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PREFACE

The pfoblem of netted radar system arises when the
search and tracking are performed by using measurments
obtained from two or more spatially separated radar sets»
having overlapping coverages. Netting allows search for and
track of targets over an area wider than the coverage of each
individual sensor. It generally implies the:conveying of data
provided by different radar systems,’to a main site. Here, a
single data processor correctly combines the target reports
and establishes target tracks which are of higher quality
then those formed from a single radar. The inherent
redundancy of multiple radars results in a high overall
reliability and allows achievements of some reconfiguration
capability of one or more of the radaré. These advantages are
obtained at the expense of spatial and time alignment of
radérs and more extensive compufer resources and
communication facilities. In the recent years, the increasing
sophistication of distributed target- detection and tracking
system has generated a great deal of interest in aevolopment
of new computational structures and strategiés. The design of
such spatially distributed systems involves the integration
of solutions obtained by solving subproblems in data
association, hypothesis testing, data fusion etc. Multisensor
integration and fusion of information requires techniques to
abstractly represent and integrate sensor information.

In this dissertation, we have tried to elaborate the



concept of coordinate transforhation, registration errors,
association of data having attributeé and data fusion in the
case of MRT system. Then a Blackboard architecture is
proposed for data fusion.

Chapter 1 of this report describes the problem with a
single sensor (Radar) tracking and then gives an introduction
to multisehsor (Multiradar) tracking.-

Chapter 2 describes the algorithm for coordinate
transformation.

Chapter 3 defines the registration problem in terms of
source of registration error and their subsequent implication
on mulisensor tracking; and offers a 'solution to the
registration problem.

Chapter 4 discusses the applicationfBayesian and
Dempster-Shafer method to the fusion of multisensor
attributes and target information.

Chapter 5 discusses the two level data fusion model;
three reasoning classes for data fusion and memory elements
required to store the}information.

Analysis of real time or time critical processing,
parallelization, object oriented appfoaches,;storage and
search problems, knowledge representation issues and spatial,
hierarchical and temporal reasoning has lead us to the

postulation of the "ideal" Black Board system architecture,

which is described in chapter six.



CHAPTER 1



INTRODUCTION

Single sensor systems have been studied for a long time.
The motivation for this was their requirements in
applications requiring detection and tracking of targets
using a single sensor such as a radar or sonar. Despite two
or more decades of intense research in the development of
sensors and of diverse sorts of senso}y information no single
sensor can guarantee to deliver accurate information all of
the time. This is because of two main reasons:
1. Associated with any sensor is a set of 1limits that

define its useful operating range.

2. Any éensor signal is inevitably corrupted by noise.

Because of these reasons the data collected by the
sensor can be incorrect. To ensure corréct inferences by the
program that interpret the sensof data, the sensor must be
made fault tolerant. Single sensor systems.can be made fault
tolerant in two ways
1. Based on the sensor’s specification the sensor output

can be ignored if it is unrealistic.
2. The sensor can be replicated physically or logicaly so
that when one sensor fails another sensor can take

over.

The first method can be used in situations in which time

is not a critical factor. - The second method is a trivial
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instance of a distributed sensor network, and has been used
to monitor temperature in nuclear reactor vessels. .pa
Even though we can make a single sensor system more
reliable using the above two techniques, these syétems can be
used in limited‘applications. This is because
1. Every.sensor has a limited space. Hence any single
sensor cannot sense the complete'phenoﬁena that must bé
monitored.
2. Some applications require that the observétions be

taken from different point of view.

Because of the limitations of single sensor systems and
increasing fault tolerance requirements of today’s
applications, single sensor systems‘are being replaced by

distributed sensor networks.

1.1 Multi-Sensor Tracking

A Multisensor tracking consists of units with'sensing,
computational and communicational ability that are physically
distributed. Here signals from several-sensorsAare combined
to derive a more acurate and reliable value of the phenomena
that the sensors are monitoring. The MRT problem is a
subclass problem of MST.

The interaction of many radars, display systems and
communication links-toéether with command and control systems
requires the aid of computers because of the abundance of

information to be handled. Computers are sited esentially in
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the main centre, and sometimes at the radar sites, of in the
display system and in the command and control area. As a
consequence, a radar network 1implies a computer network
which ensures performance of data processing, organisation of
information display (as a necessary frerequisite for taking

deciéions) and, finally, communication between the different

system components. -

1.2 Advantages of MRT :

MRT has a'number of advantages over a monoradar syétem,

namely:

- performance of target advantages anq_tracking over an
area wider than the coverage of each individual radar.

- reduction of coverage gaps especially at low altitude.

- early initiation of new tracks.

- track continuity during the hana-over of a.target
between two adjacent radars.

- more precise estimation of the track parameters (due to
a higher data rate) than with a single radar.

- lower probability of false correlation in the areas
affected by clutter owing to smaller dimensions of the
correlation gate.

- higher detection opportunities in the overlapping

areas.

~ reduced vulnerability to clutter and/or jamming effects
because of the different siting and sensor

characteristics.

- reduced occurrence of targets having blind speed or



range as a result of different waveforms, procesfsing
. /

parameters and siting of the netted radars.

- ability to evaluate target altitude through

triangulation.

- capability of estimating the total velocity V\ector from
independent radial speed measurements.

- capability of system reconfiguration in the c&we of

- I 1
-

failure of one or more radars.

-

. . &
- reduced human intervention in supporting data p:lscessing
f
(e.g. track initiation and track validation owiing to the

improved performance and reliability of the sy stem).

Bl

1.3 LEVEL OF DATA ASSOCIATION :

In a multiple-sensor tracking system the, f{rst major

conceptual issue is to define the level at whic¢fh data will be
combined into tracks. The choice are sensor 0Ojr central-level

tracking or some combination of both.

1.3.1 SENSOR LEVEL TRACKING :

The first.alternative, illustrated in frig 2 , is to have
each sensor maintain its own track file. V%e track in these
sensor track files would be establishgd primarily upon
measurements received from the individuafj sensor, but some
communication among the sensors and betw}een the sensors and
the central track file may be used to ﬁpdate sensor-level
track file. However, the sensor-level tixacks must eventually

N

be combined into a central track fiLéo Thus, under this

e



(sensor-level) approach each sensor would have separate track
file and central track file would be formed as a composite.

Point cited in favor of sensor-level tracging are
reduced data-bus loading, reduced computational loading (in
any single processor), and higher survivability due to
distributed tracking capability. Certain computational
advantages may result from parallel processing that is
possible usiﬁg the sensor-level track approach. Also, if one
sensor becomes degraded, itsAobservation will nét affect the
sensor-level tracks of the other sensors. F%nally, the use of
sensor-level tracking allows for filterAdesign that 1is
specifically tailored to the individual sensors.

If sensor—lejel tracks are maintained, they must be
combined at some point if significant benefit is to be
derived from the multisensor fusion approach. The résult is
central-level track that are updated with sensor-level track
data, instead of with sensor report data..Several problem
arise. First, if a éentral—levei track is updated with a
sensor—level-track, the usual assumption (valid for the case
of raw measurements with uncorrelated measuremehts error) of
error independence from one updaté period to another is not
valid. This can be taken into account in tﬁé processing, but
it forces additional complexity. Second, less accurate
tracking and correlation are to be expected if indepedent
sensor-level tracké are maintained. For example, there will
be a higher probability of false correlation in areas

affected by clutter because the gate sizes will be larger due
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to less_frequént track updates. Finaily, ifithe multiple
hypothesis tracking approach is taken at the central level,
when sensor-level tracks are combined, it would also be
. desirable that this approach be taken at the sensor level as
well. However, the maintenance of a single hypotheses tree
at a central level 1is simpler than the maintenance of amany
hypotheses at each sensor as well as additional hypotheses at

the central level to combine the sensor-level tracks.

1.3.2 CENTRAL LEVEL TRACKING :

The alternative to maintaining sensor-level tracks is
for all report data to be sent directly to a central
processor where a master file is maintained. This approach,
illustrated in Fig. 3 , also has a numbér of advantages.
First, more accurate tracking should'be possible if all data
are processed at the‘same place. A target track that consists
of observations from more than one sensor should be more
accurate than the tracks which could be established on the
partial data received by the individual sensors.

