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INTRODUCTION 

There is much interest in studying the dynamics of interacting species in theoretical 

ecology. The theoretical modelling efforts have contributed to developing an understanding of the 

temporal evolution of some simple ecosystems using techniques used in the study of non-linear 

dynamics. Mathematical models for ecosystems generally consist of a set of differential equations 

and are required to describe the interaction of different species of population . The dynamics of 

a community comprising populations of various interacting species may, in general, be modeled 

by no-linear set of differential equations. The models, the mathematical structures of which have 

increasingly been guided by field and laboratory observations, incorporate a variety of forms for 

the stabilising density-dependent or resource-limitation effects in the prey birth rates, and the 

destabilizing functional and numerical responses on the predator's behalf (corresponding to 

saturation oftheir appetites and reproductive capacities, and like effects) (May, 1972). 

The first objective in analysing the models is to know the stability of the system which 

depends upon whether the equations describing the system are linear or nonlinear. Stability can 

be of equilibrium type or of periodic type. If the equations are linear, then we get the linear type 

of stability. In non-linear type of equations both the linear and non- linear types of stability are 

possible. The analysis of stability is done by using Routh- Horwitch criteria. 

There may be prey or predator species in the ecosystem and there should be a proper 

balance between the prey and predator species for the existence of the system. The predator takes 

the prey which is easily found, and diverts it's attention to other prey species if the abundance of 

the previous one become scarce. This mechanism is generally referred as "switching" of 

predator. The occurrence of switching is widespread irrespective of the predator's phylogenetic 

position; switching has been found from protozoa to birds, and the same predator or similar 

predators may not switch depending on circumstances. Co-existence can be perpetuated in 

situations where one species grows faster than the second when the environment is rich and I or 

the population density is low, but grows slower than the other when there is severe competition, 

ifthe species are subjected to periodic reduction in numbers. 

In the present work we are basically interested to see the equilibrium or oscillatory state 

in which the predator depends on three prey species proportionately. So to investigate this, we 

have first reviewed the two-prey-one-predator model given by Tansky (1978) and P.rajneshu & 
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Holgate, P. (1987) by introducing the switching terms given by Tansky (1978). It is observed that 

there exists a stable equilibrium among the three species in the system. 

The main objective of the proposed work is to see whether it is possible to get either stable 

equilibrium or oscillatory type of solutions by introducing a third prey species in a two-prey -

one-predator system keeping switching in mind. There may arise two cases of predator switching 

in the system, leading to two different kinds of models. The two models are studied by the 

comp_uter simulations to see the switching and coexisting state, if any. As an illustration of our 

solution, time series trajectories of three and four species system are shown. We find that unlike 

in case of the three-species system, in the four-species system, all the four populations can coexist 

in a state where they all continue to show stable oscillatory behaviour after initial adjustments. 

Such stable oscillatory behaviour is indicative of the switching property of the predator. Note that 

this desirable behaviour follows in the four species case only for the second kind of switching 

terms. For the first kind of switching terms, the four species case also leads only to stable 

equilibrium as in case of the three species system, and not to stable oscillations. This suggests that 

our switching terms of the second kind may be more profitable for multispecies models where 

switching effects are desirable. 
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Chapter- I 

1.1 Switching Effect : some definitions and mathematical functions 

In any ecosystem, there may be a number of predator or prey species. The ecological balance is 

disturbed if the population of either prey or predator increases continuously. In the ecosystem, 

predation is an important factor in enhancing" the diversity of plant and animal communities. 

Suppose there are two prey species which are competing in the system and one of them may 

exclude the other in the absence of predation. The mechanism by which a predator can enable 

these competing prey species to coexist is by directing a disproportionately large amount of it's 

attention to the prey species that is most abundant in the system at any instant of time. This 

mechanism may be termed as switching of predator for the most locally abundant prey species 

(May, 1977). In otherwords, the process or mechanism by which the predator directs it's attention 

disproportionately to the prey which is abundant in the ecosystem is said to be the switching of 

predator. Switching is part of the behavioural repertoire of many predators (Cornell, 1976). There 

are some cases in which all general predators may not switch ( e.g. Coccinellids, Murdoch, and 

Marks, 1973~ Cyclops, Jamieson, 1980~ Mites, Santos, 1976). Switching may stabilise prey 

dynamics (Murdoch and Oaten, 1975)~ result in frequency-dependent selection that can maintain 

genetic polymorphism (Ayala and Campbell, 1974); and enable competing prey species to coexist 

( Roughgarden and Feldman,I975; May, 1977). 

A predator which feeds on more than one prey species does not attack all types of prey 

indiscriminately. The predator may stop searching entirely the prey which is scarce in the 
. l 

environment and begin to hunt, instead another, more abundant prey type (Matsuda, 1985). 

Several authors have studied the relationship between prey preference and prey frequencies 

(or densities) (e.g., Ivlev, 1961; Tinbergen,1960; Murdoch,1969; Royama,1970; Murdoch and 

Oaten,1975; May,1977; Jacobs, 1977; Steele, 1974; Vance, 1978~ Holling, 1'96l).The potential 

importance of switching as an ecological factor has prompted a number of theoretical studies of 

predator-prey dynamics. Such mathematical models which describe relationships between the 

preference and the prey frequency have been presented by Comins & Hassell (1976), Tansky 

(1978), Teramoto, Kawasaki & Shigesada (1979) extended models of the Nicholson-Bailey type. 

These (and other ) studies show that switching can ~ilize the system as a whole and permit the 
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coexistence of competitors. 

Now let us consider a two prey one predator system where the outcome of feeding is 

characterised by both the total amount of prey intake and the proportion of the two preys 

captured for such a predator. The predator can feed on either species of prey. However, instead 

of choosing individuals at random, so that the chance that a predator would catch a member of 

one or other prey species is proportional to the abundance of the prey species, the predators feed 
' 

preferentially on the most numerous species (Prajneshu and Holgate, P. : 1987). 

Let ~ be density of prey i , and N; be the number of prey i eaten by the predator per unit 

time. So the Risk Index introduced by Tinbergen (I 960) is written as, 

(i=l,2) .......................................... I 

If prey species " i " is present in large number than that of j G ,oi) species , then K; would be 

greater than ~ . K; also varies with the prey densities X 1 and X2. 

Murdoch (1977), defined the term "switching" to refer to the case in which the relative amount 

of prey in the predator's diet increases more than proportionally to the relative prey density. 

Mathematically, or in otherwords, a predator is subjected to switching, when the relative 

preference K1 I K2 increases with relative prey density X1 I X2. 

