degene-
rate situations: |
Vs ' My L 1, My =1 (Hi alone will sarvive)

vIi: M, 71, H, = 1‘(H2 alone will survive)
VII: M, =1, ¥,/ 1 (N1 alone will survive)
VIII: M, =1, My > 1 (Ha alone will survive)

1X: My =1 =M, (N1 and N, will coexist but depend-
ing on the initial populations).
We are now ready to incorporate into the model
the effect of harvesting. Let us consider the policy

of harvesting in which it is done at rates proportional



to the population. Thas, the governing system now
takes the form

N\
N = X?J“l‘ G, NN

2\
™ 21

= AN - Oy Ne By NN, - A KN,
2
_ OEQ}VZ —t;izklwl
Or, alternatively,
PR
N = &\(l"l‘\)l\’\’ Con N, - a’\lN’N’
\

2
_ N _ &LUT')‘L) Nl_&z\NLN‘ - auNL (4)

2

where 0 L ky £ 4 and 04 k, { 1 consequently, M,

and M, are transformed to M] and Mg respectively,

where _
" Ml - /5_2(l~k27@,7_ M,
P -
A U“‘k\) A,y M3
/ &, (1-k,) M, - (5)
M, = = _ = .
/5—1(,“2“\> Goy H3
\—Lz
My = -k,

and

Thus, we are in a position to transform the system
trom any one of the four non-degenerate situations

to any other, through some degenerate situations, by
changing Ms-. So we discuss all the possibilities that

ariae.



A) SITUATION I PREVAILS BEPORE HARVESTING:

In this case where situation I prevails befere

harvesting, N, alone survives, and the condition for

this is

Mozv o, M, <

AR / 2 . (6)
After havesting, four cases can arise:
(1) N1 alone continues to survive, For this we
need |

| S 2 )
-

or M;>M| - and \P157)'2
or H, > man ( M M) (?)

Since both Hi, M, { 1, this will be certainly true if
My = (1-k)/(1-ky) >1 ©R k, <k, |
But it will also be true if k1 > 32 and .

ot k—k, < (=M (I-ky) ¢f M7 ™

or o k-k < (=M (1=ky) p M7Ha (8)

(41) The second species, Ny, alone will survive,

That is, the condition

rji > OVM&‘ {\j.% >} (9)
™3 - M



,is to be satisfied, Or, alternatively,

H3<H‘ and M5 < M,

— M3 Va (W\l"\.'\ ( My M2) (10)

This will be true if M,=(1-k )/(1-k,) < 1

—y &g > Ky, Bu"t. it will also be true if
-k, 7 (=R I MQ 7C3 o MM, |
ks 7 (1R LI-M) 7o ¢ M2elh

or k- ko > 1=k, e § (=M, O-M2)) 5o
| B3

(11)
- {(114) Both species can coexist in stable equilibrium,
it

My/My; <1 ana  My/M37 1 (12)
or \\43>_M, and M34M2

This will be satisfied only when
M,LM3<M2 ’—‘:7. M, > M,
(13)
OR, O»\\G“zz 7 Gz Ogy
which 15 the condition for stable equilibrium before
harvesting. This jimplies that if unstable equili-
brium prevails before harvesting, then situation I

cannot be transformed to situation I1I,
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(1{') Both species coexist in unstable equilibrium
and ultimate survival of either specics depends on

the initial populations, This requires

MMz 7l and MyMs &1 (14)

or - My M, asa M3 M2

N My< M = @n&lzé‘a”la“

which impiies that before harvesting the system is
in unstable equilibrium,

We now discuss the evolution of I into II,
- IX1 and-IV possibly through some degencrate situa-

tions by continuously decreasing M; from A to 0.

The situation wherein the first specles, Ei'

alone survive can arise in three cases:

OL M2 M, 20 (15a)
o L Mo M4
S (15b)
o Z MI‘: I\/\li \

(15¢)

Case a) As long as M, 7 My, the first species alone
continues to survive; when H3 = My, we have the

degenerate situation V; when M, < My < M, both
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species coexist in stable eguilibrium, Should Hg
decrease still further and bécome equal to‘ﬂi, we
get the degenerate situation VIII and finally when
Mg ¢ M,, we get the situation II where R, disappeais.

Case b) 1In an analogous manuner, the situation I can

be transformed to iI through VII, IV and VI successively.
Case ¢) Here I transforms to II through IX,

It is clear from the foregoing that I transforums
to III if 32.7 My, or to IV if M, < M, and to neither

xtngau

10.
B) SITUATION IXI PREVAILS BEFORE HARVESTING:

Here the second species, Nz, alone survives.

The condition is
M, 71, Myvd (16)
The discussion is quite similar to the above. The
results, simply put, are: 1II will be transformed to

(£) situation I ir

My > max (M ™M) 7 o (1?7)

(11) situation II if

MS 2 e (M M2 v(iB)
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{(1ii) situation III iz

My LMy My | (19)

(iv) situation IV 1if

> M vy M,
M7 T (20)

‘Again, the evolution of II by harvesting, to I, III
and IV is exactly‘Opposite to that of I. As 33 incre~
ases from 0 to oo , situation II evolves into I

a) through VIII, III and V if M, £ M,

b) through VI, IV and VII 1f My > M,

¢) through IX if M, = H,.

C) SITUATION III PREVAILS BEFORE HARVESTING:

By far, this situation is most aypealing to
practical interest. Here both populations coexist in

stable equilibrium. The requisite condition is

It will be transformed by harvesting to
(1) situation I if
M /Mg < apa M2 /M3 L]

or My Mo and M3 7 M? (22)



13

It H3 > M2' it is automatically greater than Hi

because H2 > 1> ﬁi'

(11) situation II 4f
Mi{|M37 ) and Mo (M3 7]

or My 7Mz  and My Ms {(23)

Again, 1f FE3 L Hl' it is automatically less than !42.