Thus,-the central processing track approach should lead
to fewer miscorrelations. Second, by processing sensor
reports directly, the difficulties associated with combining
sensor-level tracks are avoided. These dificulties include
éorrelating sensor-level tracks are determining an efficient
scheme for combining.these tracks. Track:confirmation and
continuity should aléo be improvéd with central-level

tracking.



The quious sensors will under different circumstances,
have varying ability to confirm and sustain a track. Thus, by
using detections from all sensors for each track, the
probability of confirming and sustaining a track can be
improved over that for a single sensor. For example, in a
system with radar and an infrared (IR) sensor. IR detections
can maintain a track that might ﬁtherwise'be lost during a
fade in the radar return due to radar cross section
scintillation. Also, various sensors can be used.
synergistically, for example, as the radar provides range and
range rate while the IR provides more accurate angle
measurements. F}nally, the approach whereby all data are sent
directly té central processor should, in principle, lead to
faster, more efficient computation. The overall time required
to develop sensor-level tracks and then to combine these
tracks is generally greater than the time required for
central-level processing of all data at once.

There can, howeﬁer, Ee a‘major drawback if pure
central-level tracking is used. This.problem occurs when the
data from one sensor can become degraded and thus lead to
poor central-level tracking. In this case, the possible
combination of good data from undegraded sensor with bad
data, in effect, will negate the value of the good data.
However, if sensor-level tracks are maintained, the good
sensor-level tracks will not be corrupted by the bad data.
Then, when .the sensor with the poor data is finally
recognized , the central-level gracks can be .formed using

only sensor-level tracks for undegrated tracks.

10



1.4 FUNCTIONS PERFOMED IN CENTRAL LEVEL

At the central traéking processor, the plots from the

multiple fadars are used to update existing system tracks or

initiate the new tracks as appropriate. Specifically, the

central tracking processor must perform the following five

functions : - .

1.

Transformation of the plots from local radar coordinates
to system coordinates, which wusually are Cartesian

coordinates in 3-d space. |

Correlation or association of radar plots with the
appropriate system tracks. (Note that, because there are
multiple radars in the system, more than one plot may
correlate_ with the same track over a nonzero time

interval).

Initigtion of hew tracks with the uncorrelated plots and
rejection of clutter plots. (Note, again, that this is
not a -straightforward task as there are - no simple
criteria with which wvalid aircraft detection can be
distinguished from clutter return). | ‘

Tracks filtering (or updating'with correlated plots) and
track prediction. '

Track monitoring and system track management (including

association with tracks from external sources).

11
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CO-ORDINATE TRANSFORMATION

The problem of co—ordinate transformation is a direct
consequence of the control of a wide porﬁion of airspace at a
single facility on the basis of data acquired from a
multiple-radar tracking network. The plots, reported by each
radar have to be reffered to a common co-ordinate reference
system. The measurements of target slant range, azimuth and
altitude (or elevation angle') available at each radar site
are transformed into a point of a common cartesian plane. On
this plane, the air picture detected by the netted radar
system is represented. The spatial congruence between plots,
.tracks and topological maps should be maintained in all the
different co—ofdinate.systems.

The coordinate conversion is achieved by generating a
set of transformation equations that can be maé any point in
the frame of reference of the radar onto the frame of
reference of the CRC. With the locations of the radar and CRC
known in terms of their latitude and longitude, the
respective 3d X—Y—Z.coo:dinates with reference to the earth’s
centre (the absolute reference ) are found using equation 1,2
and 3 |

ZR =R .. sin (latitude) , .o 1

YR =R . cos (latitude) . sin (longitude) and .. 2

XR = R . cos (latitude) . cos (lonitude) .. 3

XR, YR énd ZR so obtained also form the direction ratios
of the ncrmal to the plane tangential to the eafth’s surface

at the radar location under consideration

13
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In the next step, transformation equations for each
radar are found. These transformation equations.can.be used
to map any point in the absolute reference frame onto that of
a radar. To achieve this, the radar’s frame of reference
needs to be defined in that of the absolute one. The origin
is kept as the radar location itself. The new ’'X’ and 'Y’
axis, shall be in the direction BAST—WBST and NORTH-SOUTH of
the radar, respectively. The ’Z’ axis shall point towards the
zenith that is the extension of the line jq;nihg the earth’s
centre and the radar location point’ (new origin), with its
portion above the earth surface being the positive region
and that inside earth the negative one .

Next we express these planes in,proéer equatipns that
represent them in the absolute coordinate reference. The
general equation of a plane in the 3d_coordinate system is

A.X + B.Y +C.2+D=0 ..o 4
where A, B, ahd C are the direction ratios of the
normal to the plane.

Thus , if (XR, YR, ZR) represents the location of radar,
the direction ratios A, B and C for the new Z axis (or the

X-Y plane ) shall be

AZ = XR -0 = XR .. 5
BZ = YR -0 = YR and, .. 6
CZ = ZR - 0 = ZR oo 7

Subs;ituting for AZ, BZ and CZ and knowing that (XR, YR,
ZR) is a point on it, the value of DZ is computed as

DZ = - ( AZ .XR + BZ . YR + CZ . ZR)

14



- ( XR . XR + YR . YR + ZR . ZR)

]

= - R? | . .. 8
Therefore equation of plane is :
AZ . X +BZ .Y +C2.2+DZ = 0
i.e., XR . X+4YR .Y+C2Z.2~-R.R= 0 ..29
Similarly, the ‘Y’ axis shall be the line joining
(XR, YR, ZR) and the point of intersection of the axis of
rotation with a plane tangential to.the earth’s surface at
.the radar location. Qsing equation 9 thé location of such a
point (0,0,2N), where_ZN = R*R /ZR, can be found . The
direction ratios A, B and C for the ne& Y axis (or the Z-X

plane) and the corressponding D shall be

AY = XR - 0, " _ L. 10
BY = YR -0, .. 11
CY = ZR - ZN and .12
DY = - (AY . XR + BY . YR + CY . ZR)
= - (XR . XR + YR . YR + (ZR - 2ZN) . ZR)
= - R® + ZN*ZR
= - R? + R?
=0 B .. 13

The ’'X’ "axis of the new coordinate reference shall be in
the direction EAST-WEST of the radar location. However,
unlike in case of other two axes, no point other than the
radér location itself, is known-on this ‘axis. Hence, 'X’
axis being perpendiéular to both vY’ and "Z’ axis, the
‘computation of vector product of their equatioh has been

‘resorted to. Consequently, for ’'X’ axis A, B, C and D are

15



found as -

AX =BY . Cz - B2 . CY, .. 14
BX =CY .AZ - CZ . AY, - .. 15

CX =AY . BZ - AZ . BY and | .. 16
DX = - (AX.XR + BY.YR + CX.ZR) .. 17

With this, we complete the defining of new coordinate
reference at the radar location. In order to map a point from
the absolute frame to this new frame one needs to compute the
distance of that ﬁoint from the three planes. A general

formula for computing the distance ‘D, ’ of a point'(xo Yo

,Zo) from a plane
(A .X+B.Y+C.2+D=20) is
) | A, X. +B .Y . +C .Z. +D | .
Do = | ————= 9 _______ 9 _______ 9 ————— | .. 18

The ’absolute function ’ used in this formula is only to
signify the absurdity of negaﬁive'distanceé.'However, in the
current context a negative values refers to the negative
domain of the coordinate axis. The absolute function, must
therefore be drdpped. The coordinate transformation

equations, as a result, look like

in * *in * “in
out .. 19

out

out (AZ2 + BZ2 + CZ2)1/2

16



Suffices in and out refer to input and output parameters
respectively. The transformation equations 19, 20 and 21 can
be used to transform any point in the absolute frame of
reference.ohto that of the radar. -We, however, required
coordinate mapping from each radar to the CRC. To achieve
this, a CRC location reference is to be first defined. After
its location cartesian coordinates are khown, they are mapped
onto the radar’s reference frame using the above equations.
The other two points namely and for the.CRC location are
also similarly mapped. As was shown earlier, these three
points could now be used to define the CRC’s coordinate framé
in that or the radar’s and the transformation equations
derived. With location of radars and CRC known, the
conversion coefficients can be calculated offline resulting
in a reduc¢tion in computational load in the real time

process. The equations 19, 20 and 21 can be expressed as

. - - r = ! & -
rOx‘ ] Txx Txy  Txz Ix [ Ry
Oy | = | Tyx Tyy Tyz 1 Iy * Ry
Oz Tzx  Tzy Tzz Iz Ry
- . - - S - e
Or O0=T*1I+R | ..o21
Where
(o) is the ohtput (transformed) coordinates vector
T is the transformation coefficients matrix -
I  is the input (untransformed) coordinates vector
and R is the radar’s location coordinates vector

17



To summarise , the various steps involved are :

.

