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PREFACE 
The problem of netted radar system arises when the 

search and tracking are performed by using measurments 

obtained from two or more spatially separated radar sets 

having overlapping coverages. Netting allows search for and 

track of targets over an area wider than the coverage of each 

individual sensor. It generally implies the·conveying of data 

provided by different radar systems, to a main site. Here, a 

single data processor correctly combines the target reports 

and establishes target tracks which are of higher quality 

then those formed from a sing 1 e radar. The i.nhe rent 

redundancy of multiple radars results in a high overall 

reliability and allows achievements of some reconfiguration 

capability of one or mor.e of the radars. These advantages are 

obtained at the expense of spatial and time alignment of 

radars and more extensive computer resources and 

communication facilities. In the recent years, the increasing 

sophistication of distributed target- detection and tracking 

system has generated a great deal of· interest in development 

of new computational structures and strategies. The design of 

such spatially distributed systems involves the integration 

of solutions obtained by solving subproblems in data 

association, hypothesis testing, data fusion etc. Multisensor 

integration and fusion of information requires techniques to 

abstractly represent and integrate sensor information. 

In this dissertation, we have tried to elaborate the 
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concept of coordinate transformation, registration errors, 

association of data having attributes and data fusion in the 

case of MRT system. Then a Blackboard architecture is 

proposed for data fUsion. 

Chapter 1 of this report describes the problem with a 

single sensor (Radar) tracking and then gives an introduction 

to multisensor (Multiradar) tracking. 

Chapter 2 describes the algorithm for coordinate 

transformation. 

Chapter 3 defines the reg~stration problem in terms of 

source of registration error and their subsequent implication 

on mulisensor tracking; and offers a ~~lution to the 

registration problem. 
of 

Chapter 4 discusses the application~Bayesian and 

Dempster-Shafer method to the fusion of m~ltisensor 

attributes and target information. 

Chapter 5 discusses the two level data fusion model; 

three reasoning classes for data fusion and memory elements 

required to store the information. 

Analysis of real time or time critical processing, 

parallelization, object oriented approaches, storage and 

search problems, knowledge representation issues and spatial, 

hierarchical and temporal reasoning ha~ lead us to the 

postulation of the "ideal" Black Baird system architecture, 

which is described in chapter six. 
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INTRODUCTION 
Single sensor systems have been studied for a long time. 

The motivation for this was their requirements in 

applications requiring detection and tracking of targets 

using a single sensor such as a radar or sonar. Despite two 

or more decades of intense research in the development of 

sensors and of diverse sorts of sensory information no single 

sensor can guarantee to deliver accurate information all of 

the time. This is because of two main reasons: 

1. Associated with any sensor is a set of limits that 

define its useful operating range. 

2. Any sensor signal is inevitably corrupted by noise. 

Because of these reasons the data collected by the 

sensor can be incorrect. To ensure correct inferences by the 

program that interpret the sensor data, the sensor must be 

made fault tolerant. Single sensor systems.Gan be made fault 

tolerant in two ways 

1. Based on the sensor's specification the sensor output 

can be ignored if it is unrealistic. 

2. The sensor can be replicated physically or log~caly so 

that when one sensor fails another sensor can take 

over. 

The first method can be used in situations in which time 

is not a critical factor. The second method is a trivial 
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\ 
instance of a distributed sensor network, and has been used 

to monitor temperature in nuclear reactor vessels .• pa 

Even though ~e can make a single sensor system more 

reliable using the above two techniques, these systems can be 

used in limited applications. This is because 

1. Every sensor has a limited space~ Hence any singl~ 

sensor cannot sense the complete phenomena that must be 

monitored. 

2. Some applications require that the observations be 

taken from different point of view. 

Because of the limitations of single sensor systems and 

increasing fault tolerance requirements of today's 

applications, single sensor systems are being replaced by 

distributed sensor networks. 

1.1 Multi-Sensor Tracking 
A Multisensor tracking consists of units with sensing, 

computational and communicational ability that are physically 

distributed. Here signals from several sensors are combined 

to derive a more acurate and reliable value of the phenomena 

that the sensors are monitoring. The MRT problem is a 

subclass problem of MST. 

The interaction of many radars, display systems and 

communication links. together with command and control systems 

requires the ai~ of c6mputers because of the abundance of 

information to be handled. Computers are sited esentially in 
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the main centre, and sometimes at the radar sites, or in the 

display system and in the command and control area. As a 

consequence, a radar network implies a computer network 

which ensures performance of data processing,- organisation of 

information display (as a necessary prerequisite for taking 

decisions) and, finally, communication between the different 

system components. 