(4ii) situation III itself, if
M|/M3 < and \\41/M3>‘

or M= M, and Ms LM,

= Mi< Mg LMo (24)
(1v) situation IV if
My M3 > .and M2 /M5 41
or  Mz¢M, ana M3¥Mo2 (25)

elearly this is impossible.

Thus, I1II can be transformed to II (M5 < ﬁ"‘)
through VIII (53 = Mg}, or to I (ﬂ3 > Mgy) through
vV (M5 = Mg). No harvesting policy can transform
11X fo IV, |
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D) SITUATION IV PREVAILS BEFORE HARVESTING:

The egquilibrium coexistence is anstable and

~the reguisite condition is

This situation, after harvesting, can be transformed
to |

(i) situation I 17

MifMs 41 ana BLCERCIE,

or M5 7 M ana 37 M2 | -(27)
Since xi 7 1; ”2 L 1, ﬂ3 is automatically greater than
Hz if H3 > “1‘

(1i) situation II itf

|
MMz >4 and M IM3 7

or Mz <M and M3 & Mo (28)

Again, since Mi > 1, n2 < 1, H5 is autcmatically less
than Hi it n5 < st

(i11) situation III iz
My Mo 2 ana  M2fM3 7!
or MzyM amd M3 <M (29)

which is impossible.



15

(1v) situation IV itself if

Mg 7t ana My, &)

or, M3 2™ ana M3>™M (30)

which implies M 53 > M,

1’ 2

Thas, IV can be transxorméd to 11 (K3 A Hz) through

Vi (M3 = M) or to I (53 > M,) through VII (M3 = Ml).
The foregoing graphical analysis of harvesting

is rather laborious. However, it can be put in a much

condensed and élegant form and this is what Kapoor

does in a preprint., VWe summarise, in the following,

the analysis contained in this preprint,

¥We notice ihat, by harvesting, the point
(my, uz) is mapped onto the poinmt (M;', M,') where
Eq. (%) is satisfﬁeé. The line joining these two
points passes through the origin (0, 0), since the

mapping is necessarily a scaling. Hence, any state

-~ represented by (Hi' Mg) can now be transformed ~ to

(n,, Kz') by harvesting, provided Eq. (5) is satis-
fied, or, in other words, the line Joining the two
points passes through the origin. This remarkable

result is central to further analysis,
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starting from a point in any state ox¥ situation on
Mi - M2 plane, we can delineate the evolution of the

system as k1 and k, change.

2.2 It may be noted that the analysis of the pre-
ceeding section shows that in case of a competing
two species system (where self-interactions are also
included), harvesting in a way that the system conti-
nues to possess stable equilibrium is only possible
'if the system possesses stable equilibrium even with-
out harvesting. The precise conditions on the harve-
sting are then deducible. From a physical point of
view, it is only a situation like this which should
be of practical interest., Harvesting for systenms
which are not stable to hegin with, i.e., which do not
sustain their different components, without being
subjected to harvesting, and which are not able to
sustain themselves similarly when subjected to hérveh
sting, is a problem only of academic interest and not
one which would have relevance as far as applications

are concerned,

We would no¥ like to emphasize that the above
result, though obtained in the previo&s section by
the method of isoclines, can also be worked out with-

out recourse to such a graphical method, by looking
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at the conditions of stable equilibrium for the system
with and without harvesting and the conditions for

the positivity of the equilibrium populations. What
is being suggested here is actually equivalent to the
same thing as'done in the previous section, but the
advantage now is that one need not take recourne'to
graphical methods; but has only algebraic mwanipula-
tions to perform, That this is an advantage is not

so obvious when one is dealing with only a two-species
system where isoclines are to be drawn on two-dimen-
sional planes only, but becomes quite obvious when

one goes to multispecies systems, As an illustfatipn
we will use this approach to discuss harvesting in a
compéting three-species system., The results obtained
will be quite exblicit though not in as simple and

elegént a form as in the two-species case.

To preceed further now, we work out the étahle
equiliﬁrium conditiens for the system‘or iaterest.
Since we will be using this result for both the two
species case discussed earlier as well as the promised
three-species case, and since it is no more difficult
to write down the main result for an arbitrary multi-
species system, we shall work with the multi-species.
‘case, The dynamics of the system is here given by'the

following k coupled equations, where k is the number
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of species involved:

o
dwe | wef ne- E N
dt o

i', 3 & 1,2,.00-,& (3‘)

The equilibriunm populations Niﬁ are given by

k %
{-ﬁ; ”léi Ouﬁ N}& =0

which, ander the assumption Nﬁﬂ # 0, reduces to

Av — )Z(a*) =0 ~ (32)
We now do a Taylor expansion around the point Ni a'ﬂi*
and keep only the lowest order terms, thus getting,

cd‘"

&,L: (N)+Z(N“N]) 7r\; N

} t
where, we have put

&L = FoN)

and F; (F*) 1s then the value of this quantity evalua-
ted at the equilibriam point N = N*, i.e.,N1 = Kiﬁ,
N2 = Ka*, vevesy ete, It is easy to check that
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v Ly

(-C)Nd) = - g Ve
N—s

J = 1,2,;.@5,k

and P (N*) = 0,

So we get _
* % ¥
= = N Oy (Ng - Ny)
B e (Rt (33)
Patting
ne = Ne- NG |
v C (34)
We ean‘ﬁrite the above equation as
e = o= Ng 2 Y (35)
12‘::\ _
Or, simply as
K
. _ A(," M;l
o= Z, / (36)
% )
vwhere, - Ay\.? = — N¢ 0‘/"1 (37)

The last quantity is often referred to as the commu-
nity matrix (Pielou, 1977; May, 1974). It is clear
now that if all the eigen values of this matrix have

negative real parts, then
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‘ML' (E— o) -0

that is, all the Ni asymptotically reach their
respective equilibrium values N;*, leading to the
situafion of stable equilibrium, The eonditibns for
our system to possess stable equilibrigm are thus the
conditions for the community Qatrix of the system to
have negative real parts for all its eigen values. To
ensure that these eigen-values have negative real
values, we can involve the well-known Routh-Hubwitz
criteria, which lead to a set of inequalities. We
shall not write down here these inequalities‘tor the
géneral k-gpecies case. |

Let us now come back to the two-species case

discussed in the previous section. The equations

desoribing this system are;

kR
O'lo'!"\—: = AN AN -, MY,
) 2 (38)
a!__rgL S AN - G NN RN
at

?hevequilibrium populations Ni* and 32* are
given by the equations '
A

A —
p 2.