Tansky (1978), presented another notation of "switching" that the Risk index of one prey grows 

with increase in it's density and declines with increasing density ofthe other prey, i.e., 

aK; 1 a~ >o and aK; 1 axj <O (i*j) ..................................... 2 

Various functional forms satisfying both relations (1) and (2) have been discussed by several 

authors are as follows : 

Commins and Hassell (I 976), adopted the following function: 

K1 =a I 2[1+s (x1 -x2) I (x1 +xJ], K2 = b I 2[1-s (x1 -x2) I (x1 +x2)], ( 0 <s~ 1) ..... 3 

Where a&b are searching efficiencies (Predation coefficients) on the first and second prey 

species, respectively, and s is called the degree of switching. 

Tansky (1978),Teramoto et al (1979) have adopted the following functions 
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n>0 .................... 4 

Where, n is called the intensity of switching . Switching becomes sharper as n increases. 

Vance (1978) adopted the following functions 

K1=a[x1 l(x1 +x2)]", K1+K2 =1, n>0 ......................................................... 5 

Jacobs (1977~ adopted the foiJowing functions for switching, 

K1 =a [x1 I (x1 +c1 x2)], K2 = (bx1 +c1 x2) I (x1 +c1 x2), c1 >0 ..................... 6 

Steele ( 197 4) adopted the switching functions, 

K1 = 0 iflog (x1 I x2) <- 0.5 

=a/ [I+h1x1 ] if log (x1 I x2) > + 0.5 ..................................................... 7 

Murdoch and Oaten (1975) adopted the switching functions, 

K1 =.A. Pn(Pllxt+ PnXz) I [Pzl X1 + PnXz +.A. { P11 P21h1X1 2 + PnP21 ( ht+ hz)XJXz + PnP22 

h1 x/· ................................................................................................................ 8 

Murdoch (1977) proposed the following function for switching 

K 1 =a <1> 11 [I+[~· <l>i ~~]Where <1> 1 +<1>2 =1.. ............................................... 9 

Sub-models for <1> 1 include (from Murdoch and Oaten 1975; Murdoch, 1977 

i) <1>1 = x1 I (x1 +x2) 

ii) <1>1 = c +dx1 +x2 , c < <1>1 <, d >0 

........................................... (10) 

A more general function to describe the switching (Elton & Greenwood, 1970; and Baum, 1974) 

IS, K1 = af(xt> x2), K2 = bg (x1, x2) ......................................... (11.1) 

Where f(x1, xJ = u"x1" I [u"x1" + (I-u)"x2" ], 

g (xi> x2) = (1-ut x2" I [u"xt + (1-utx2"], n>O,O<u<l, ................ (11.2) 

Here f and g are switching functions, which represent the fractional allocations of searching efforts 

to each prey ~ u is a measure ofbias in switching response. The functional fonns given by equation 
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(11.2) involve a wide range of switching effects from no switching to a sharp switching, 

especially "probality matching"( n=I, u= 0.5) and an oprimal foraging strategy (n- 00, u = 

a I (a+b), see Mastuda, 1985). Note that f>g when ux1 > (1-u) x2 and vice versa. 

1.2 Review of Two -prey one predator system with introduction of switching terms 

Some polyphagous predators switch their preference to prey depending on the relative prey 

frequencies. To elucidate how the switching property can evolve under natural selection, 

dynamical behaviours of two-prey and one-predator systems are analysed. It is assumed that the 

switching property can be characterised by intensity of switching ( n). Comins & Hassell ( 1979) 

and Teramoto et al (1979) studied systems consisting of one predator and two prey species with 

a competitive interaction between the prey species, and concluded that switching enbales the 

competing prey species to co-exit, and that it dampens population fluctuations. We can consider 

varieties of such systems in which the two prey have still different types of interactions such as 

predation and symbiosis. 

Extending the one-prey one predator equation of volterrra: 

dNI ldt = (El- kl N2) Nl 

dN21dt = (-E2- k2NI) N2 .................................................... : .. (1) 

to three species system in which there are two-preys and one-predator system, the equations are 

represented as : 

where 

dNI I dt = ( El- kiN3) Nl= El Nl- k!N3 Nl 

........................................... (2) 

N1 and N2 represent the population oftwo kinds of prey species, 

N3 represents the population of predator species. 

E1 ( > 0), E2( >0) represent the intrinsic growth rate of the of population of N1, 

N2 respectively. 

-E3 (< 0) represents the intrinsic death rate of predator species, N3_ 

k1 and k2 represent the predatory rates of the two prey species. 
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The switching mechanism of the predation which tsabilises the coexisting state of the three species 

system is introduced. The predatory rates can be replaced by functions given by different authors. 

Here Tansky (1978) has introduced the following functions for the predatory rates, k~> k2 and we 

have adopted the functions of this kind for our three-prey -one-predator model discussed in next 

chapter. The switching functions given by Tansky., 1978 are as follows: 

k1 (N~> NJ =at; (N~> N2) =a I {I+ (N2 I N1)n} = aN1n I (N1n + N2n) 
' . 

k2 (N~>N2) = bf2 (N~> N2) = b I {l+(N1 I N2)n} = bN2n I (N1n +N2n) .............. (3), which 

explains characteristic property of switching mechanism. 

Here f1 represents the relative abundance (or rtelative density) of prey one to the total 

population and t; + t; = I. The equation (2) can lead to extinction of one of the prey species which 

has smaller value of ei I ~-

Here in deriving the above equations, for two-prey one-predator, it is assumed that (i), 

there is no intra- or inter-specific competitive interactions, between the prey species and (ii) the 

predation rate for a prey is proportional to the relative abundace of that prey species. This 

property is much amplified for large value of n, as shwon in the figure I. 

Murdoch ( I969 ) suggested that a mechanism of this kind can have a stabilising effect on 

a population.Murdoch's criterian is dissuced in the Appendix-IT and this represents that the 

predator catches the more abundant prey species disproportionately. This was also discussed by 

Holling (I96I), Murdoch and Oaten (1978 ).This model which is to be reviewed is a deterministic 

mathematical model given by Tansky (1978) and by Prajneshu & Holgate, P., 1987 separately. 

When n = 0, there is no switching. So the above system has no feasible (possible) equlibrium 

point. When n = I, the relative abundance (or density ) of the prey species has a simple 

mulplicative effect. When n--+ oo, the predator species feeds exclusively on the more abundant 

prey species. For values ofn lying between I and oo, the effect of density is stronger than the 

simple mulplicative, but weaker than the exclusivity. 
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Figure-:~~t Predatory rate k(x,y): (a) function k(y/x) as a function ofy/x, (b) function k1(x,y)as 
a function ofx with a given value ofy. 



Stability of co-exiting state 

Equation (2) cann't be solved explicitly. So we should proceed to a linear stability analysis.In 

calculating the equilibrium points let us take two cases: case - (i) where we have considered the 

simplest form of the function (3) with n = 1 (solved by Tansky, 1978)~ and case- (ii) where we 

have taken n > 0 (solved by Prajneshu & Holgate, P., 1987). 

case (i): n = 1 

So the equations of (2) are rewritten as, 

dN11dt=[E1 -a N31 {I+(N21N1)}]N1 =[E1 -a N3N 1 1(N1 +N2 )]N1 

dN2 ldt = [ E2- bN3 l{l+(NI I N1)} ]N2= [ E2 -bN3N2 I(N1 + NI)]N2 ................................. (4) 

dN31 dt = [-E3+a N1 I {1+(N21N1)+ bN/ {1+(N/N2)] N3 = [-E3 +(aN/ +bN/) I( N 1 +N2 )/N3] 

let the feasible equilibrium point of the system be denoted by Q*, and is defined as: 

Q* = Q* ( N1 N2 N3 ), where, N1 > 0, N2 > 0 and N3 > 0. 