1.2 Advantages of MRT : 
MRT has a number of advantages over a monoradar system, 

namely: 

performance of target advantages and tracking over an 

area wider than the coverage of each individual radar. 

reduction of coverage gaps especially at low altitude. 

early initiation of new tracks. 

track continuity during the hand-over of a target 

between two adjacent radars. 

more precise estimation of the track parameters (due to 

a higher data rate) than with a single radar. 

lower probability of false correlation in the areas 

affected by clutter owing to smaller dimensions of the 

correlation gate~ 

higher detection opportunities in the overlapping 

areas. 

reduced vulnerability to clutter and/or jamming effects 

because of the different siting and sensor 

characteristics. 

reduced occurrence of targets having blind speed or 
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range as a result of different waveforms, proce~~ing 
I ,. 

parameters and siting of the netted radars. 

ability to evaluate target altitude through 

triangulation. 

capability of estimating the total velocity from 

independent radial speed measurements. 

capability of system reconfiguration in the c~~~e of 

failure of one or more radars. 

I. 
reduced human intervention in supporting data P'~ocessing 

f 

(e.g. track inltiation and track validation ow) tng to the 
I ,.. 

s:y stem). 
~"~·'-; 

improved performance and reliability of the 

1.3 LEVEL OF DATA ASSOCIATION: 
In a multiple-sensor tracking system major 

conceptual issue is ~o define the level at whic'h data will be 

combined into tracks. The choice are central-level 

tracking or some combination of both. 

1.3.1 SENSOR LEVEL TRACKING : 

The first alternative, illustrated in Ffig 2 , is to have 
i 

each sensor maintain its own track file. Jhe track in these 

sensor track files would be establish'ld primari.ly upon 

measurements received from the individu11 sensor, but some 

communication among the sensors and bet~~en the sensors and 
' il 

the central track file may be used to ~pdate sensor-level 

track file. However, the sensor-level tlacks must eventually 

be combined into a central track fil~. Thus, under this 
"""'!. 
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(sensor-level) approach each sensor would have separate track 

file and central tr~ck file would be formed as a composite. 

Point cited in favor of sensor-level tracking are 

reduced data-bus loading, reduced computational loading (in 

any single processor), and higher survivability due to 

distributed tracking capability. Certain computational 

advantages may result from parallel processing that is 

possible using the sensor-level track approach. Also, if one 

sensor becomes degraded, its observation will not affect the 

sensor-level tracks of the other sensors. Finally, the use of 

sensor-level tracking allows for ·filter design that is 

specifically tailored to the individual sensors. 

If sensor-level tracks are maintained, they must be 

combined at some point if significant benefit is to be 

derived from the multisensor fusion approach. The result is 

central-lev.el track that are updated with sensor-level track 

data, inste~d of with sensor report data. Several problem 

arise. First, if a central-level track is updated with a 

sensor-level track, the usual assumption (valid for the case 

of raw measurements with uncorrelated measurements error) of 

error independence from one update period to another is not 

valid. This can be taken into account in the processing, but 

it forces additional complexity. Second, less accurate 

tracking and correlation are to be expected if indepedent 

sensor-level tracks are maintained. For example, there will 

be a higher probability of false correlation in areas 

affected by clutter because the gate sizes will be larger due 
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to less frequent track updates. Finally, if the multiple 

hypothesis tracking approach is taken at the central level, 

when sensor-level tracks are combined, ~t would also be 

desirable that this approach be taken at the sensor level as 

well. However, the maintenance of a single hypotheses tree 

at a central level.is simpler than the maintenance of amany 

hypotheses at each sensor as well as additional hypotheses at 

the central level to combine the sensor-level tracks. 

1.3.2 CENTRAL LEVEL TRACKING : 

The alternative to maintai~ing se~sor-level tracks is 

for all report data to be sent directly to a central 

processor where a master file is maintained. This approach, 

illustrated in Fig. 3 , also has a number of advantages. 

First, more accurate tracking should be possible if all data 

are processed at the same place. A target track that consists 

of observations ftom more than one sensor should be more 

accurate than the tracks which could be established on the 

partial data received by the individual sensors. 

Thus, the central processing track approach should lead 

to fewer miscorrelations. Second, by processing sensor 

reports directly, the difficulties associated with combining 

sensor-level tracks are avoided. These dificulties include 

correlating sensor-level tracks are determining an efficient 

scheme for combining these tracks. Track·confirmation and 

continuity should also be improved with central-level 

tracking. 
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The various sensors will under different circumstances, 

have varying ability to confirm and sustain a track. Thus, by 

using detections from all sensors for each track, the 

probability'of confirming and sustaining a track can be 

improved over that for a single sensor. For ~xample, in a 

system with radar and an infrared (IR) sensor. IR detections 

can maintain a track that might otherwise'be lost during a 

fade in the radar return due to· radar cross section 

scintillation. Also, various sensors can be used 

synergistically, for example, as the radar provides range and 

range rate while the IR provides more accurat~ angle 

measurements. Finally, the approach whereby all data are sent 

directly to central processor should~ in principle, lead to 

faster, more efficient computation. The overall time required 

to develop sensor-level tracks and then to combine these 

tracks is generally greater than the time required for 

central-level processing of all data at once. 