Non real time :-

Find the location cartesian coordinates of each radar

1.

2.

and the CRC from the respective latitude and 1longitude

and the radius of the earth.

For each radar location proceed as follows :

2.

2

1

.2

.4

.7

Designate the radar’s location as the new origin.
Get a point (0,0,2N) in the plane of the radar and
intersecting the 2 axis of the absolute reference.
Compute the direction ratios for the directions
(a) ZENITH (Z) - Using the centre of earth ,

(b) NORTH - (Y) - Usin the point (O;O,ZN) and

(c) EAST  (X) - By the vector product .

Use these direction ratios and the origin to get

the equations of the three planes that forms the
new frame of reference.

Get the transformation coefficients to map any
point in the absolute reference onto the radar’s
reference.

Using these coefficients in the distance formula to
map the location of CRC centre of earth and
the point (0,0,2ZN) in plane of CRC, onto the new
reference frame atrthe rédar location.

Designate the CRC location as the new origin and
compute the direction ratios of the directions

ZENITH, NORTH and EAST.

18



2.8 Use the equations of planes that forms the CRC’s
coordinate system.
- 2.9 Get the transformation coefficients and store

them for ready use.

Real time :-

On receipt of the coordinates, find the new
transformed coordinates using the pre-computed
transformation coefficients and the incoming coordinates
using equations 18, 19 and 20.

The above coordinate transformation method perform
significantly less processing in real time while meeting the
accuracy requirements as well. Also it is best suited for
three dimensional radars. For 2D radars where the height
component is not available 2,/ may eithef be kept zero or a
default value of height chosen. The inaccuracy so introduced

shall not be significant.
ALGORITHM FOR COORDINATE CONVERSION

Input for Initiation

Latitude and lagnitude from each radar location
Input for processing :

Plots fqr coordiﬁate transfer from absolute frame of

referance to central referance coordinate system

19



Algorithm :
locatian = record
X,¥,2 ¢ real ;
end;
loc : arfay [(1..n) of location;
® d ratio_1, d_ratio 2, d_ratio_3 :array [1..3.] of real;

con_d tarray [1..3] of real;

for i=1 to n do
begin

getloc(lat, long);

loc[i]l.x := R * cos(lat) * cos(long);
loc[i].y := R * cos(lat) * sin(long);
loc[i].z := R * sin(lat);

end;
getlocCRC(lat, long);

crc.Xx := R * cos(lat) * cos (long);

crc.y := R * cos{(lat) * sin(long):;
crc.z := R * sin(lat);

Zn := (R * R)/loc[i]l.z ;

point.x := point.y := 0;

point.z := Zn ;.

d ratio 3[1] loc[i}.x ;

d ratio 3[2] loc(i).y -

d ratioc_3([3] loclil.z ;
con_d{3] i= - R *R;

loc[i].x ;

d ratio 2[1]

20



d_ratio 2[1) locii].y ;

loc[i]l.z - Zn ;

d ratio 2([1]
con_d[2] =0 ;

:= loc(i).y * Zn ;

"

d_ratio 1[1]

d ratio 1(1] - 2n * loc(i].x ;
d ratio 1(1] := 0;
, con_d[i] = 0
dl := sqrt(sqr(d ratio 1[1]) + sqr(d ratio_1(2]) + sqr(d_ratio 1(3];
d2 := sqrt(sqr(d_ratio 2[1])) + sqr(d_ratio 2([2]) + sqr(d_ratio_2(3],
d3 := sqrt(sqr(d_ratio 3(1]) + sqr(d_ratio;3[2]) + sqr(d_ratio_3([3];
for 3:=1 to 3 do '

begin

d_ratio 1[3] d ratio 1(j)/dl ;

d ratio_2(3]) d ratio_2(3l1/d2 ;

d ratio 3-{3j] d ratio_3([3j}/d3 ;

end;

con _d[1l] := con_dfl] / dl ;
con d[2] := con_d[2i / d2 ;
con_d[3] := con_d[3) / d3 ;

store_trans_from abs_to radar (i,d ratio_l, d ratio 2, d ratio 3,
Crc.x := crc.x * X[(1] + crc.y * X[2] + crcpz * X[3) ;
origin.k := origin.x * X[1] + origin.y * X[2] + origin.z * X[3] ;
point.x := 0 * X[1] + 0 * X[2] + (R*R)/crc.z TAX[3] ;

Y[(1] := crc.x - point.x ;

Y[2] := crc:y - point.y ;

Y{3] := crc.z - poipt.z ;

D[(2) := -( Y[1) * crc.x + Y[2]) * crc.y + Y[3] * crc.;) ;

Z[1l]) := crc.x - origin.x ;

&
21




Z(2) := crc.y - origin.y ;

Z2({3)] := crc.z - origin.z ;
D(3] := -( 2[{1) * crc.x + Z2[2]) * crc.y + Z[3]) * crc.z) ;
X(1) := Y([2] * 2[3) - 2(2] * Y[3];

X[(2] := Y[3] * 2(1] = 2[3] * Y[1];

X[3) := Y(1] * 2[2] - Z2[1] * Y[2);

D[1] := -( X[1] * crc.x + X[2] * crc.y + X[3] * crc.z) ;
el := sqrt(sqr(X[1]) + sqr(X[(2]) + sqr(X[3])):;

e2 := sqrt(sqr(Y([1l]) + sqr(Y[Zlf + sqr(Y([(3]));

e3 := sqrt(sqr(z(1]) + sqr(z(2]) + sqr(z(3]));
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for j := 1 to 3 do

begin
X[3] := X{3) / el ;
Y(3] := Y[]] /e2.;
2(3] :=-2(3] /e3 ;

end ;

D[(1] := D[1] /el ;

D[2] := D[2] /e2 ;

D[3]) :=D[3] /e3 ;

store_trans_from radar_to_crc (i,X, Y¥,Z, D) ;

end.

Run time :-
for ( radar i ) do
if input plot is in loc _plot then

begin

Plot trans_from abs_to radar ( i, loc_plot ) ;

Plot trans_from abs_to radar ( i, Plot )

end ;

‘procedure trans_from abs to_radar (i, Plot)
begin

retreive from abs to_frame (i, X, Y, Z, D) ;

out[1] := X[1] * Plot[1] + X[2] * Plot[2] + X[3] * Plot(3] + D[s];
out[2] := Y[1] * Plot[1l] + Y([2] * Plot[2] + Y[3] * Plot(3] + DI[3};
out[3] := Z[1] * Plot([l] + Z[2] * Plot[2] + Z[3] * Plot(3] + D[,

return (out) ;

end ;
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procedure trans_from_radar_to_crc (i, Plot)
begin

retreive from radar to_crc (i, X, Y, 2, D) ;

out[1l] := X[1] * Plot{1l] + X[2] * Plot[2] + X[3] * Plot(3] + D[1],
out (2] := f[l] * Plot[1l] + Y[2] * Plot[2] + Y[3] * Plot(3] + D[2],
out (3] := 2[1] * Plot(l] + Z[2] * Plot[2] + Z2[3] * Plot(3) + D[3];

return (out) .;

end.
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REGISTRATION ERRORS

3.1 THE RADAR REGISTRATION PROBLEM

In case of Multi Radar Tracking the individual radar data
must be expressed in a common coordinate.syétem~in which the
errors due to site'uncertainties, antenna orientation, and
improper calibration of range and time have been minimized so
they do not cause a significant deg;adation of the system
operation. The process of ensﬁring the requisite "error free"
(or, more precisely, controlled error) coordinate conversion of
radar data is called registration. Thus, registratien is an
absolute prequisite for multiple radar tracking or sensor

netting in general.

3.2 REGISTRATION ERRORS :

The objective of this section is twofold :'firét, the major
sources of registration error in multiple radar systems will be
identified; second, the possible impact of tﬁeée errors on the
data association and track processes will be discussed on a

qualitative level to asses their significance.