Therefore four critical points at which the first order derivative is zero are: 

(i) the trivial point : (0, 0, 0) 

(ii) points at which one of the prey is absent and the other is in a standard Lotka 

Volterra equilibrium with predators : ( E3 I a, 0, E1 I a) , ( 0, E3 I b, E3 I b ) 

(iii) threee species coexistence point Q* 

Calcutation of the point Q* 

Case (i) : n =1 

For calculation of coexisting state or the equlibrium point, let us set the equation (4) to zero. 

Let dN1 I dt = 0 

=> [ E 1 - a N 3 I {1 +(N 2 I N 1) } ] N 1 = 0 

=> E1 =a N3 N 1 1 { N 1+N2 } .................................................................... 5 

Let dN11 dt = 0 

=> [E2 - b N3 I {l+(N1 / N2 )}] N2 = 0 
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::::} E2 = b N3 N2 I { N1 + N2 } ............................................................ 6 

Let dN31 dt = 0 

::::}[-E3 +a N1 I {I+(N21 N1)} + bN2 I { 1 +(Nt I N2)} ]N3 = 0 

::::} E 3 =(aN/+bN/ )I(N1 +N1 ) ..................................................... 7 

Now dividing equation (5) by equation (6), we have, 

e11e2= aN1 1bN2 

::::} N1 = E 1 b N2 1 ae2 ....................................................................... 8 

Here the bold letter represents the equilibrium points of the system. 

Now substituing the value ofN1 from equation (8) in equation (7), we have, 

E3 =(a N1
2+ bN/) I (N1 + N2) 

........................ 9 

Similarly the value ofN1 (from equation (8) is calculated to be 

N 1 = ( E 1 b I ae2 ) N 2 

or, N1 =(bE1 laE2)(e1 b +ae2 )E3e2 lb* {e/b+ae/} 

or, N.=ElE3 (bEl +aE2)1 a*{e/b+ae/} ...................................... 10 

Now from equation (6), N3 = (N1 + N2)E2 I bN2 

or,N3=E2[E3 E2 (e1 b +ae2 )lb* {e/b+ae/}+E1E3 {bE1 +aE2)1 a*{e/b+ae/} ]I 

b[ E3 e2 ( e1 b + ae2 ) I b * { E/ b + ae/ } ] 

or, N3 = (e1 b + ae2 ) lab .................................................................... (11) 
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Case (ii) : n >0 

Now setting equation (4) to zero, we have, 

let dN11 dt = 0 

::::} [E1 -a N3 I {I+(N2I N1t'] N1 = 0 

::::} Et ·-a Na I {l+(N21 N1)
0

} = 0 

::::} E1 =a N3 Nt I { N1° + N2° } .......................................................... 12 

let dN2 1 dt = 0 

::::} [E2 - b N3 I {l+(N11 N2f}] N2 = 0 

::::} E2 - b N3 I {I+(N11 N2f} = 0 

::::} E2 =b N3Nz0 1 { Nln+N2° } .................................................. 13 

Let dN 3 I dt = 0 

::::}(-E3 +a N1 I {l+(N21 N1f} + bN2 I {l+(Ntl N2f }] N3 = 0 

::::} -E3+a N1 I {I+( N2 I Ndn} + bN2 I {l+(N11 N2f} = 0 

::::} E3 =(aN1n+l+bN2n+l )I(Nt+N2°) ............ oo .. oo ... oo ..... oo .. oooo .... oo14 

Now dividing equation (12) by equation (13), we have, 

EtiE2= aN1nlbN2n 

=> N1=(E1 b laE2) 110 N2 .. oo .... oo .. oo .... oooo ............ oo .......... oo ..... ool5 

Now substituting the value ofN1 from equation (15) in equation (14), we have, 

::::} E3 = (a{(El b laE2) 110 N2} 1 +
0 +bN2 1+n ]I({(E1 b laE2) lin N2}

0 +N2°] 

::::} Nl = { E3 ( aE2 ) I In ( Et b + aEd I ab} I [ E2 ( aE2 ) I In+ El ( bEl ) I In] .. 00 00 ... 16 

Therefore, N 1 = ( El b I aE2 ) I/ n { E3 .( aE2 ) I In ( El b + aE2 ) I ab} I [ E2 ( a€2 ) I In+ El ( bEl ) I/ n] 

::::} N 1 = { E3 (bEl ) II n ( El b + aE2 ) I ab} I [ E2 ( aE2 ) I In+ Et ( bEl ) I/ n] ........... 17 

Now from equation ( 13), we have, 
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=}Nl= E2 {{ E3 (bel) 1111 (el b + ae2 )I ab} I [E2 (ae2) 1111 + e1 (bel) 1111 ]+ 

(a€2) 1111 (elb + ae2 )I ab} I [E2 (a€2) 1111 + el (bel) 1111 ] }11 I 

b({E3 (ae2) 1111 (e1 b +ae2)1ab} /[E2 (ae2) 1111 +e1 (be1) 1111 ]f 

=} N3=e2/b+e1/a .................................................................... (18) 

Analysis of the equilibrium points 

The equlibrium points of the above system are given by the equations (10), (9) and (11) when 

n = 1, and by equations (17), (16) and (18) when n > 0 for NI> N2, N3 respectively. 

The equlibrium at ( 0, 0, 0) is trivially unstable. 

Now let us discuss the stability of the point ( e3 / a, 0, e1 / a) for which y = 0 and n = I. So the 
eigenvalue equation for this point is : 

0-A 

0 -A 0 =0 

-A 

or, -A (A2- 0) -e1 (0 -0)- e3 (0 +Ael) = 0 

or, -A3 -Ae1 e3 = 0 

or, - A (A 2 + e1 e3 ) = 0 

or, - A = 0 or A 2 + e1 e3 = 0 

or, A=(-ete3)1'2 =i(ele3)1'2 ................................................................. 19 

The pair of purely imaginary roots here show that the existence of neutral equilibrium of the two 

species Lotka- Volterra Model in respect of perturbations in N1 and N3 .From the above 

equlibrium point analysis, it corresponds the fact that if the predators maintain equilibrium with 

prey ,i.e., N1 the population can be invaded by a small number of prey, N2 with intrisic varible 

e2 . Same analysis can be appiled to other two equilibrium point. It can also be seen that all the 

boundary equlibrium points, (0, 0, 0); (e3 / a, 0, e1 I a) are unstable.In another process it can also 
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be seen that ali the boundary equilibrium points (0, 0, 0), ( € 3 I a, 0, € 1 I a) and (0, E 3 / b, € 2 / b) are 

unstable, because k1 (x., 0) = k2 (0, y) = O.Ifthe notations of Comins & Hassell (1978) is used then 

the boundary equilibrium points can be stable, because the predator still allocates it's searching 

effort to a scarce prey even when this prey is absent. Such a situation would correspond to 

"apparent competition" by Holt (1977). 