)

a. Nr ¥
- Yyt - aﬁz.NL =

¥ y
v M M'.Cgi Nz =0 (?9)

TH-I312,
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S0, we geot
‘ 01|a22°'(%;051
¥ Ay Gy = A0y (40)
L =
Ak, - 2%

The community matrix b is now given by

b |
¥ ¥
ﬁ)_ '—'N\a"l —.N\G{Z
T (%1)
. ¥ ¥ -
-~N & -
L N, Rq ) “%, zzj

For the system to possess stahie equilibrium, the
eigen-values of this matrix shokld have negative real
parts. The condition for this, following Routh and
Hanwitz, are

¥ |
( NT G, + N9,) 70 (42)

Ve

and . ,
(Oy By = X, %) 70 (43)

It is elear that these conditions for stable

equilibrium by themselves donot guarantee that the
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stable equilibrium poimt will be in the first quadrant
in the K, - Ny plane. The complete set of conditious
for the system to possess a physically acceptable
stable equilibrium are,therefore, equations (42) and

(43) supplemented with.
¥

N, 70

(44)
¥
N, )

This positivity property of Ni* can be ensared

in two different ways, namely, by either taking

A, Gt 79 - (45)
and
A Gy - 2,0, 20 (46)
&aan - A &, 70 |
or
o, QR,, - *,0,, O (47)
and

Ay Gay - "lz.a“rz L0
-~ A G, 4O

(48)

%% Ay



24

Clearly conditions (47) and (48) are not
compatible uita the conditions of stadle equilfibrium,
80, we have to mccept the set of conditions (45) and
(46)., Note that the condition (45) is the same as
condition {43). '?nrtﬁermore, the coanditions (46)

' clearly imply this, as they can be combined iuto a

produect aambiuaélon
LA 0,0, ¥ A4 C Q
or simpiy.

a’\! a‘z.'z. K &, 12, %l

It may be fartoer noted that in view of the
positivity of all the aij as well as the positivity
of B,* and N,*, condition (42) is automatically
satisfied. The conditions that we need to consider

‘therefore, are simply the conditiouns (46).

The foregoing discussion remains valid even
in the presence of harvesting in the manner done in
the previous section -~ the only change is that wo have

to make the following substitutions:

ﬁ“t -— /2‘(1“ k\)
(49)

Aoy A (1)
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The condition (h&) then takes the form:
A, O-k)o,, - A UI-R) &, 20

A (1=k) Gy - ,1‘(1..!\) a’u Y0 (50)
2

FPollowing the notation of the previous section, we

may write for (46),

— ﬂaa’l?- C
Mi = Ay Oy < (51)
and | 5
v 2t
Likewise, we get from (50)
£, U-k) o,
Z |
/&1 (1-l8) Oy,
or
&2 a}lz L b= ’:‘
A, &, , 1~ K, (53)
and
/5.2_(\”\‘20 Gy
> |




or
2 -k |
i Sod S ek (54)
ﬁ-] Ry 1=k,

From equations (51) and (52), we now get, for stable
equilibrium for the situation without harvesting:

M, < M, (s5)

From equations (53) and (54) we get, using the rela-

tion,
_k;
M, = Z°
3. =k, (56)
the condition
M, ¢ Mg M, (57)

This last result gives the constraint under
which harvesting can be done on the system without
the system losing its basic property of stable aquili-
brium, Clearly, this constraint implies the counstra-
int given by equation (55) which implies stable equi-~
1ibrium for the system without harvesting. We have

discussed this point earlier.
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.Lef us now generalize these results to the
case of a three-species competing system (with all
the self-interactions included as before), The

system is given by the following set of equationé:

N 2 :
d 1 o &-\N‘ - Q‘\\, N‘ - a‘\'),N\N)- a‘\’SN\N?

ae ~
dny 0N L O NN
| JZ% = AN - G NN - TN, - Pty (58)

) 2
N - G_ N
%ﬁ; = ANy 7 Oy NN - Gt Ty

Following the‘ method described earlier, we can
now get the conditions for stable equilibrium for this
system by looking at the associated community matrix,
The equilibrium populations Ni‘*, Ne* and 1513* are of

course given by the equations:

a V- N
Ry = G N = BN 1373 TO
¥ ¥ ¥
Ay BNy - N - %" =© _(59)
¥ ¥
- - =0
A - C ‘M‘ O~32N¢2_ 33 '3

The community matrix b is given by the element

o * .o
)(.ru] = - NCC{(,]' ',L,)::!)%s (60)
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The conditions for ‘stable equilibrium are
now the conditions for the eigenvalues of the matrix
b to have all negative real parts, Following the
Routh-Hunwitz analysis, we find that these conditions
are: .
» * ¥
, C :
@, Oy + N, Gy, N3 33 79 (61)
\- ¥ ¥ ¥ ¥
N‘ Ay ( N1 O"thz_o"zz. * N\ X Nga'
¥ ¥ ¥ %
+ Nza’zz N;,a’:z + N;.a’n N3&33
| ¥ ¥ ¥
+ N, N, Oy + N Ou.s.shN.ngn)
' %

™ Fa, WF e Fa e
A N, Gy NGy, Ny Gy Y Gy N3Gy NGy

%* % W ¥ oy
N‘ Q”\l ( Nz.allf I\:” a’lz - Nga"—s] N‘ aJ\B)

¥ ¥ * ¥ ¥ *
+ N1 Q"\z. N:. O"z.z N:.aﬁt bl Nx \a’\3N3a’33 N3a"3!