3.2.1 SOURCES OF REGISTRATION ERROR
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The major sources of registration error for radars are

given in the left-hand column of Table 1 ,and some possible

corrective actions in the right-hand column.

- TABLE -1

.

Error source

Corrective measure

Range
offset
scale
Atmospheric refraction

Azimuth
offset
Antenna tilt
Elevation
offset
Antenna tilt

Time
of fset

scale
Radar location
Coordinate conversion

radar plane
system plane

Test targets
Factory calibration
Tabular corrections

Solar allignment

Electronic North
reference modules

Electrénic leveling

Test targets
Electronic leveling

Common electronic
time reference
Factory calibration

Electronic position
location

3D radars
Exact or second order
stereographic proj.

Of the sources of registration error listed in Table 1,

four sources have proved to be majQer problems in current

defense and air traffic control systems

.
.

(1) position of the radar with respect to the system

coordinate origin ,

(2) alignment of the antennas with respect to a common

North reference ,
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(3) rangé offset errors, and
(4) .coordinate conversion with 2D radars.

The other errdrs very well may exist in the current
radar systems; however, they have not been significant problems
in the past. As communicatiohs and radar technology impro§es,
these other error sources could not become more significant in
the future.

The poteqtial effects of range and azimuth offset errors
are illustrated in Fig 7 . Registration errors are systematic,
not random, errors in the reported aircrafts position;'large
errors will result in two apparent aircraft when only one real
aircraft exists. Fig.7 shows the expected or average reports
for a common target from two radars, each of which.consistently
reports (1) a range less tﬁén the true range by a fixed amount
(i.e.,the offset) and (2) an azimuth cmeasured clockwise from
North) less than the true azimuth by a fixed offset. For any

specific set of measurements, the random measurement errors

will be superimposed on the bias or offset errors.

3.2.2 EFFECT OF REGISTRATION ERROR ON TRACKING

The effect of of systematics errors is to introduce
biases into the track estimation process. Therefore, failure to
register adequately a multiple radar system can result in
varying degree of pefformance degradation} depending on the
magnitude of the biases w.r.t. the random measurement errors
and the track correlation gates.vThé level of degradation

fanges, at worst, from the formation of multiple redundant
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tracks for a single aircraft to reduced track accuracy and
stability, when the bias 1is relatively small. In between the
benefits of a multiple radar system can be negated and the

system, in effect, reduced to a single radar tracking system.

3.3 REGISTRATION PROCEDURE :

System registration'may be considered as a two-phase
process :vsensor initialization and relative alignment. The
objective of the initial registration procedure is to register
each sensor independently, with respcet to absolute
coordinates. Once the position of the sensor has been
estimated, the range measurements have been calibrated, and an
initial alignment with respect to true North has been
completed, we can initiate the procedures for relative
alignment of the system sensors. The initialization procedure
is generally.straightforward; the 'difficult part of
registration is the relative alignment of the sensbrs.

Techniques for relative registration depends on common
targets. Genefally ,data are collected until a sufficient
number of paired reports have been obtained, and then a set of
bias corrections are computed. The usual technique for
obtaining the solutions is either to formulate the problem as
an‘ordinary least-square estimation (LSE) problem or td rely on
simple averaging to remove the random error components. The
major limitation of either approach is that radar report is
trg%ted equally when, in fact, the measurement errors are a

function of both the individual radar parameters and target

range.
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3.4 BIAS ESTIMATION :

Three alternative approaches for registration have been
sugested by Ficsher, Muehe, and Cameron (Fischer,80};
specially, the generalizeg linear least-squres estimation
(GLSE) technique and two numerical optimization methods, one

based on a grid search technique and the other on Powell’s

method for steepest descent.

Commercial array.processbrs or Special purpose
coprocessors now can perform the large scale matrix operation
required by the GLSE aproach (see [Anderson,58] and
[Mardia, 79])). This technique developed by Wax [Wax,83] for
airc;aft location with sensors at uncertain locations can be
applied to formulate the generalized Gauss-Markov problemn.
Moreover, thé solutiom can be reduced to a computationally

tractable algorithm, as.we will demonstrate.

3.4.1 MATHEMATICAL DEVELOPMENT :

In the following derivation, assume that master radar

Rp is located at the origin of the coordinate'éystem and tpat a

subordinate radar Rp is located at coordinates (u,v). Also

assume that there are N targets in the intersection of the
respective fieldslof view, denoted by (Tq, Tp, . . . /TN -

The basic problem is to determine the range and'azimuth

biases at each radar from the measurements of the set of common

targets (T;, Tp, . . . ,Ty}. That is, we need to estimate the
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. . A6a 66 ,
azimuth biases (offsets).and.at .Rp and -Rp, respectively,

and the range biases A%, and S at LRp an&~.RB. denote the
vector of biases by

A = (Onar06,, Bhg. BBy )T . . (3.1)
Where the superscript, T denote the transposition operator.

For each target T,, define the vector of radar measurements

Ve = ks Saxs Ters Opk) (3.2)

Where (rpx,8px) and (rgy, Opk) denote the range and
azimuth measurements from radar R, and radar Rg, respectively,
and the index k denote the sequence of independent measurement
over time. |

For each set of measurements, ¥, , the observations are

the seperations in the system (x,y) plane of the reported

target positions.

These are
xg = [rpg + ra) cos[®yx + 8x)1 - u - [rpg + rpl cos[Bgy + Op]
YK T [rAK + rA] Sin[éAK + éA] v - [rBK + rB] sin[éBK + éB]

(3.3)

To apply the theory of generalized least-squre
estimation, we need to'represent the observations as a linear
function df pafameters to be estimated, namelly A. This can be
accomplished by defining a function f as follows |

flvg, B) = [Bxg, Ayl .. (3.4

Further, let \W;and A’ denote the.actual'measurement sets

and an initial esimate of A, respectively. Now, Taylor’s theorm

can be used to approximate the function f at the true values of
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yg and A in terms of the measurements W’k and the initial
estimate A’:
Eovg, B) = £(Wy, A) + UglE(we, R)1(A - A7)
PULEWL B W - W - - (3.5)
Where the differential operators g and are deﬁined as

follows : -
AnTy (B by (e
YA )7\. DS B’Lbk ‘38
IR ) - Ax Ak [ 3 .
V\P[f(\{)\& Fk

2byr) Dy ADY dYy
}71,“‘ BGAK B\ek a eg(

o~

[ () AMY M1y Ad)

-y Aaxa) By ABry (b —
VALCRL N *w =Gy
by Yy 28y v (BYw .
oD%y by (dYy 3(1\8@

- : = . . (3.6)

For convenience later in the development, the 2 X 4
matrices Vg £y, A’)] and (VA L2 A’)] has been labeled Fp
and Gy, respectively. If the errors (Y, - W{ ) and
(A - A’) are sufficiently sméli that the highef—order terms can
‘be neglected, the approximation in (4.5) may be regarded as an
equality. Note that |

[£(yg, B)] =0 . . (3.7

by definition; therefore, | |

G A + Fay,= G A" - f£(yg,, A%) _ . . (3.8)
where 9y, = (Wx - W¢) . Also, note that the matrix Gy is a
matrix of known parameters, Fy 3y, is error due to the
measurement noise, and that the terms on the right hand side of

(3.8) now represent the observations.

32



With all this notation and the approximation of (3.5),(3.%)
(3.3) may now be reformulated as the classical model of GLSE

theory (see, for example, [Anderson,58]) or [Mardia,79]).