'Local stability analysis of the point Q*(see the appendix-1) 

The eigenvalue equation for studying the stability of three species co-existing point is: 

.................................................... 20 

The local stability analysis ca:n be done by using the Routh-Hurwitch criteria. The polynomial 
equation corresponding to equation (20) is, 

...................................................... 21 

All eigen values have negative real parts if and only if the coefficient of equation (21) satisfy the 
following relations. 

~I >0' 0 

I >0, 1 0 >0 

0 

or, c1 > 0, ( c1 c2 - ~ ) > 0, ~ > 0 ....................................................... .22 
The coefficients calculated are as follows: 
c1 =(a+ b) N1 N2 N3 I ( N1 + N2 f > 0 
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Now by replacing aN1 = n1 and b N2 = n2 , the above equation ca be reduced to 

Thus it is proved that the system (4) has a locally stable coexisting equilibrium point (N., N2, N3) 

except the special case when n1 = n2 or E 1 = e2 for n = 1. 

The eigenvalue equation for studying the stability of the three species co-existing point can be 

found out from the Jacobian for n > 1 which is as follows: 

-a Nln+ I {N1n + N2n) 

bn N n-l N n+IN 
I 2 3 -b N2n+ I (N1n + N2n) 

Nln-1 N3{a Nl (Nin + N2n) 

+ n N2n (aN1- bN2)} 

N2n-t N3{b N2 (Ntn + Nn 
+ n Nln (bN2- aNI)} 

The characteristic equation of (25) is A 3 +c1 A 2 + ~ A+ c3 = 0, where 

C1 = n (a+ b) N1° N2n N3 (N1
11 + N2

11f 2 > 0 

c2= N3 {(Nin + Nn-2(a2N/n+l+b2N/n+t)+ 

0 

n N1nN2n (b N2- a N1)(bN2n- aN1
11)}(N1

11 + N2
11f 3 

C = abn N 11 N 11 N 2 {aN n + 1 + b N 11 + 1) (N 11 + N 11)-3 > 0 3 I 2 3 I 2 I 2 

Now c1 ~- c3 = n N1
11 N2n N/ (aNt- bN2

11){N1n + N2
11)-s * 

{(N1n + N211){a2 Nl n+ 1
- b2N2 n+ 1

) + n(a + b)Nin N2n (aNI- b N2)} ............. (26) 

On substituing the values ofNI> N2> N3 from equations (17), (16), (18) respectively we obtain that 

C1 ~- c3 = g ((E1 I E2)- 1){(1 + bE1 I (aE2 ))[(bE1 I (ae2))
1 +1111 - b21 a2 ]+ 

n (1 +b I a)[(bE1 I (ae2))
1 +Itn- b2

E 1 I (a
2E2)]} ........................ (27), 

where g> 0. 

Since~ >0, the pruduct of the eigenvalues of(25) is negative. Thus if all the roots are real, one 

or all three must be negative. If two roots are complex conjugate their product is positive and the 
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third root must be real and negative. Thus in each case there is at least one real root. We consider 

three cases, depending on whether c1 c2 is greater than, or less than c3. · 

(i) c1 ~ > c3 

This implies~> c1-
1 ~ > 0. Thus all the coefficients of the characteristic equation of (25) are 

positive, and none of its roots can have non-negative real part. Thus the system is stable. 

(ii) c1 ~ = ~ 

The characteristic equation, .A 3 +c1 A 2 + ~ .A + c1 c2 = 0 is reduced to 

(.A+ ct) *(.A z+ c2) = 0. 

As in the previous one, ~ > 0 and the cubic has one real negative and two purely imaginary roots. 

Hence the system is oscillatory with period 211 I ( c2)
1 1 2

. 

(iii) c1 ~ < ~ 

At ·"- = - c~> .A 3 +c1 .A 2 + ~ .A + c3 = C:J - c1 c2 > 0, while as .A --+ oo, the cubic approaches minus 

infinity. Hence there is one negative real root a in(- oo, c1 ). The sum ofthe other two roots is 

therefore - c1 -a > 0, and their product is positeve. Hence they are either real and positeve, or 

complex conjugate pair with positive real part. Thus the system is unstable. 

For n> 1, stability, divergence and oscuUatory behaviour are possible at the three species 

equilibrium. expression (27) is certainty if 

either (i)e11e2 > 1 and e 1 1e2 ~(bla)n-I. ....................................... : ......... (28.1) 

or ( ii) e11 e2 < 1 and eil e2 ~( b I a)n- 1 
................................................ (28.2) 

In particular the system is stable if either (i) e1 > e2 and a ~ b, or (ii) e1 < e2 and a ~b. 

A necessary condition for instability is that both parts of (28) should be violated. This occurs if 

1 <Ell E2 ~< b I a)n-l ...................................... (29) 

or if similar inequalities hold with prey species interchanged. If (29) is true, it is necessary and 

sufficient that the factor in curly brackets in (27) should be negative, and this condition can be 

written (a I b )1
-

110 
( e1 I e2 ) I+ 

11 n < {1 + n (1 + b I a) ( e 11 e2 )} I { 1 + n (1 + b I a)}. 

As n --+ 00, that is as we approach the situation where the predator feeds exclusively on the most 

abundant prey, the latter inequality approaches the limiting form a I b < 1. 
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Discussion 

It is a known that the switching property of predation, which generally means that the 

predatory rate diminishes at low population of prey, has a stabilising effect for the prey predator 

system. Analysing the dyna mical system ( 4 ), it is observed that the predation pressure which has 

the switching property given by equation (3) has the effect to stabilise this three-species system 

and it always attains stable coexisting equilibrium state. This model does not exhibit the dynamical 

switching behaviour of predation. The stabilising effect is enhanced if the bias in switching 

resopnse is toward the prey with a lower intrinsic growth rate. The computer simulation shows 

that any trajectory starting from a point in the positive quadrant converges to Q* (i.e. the stable 

equilibrium point). The coexistence of the two prey species changesteh numerical value of the 

equilibrium point. The system is always stable if the prey species with the higher relative birth rate 

suffers the higher relative rate of consumptionby the predators in the absence of the other. Wh:,.,'ll 

the prey are present in the correct abundance and also the correct relative proportions, their 

tendency to grow through birth is balanced by predation. 