¥ * _ * ¥ 5%

* * ¥ ¥ % B
a‘ .
+ N Ry, NyGy, NGy 4+ N By N % gN'g&g:( 62)



and

Ctlﬂ\aﬁ. 13 zt EPA Hzaﬁsctz})

;= (0 (Go, oy ¥ c{,\z_&m&, + O 008y ) (53)

From equations (59), the eguilibrium population K. *,

Ky* and Ny# can also be calculated easily and the

result is:

3

A (0’12 '1.3 130bu.7

+$'( \3 3% au\z.a"g;) :D (_6&)

+ A (0, Oy - 0,30

/8’3( 13 2! 7,30'\!)

¥
N, = |
> A, (B gy~ B43%,) (65)

'1' A (6'3 3! ’330’117

/

N

[ A (0 &

& A& )
1172y 12 2)

N, =
S Rt Tl 2 I P

AR L)

-
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Since we wish to have the stable equilibrium
point in the first octant of the K,‘«-ﬂz«-ﬂ3 space, we

must now impose the conditiouns:

¥ ¥ ¥
N, 70 5 N 2O MN37O 6n)

Once umore there a.ré--two sets of solutlions, ofie corres~
ponding to the deﬂaminator D being greater than zero
and the other corresponding to D being less than zero
From eguation (63), it is clear that the choice is
already made for us ., We thus have; in view of the

constraints (67):

DY O

{ A (QJIZ 3 a—"%a)l)-) + 43(0")36"32— %2&33)_

+ Ay (B 22 33" 32%377{ yo (68

{A (Cog &) = Gygluy) +4 y (R~ &, 13%41)

4 A (0 G —@33%17} v O (69)

127 3¢

‘and {,2 (a,na, 2,) + (CL Q, CL “*3;7

_FA‘(GJQ_!OJ 2.2. %l)} 20 (70)
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Let us, for convenience, use the notation:

A = Ca’lz 23 7~ a’ a’zz)

B = Ca’l?,a’gz" Ry %33)

é (O Py = Gy 0s0)

E = (B30, - &) (7)
F = (O\'u 0“33'" e"l‘so"zz)

Gl = C&23 &'31 - a’gza'z.l)

H (Qy &y, - G, 0y,)
T = (%% - % 8%))

T = (@045~ Rry0)

The conditions {68) « (70) can now be written more

compactly in the form

3R+ A ©
Ap BB+ Al Y

(72)
E+4F+4A6 70
LU+ AT+ AT 70
As alreédy mentioned, these conditions as webl as |
the coundition
p>0 (63)

correspond, along with conditions {61) and (62), to

the system having stable equilibrium with the
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equilibriom populatidns all positi?e.-‘CIBarly,‘
conditions (72) and (63), which already imply posi-
tivity of N{gé render condition (61) superfluous,
as it is autpmaticélly satisfied once one remembers
that the aij are all positive., Coundition (62) is,
of courée. noi automatically satisfied, but depends
on the values of various quaﬁtities occaring in it,
but there is a wide variety of choice for these

quantities for which the condition can be satisfied.

Let us now consider the three-species case
with harvesting. The equations of the systeum takes

the formg

2
dN‘ Id} - ﬂ‘N‘ - GJ\!N\ - O‘]ZN‘N; 6’\3 N‘“g" &:L"N‘
.
ANt = A M- G NN - Gy N, - Gy NN, Al N,

2
ANy|db = AyNg - Ou Ny = Go NN, - B bl - A kg Ny

where

(73)

ol el 041&241 ) o4l<341 (7%)

Clearly, the above eqguations differ from the
original ones, namely equations (58), by the addition
of ki’ kg. k3 terms., These additional terwms can be
taken care of by the following substitutions:

A, — &‘Cl“ky)
/5.2 —_ A,_Cl—l‘:.)
Ay > Ayli-ky)

(75)
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The constraints for the system to possess'

stable equilibrium in the positive domain of Né§§§2
and N5 can thus be obtained from the constraints
given earlier for the case without harvesting. The

constraints are thuss |
ég/¥-+)5)}g%-f%<i > L3,4.+ Llﬁ§+-L‘a‘
&3E*A2F+A‘:% % 2‘35'* b Frki g (72)
A H +AZI N l”3“ + %IHC'J

and the inequalities (61), (62) and (63). ©f these
last three, ome inequality (63) remains unchanged,
and the inequalities (61) and (62) have the séﬁe form
as'betore except that Hi*, XQ* and N,* are now‘given
by equatiéns (64), (65) and (66) respectively only
after the substitutions (75) have been incorporated
iato :them. with (72') and (63) valid, the N * are
all positive and the constraint (61) is, as before,
autoﬁatically satisfied. Counstraint (62) is not
automatically satisfied, bat{ given the aij as fixed
from the no-harvesting case, it can be satistied by
suiteble restraining of the N *, which amounts to

putting constraints on ki’ k2 and kﬁ' So the conditions

S e

£ P T 3
( gzt T T
EXT7 o

B
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for stable équilibriun in the presence of harvesting

we have to worry about gre thus the conditions (72')
and (62), Once these constraints are respected, we can
subject Jour system to harvesting without disturbing its
basic stability property, i.e., the persistenoerf-the
three species Ei’ 32 and NS' Unfortunately, it is not
possible to put the above constraints in a more elegant
form, as was poésible in case of the two-species systen,
but given specific situation with corresponding
numerical valueslfor the various aij, thé estimate of
the allowed range for the harvesting parameters_kig

ko and ks_can be done without any difficulty by anU,

elementary numerical exercise,



CHAPTER III

3.1 In this chaptdr, we wish to consider harvesting
in prey-predator madéls. In this context, one of the
simplest models of interacting populations is the
original one of lLotka and Volterra, taken usually‘as_

a paradigm of maihematical modeling., It has been
reviewed extensively (e.g., May, 1974@ Haynard A
Shiﬁh, 1974; Goel, Maitra and Montroll, 1971), neverthe-
less, we briefly dﬁscrihe it here and then go on to

the theme of harvesting in this frauwe-work.