XA + ? ' = Y R . . (3.9)
by setting

X = (G, Gy G3, . . . . ,GyT | .. (3.10)

€= [FAY s FMay + - - FYn )T . . (3.11)

[GuA - (YLD, GuR = FCRLAY - o L G R f T
(3.12)

Note that pérameter matrix X is of dimension 2N X 4
whereas the error vector f and the observation vector Y are of
dimension 2N. |

The last step inithe application of the Gauss-Markov model
is to develop the covariance <, matrix for the error vector ; . To

§

this end, define a 2N X 2N matrix

s - glee’l= TRELQYGY IF Gz, .. N

¥
(3.13)

The terms in (3.13) can be éimplified-if it is noted tha

’ }
the measurement vectors or sets qk and qL’are independent
J

therefore,
<
Eleyoy)' ) =0 . . (3.14)
if i # j. if i = j, then
) o'::(A) O (o] o
< - Elyrw)'l =| © %w® o O
Y o o 9® O
o o Qo 7 . (3.15)
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Now note that F, is a 2 X 4 matrix and that Z“Vis a4 x4

matrix; therefore,

S = FKEWF’: .. (3.16)

(3

is a 2 X 2 matrix. This implies that, finally,fig is a block

diagonal matrix with the 2 X 2 blocks {%,,%5, .s2y} along the
main diagonal and zeros in the off-diagonal positions.
The solution of the Gauss-Markov equation, (3.4), is simply
~ T _— -\ T —t .
A= (X20X) X 2 Y <. (317
where | .
- Al - - .
Cov(A™) = (% 2¢ ) . . (3.18)
because S _is a 2N X 2N block-diagonal matrix, we thus have

|2 . |
XYZ;‘X = S G, ik‘ Gy . . (3.19)

where the individual terms of the sum are 4 X 4 matrices.

Similarly, T -, : .
XTZ;y , g'gkzk(m—f(w;,a')].  3.20)

If the individual radar measurement error are normally distributeqd
OWw is a normally distributed vector; FK\VK is a linear
combination of.normal variables,so it is normally distributed. Thus
is distributed as N(O0 , E‘V)' |

Equation (3.17) is the minimum variancg solution under any
error distribution. For the normal distfibution (that is,
distributed as N(0, 2.)), A" also is the maximum- likelihood

solution. By these criteria, A" in (3.17) is the "best" solution to

the minimum variance problem as defined by (3.9)
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The estimation technique just outlined attempts to minimize the
effects of registfation errors in the systemvplane with corrections
in the radar measurement plane. If the trénsformation (3.3) of the
data from the radar to the radar system plane introduces an error
of the same order of magnitude as the observation errors, then the
utility of the solution is open to question. Fortunately, the issue
can be resolved by use of the second-order stereographic
transformation between planes. As shown by Burke [Burke, 73}, the
error induced by the second-order stereographic transformation is
less than 2 m over any realistic sensor geometry. This
transformation error is at least one ordér of magnitude less than

the random measurement errors of modern surveillance radars.

C———
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DATA FUSION INCLUDING ATTRIBUTES

4.1 FUSION AND CORRELATION FOR DATA INCLUDIN
ATTRIBUTES

This section develops a Bayesian mathematical structure
based updn.[Atkinson,SO}, under which observation containing
attribute data as well as kinematics éan be combined and update
estimates thereby formed. Attributes are sensed target quantitie
that are associated with a particular type or class of target
These may include such quantities as wheel type for ground targets
engine type for aircraft, type of émitting radar for either ground
or aircraft targets, or target image shape. Aiéo, the class or type
of target may itself be considered an attribute.

Most previously developed MTT system have only use
kinematics quantitieé such as position, range rate etc. However
with the use of sensors other than radar and with advances in radar
signal proce;sing techniques, the efficient use of other types<ﬁ
attribute data now becomes important. In particﬁiar, future
-military MTT systems will use a wide variety of sensors that will
measure a number of different attributes. The problem is to
correlate these different types of data, to make'inferenge on the
important attributes such as target type, and to assign confidence
to these inferences. | | |

Pattern recognitioh is one method of uSing multiple sensor
data to determine target identification. Using this abproach, we
would determine the appropriate set of features to be formed from

multiple sensor observation data and the best weighting (confidence
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level) to use with these data. This is a complex process an
probably feasible for only a limited number of sensors. Also,
redefinition of the features and weightings will be required when
. another sensor is added to the system. The approach discussed her
will assume that each sensor first p:ocessés its own data. The
each sensor will produce its current best estimate of target
attributes. The confidence associated with such output also will be
assumed to be transmitted or known from previous experience. Thus
the problem becomes one of combining sensor attribute data to
specify target type and the associated confidence level.

As an example of multiple sensor.attribute data, fig 8 show’
the information that may be available to an airborne interceptor
system using multiple sensors and advanced processing methods. This
target attribute information may include type of engine, type of
radar, target shape, response (or lack of) to interrogation friend
or foe (IFF), and radar cross section (ﬁCS). Finally, other
information such as flight path characteristics and possible
intended target destination also may be added from other sources.

In general, it is best to keep estimates at the attribute
level. Directly converting attributes to target type may keep to
some inaccufacy. For example, consider the case where radar type rl
can be carried by target types a; and 52 whereas radar ﬁype r2 can
be carried by target types a, and a3. We assume that the target
carries a single type of radar. If a return indicating the target
to be carrying radar type ry is converted directly to target type
(a1 or a,), the incorrect conclusion can be made that these return

both correspond to the same target (type a2)."Thus, we assume than
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estimates are kept on the attribute level and that these estimate
are continua;ly updated as new attribute data are received. Then
attribute estimates are combined, and recombined as new data are
received, to form estimates of the tafget type. We next outline
three approaches to the process of combining target attribute and

identification information.

4.2 BAYESIAN APPROACH

Application of a Bayesian approach éb the attribute and.
target identification problem requires a priori information and
conditional probabilities. First, the measurement process i§
defined by the folowihg relationship: )
P(Xm/X)' = probability of receiving measurement Xﬁ

given that the true quantity is X which

is assumed to be known.

Then, whenever measurement data are received, the updated

probabilities can be computed using bayes’s rule
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P(Xm/X)P(X)

P(X/Xg) = e o
Where
P(X) = prior probability associated with X
P(Xp) = & P(Xy/X) P(X)

™
The process continues as P (X/X,) becomes the new prior

probability for use when further data is received. To initiate the
process, before any received measurements, Bayesian approach

require an initial estimate of the probability of X.

To summarize, Bayes’s rule is applied recursively as new date
recieved. This relatively simple relationship provides the
estimated probablities of target attribute based directly on the
measurement Xm of involved quantities. The estimated pfobabilitie
can be improved using known interrelationships, as expressed by

conditional probabilities between attributes and target types.

4.3 Dempster-Shafer Evidential Reasoning

Dempster [Demster,68]j and Shafer have developed a method that
~generalizes Bayesian inference and which has been denoted the
Dempster-Shafer or evidential reasoning method. The evidential
reasoning approach is more general than the Bayesian. Also, 1it$
development has been based upon sevefal.perceived weaknesses of the
standard Bayesian formulation. A weakness of the Bayesian approach
is the lack of a convenient representation for ignorance of

uncertainty. The evidential reasoning method handles this situation

quite simply by allowing the assignment of a probabilty mass value
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directly to uncertainty.

The evidenfial reasoning method also handles the problem of
incomplete or uncertain sensor measurements. Fifst, sehsor error
can be conveniently represented by a probability mass assignment
directly to uncertainty. Also the use of e?idential reasonin3
allows a more‘convenient and accurate representation of the

information from certain sensors.

4.3.1 IMPLEMENTATION OF EVIDENTIAL REASONING

Assume that we have a set of 'n" mutually exclusive and
exhaustive propositions, such as ﬁhat the target 1s type
ay,a,...,a,. The method of evidential reasoning can assigna
probability mass (denoted by m(a;) ) to any of the originaln
propositions of to disjunctions of the propositioné. Note that thig
more general form of representatiqn differs from the standard
Bayesian approach in which probabilities are.assigned only to the
~original“n" propositions'— disjunctions are not considered.

The representation of uncertainty is mass assignment to thé
disjunction of all thé original propositions and is denoted
m(®) =m(a; va,v..vVva
Finally, mass can be assigned to the negation of a proposition. For
example, the mass assigned to the negation of a; (the target is not
of type a;) is denoted
m(~a;) = m(al vVa,v..v an)
To summarize, probability masses may be assigned to individual
propositions m(al), to disjunction m(a; v ap), to uncertainty m(8),

or to the negation of a given proposition, m(ial). The sum of these

masses must equal unity.
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Another interesting feature associated with the Deﬁpster—Shafer
method is the concept of support and plausible for propositions.
the support for a given proposition is the sum of all the masses
assigned directly to that proposition. To illustrate, consider the
target type exémple, The support (spt(a;)) for the basic proposition
the target typé is a; is just the mass associatéd with a; (i.e.
spt(a;)= m(a;)). For a more complex proposition such as that the
target is either ajsap, or a 3, we have. |

spt(a; v ap v a3) = m(a;) + m(az) + m(a3) + m(a1 v as)

+ m(a2 \'4 a3) + m(a1 v a3) + m(a1 vV a, v a3)

The plausiblity éf a given proposition is the sum of all mass
not assigned to its negation. Thus,

pls(aj) =1 - spt(~aq)

Alternatively, pls(a;) can be compﬁted by summing all masses
associated with a, and all disjuctions, including & that contain
a; . For example ,

pls(a;) = m(aq) + m(aivaz) + ... . +m(®)

The plausibility of a; defines the mass that is free to move to
the support of a;. The interval [spt(aj), plglal)] represents thé
uncertaintyinterval with [0,1] represeﬁting total ignorance and
(0.6,0.6] representing a ceftain probability of 0.6.