The stable equilibrium state is shown in the figure -2 and figure -3 with different set of parameters 

and different coexisting point. 
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Chapter-Il 

ANALYSIS OF SWITCHING EFFECT IN THREE PREY ONE 

PREDATOR SYSTEM 

In the last chapter, we have discussed the two-prey- one-predator system given by Tansky (1978) 

and Prajneshu & Holgate, P. (1986). In the present discussion, we have just extended to a three 

prey-one-predator system, keeping the switching terms in mind. Now the equations describing the 

system of prey-predator interaction are: 

Where 

1 

N1, N2 ,N3 represent the population of three prey species and N4 represent the population 

of predator species in the ecosystem. 

E1 (>O),E2 (>0), E3 (>0) represent the intrinsic growth rates of N~> N2 , N3 spectes 

respectively and E4 represents intrinsic death rate ofN4 species. 

n represents the intensity of switching (switching becomes sharper as n increses ). 

f1, f2, f3, are called the switching functions representing the fractional allocations of 

searching efforts to each prey. 

a,b, c are the searching effiencies or predation coefficients on the first, second, and third 

prey species respectively. 

Here the predatory rates k1, k2, k3 can be replaced by suitable switching terms. There may arise 

two cases of switching for each of predatory rates k1, k2, k3 due to the presence ofthree prey 

species. In one case, i.e. case-A the switching terms or the predatory rates can be taken as follows: 

18 



k3 = cf3(N., N2 ,N3) = c I {l+(N1/N3j+(N2 /N3j}= cN3n/ (N1n +N2n+ N3j ................. 2 

In the other case~i.e. case-D the predatory rates can be substituted by the functions which are as 

follows: 

k1 = af1 (NI> N2 ,N3) =a/ {l+(N2*N3/N1j}=aN1n/ (N1n * N3n) 

Now let us analyse the case-A . The other case is discussed after this by the computer simulations. 

Thus by substituting equation(2) in equation(l ), we get the following set of equations: 

4 . 

Before going on to the further mathematical study of equations, it should be pointed out that we 

have built a model in which the predator can feed prey preferentially on one or the other prey 

according to circumstances. However, while a population is evolving under its interdynarnics, 

there will be no point at which an actual switching in preferred prey occurs while the population 

evolves along a continuous trajectory. There will generally be an approach to a relative rate of 
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predation between the species that is, for a convergent trajectory, in balance. Actual switching 

would occur if the population were forced to a suitable path by external factors. 

CALCULATION OF EQUILffiRIUM POINTS 

For calculation of coexisting state or the equlibrium point, let us set the equations of equation( 4) 

to zero.Now let us solve equation(4) for (i) case 1: n =1 and (ii) case II: n >0 

Case 1: n =1 

let dN1 / dt = 0 

=} [E1 -a N4 / {l+{N2 / N1)+{N3 / N1)}] N1 = 0 

=} E1 =a N4 N1 / { N1 + N2 + N3 } .......................................................... 5 

let dN2/ dt = 0 

=} [E~ - b N4 / {l+(N1 /N2)+{N3/NJ}] N2 = 0 

=} E2 -b N4 / {l+(N1/N2)+(N3 /NJ} = 0 

=} E2 = b N4 N2/ { N1 + N2 + N3 } .................................................... 6 

let dN3 / dt = 0 

=}[ E3 - CN4 / {l+(N1 / N3)
0 +(N2/ N3)

0
}] N3 = 0 

=>E3 = cN4 N3 / {N1 +N2 + N3} ............................................................. 7 

let 

=>[-E4 +a N1 / {l+(N2/ N1)+(N3/ N1)} + bN/ {l+(N1 I N2) +(N3/ N2)} 

+cN3 / {l+(N1 / N3)+(N2/ N3)}] N4 = 0 

=> -E4 +a N1 / {l+(N2 / N1)+(N3 / N;)} + bN/ { l+(N1 / N2) +(N3 / N2)} 
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=} -E4 +a N1 N 1 I ( N 1+ N2 +N3)+ bN2N2/ (N1 + N2+ N3)+ 

cN3 N31 {N1 + N2 + N3)=0 

=} E4 =(aN/+bN2
2+cN3

2)1{N1+N2+ N3). ......................................... 8 

Now dividing equation (5) by equation (6), we have, 

e1 I e2 = a N1 I b N2 

=} N1=e1 bN21ae2 ............................................................. 9 

Here the bold letter represents the equilibrium points of the system. 

Now again dividing equation ( 6) by equation (7), we have, 

=} N3 = e3 b N2 I ce2 ............................................................ 1 0 

Now substituing the values ofN1 and N3 from equations (9) and (10) in equation (8),we have, 

E4 = a(e1 b N2/ ae2 )
2+ bN/+c(e3 b N2/ ce2 )

2 I [(e1 b N2/ ae2 )+ N2 +(e3 b N21 ce2)] 

Therefore, from equation (9), we get, 

N1 = (e1 E4 I a) (e1 b c + ace2 +e3 ba) I ( e1
2bc + cae/ +abe/) ................. 12, 

by substituing the value ofN2 from equation (11) . 

. Similarly the value of N3 is calculated to be 

Nl = (E4e31 c) (e1 b c + ace2 +e3 ba) I ( e/bc + cae/ +abe/) ................ 13 

Now from equation( 4), 

N .. = E2{Nl+N2 +NJ} /bN2 

or, N4 = (bcE1 +acE2 +abE3) I abcor, 

or, N4 = E1 / a +E21b +E3/ c ........................................................... (14) 

case (ii) : n > 0 

Now setting equation(4) to zero, we have, 

dN11 dt= 0 
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=? [E1 -aN_. I {l+(N2 1 N1)"+(N3 1 N1)"}] N1 = 0 

=? E1 -a N4 1 {l+(N21N1)"+(N31N1)"} = 0 

=?E1 =a N4 N1°I { N1°+N2"+N3" } ........................................................ 15 

let dN2 1 dt = 0 

=? [E2 .. b N4 I {l+(N1 I N2 )"+(N31 N2)"}] N2 = 0 

=?E2 -bN4 1{l+(N11N2)"+(N31N2)"} = 0 

let dN3 1 dt = 0 

=?[E3- cN41 {l+(N11N3)"+(N2 /N3)"}] N3 = 0 

let dN4 / dt = 0 

=?[-E4 +a N 1 I {l+(N21 N.)''+{N31 N 1)"} + bN21 {1+(N11 Nz)" +(N31 N 2)"} 

+cN3I { l+(Nt I N3)n+(Nzl N3)n}] N4 = 0 

=} -E4 +a N 1 I { 1+(N2 1 N 1)
0 +(N31 N 1)"} + bN2 / { l+(N1 I N2)" +(N31 Nz)"} 

+cN31 {l+(Nt I N3)"+(N2 1 N3)"}= 0 

=? -E4 +a N1 N1n I ( N 1n+ Nz" +N3" )+ bN2 N2" I (N1" + N2n+ N3n) 