In order to explain why the percentage of
sharks and other predatory fish caugh£ in the Medite-
rranean Sea rose dramatically during the VWorld War I
when there was a reduction in fishing, Volterra
suggested o model whosé equations aré isomorphic to
those given by Lotka for the hypothetical chemical

reaction mechani s

A+X——kl+ 2 X .
1
X+ ¥ —Ky 2y
y = B

where X and Y. are intermediaries, ks k, and kj_are
the reactiili rafe:constants, A ana B are the reactant
§
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and the product respectively, whose concentrations
are kept constant, This implies that the system is
open and so there has to be an exchange of matter

with the surroundings.

Denoting the concentrations ofhA ,X ,VY ,8
bya ,* ,%, » respectively, the law of mass action,

gives the following kinetic equations:

© _
e SN PV
At * R

- (:I = %g: = (;7'7' '—Y?

where ol — L‘G» ) ‘2: kz and Y:Lglﬂ
In terms of ecology, X and ¢} denote the prey and

(2)

the predator populations respectively; pi is the
Malthusian rate of growth of the prey; {3 is the anti-
symmetric equivalence factor which represents the
effect of binary collisions on the interacting
populations and 7 is the rate of natural decrease of
the pr.dator. (Volterra, of course, chose a system
in which in the second equation in the above is
replaced by another constant $ :27‘: £ . The

following analysis is valid also for this general case).

The trajectories of (2) for AF0 ; (7, +0

are the solution curves of the first order differential
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dy _ YV B o)

Y v By) (3)

This equation is separable since we can write it in

the form: - :
'COW gy dy = (=T t)
Thus, the transcendental equation
by - Px = ¢ | ,
2 ey 2 g+ o - (4
where . 'd — constant
is the set of sclution trajectories of the system (2)

Literature regarding closure and periodici ty of
this set of trajectories, and the ergodicity of the
system is copious, therefore, without further discassion,

we summarize the resultss

1) Equation (4) defines a family of closed curves
for 1) 7 7 O v
2) Let ’)&U’) and ‘j({’) be solutions of (2) with

1©),4Ye) >0 . then A(E+T)=2)  ana
"j(t'ﬂ) = ﬁ({') for some positive | .

3) Let ')l@), “](&) be a periodic sclution of
{(2), with perioda T . Then
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(5)

where 7/\\ s 91 are‘the ‘equilibrium values of x, y,

i.e., Y({Z and &/B respectively. As is well
known, by using the linear pegtﬂrhation methods, one |
determines the stability characteristics of the eq'ui-
l1ibriam points of the dynamical system represented |
by (2). Of the two equilibrium points fviz. (0,0)
and ( "/1(3;01((5 ‘);, only one (i.e., the latter) is
meaningful biologically. Introduction of a sm.all
perturbation in this equilibrium point and Taylor
expansion of each of equations (3) around this pertur-
bed equilibrium point will result in a community
matrix (May, 1974), with eigenvalues, ﬁc y (=2
which are a paiﬁ'ot purely imaginary numbers, # ( c
where @ "\/W . That is, the stability is neutral,
with penturbation leading to undamped homogenous

temporal oscillations of frequency < or period 2ﬁ/w

We are now ready to include the effects of
tishing (i.e., harvesting of fish population) and
explain the conundrum posed at the out-set of this
section., We assume that fishing is done at a rate

proportiomal to the size or concentration of the fish.
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Consequently, fishing decreaseé the population of
prey fish at a rate S 2(_(') and deoreases the popula-~
tion of predator fish at a rate of S ‘j@’) . Zhe con-
stant of proportionality, S, reflects the inten-
sity of fishing. Thiis, the situation is described by
the modified system of differential equations

G@O(/a% = ol —(gﬂ'z ~-EX

' (6)
Hlde = ~pAE o E
Oi, alternatively, | | :
dx[e%?oz_,l—ﬁ”f'
| (7)

dy [ = g + 0

| |
wnors oL = (d-£) omd ¥ = (V+8)

This system is #imilar to that decrfbed by equations
(2), providea oL 7 € - Hence, the time averages of

" &) ana "1&) are now

Y yee
LWy = — = 15
A (3 (8)

- &

and )y = 2 -
SR ; 7
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Consequently, for safficiently small € , i.e.,, wode-~
rate fishing, the prey population, on the average
weuld increase, whereas, the predator population ﬁould
decrease, Conversely, if there is a reduction in
fishing as happened during the World War I, then the
predator population would actually increase and the
prey population éould decrease, Thié remarkable . |
result, them, completely explains the 'fishy! pheno~

menan that Volterra encountered.

Thus far, we have confined ourselves to a prey-
predator system without any self-interaction. In the
Tollowing, we present a slightly different but more
realistic situgtion, which is then analyzed by using
the isocline method.