The manner in whfch data are combined from multiple sensors is
through Dempster’s rule of combination. this rule is an extention
of Bayes’ fgle and its application is explained through the

following example.

4.3.2 An Example Using Evidential Relasoning
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Consider an example where there are four target aircraft types as

defined
a; = friendly intgrceptor
a, = friendly bomber
a3z = hostile interceptor
a, = hostile bomber

Assume, we start the target type identification problem by noting
the aircraft behavior éppears'to be that of the class of
interceptor. However, this information is not certain so that the
following mass assignment vector is defined

ml (é) =O.4

ml =
ml(alvaz) = 0.6

The assignment of_0.4 to ml(é) represents the uncertainty
associated with the rules used to determine that the behavior is
that of the interceptor aircraft class.- |

Next, assume that the target does not respond to the IFF
interrogation. We would expect a response from a friendly aircraft.
So this indicates that the target 1is probably hostile, but again

this is not certain. Thus , we assign to this knowledge source the

following mass values

m2 =
m24a3va4) = 0.7
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Fig..10a APPLICATION OF DEMPSTER’S RULE

m(a3ya4) =.0.28_

m(a32 = (0.42

m2(a3va4)=0.7—

Dempster’s rule can be used to combine m; and m, as illustrated in

the Fig 10a . The resulting mass vector is

m(&)=0.12
m(a,va,) = 0.18
m(as) =0.42
m(agva,) =0.28
- o

Referring to Fig. 10a, Demspter’s rule is implemented by forminga
matrix with the probability mass assignments that are to be
combined given along the first column and last row. Then, the
computed elements of the matrix are the product of the probability
mass values in the same row of the first column and the same column
of the last row. For example, for (2,2).element of the matrix shows
in Fig. 10a.

m(az) = my(ayvaz)my(agvay) = 0.6(0.7) = 0.42
The assignment of these elements to the resulting vector is
according to the following principles

1. The product of mass assignments to two propositions that
are consistent leads to an assignment to another proposition

combined within the two original propositions. For example,
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my (a;) my(a;) = m(ap)
my (ay v az) my(az v ay) = m(aj3)
2. Multiplying the mass assignments to uncertainty by the mass
assignments to any other proposition leads to a contribution to
that proposition,

my (8) my(ajzvay) = m(azvay)
3. Multiplying uncertainty by uncertéinty leads to a new assignment
to unéertainty. .

my (&) my(®) = m(d)

45



CHAPTER 5

46



DATA FUSION

5.1 AIM OF DATA FUSION

Data fusion has been defined as " a process dealing with the
association, correlation, and combination of data and information
from multiple source to achieve refined position and identity
estimates for entities, and complete and timely assessments of
related situétions and threatts, and their significance."

The goal of the data fusion is the devlopment of a complete,
accurate, concise and timely picture df‘a environment based on
sensors that provide only limited observables, coverage, resolution
and accuracy. The environment can be very complex, consisting of
potentially large numbers of many classes of .both stationary and
moving entities. Since the analysis of individual sensor reports
can lead to ambiguous, inconsistent and highly 1local
interpretations, the fusion of multiple sensor data tends to
enhance the situation understanding process. Although a spatially
distributed network of hetrogeneous sensors can increase the total
information évailable, the non- deterministic nature_of the domain
and the largely expectation-based charactef of the reasoning
process effectively guarantees a degree of uncertainty in the
fusion product. The uncertainty can be minimized by synergistically
utilizing all available sensor-derived information and relevantly
priori domain knowledge; the former provides dynamic sitﬁation
information, while the latter suppbrts real world, context-

sensitive reasoning.
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5.2 FUNCTIONAL LEVEL FUSION MODEL

An abstract, two level functional model of the tactical data

fusion process is

5.2.1 Level-1 fusion

Level-1 fusion represents predominantly information extraction
related to the detection, association, Elassification and attribute
refinement, normally associated with single entities, based on the
analysis of single sensor and multiple sensor measurements. Lavel-1
‘processing is largely numeric in character since the measurements
are metric in nature and amenable to the application of
algorithms(fypically statistical and estimation/optimizatiom

methods) .

5.2.2 Level-2 fusion

Levelf2 fusion is based primarily on the curreﬁt situatiaon
Vdescription, available a priori(Static) domain knowledge and
expectation-based world models. Lévels—é fusion extends and enhance
the completeness, consistency, and level—of—abstraction of the
situation description'produced by level-1 to

1. compensate for the information-deficient and errorful
measurement space,
2. resolve ambiguity in the level-1-products and
3. develop higher level interpretations of the current
based on reasoning in context .
The first stage of level-2 fusi&n performs situation

abstraction which include both situation generalization and
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situation specialization. Situation generalization allows bottom-up
- abstraction of entiﬁies or events that are either not directly
measurable, or not observed, to be either inferred or the sensor
network task to provide critical missing information that supports
such inference. Situation specialization is a form of top-down
reasoning where subordinate elements are deduced or inferred.
Situation generalization and specialization develop the structural
organizational and functional relationship among domain elements
and suppots developments of a consistent, complete and higher
leve-of-abstraction situation description. " Level-2 processing
is distinguished from Level-1 brocessigg by a significant shift in
emphasis to symbolic rather than numeric processing.

Once a new target is detected, the fusion system charcterize
by the multiple level model just described attempts to varify the
targets presence, refine its location and trajectory, its
measurable.attributes, its probable classification, its
association with a perticular unit, the association between that
unit, the current enemy organisation and the preceived situation.
Thus, the overall fusion process consist of numerous dependent and
independent multiple levél of abstraction functional processes.
Since individual sensors may observe the same.target'at different
times and have very different processiﬁg and reporting delays, and
since estimates of the situation description are asynchronous with
respect to the sensor'acquisition proéess, fusion process are often
inherently asychronoﬁs. Both the sensor systems and the processing
nodes can be spatially distributed. Real time performance 1is

mandated by time—critical nature of the tactical environment. The
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dynamic charcter of domain and the limited information content of

sensor reports insures a degree of uncertainty in the situation

development process.

5.3 Data fusion reasoning classes

Data fusion is subported by three underlying reasoning classes
spatial, hierarichical and temporal. Spatial reasoning deals with
the spatial relationships among entities (e.g.,distance metrics,
relative locations, doctrinal patterns, apparent goal states), as
well as their association with geographic and cultural domain
features (e.g.,suppotability, mobility, visibility and
communicability) . Hierarchical reasoning is required due to 1) the
predominantly vertical organisation of military entities (e.qg.
vehicles, tompanies, battalionsf, 2) thé multiple level of
abstraction nature of the reasoning process (e.g., local
strategies vs more global strategies), 3) the inherent efficienct
of top-down problem solving.

Because of the dynamic nature of the tacticle doﬁain and the
asynchronous nature of the sensor reports, temporal reasoning

underlies the entire fusion process.

5.4 Memory elements

The fusion of multiple sensors information to enhance situation
understanding in a tacticle environment is metaphorically similar
to the fusion of multiple sensory (e.g., sight and sounds
information for perception enhancement in biological systems. Based
on an extention of the human memory metaphor, the primary elements

of the fusion process can be associated with short term, medium
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term and long term memory [Antony,87]. Short term memory holds
highly transient short term knowledge, medium term memory holds
dynamic, but less transient medium term knowledge and long term
memory holds relatively static long.term knowledge. Long term
knowledge in biological system as well as data fusion systems

represents factual and interpretive reasoning knowledge.