+cN3 N3" I (Nt" + N2n + N3")=0 

=} E4 =(aN1n+t +bN2n+l +cN3 n+l )I(Nt"+N2°+ N3°) .......................................... 18 

Now dividing equation (15) by equation (16), we have, 

EIIEz= aNt0 1bN2° 

=? N1 = (E1 b I aE2 )
110 N2 ............................................................. 19 
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Now again dividing equation (16) by equation (17}, we have, 

E21E3= bN2nleN3" 

==} N3=(E3biCE2}
110 N2 ............................................................ 20 

Now substituing the values ofN1 and N3 from equations (19) and (20) in equation (18),we 

have, 

E4 = a[{(El bl aE2) lin N2 }n+1 + bNt+ 1 +e{(E3 bl CE3 )1 /n N2}n+ 1] I [{(El bl aE2 )110 N2}" + 

N2" +{(E3 bl CE2)1 /n N2}n] 

=>E4 (El be + aCE2 +E3 ab) I aCE2 =bN2 {e110 E/n+l)lnb l/n +a11 "e1 1"E2 (n~l)/n 

+blln al/nE3(n+l )In} I {(ae)1/nE2 (n+l)/n} 

N2 = E 4 (El be + aCE2 +Ej ab){ (ae)J/n E2 ( n+1)/n} I (abCE2){ e1/n E1(n+l)/nb 1/n +a1/n c1/nE2 ( ne-1) In 

+b1/n al/nE3(n+1 )In} 

N:z = E 4 (El be + aeE2 +E3 ab){(ae)(l-n)/n€2 11 "} I b{(eb)11 " E/ n+l)/n 

+(a e y /n€2 (n+1)/n + (b a )llnE3(n~J )In} ......................... 21 

Nl = (E1 bl aE2 )110 E 4 (El be + aCE2 +E3 ab){(aef1·n)/n E2 l/ 0} I b{ (cb)110 El( n+l)ln 

N3 = (E3 bl CE2)11 "E 4 (El be + aeE2 +E3 ab){(ae)(l-n)/n€2 I/ n} 

I b{(eb)l/n E/n+l)/n+ (a c )lln€2 (n+l)/n+(b a )1 /nE3(n+l )/n} 

+(b a )11nE3(n+l)ln} ......................... 23 
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I (abc)O-n> ........... .24 

The equlibrium points of the system are given by equations (12}, (11}, (13}, (14) when n =1 
and by equations (22), (21), (23}, (24) when n > 0 

case- B 

Now taking the other set of equations for predatory rates k~> k2, k3 given by equation (3) the 
prey predator interaction in equation (I) gets transformed to 

dN4 1 dt = [-E4 +a N1 I {l+(N2 * N3 1 N1t} + bN2 1 {l+(N1 * N3 1 N2t} 

+cN3 1 {l+(N1 * N2 1 N3t}] N4 

25 

The equilibrium points of equation (25 ) can be worked out by setting the above equation to 

zero.But instead of solving the equation analytically, we have solved it by using BASICS 

programing. In the discussion part we have compared the results of equation (25) with that of 

equation (4).The above equations are solved by computer simulations using the Rungei-Kutta 

fourth method. 

Analysis of the equilibrium points 

The equilibrium points of the above system are given by equations (12), (11), (13}, (14} for 

N 1, N2, N3, N4 respectively for n =~ t and by equations (22}, (21 ), (23), (24) for N 1, N2, N3, N4 

respectively for n >0 for case-A 

CASE:A. 

The same kinds of equilibrium points are found here which were found in the review of two 

prey one predator model as this the extended switching functions ofTansky.The trivial point is 

(0, 0, 0, 0)~ and other points can be found out by putting any of the prey or predator species to 

zero. The local stability analysis ofQ* can be done by using the Routh-Hurwitz Criteria. This 
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can be done by expanding the equilibrium point around its neighbourhood by Taylor series 

expansion and then neglecting the higher order tenns. We know the characteristic equations for 

the matrix (A -AI ) = 0 in k- species is, 

f(A.) = .Ak+ ctlk-t +c2 lk-2+ ....................... +~ = 0 

where k is the number of species in the system, and for our system it is 4. So the eigenvalue 

equation for k = 4 is, 

f(l) = l 4 + c1 l 3 +~l2 +~l+ c4 = 0 

The Hurwitz matrix for four species is given below: 

HI =(CI), H2= jc~ IJ 
~3 c2 H3 = 

1 0 

0 0 

H= 4 cl I 0 0 

c3 c2 cl I 

Cs c4 c3 c2 

c, c6 Cs c4 

The Routh-Hurwitz conditions of stability are: 

cl > o, c3 > o, c4 >> o, c3 C1C2 > c3 +C12C4 

It is found that the system is locally stable i.e. if we disturb the system, then the system 

rebounds back to its original state. The coexisting poin satisfy the above conditions. So it is a 

stable equlibrium point. 
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Chapter-IV 

RESULTS AND DISCUSSION 

Results of the Four Species System 

(I) For cue: A (Graph No.4- 12.1) 

From the above model we observed the following points: 

I. The system always attains a equilibrium state for a particular set of parameters. 

2. When n =I or n)Q, . switching phenomena is observed. 

3. When n = 2, or n > 2, then some sort of switching property is observed but with the lapse of 

time this system leads to a stable equilibrium point. In all cases the stable equilibrium point is 

obtained. Again it is observed that the predator populations goes steadily to the coexisting point 

whereas, the prey populations after some fluctuations attains a stedy state. 

TNTERPRETATION OF THE GRAPH (No 4 .) 

In the begining of the graph it is observed that the predator takes N2, N3 species frequently and 

1 ~ . neglects the N1 species. After some time, when N2, N3 become less the predator takes the N1 

species. From the graphs it is found that the predator population falls first which may be due to 

the insufficient number of prey species. At t =l(sec}, the predator population becomes maximum. 

So it starts eating the prey species. After sometime it is found that the stable equilibrium is 

reached among the four species. So it is concludede that the steady state point is attained for the 

four species system. 

Case-D (Ggraph No. 13.0- 19.2) 

The second case switching functions are only introduced in the model. We have only studied it's 

behaviour by numerical analysis in computer by using the Runge-Kutta fourth order method. Here 

we have observed two types of graphs. In one type of graphs, we found that the system leads to 

the stable equilibrium point as found in the case-A In other types of graphs it is observed that 
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there is oscillatory type of behaviour. So it is concluded from this graphs that the oscillatory type 

of curves says about the existence of switcing of predator in the system. So this case includes both 

the stable equilibrium and oscillatory types of solutions. 

INTERPRETATION OF THE GRAPH (Graph No. l3 & 17) 

There are two types of graphs observed in this case. Some graphs show that there is a stable 

equilibrium point like the previous one (case :A). Some graphs show the oscillatory type of 

behaviours persists in the system. The graphs 10, 11, 12 give one kind of observation. Here the 

curves are that of case I where after certain time of predation, the prey-predator steady state is 

arrived. So the system behaves like the stable one. The graphs 13, 14, 15, 16 give another kind of 

results. Here the oscillatory type of behaviour of prey predator populations with time is observed. 