Hence, we include the effect of self-interaction
for the prey. The resultant model is

2
= NI *‘Cﬂbjf

. ! (
The assumptions under-lying are;
a) In the absence of predation, the prey would

follow the logistic growth, with intrinsic rate of

inerease a and carrying capacity, K = a/v,
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b) The rate at which prey are consumed i&s propor-
tional to the product of the numbers of predator and
prey. |

c) Convergion of prey to predator is 'real time',
i.e., there is no time delay in prey consumption and

the resultant predaior increment,

In order to understand how this system ﬁehavea,
we eﬁploy dnce more the techniﬁues of the isoocline
method, At time t, the state of the system is fully
described by the values of x gnd Yo Té eaéh’state;
theretoré, thexe corresponds a point in the x-y plane
or the phase plane. If we find out the directional
arrow.of the movement at each such point (x,y) then
we can join-up these arrows to form traj ectories
which, then, will tell us how the gystem dynamics

operates,

To begin with, we plot the 1§oc11nes in this
phase plane, When X = 0, the resultant equatia# will
depict a line which is called the prey isoecline, since
x denotes prey in the model. Analogously, when’? = 0,

the predator isocline will emerge (see Fig. 3).

From (9), it follows that

(10)
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For equilibrium, x and y should simaltaneously be

gero, - This‘iS'pOSSible.onlf when

\ | J, N ,&‘ Le
= € cwvdﬁ. 4 = Z - "=
R [¢ ¥ e ce! | (éi)

And since x and ¥y should hecéssafily be positive,
aJLby‘ejcC"This inequality states that ior an equili-
brium with both jrex and prédatof present, the carry-
ing capacity of prey, K = % should be high endugh to

_ support the predator.

Now, we go to the dynamics of the system, by

inserting the directed arrows, We note that for

. %4 e/c’, y 70 hnd tor 2 <¢|d y < 0, Smilarls;,
for the points ahdva the straight line a - bX - cy = 0,
X < 0 and below 4t x » O. This implies that if
we start with any initial point in the phase plane, the
resultant trajectory would be a spiral, The nature
of the spiral depends on the slope of the prey isocline:
if it is negative, then the spiral is convergent and
the equilibrium point is called a focus., Otherwise,
it is a divergent spiral. The physical 1nterprétatioﬁ
of a convergent anti-clockwise spiral is that both

prey and predator oscillate temporally with damping
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amplitude and thé trajectories of the system all
converge on to the equilibrium point, Even when

| disturbed,'ihe system reaches back this point, This
point is, thérefore, é point 6: stable equilibriam,

We are now in a position to include the effects
02 harvesting and/or stocking in the prey and/or the
predator. £__ J
Case al Harvesting of Prey only:

We assume that the rate of harvesting of prey
is proportional to the sige uf'the.population beiné

harvested and the effort is defined as the counstant

‘of proportionality. 'Thns, the model transforms to

2 = o - bt - cwp - dx

. / ‘
47, = —-6/7, + C.)(‘f (12)
whey'e™ X = etfort of harvesting of prey J O,

From (12), a set of new isoclines are obtained whose
equations are }
(@-2) - br ~ep =0 W F =0

/ : (13)
—e 4+ A =o Whem 4 =o
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We immediately see that the new predator isocline is
-identical to the one that has been-obtained before
harvesting of prey., But, the new prey isocline is
different: 1t describes a stra%ght line which is
parallel to the one obtained previously. See Fig. 4

for graphical representation,

. Hence, we say that the effect of constant‘x
effort harvesting 61 prey regalts in éhitting of prey
. isociine downtaids. In order to sustain tﬁe stable
equilidrium, the following conditions on A immedia-

tely arise:
¢! | (14)

ﬂasedbz Stocking of Prey only:

In a similar spirit (since stocking, mathema-
tically speaking, is Just the opposite of harvesting,
we see that for constant effort stocking of prey, the
prey isocline would shift upwards. A point to note
here is that stability per se imposes ho theoretical
1imit on the effort of stocking, thougnftna'carryihg
capacity of the ecosystem may curtail infinite stocking.
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Case ¢) Harvesting of Predator only:

Once again, under the assumption of constant

- effort harvesting of predator, the medel becomes

A = ox - bcxz—?cw?

with the resultant isoclines,
o - b - =0 Whan A co
| . (16)

— (et f) + =0 M«} = o

S8ee Fig., 5 for graphical representation,

‘It is evident that constant effort harvesting
of preéator will result in the translation of the pre-
dator isocline to the right. Accordingly, the stable
equilibrium point will move toward the x-axis. To

ensure cogexistence, we have the following condition

e+t ? < a

—-—

¢’ b-

or

g < o _, (17)
Lo
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Cage d) Stocking of Predator only!

Analogously, when we stock the predator at a
proportional rate, the predator iscoline will move to
‘the left and as a consequen&% the equilibrium
point will move toward the y-axis, Again, the
condition of eoekietence imposes the following
constraint:
. o B o

PRSI

C.’
= p ¢e

'In shert, we, therefore, conclude that either

(18)

harvesting'or stocking doesn't destabilize a systenm
which is inherently stable as is the ¢ase here;
though there are limits ou the respective efforts in
order to eunsure the coexistence of the species.
Incidentally, it shoald be clear from the above
discussion that the problem of simultaneous harves-
ting or stocking or harfesting in one case and stocking
in the other, is easily workable, as we only have to
superpose the results obtained separately for the
appropriate harvesting or stocking of Qither prey or
predator. We shall therefore not go any further into

this matter.,
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3.2 The major diaw-back of the prey-predator
models we havnvstudied so far is that their prey
isoclines possess a constant gradient throughout the
domain x » 0, ¥y > 0. In the Lotka-Volterra model;
it is zero, thereby imparting neutral stability to
the systen and gemerating preywprehator oscillations
with their amplitudes dependent on the initial condi-
tions, Should there be a perturbation, these patho-
logical oscillations (as May .(1974) refers to them)
attain a different set of amplitudes,»and, clearly,
this is a fragile rgsalt. On fhe other hand, we have
a system whose prey isocline has a constant negative
slope. This renders the system aaymétotically stable
implying no oscillations in the long run of time.
But, the field evidence is contrary; we do observe
stabie oscillations in the ecosystewms, In order to
obviate this difficulty, we assume, on reasonable
theoretical grounds, that the prey isocline has a
unique maximum; and, farther, imposing a set of con-
straints which are well defended on the basis of both
theory and a corpus of field data, we generate models
which exhibit precisely the same stable oscillatory
behaviour. These models possess an unstable equili-

brium point around which the trajectories asymptotically
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eonverge} irrespective of the initial conditions,
on to an orbit called the 'stable limit cyecle', 1In
addition to this unique feature, they also have a

stable equilibrium point.