A primary objeétive of an automated tactical situation
understanding system is the development of the current relevant
perception in the fusion system’s metphorical medium term memory
element. For automated fusion system, current emphasizes the
character of the dynamically changing scene under observation, as
well as the time- evolving interaction among a network of
distributed processes. Because of memory limitations and the
critical role medium term memory can play in system survivability,
only relevent states are maintained by tactical fusion system. For
a frog, danger and moving insects repreéent highly relevent states,
while for a human driving a car, the relative location of nearby
vehicles, stoplights and pedestrians represent highly relevent
states. The notion of relevence proves to be crucially -important to
supporting decision-making under stress, and is a challenge to the
fusion systeﬁ designer to develop systems which prevent dégradation

in reasoning and sub-optimal stress-related coping patterns.

Summary :
Tactical data fusion systems requires fusion among
1) sensor derived information,
2)  the current situation understanding and.
3) relatively static factual and brocedural information as

dipl‘d’(d n {\'%Uve_ i
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BLACK BOARD ARCHITECTURE
FOR IMPLENTATION

6.1 Black Board Architecture

The opportunistic collaboration of a group of human experts
from multiple discipfines seated in front of a chalkboard provide
the problem solving metaphor for the BB paradigm. As their
expertise pgrmits, individual éxperts participates in the
evolutionary development of the problem solution that is maintained
on the chalkboard. The true human metaphor is opportunistics
however, it has proven difficult to achieve this explicit behavior
in computer- based systems due to concurrency, consistency, and
control factors. Thus, in most cases, the computational BB, to
varying degrees dependent on the.detailed'control paradigm
reflects a "moderated" problem-solving paradigm. Thus, in the
computational analog, a conceptual framework for communication and
result-sharing permits a group of independent processes
(specialized knowledge sources) under some degree of centralize
control (the modératdr) to cooperatively and/or competitivedly

interact with the evolving problem solution state (held by the BB)-
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6.2 The Generalized Blackboard (BB) Problem Solving
Paradigm

The requirements of the tacticle data fusion process were .
summarized in column 1 of Table 2;the second column suggests
natural Strategies for dealing with each of the fusion problem
characteristics. In this section , the‘Capabilities of o
generalized blackboard (BB) - based paradigm are shown to be

ideally matched to tactical fusion system requirements as suggestes

by column 3 of Table 2.

TABLE -2

appm—

Fusion éystém ' : ri-wégfaﬁégy BB Paradigm
~ character ﬂ, Implication
Compies '\Q'at saale pvoblem . L . Task DCCOMPOSn"HOh .. BB PQYUHOY\;Y!S
Distributed Senser £ nodes . | . Spc&'\a\la digtributed procs]- . Communicakion % conkrol
Realkime u\mnmmts. . 1. . Diskibuted proce ss;ncd .. Commumcahon & Conhrel
\V\ukh‘y\e Qevel A} aloshvachonf. . Task d\gcom?cxs'\h'oh_. .., Hienachical Sx,eosohihg
Realtime M“@vements.. .. Efficient pvocc_ss(na, ...'quugk(m&(on
'Dt’ncxmic, sikuakvon .. 1. .D‘dnom.-c Proess mode .|. . Temporal »easoning
] Drcovodnby (data § debisio] | MR hgpotvesis mapey | Dncetasnty managoned

The BB paradigm represents a special form of Object- Orientet
(00) reasoning. In general, objects possess arbitrarg
characteristics and degree of autonomy. Objects can either directly
or indirectly interact. Indirect interaction occurs if individual
objects both monitor and modify the overal;'problem solution state

Modifications include posting localiy generated solutions, partia
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solutions, hypotheses and unsolved problems. From this viewpoint
the conventional BB is merely a specialized object that maintain
the problem solution etate.

The functional-level fusion model supports'arbitrary
implementation architectures in software and hardware consisting,
for example, of potentially large numbers of homogeneous and/or
non-homogeneous spatially-distributed processing nodes. The
individual processes can represent a mix of technical disciplines
and problem solving approaches. If each separate process is treated
as an obiject, an 00 pronlem solving environment supports the
required process encapsulation, BB inte;action; and overall process
control. |

Sophisticated control may be required due to the potentially
complex mix of depenéent and independent process operating across
multiple levels of abstraction. In an 00 environment, distributed
hierarchical control allows each object to maintain its‘own local
control element. In addition, higher level of abstraction objects
can task lower level objects. Thus, individual processes can
operate synchronously, be triggered by other processes, or operate
fully asynchronously responding autonomously to the state of the
BB. The overall processing net supports both data- driven (local
process originatea) and goal-driven khigher lével process-directed
problem solving, as well as elemente'of both centralized and
distributed control.

Thus, a generalized BB-based problem solving paradigm cleary
supports the first four requirements of the tactical-dafa fusion
problem listed in table 2 . While an argument could be made than

an 00 problem solving model intrinsically support all seven problem
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characteristics, the 1last three 1items réquire further
consideration. As will be argued next, data representation is a key
aspect of 1) the efficiency of individual fugion processes and 2)
the maintenance of competing BB hypotheses.

6.3 Problem solving efficiency

Because of the Limited computational résources and typically
time-critical requirements for fusion products in the tactical
environment, highly efficient fusion processing required in most
applications. Since even an intrinsicaily efficient algorithm can
become I/0 bound, efficient problem solving requires both efficient
algorithms and efficient database access. Efficient algorithms
imply efficient support for spatial, hierarchical énd temporal
reasoning. In terms of database acess efficiency, rapid location of
appropriate database information rquires éUpport for efficient
problem- dependent search dimensions.

In the "target detection-to-track assignment" problem, for
example, all candidate track files must be evaluated before making
a track assignment decision. Candidate tracks are those tracks than
are "close" to the new sensors- derived report based on metrics
such as spatial/temporal proximity,'spéed, velocity, cross section
or radio frequency. Rather than evaluating all possible tracks
database search dimensions should permit direct access to candidate
track files. If "close" is defined by a Euclidean distancemeasure,
for instance, efficient data acess demands a database.
representation for both static and dynamic data for preserves the
Euclidean metric. Single-dimensional re?resentaion of 2-D data such

as vector, boundary and linked lists do not preserve the spatial
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distance metric, and thus do not support true 2-D indexing
(i.e.,data that is "near" in 2-D space may not be "near" in the
database regardless of the indexing scheme). On the other hand, &
true 2-D spatial data organization (points are stored as points,
lines as lines, and regions as the enclosed area)'can preserve the
Euclidean metric among 2-D spatial_features, and leads itself to
associative processing. ‘ . ‘

Thus, both algorithm efficiency and database access efficiency
can be highly sensitive to data representation. In many cases, the
use of "natural"® data'representations (e.g.,2-D spatial data stored
as true 2-d representations, solid objects as true 3-i
representaﬁipns, hierarchies as hierarchies, tables as tables,
rules as rules) offer inherently powefful and efficient database
search dimensions and reduce the requirement for "artificial
indexiné. In addition to efficient search, natural data
representationé tends tb preserve key relationships among the data
(e.g., spatial distance metrics) that enhance algorithm efficiency-.

Although the relational databaée‘is the current industrial
standard, the relational model‘fundamentally supports only table
based data. Regardless of the number of fields that are conjoined
only linear search dimensions are supported [Antony,91}. Since
efficient 2-D spatial reasoning requires support for true 2-d
spatial search dimensions, and efficient hierarchical is enhance
by true hierarchical representations, the relational data mode
tends to be suboptimal for both of these reasoning classes.

The search for BB objects that are close both in time and space
to a new target report is fundamental to the fusion process. If

in the 2-D case, stationary and moving entities are maintained as
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discrete 3-tuples (i.e.,xi,yi,zi), indexing or sorting-along an
individual dimension ;s straightforward. A spatially-coded temporal
history file is a typical example single dimension indexing (i.e.
3-tuples indexed by t).

Although a moving target is often‘observed only at discrete

points in time, the actual trajectory of the entity is a continuous

function in both space and time. Thus, the data fusion
applications, indexing (or search) along the continuous dimension
of space and time 1s ideally required. Consider the analysis_of
sensor reports using the discrete data_represéhted in fig. 12 and
by the diagram in fig.13 . If the database is indéxednby time,
for ta=l, tb=10, tc=td=5, 1) query point d will appear close ﬁo
point ¢ since t.=ty ahd 2) point d will appear far from either a or
b. In reality, Query point d is far from point c and very close to
trajectory represented by line a-b. Although the discrete database
-can be analysed to produce the desired product, a high
computational overhead may result for inappropriately organizes
real world size databases.