There can, however, be a major drawback if pure 

central-level tracking is used. This problem occurs when the 

data from one sensor can become degraded and thus lead to 

poor central-level tracking. In this case, the possible 

combination of good data from undegraded sensor with bad 

data, in·effect, will negate the value of the good data. 

However, if sensor-level tracks are maintained, the good 

sensor-level tracks will not be corrupted by the bad data. 

Then, when.the sensor with the poor data is finally 

recognized , the central-level ~racks can be .formed using 

only sensor-level tracks for undegrated tracks. 

10 



1.4 FUNCTIONS PERFOMED IN CENTRAL LEVEL 
At the central tracking processor, the plots from the 

multiple radars are used to update existing system tracks or 

initiate the new tracks as appropriate. Specifically, the 

central tracking processor must perform the following five 

functions : 

1. TransfOrmation of the plots from local rada~ coordinates 

to system coordinates, which usually are Cartesian 

coordinates in 3-d space. 

2. Correlation or association of radar plots with the 

appropriate system tracks. (Note that, because there are 

multiple radars in the system, more than one plot may 

correlate 

interval) . 

with the same track over a nonzero time 

3. Initiation of new tracks with the uncorrelated plots and 

rejection of clutter plots. (Note, again, that this is 

not a ·straightforward task as th·ere are no simple 

criteria with which valid aircraft detection can be 

distinguished from clutter return) . 

4. Tracks .filtering (or updating with correlated plots) and 

track prediction. 

5. Track monitoring and system track management (including 

association with tracks from external sources) . 

11 
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CO-ORDINATE TRANSFORMATION 
The pro~lem of co-ordinate transformation is a direct 

consequence of the control of a wide portion of ~irspace at a 

single facility on the basis of data acquired from a 

multiple-radar tracking network. The plots. reported by each 

radar have to be reffered to a common co-ordinate reference 

system. The measurements of target slant range, azimuth and 

altitude (or elevation angle ) available at each radar site 

are t·ransformed into a point of a common cartesian plane. On 

this plane, the air picture detected by the netted radar 

system is represented. The spatial cqngruence between plots, 

tracks and topological maps should be maintained in all the 

different co-ordinate systems. 

The coordinate conversion is achieved by generating a 

set of transformation equations that can be map any point in 

the frame of reference of the radar onto the frame of . 
reference of the CRC. With the locations of the radar and CRC 

known in terms of their latitude and longitude, the 

respective 3d X-Y-Z coordinates with reference to the earth's 

centre (the absolute reference ) are found using equation 1,2 

and 3 . 

ZR = ·R sin (latitude) , 1 

YR = R cos (latitude) sin (longitude) and 2 

XR = R cos (latitude) cos (lonitude) 3 

XR, YR and ZR so obtained also form· the direction ratios 

of the normal to the plane tangential to the earth's surface 

at the radar location under consideration 

13 
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In the next step, transformation equations for each 

radar are found. These transformation equations can. be used 

to map any point in the absolute reference frame onto that of 

a radar. io achieve this, the radar's frame of reference 

needs to be defined in that of the absolute one. The origin 

is kept as the radar location itself. The new 'X' and 'Y' 

axis, shall be in the dire.ction EAST-WEST and NORTH-SOUTH of 

the radar, respectively. The 'Z' axis shall point towards the 

zenith that is the extension of the line jqining the earth's 

centre and the radar location point· (new origin), with its 

portion above the earth surface being the positive region 

and that inside earth the negative one . 

Next we express these planes in proper equations that 

represen~ them in the absolute coordinate reference. The 

general equation of a plane in the 3d coordinate system is 

A . X + B . Y + C • Z + D = 0 4 

where A, B, and C are the direction ratios of the 

normal to the plane. 