The poiﬁt which is central in the foregoing
is the attainment‘of a auique maximum by the prey
isocline; which implies that it is a 'humped' stru-
cture, This humpedness is the root-cause of insta-
bility, thereby, upon super-imposition of additional
constraints, leads to the limit cycle behaviour.
Therefore, the pertinent queétion now is;: why the
prey isocline has a hump, and, one finds a full answer
in the analysis of Rosenzweig (1969). The hump,
consequently, appears to be an indispensible feature
for most of more meaningful models. However, it
should be reiterated that the presence of hump alone
will not ensure stable oscillatory behaviour., That
is, the hump is a necessary criterion but not suffi-
clent, and, in order to elicit the required limit cycle
dynanies, one fmposes further constPaints, as has been
said, just before, Kolmogoroff (1936) is the first
to embody these constraints into a rather robust
theorem, by aéplication of which one is able to show
{(May, 1972) for these models that they possess either
a stable point equilibrium or a stable limit cycle.
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We shall now substantiate these bare essentials.

For an acosystem comprising a prey, x(t) and

a predator, y(t), the dynamics may be written, in
the following general form: |
'i,-= Qk} = K F:<lx’77>
. 1<
cﬂ:i}i‘-‘ 76‘0’7) )
Let us sappose that 1t is possible for us to cast
equations (19) into the forms | | |

i = lo BRI

G o= - oma le b Cuy)

‘These equations are essentially the same as those
which describe the Rosenzweig-MacAnthur mcdel,' Here,
2(x) is the intrinsic growth rate of X in the absence
ofvpredators, h(x.y) is the rate of predation, k is
usual equivalence factor and a is the mortality rate

of the predator.

Assumption 1:
Predator has no intraspecific competition.
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Assusiption 2:
The functional response, or the rate at which
an individual predator takes prey depends solely on

the prey population.

This transforms (20) to

L =0l - 1 h |
§ = - ol (21)

when y = 0, h(x) = 0“/l¢ = 4 = constant will

describe the predator isokline. .

Aésnngticnizz
The prey preductivity curve, f£(x) is a bell-
shaped fanction. That is, the mepkoductive rate-

declines for small x as well as large X,

Assumption &4:
The functional respouse curve, b(x) is such
that it increases with x, but, tapers off, for large

x. That is, JA&QV[cﬂx tends to zero as x increases.
With either of these assumptions, the prey
isocline x = 0 will give rise to a hump {Rosenzweig,

1969; Maynard Smith, 1974).
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Now, rever’ﬁng to equations (19), we assume
 the applicativity of Kolmogoroff Theorem. This
imposes further properties on F(x,y) and G(x,y)
(May, 1974):

(1) oflsy ¢o (22a)
(11) « OF]ox + 7&?}37 Lo (22b)
(i11) 0§log < © | (22¢)
(1v) 19@10%';‘"7&6’13770 C (e2a)
(v) 9@’07 70 ‘»(223)

and there exists o , ﬁ and Y such that

(vi) F©,4) =0, 470 R (22¢)
(1) F@o =< F7° (22¢)
| (visy) G(v,0) =© ., Y70 (22h)
ax)  B77 (221)

A lucid interpretation of these conditions

within the context of ecology, is given in May (1974).
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Next, what we do is to look for a model whieh
satisfies all the assumptions and conditions enumera-
ted above and, then, study harvesting and stocking in
detail. There are quite a few models which fill the
b1ll (Rosenzweig, 1971) and we select, for tracdtability,
the model which is attributed to Holling (see Braver
and Soudack, 1978),

3.3 Holling's model is given by the equations:

. A
= PO, fo= A (-3) -5k
| . D (23)
oy GG Giry) = @jlgl_ﬁ
L,\] L? g /LJ>) /((7) (j—\:l))(?H*D)
Be#iranging the various terms, we can write these
equations as | ' |
. o x
A= &X()“%&) - i—%
(24)

9 = Ay x Bg 2,

wmore A = £33/6a0) T+ and § = B9 [(740)

We see, heré that the hortality rate of preda-
tor i1s a function of the prey population., Vhen x = 0,
that is no prey, it is a counstant (?3}/C7+D) As X
increases, the mortality rate of predator decreases;

however, it can never become zero, solely for the fact
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that X has a celling, K.

Comparing with eq. (210, we set

QY - 02((—2([;)1

b (és)
2 ’ = = —
hw =355 k=625

Though the assumption (3) is not satisfieé
here, we can check that the assumption (4) is. Hence,
the prey isocline will have a hump. Ranning down the
1ist of conditions of Kolmogoroff theorem, we can
routinely verify that they are satisfied, though,
actually, the 1néquality (22¢) turns out to be equality
Still, the robustness of the theorem makes applicabi-
11ty possible,
vien % =o = FOng) =0

le

G4 o= D) C-g)d © T (ee)

is the prey isocline, It has a unique maximum at

h:;Eti; R x-intercépt at (K, 0) and y-intercept at

(0, pd ),

Analogausly, when } = 0, wevhave-G(x,y) = 0, 1.,0.,

(27)
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which is the predator isocline., Clearly, it is a
straight line, parallel to the y-axis.