Although it does not independeptly index all three dimensions,
a time-coded true 2-D representation (fig.12) of a target track
effectively captures the true continuous character in all three
dimensions and at the same time preserve spatial relationship
between the track and the other database elements. Rather than an
extensive computational approach, d4 can be determined to be
‘spatially near line a-b by highly localised spatial search

[Antony, 90]. Next, for all spatially "near" candidate tracks, the

time attribute can be efficiently tested by interpolation between
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a and tp. Search efficiency can be similarly enhanced for time

varying point and region data. Rather than an exception to the
argument in favor of natural search dimensions, the time dimension
can often be subordinated to other natural search and problem
solving dimensions (e.g., spatial dimensions). Thus, "time" become

an attribute for data stored along its "primary" natural
dimensions.

In general, data fusion requires efficient association between
dynamic (i.e., vehicles, units, events) and static domain elements
(i.e., buildinés, geographic and cultural features). The efficienct
of epatial, temporal and hierarchical reasoning is.enhanced if both
the dynamic (situation description) databases and static (long term
factual and reasoning knowledge) are maintained in fully compatible
representations within the same database. Thus, the overall
efficiency of the data fusion process can be enhanced if the BB is

maintained within the system database.

6.4 BLACKBOARD MANAGEMENT

Due to the dynamic, evolving natufe of the tactical
environment, time-late information, limited sensor-derive
information, deliberate deception, ignorance of an adversary’
intent and imperfect reasoning knowledge, uncertaihty in perception
is inevitable. The dynamic, sequential nature of the decision
process leads inevitably to the maintaipance éf multiple hypothese,
which, over time, can generate a combinatorial explosion of
hypotheses. Thus, in order to support the tactical fusion process
the BB must 1) hold £he confidence in all existing BB hypothese

(or states), 2) maintain multiple conflicting hypbtheses, 3)
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support multiple views and 4) permit efficient retraction of belief
and all associated backtracking operations.

The hypothesis explosion problem can be minimized by 1)
powerful, cohte#t sensitive algorithms that establish onlyvrelevent
hypotheses in the first place and 2) representations that support
efficient pruning of low confidence hypotheses, as well as
straightforwérd hypothesis retraction. Reaéoning in context depends
hea&ily on the association among entities and events and with
respect to extensive natural and cultural domain feature databases.
The most plausible hypotheses tend to be "close" along
spatial,organizational or other natural problem solVing dimensions.
Hypothesis pruning . occurs as additional information becomes
available that reduces the overall situation uncertaipty. Thus, Q
data representation that supports efficient, highly localizes
spatial and semantic search facilitates both complex contextual
reasoning and the development and maintenance of multiple
hypotheses, Consider the basic track assignment problem depicted
in Fig. 14. At time t; the detection represented by object
supports three hypotheses: 1) A is an extension of Track T1, 2)A
is an extention of Track T2 or 3) A.represénps the initiation ofa
new track, T3. As discussed previously, éandidate tracks can by
efficiently located if data represention preserves the appropriate
~distance metrics. At pime t,, detection B supports the extention of
T2 to point B and refutes hypothesis (T2, A). At time t3, detection
C supports four seperate'hypotheses as depicted in Fig;lS.

Designation of new hypotheses by "gttaching" detection objects

(e.g.,A,B,C) to the established tracks (i.e., high confidence
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hypotheses) permits straighforward hypothesis retraction. Each time
new evidence appears (either from a sensor report or from a change
in the stste of the BB), all hypotheses that have depended on thip
hypothesis are reevaluated. Fig 15 depicts both the external, as
well as internal BB operations. Sensor-derived evidence A,B and(i
directly support the inferences denoted by the thin lines, while
hypothesis retraction and internal BB modification operations are
denoted by thick lines. For instance, at time t,, sensor dataq
refutes hypothesis (T2,A), which leads to the redistribution of the
support for competing hypotheses (T1,A) and (T3,A). Once adequate
confidence in a hypothesis has been developed and no further
hypothesis retraction is required, the supporting object extentiong
to the track name can be deleted. Thus, at time tz, trace
hypothesis (T2,B) would be renamed T2 since evidence B supports
only a single, high confidence hypothesis.

In summary, although the pdtential ‘for 'a combinatorics
explosion of hypotheses is an inhereng characteristic of multiple
“hypothesis system, the impact can be minimized by 1) powerfull
context-sensitive ‘algorithms that establish only relevant
hypotheses and 2) representations that support efficient prunins
of low confidence hypotheses and straightforward hypothesis
retraction. bata representations that -supports efficient, highly
localised spatial.and semantic search facilitates both complete
contextual reasoning and the developmént and maintenance of

multiple hypotheses.
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6.5 ARCHITECTURAL ISSUES
The key BB design aspects are associated with the partitioning
and allocation steps in the classical system engineering methods
and in the use of moderate—grained parallelization within the de-
coupled functions in order to achieve balance between speed-up
reliable behaviors, and goal convergence.
There are some other summary observations on architectural
issues that form an analysis of the survey data
a typical system employs many type of knowledge
Data consistency and control issues are very important
these issues are magnified with parallelization since the BB
system is then analogous to a shared, distributed data base
system.
-> Design fector : Maximum data de-coupling and
information-hiding techniques are required; private and

public data sets; intelligent BB data manager.

Choice of hardﬁare architecture are also very important.

-> Design fector : In generai, high ptocessing power is
catgorically desired. Sharea-memory multiprocessors
should be avoided.

- Other design features and system qualities would include
-> Design factor : An object-oriented approach, -
A’ truth maintenance system-to accomodate non-monotonic
reésoning processes, Some type of uncertainty propogation
and management approach, and Intelligent use of demon-

concepts for process control and data management.
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6.6 Blackboard concepts for Data Fusion

The concept of b%ackboard architecture is illustrated in Fig
16. This figure shows a problem space or domain partitioned into
subproblems. Each subproblems has a separate Kno&ledge base
comprising rules, frames, networks, scripts, etc. which define the
knowledge which pertains to the subproblem. For each subproblem an
associated knowledge base, (KB), a knowledge agent (KA) actively
searches the shared memory and knowledge base to evolve solutions.
Thus, while each portion of the problem is being adaressed by
logically separte KA, evolving solutions are shared via a share
memory, accessable by all knowledge agents:'A control structure
seeks to balance the separate knowledge agents to achieve an
overall solution to the problem and provide access to enternal data
or human control. .

The fundamental power of the blackboard architecture is
twofold. First, by partitioning a problem into subproblems, a
complex problem may be reduced to more-readily soluable component
problems. Second, blackboard logical architecture may by
implemented by a variety of physical implimantations, i.e., all
KA’s,KB’s, control structure,etc. can be implemented on a single
computer (viz. single instruction, single memory (SISM), or on a
computer having a single processors with mulﬁiple memories (single
instruction, multiple data (SIMD)), or multiple processors and
multiple memories (multiple instruction, multiple data (MMD)). Very
complex problem may bé solved in an efficient way, approaching real
time performance. On a SISM architecture, a single inference engine

operates, as required, on each knowledge base.
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FURTHER STUDY
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FURTHER STUDY

This section describe new areas of research in the field of
netted systems. Two major items are considered, namely :
1) the netting of other types of sensors in addition to
radars and,
2) advaced concept for the design oh—line management and
control of netted systems.
Development Jdf modern air-defence system motivates the
introduction of such advanced concepts in sensor netting. The

novelty of these topics has meant that the theory is not yet well

established..

By a multisensor system is meant a net formed of both active
and passive sensors ( such as monﬁstatic and bistatic radars
laser, radiometer and identification systems) cavering the whol
frequency spectrum together with acoustic sensors. The different
data provided by sensors are synergistically fused into a high
quality and reliable estimation of the surrounding scene. This
estimate should be maintained at the best quality during'the time
even though the environment changes and technical failure and/or

destruction of part of the system may occure.
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The fundamental issues which arise is the development of a
multisensor net are

- the design of multisensor architectures.

- the algorithmic procedure for data fusion.

- the performance evaluation of a multisensor configuration.

- the on-line management/control of an implemented

mulisensor net.
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