Again after some fluctuations, the system leads to a oscillatory type of solutions. So these graphs 

give the information about the oscillatory behaviour of the system. In this case we have always 

taken 0 < n < 1 for our convenience. 
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The equations of Case-A are as follows: 

' 
dN3 1 dt = [ E 3 - cN4 1 {l+(N1 I N3t+(N21 N3t}] N3 

The equilibirium points are : 

+(a C )l I o€
2 

( n+l)l n +(b a )I In €
3
( o+l )In } 

Nl = E 4 (EI be + ace2 +e3 ab){ (ac)<I -o)ln€2 I I o} I b{(cb)llo EI(o+t)lo 

+(a C )1/n€
2 

(n+l)ln + (b a )lin E
3
(n+l )In} 
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Table- I :Different sets of parameter for the prey and predator equations (Case A) 

Set N1(o) N2(o) N3(o) N.(o) €1 €2 €3 e. a b c n Fig. No. 

1st 14 15 27 35 6 3 5 25 1.4 2 1.2 1 .. 4& 4.1 

2nd 10 15 27 35 6 7 8 39 1.9 1.6 1 3 5 & 5.1 

3rd 10 IS 27 35 2 3 4 40 1.9 1.6 1.1 2 6& 6.1 

4th 14 15 17 35 4 1.6 1.7 15 1.4 1 1.2 2 7 & 7.I 

5th 14 15 17 35 4 1.6 1.7 IS 1.4 1 1.2 1 8& 8.1 

6th 11 10 11 32 3.5 2 1.8 15 1.1 1.2 1.1 3 9 & 9.1 

7th 13 12 14 38 5.9 3.9 2.9 5 ... 1.2 1.2 1.2 2 10& lO.l 

8th 13 12 14 38 7.92 3.9 5.9 7.5 1.2 1.2 1.2 2 11 & 11.1 

9th 12 10 11 32 4.1 4.9 5.1 7.5 1 1.2 1.1 I 12 & 12.1 
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The equations of Cas;e-B are as follows: 

dN1 I dt == [ E1 -a N.~1i {l+CN .. .:/* Nl/N1) .. l N1 

dNzl dt == (E2 -bN4 / {,ll+(N1 ·~INJn}] N2 

dN3 / dt == [ E3 - eN/ f3H:(l:i{1•N;!/ N3t}] N3 

dN4 / dt == [-E4 +a N1 I ~lr((N~ * N3 / N1t} + bN2 / { l+(NJ * N,.f N2t} 

~I {1+(N 1 * N2 1 N3)"}] N4 
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Table-2:Different sets of parameter for the prey and predator equations (Case B) 

Set N1(o) N2(o) Nlo) N~(o) Et €2 €3 €4 a b c n Fig. No. ~ 
1st 70 80 60 100 0.15 0.12 0.3 1.2 0.02 0.01 0.03 0.5 13 & 13.1 

2nd 50 60 40 70 0.14 0.09 0.28 0.3 0.019 0.008 0.02 0.7 14, 14.1 & 14.2 

3rd 50 60 40 80 0.14 0.09 0.28 1.1 0.019 0.008 0.02 0.4 15&15.1 

4th 90 80 100 130 0.19 0.16 0.35 1.7 0.03 0.02 0.04 0.5 16, 16.1, 16.2, 16.3 & 16.4 

5th 540 544 535 580 0.19 0.07 0.25 0.5 0.012 0.004 0.019 0.7 17, 17.1 & 17.2 

6th 600 610 590 650 0.19 0.09 0.28 1.2 0.019 0.005 0.02 0.5 18, 18.1 & 18.2 

7th 35 34 36 84 0.1 0.04 0.13 0.3 0.013 0.002 0.011 0.6 19, 19.1 & 19.2 
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SUMMARY AND CONCLUSION 

Switching is a mechanism by which the predator diverts it's attention to the most abundant prey 

species. We have studied the switching behaviour of the predator in the four species system. First 

we observed the behaviour of the prey predator population with time in three species system and 

found that the system always attains a stable coexisting state. Then we extended this switching 
' 

mechanisms to the four species by adding another prey into the system. In the four species system, 

two cases of switching functions were found to be possible. In case-A the switching functions 

were the extended switching functions ofT an sky( 1978). So the same type of stable equilibrium 

state was observed. In the case-B, we introduced another possible switching terms to study the 

prey · predator model. These switching terms give the idea of existence of both stable and 

oscillatory type of solutions. The casc-B is studied only by computer simulations. Here we have 

taken different values of n and according to theory, the switching becomes sharper with increasing 

the value of n. It is also shown in some graphs . We have only taken n from 0.1 to 3 for our 

convenience. It can take any value from·l to infinity, but not zero. Some further works may be 

done on this in near future to study its behaviour for larger values of n. 

Switching is a mechanism by which the proper balance is maintained in the ecosystem. For any 

ecosystem, predation is necessary. In the absence of predators, the prey species may grow like the 

Malthusian one. The switching phenomena is observed easily in the case-B of four species model 

which is discussed. This model can be extended to inter- and intra- specific competitions. So some 

other behaviours may be studied in near future. 
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APPENDIX-I 

Suppose multispecies population dynamics are given by a set of m equations. 

dNJ dt = Fi ( N.(t), N2 (t), ... ,Nm(t)) .......................................................... (1) 

where i = 1 to m 

Here the gro~h rate of ith species at time t is given by some non-linear function Fi of all relevant 

interacting populations. The equilibrium populations N" are obtained from m algebric equations 

obtained by putting all growth rates zero. 

Fi (N~> N2, ••••••• , Nm) = 0 .................................................... (2) 

Expanding about this equilibrium, for each population we write 

Ni(t) = N, + Xj (t) .............................................................. (3) 

Wliere Xj measures the small perturbation to the ith population. Taylor's expansion of each of the 

basic equations (I) around this equilibrium and discarding all second or higher order terms, a 

linearised approximation is obtained 

m 

dXj(t)ldt=[avX;<t> ............................................................................. (4) 

j = 1 

This set m equations describe the population dynamics in the neighbourhood of the equilibrium 

point. Equilivalently, we may write, in matrix notation.Here x(t) ism x 1 column matrix ofXj and 

m x m "community matrix " whose dx(t) I dt =Ax (t) ............................... (5) 
., 

elements Cljj describe the effect of species j in species i near equilibrium. The elements Cljj depend 

upon the details of the original equations ( 1) and on value of equilibrium populations, according 

-to recipe 

av =(aFJaNj) ....................................................... (6) 

The partial derivatives are evaluated at equilibrium values of all populations. For the set of linear 

equations (5) the solutation may be written 

m 

Xj(t) = I cij exp (Ajt) .......... : ................................... (7) 

j = 1 
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where cu are constant which depend upon initial values of perturbations to the populations and 

the time dependance is contained soley in m exponential factors. Them constants Aj (j = 1,2, .. ,m) 

which characterise the temporal behaviour of the system are so called eigm values of matrix A. 