At this point, we take note of the Kolmogoroff
theorem (see Albrecht et al. 1974 and Brauer, 1976).

According to this theorem, the system

Adnar = 2 Fuy)
dyldt = )

once has initial values in the first quadrant of the
_phase plane, has solutions, 1f (22a~221) are satis-
fied, such that each solution remains in a bounded
subgset of the first quadrant and tends for t —» oo
.' either to the equilibrium point (f,? ) it (’7&1,%' )
is a stadble equilibriam point or to a limit cycle |
around (f‘,? ) 1 ( ﬂ,? ) is an unstable equilibrium
point, Furthermore,~(’ﬁ;? ) is a stable equilibrinm
point if | ‘

o) éF:CR,§7 + '? 6 3.9 <o

19?

and an unstable one .if

o

49kt 4499 34
A h9) -+ C 7 O
X L 7 i
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Now if G(x,y) is independent of y, as it is
in the present case, so that the predator isocline
is the vertical line x = J, the above inequalities

reduce simply to

0F (2 %) Lo (28)
5
T or(23) 7o | (29)
or é%_ 1) |
Clearly, the negativity constraint here is
valid for ,
A k-D
T =Jd 7 —
i.e,,
+
k £ 2T7+D (308)
and«fhe positively constraint for
K > 2T7+D (300)

‘We thus have the resulf that so long as
K 4 24 « D, our system possesses stable equilibrium
and for K > 2J + D, limit cycle oscillations emerge.
As K becomes increasingly larger and larger, the

amplitudes of the oscillations also become very large
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and the trajectories come very near to the axes.

Thus, practically speaking, due to this proximity,

- any external perturbation might lead to extinction

of the population. | |
Having 1nvnstigateﬂvthe basic relevant proper

ties of tiis model, we now turn to harvesting and

stocking (Brauer and Semdack, 1982).

The model with constant effort harvesting and/or

stocking becomes

o= 7\%:& C‘I—' 2;—4) *47/(7\-%0)1]-“’51)(

. BDCx-T) }~ E, (31)
[ L &CY'ED)(HD) >

where, B, and By, are the respective harvesting (if

positive) or stocking (if negative) efforts. Eq.(31)

can be written in the foru
. . - “Fx _ —_E
= m{&b )=o) I

. ) (x-3) g
] - 7{-(’5+D)(7\+D) 2(]

which are similar to those that describe the model

(32)

without harvesting, but for the fact that the new isoes

clines are given by
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oL (1- —?;7 - 7/(71+D) = By

@ D Q..j) - E, (33)
T+ | |

intersection of which gives & new equilibrium point,

In order to see how these new isoclines are
positioned with respect to the old ones, without
actual plotting, we need only to observe that Fy<- 0
aod Gg > 0. The former implies that Zncreasing El .
moves the prey isocline down while decreasing Et
woves it up (Fig. 6). Analogously, the latter implies
that increase in Eg-moves the predator isocline to
the right while decrease in E, moves it to the left
(Pig. 7). |
- Because of the hump of the prey isocline,.
which demarkates domains of stability and 1nstabi1ity
(02 course with limit cycles), the folleowing situations

arise:
A, When the System is Initially Stable (J < (K-d)/2):

Here the equilibrium point is on the right slope

0of the hunp.
case i: Harvesting of Prey ounly:

As we have noted earlier increase in or incorpo-

ration of E, (1i.e., harvesting of prey), moves the prey
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isocline down, and consequently, the equilibrium

point slides down along the predator isocline, x = J,.
Since in this process the hamp moves left, the equilibrium
point still remains in the domain of stability, It.
will, however, come very ciose to X-axis for a large

Ey» ahd for farther increment, the x intercept of the
prey isocline will fall short of the x intercept of
predator isocline, thereby leading to extinction of

‘the predator. This infact, puts a ceiling on E,,

which clearly is

| ET = F(j)O)

_ _3J (34)
= L(1-3) .

\

Case 41: Stocking of Prey only;

Stocking of'prey {1.e., negative Ei) moves the
prey isocline ap and correspondingly, the huap moves
to'the right, Thus, for some particular value, equili-
bfium point may ride over the huamp, thereby engendering
1imit cycles, If we decrease Ei.still further, the
resultant large amplitudes of the limit cycle, will

render the system prose:. to environmental 'noise?',

Case iii: Harvesting of Predator only:
Utilizing the fact that increase in E, will

translate the predator isocline to the right, we can
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easily observe that the system which is initially.
stable, will remain so even after harvesting of pre-
dator. But, as a resplt, the equilibrium point will
slide down the right slope of the hump, coming dange=-
rously close to x-axis. In order to ensure the co-
existence of both populations, we have the following

upper limit on Eza
E; = @Ck)o) ,
RD(k-3) (35)
T Ty (k-

case iv¥ ' Stocking of Predator only:

Since sidck&ng (i.e., negative E,) will move the
predator isocline to the left, we observe that for a
particular value of E,, the equilibrium point may
ridelover the hump, thus eliciting limtt cycles. Any
tarfher increase will result in larger amplitudes. The
apper limit on the predator stocking effort (or lower
limit on Eg), thus, is when the predator isocline

merges with Y-axis, and clearly, it is:

G (©, D)

-

£,

I}

- L RYT ()
I+

1
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Treatment of the next situation (i.e., when
the system is initially uanstable) is gquite similar,

We state the resalts:

(i) Harvesting of Prey or Predator will render .

the system stable.

(11) Stocking of prey or predator will only incre-
ase the amplitude of the limit cycle, thereby imparte
ing vulnerability to the system.

For situations wherein various combination of
these practices occur simultaneously, it is not
difficult to see that appropriate superpositions of

the results obtained here would suffice.
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