They are found substituing (7) into (5) to get 

m 

AXg (z) = L av ~ (t) ...................................................... (8) 

j=l 

or in more compact form 

(A- AI) X (t) = 0 ............................. ······· ...... (9) 

Here I is m x m unit matrix of equations possesses a non-trivial solutation if and only if the deter 

minant vanishes: 

det. ( A - AI) = 0 

This is in effect mth order polynomial equation in· A of matrx A. They may in general be como lex 

numbers, ). = ( + i ~ ~ in any of the terms of equation. the real part ( produces sinusoidal 

oscillations. It is clear that perturbation to the equilibrium populations will die away in time if and 

only if, all eigenvalues A have negative real parts. If any one of eigenvalues has a positive real 

part, that exponential factor will grow ever larger as time goes on, and consequently the 

equilibrium is unstable. The special case of neutral equilibrium is obtained if one or more 

eigenvalues are purely imaginary numbers and rest have negative real parts. 

Routh-Horwitz stability criteria 

The equation of polynomial of). is 

The necessary and sufficient condition for all roots of above polynomial to be negative is 

that the coefficients ct> ~ •.... ,em must fulfill the Routh-Hurwitz stability conditions. The 

conditions form= 2, 3, 4 are 

m = 2 c1 > 0, c2 > 0 

c1 > 0, c3 > 0, c1c2 > 0 m=3 

m=4 c1 > 0, c3 > 0, c4 > > 0, c1~c3 > ~ 2 + c/c4 
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APPENDIX-ll: DISCUSSION ON SWITCHING IN MATHEMATICAL MODELS 

Here we shall give brief discussion on the swiching property of predation. Let us consider the 

average numbers of individuals of two prey species captured by a predator per unit time and 

denote them as 

' 
X(x,y) = k1 (x,y)x, Y(x,y) = k2 (x,y)y, 

The predation rates are given by k1 (x,y) = k~> k2(x,y) = k2, k2 (x,y) = k2 in the classical Volterra 

equation and k1 (x,y) = k1 xI (x + y), k2 (x,y) = k2 y I (x + y) in the present model. Here, as a 

definition of switching, we assume the conditions 

aliJx * kl (x,y) > 0, 

oliJx * k2 (x,y) < 0, 

alay * kl (x,y) < 0 

a1ay * k2 (x,y) > o 

For x greater than equal to 0 and y greater than equal to 0 . 

The funtions adopted in our model really satisfy these conditions. 
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DECLARE SUB gunc2 (x!()f nn!, f!()) 
SCREEN 9 
CLS 
nn = 4 
DIM xO(nn) 
DIM z(nn), x(nn), k1(nn), k2(nn), k3(nn), k4(nn), f(nn) 
OPEN "pb1" FOR OUTPUT AS #1 
OPEN "pb2" FOR OUTPUT AS #2 
OPEN "pb3" FOR OUTPUT AS #3 
OPEN "pb4" FOR OUTPUT AS #4 
READ h, tin, tend, hprint 
DATA .1,0,250,.1 
FOR I = 1 TO nn 
READ xO(I) 
NEXT 
DATA 12,10,11,32 
e1 = 4.1 
e2 = 4.9 
e3 = 5.1 
e4 = 7.5 
a a = 1 
bb = 1.2 
cc = 1.1 
n = 1 
j = 0 
'VIEW 
WINDOW (O,O, 0)-(tend, 245) 
FOR I = 1 TO nn 
z(I) = xO(I) 
NEXT 
tout = tin 

250 'output from subprogram comes here 
10 j = j + 1 

'plotting done here 
'print z(1), z(2),z(3), z(4) 
tp = tout 
xp = z(l) 
yp = z(2) 
zp = z(3) 
wp = z(4) 
PRINT #1, told, xp 
PRINT #2, told, yp 
PRINT #3, told, zp 
PRINT #4, told, wp 
IF j = 1 THEN 15 
LINE (told, xo)-(tp, xp) 
LINE (told, yo)-(tp, yp) 
LINE (told, zo)-(tp, zp) 
LINE (told, wo)-(tp, wp) 

15 told = tp 
XO = xp 
yo = yp 
zo = zp 
wo = wp 
IF tout < tend THEN GOTO 20 
'circle()OOOOOOOO 

STOP 
20 t = tout 

tout = tout + hprint 
25 FOR I = 1 TO nn 

xO(I) = z(I) 
NEXT 
CALL gunc2(xO(), nn, f()) 

30 FOR I = 1 TO nn 



kl(I) = h * f{I) 
NEXT 
FOR I = 1 TO nn 
x(I) = z(I) + k1(I) 1 2 
NEXT 
CALL gunc2(x(), nn, f()) 
FOR I = 1 TO nn 
k2(I) = h * f(I) 
NEXT 
FOR I = 1 TO nn 
x(I) = z(I) + k2(I) 1 2 
NEXT 
CALL gunc2(x(), nn, f()) 
FOR I = 1 TO nn 
k3(I) = h ~ f(I) 
NEXT 
FOR I == 1 TO nn 
x(I) = z(I) + k3(I) 
NEXT 
CALL gunc2(x(), nn, f()) 
FOR I = 1 TO nn 
k4(I) = h * f(I) 
NEXT 
FOR I = 1 TO nn 
x(I) = z(I) + (kl(I) + 2 * k2(I) + 2 * k3(I) + k4(I)) I 6 
NEXT 
FOR I = 1 TO nn 
Z(I) = x(I) 
NEXT 
GOTO 10 
STOP 
END 

SUB gunc2 (X(), nn, f()) STATIC 
SHARED h, s, el, e2, e3, e4, aa, bb, cc, n 
f(l) = x(1) * e1 - aa * x(l) * x(4) I 
(1 + (x(2) 1 x(l)) A n + (x(J) 1 x(1)) A n) 
f(2) = x(2) * e2 - bb * x(2) * x(4) I 
(1 + (x(1) 1 x(2)) An+ (x(J) 1 x(2)) A n) 
f(3) = x(3) * e3 - cc * x(J) * x(4) I 
(1 + (x(1) 1 x(J)) A n + (x(2) 1 x(J)) A n) 
f(4) = -x(4) • e4 + aa * x(l) * x(4) 1 (1 + (x(2) I x(1)) An+ 
(x(3) 1 x(l)) A n) + bb * x(2) * x(4) 1 (1 + (x(1) I x(2)) A n + 
(x(J) 1 x(2)) An) + cc * x(J) * x(4) 1 (1 + (x(1) I x(J)) An+ 
(x(2) I x(J)) A n) 
'PRINT e1, e2, e3, aa, bb, n 
'INPUT"", hjk 
END SUB 
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