Thus , if (XR, YR, ZR) represen·ts the location of radar, 

the direction ratios A, B and C for the new Z axis (or the 

X-Y plane shall be 

AZ = XR -0 = XR 5 

BZ = YR -0 = YR and, 6 

CZ = ZR - 0 = ZR 7 

Substituting for AZ, BZ and CZ and knowing that (XR, YR, 

ZR) is a point on it, the valtie of DZ is computed as 

DZ = - ( AZ .XR + BZ . YR + CZ . ZR) 

14 



= - ( XR . XR + YR . YR + ZR . ZR) 

= - R2 . . 8 

Therefore equation of plane is . . 
AZ . X + BZ . y + cz . z + DZ = 0 

i.e., XR . X~ YR . Y + CZ . Z - R R = 0 .. 9 

Similarly, the 'Y' axis shall be the line .joining 

(XR,YR,ZR) and the point of intersection of the axis of 

rotation with a plane tangential to.the earth's surface at 

.the radar location. Using equation 9 the location of such a 

point (0, 0, ZN), where ZN = R*R /ZR, can be found . The 

direction ratios A, B and C for the new Y axis (or the z-x 

plane) and the corressponding D shall be 

AY = XR - 0 10 

BY = YR - 0 11 

CY = ZR - ZN and 12 

DY = - (AY XR + BY YR + CY . ZR) 

= - (XR XR + YR YR + (ZR - ZN) . ZR) 

= - R2 + ZN*ZR 

= - R2 + R2 

= 0 . . 13 

The 'X' ·axis of the new coordinate reference shall be in 

the direction EAST-WEST of the radar location. However, 

unlike in case of other two axes, no point other than the 

radar location itself, is known on this 'axis. Hence, 'X' 

axis being perpendicular to both 'Y' and 'Z' axis, the 

computation of vector product of their equation has been 

resorted to. Cons~quently, for 'X' axis A, B, C and D are 

15 



found as 

AX = BY ez - BZ eY, 14 

BX = eY AZ - ez AY, 15 

ex = AY BZ - AZ BY and 16 

DX = - (AX.XR + BY.YR + eX.ZR) 17 

With this, we complete the def~ning of new coordinate 

reference at the radar location. In order to map a point from 

the absolute frame to this new frame one needs to compute the 

distance of that point from the three planes. A general 

formula for computing the distance '0
0

' of a point· (X 0 , Y0 

,Z0 ) from a plane 

A . X + B Y + e . z + D = 0 ) is 

= 
I A. X0 + B .Y0 + e .Z0 + D I 
1---------------------------1 
I (A2 + B2 + e2)1/2 I 

18 

The 'absolute function' used in this formula is only to 

signify the absurdity of negative distancei. However, in the 

current context a negative values refers to the negative 

domain of the coordinate axis. The absolute function, must 

therefore be dropped. The coordinate transformation 

equations, as a result, look like 

= 
AX . xin + BX . Yin + ex . zin + ox 

---------------------------------------
(AX2 + BX2 + ex2 ) 1 /2 

. . 19 

= 
AY . Xin + BY . Yin + eY . Zin + DY 

--------------------------------------
(AY2 + BY 2 + eY 2 ) 1 /2 

• • 20 

= 
AZ . Xin + BZ . Yin + ez . Zin + DZ 

-------------------------------------
(AZ2 + Bz2 + ez 2 >1 /2 

. . 21 
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Suffices in and out refer to input and output parameters 

respectively. The transformation equations 19, 20 and 21 can 

be used to transform any point in the absolute frame of 

reference onto that of the radar. -We, however, required 

coordinate mapping from each radar to the CRC. To achieve 

this, a CRC location reference is to be first defined. After 

its location cartesian coordinates are known, th~y are mapped 

onto the radar's reference frame using the above equations. 

The other two points namely and· for the.CRC location are 

also similarly mapped. As was shown earlier, these three 

points could now be used to define the CRC's coordinate frame 

in that or the radar's and the transformation equations 

derived. With location of radars and CRC kn~wn, the 

conversion coefficients can be calculated offline resulting 

in a reduction in computational load in the real time 

process. The equations 19, 20 and 21 can be expressed as : 

Or 0 = T * 

Where 

0 is the 

T is the 

I is the 

and R is the 

I + R 

output 

Txz 

Tyz 

Tzz 

* 

(transformed) 

I . 

+ 

.. 21 

coordinates vector 

transformation coefficients matrix · 

input (untransformed) coordinates vector 

radar's location coordinates vector 

17 



To summarise , the various steps involved are 

Non real time :-

1. Find the location cartesian coordinates of each radar 

and the CRC from the respective latitude and longitude 

and the radius of the earth. 

2. For e~ch radar location proceed as follows 

2.1 Designate the radar's location as the new origin. 

2.2 Get a point (O,O,ZN) in the plane of the radar and 

intersecting the z axis of the· absol~te reference. 

2.3 Compute the direction ratios for the directions 

(a) ZENITH (Z) - Using the centre of earth , 
. 

(b) NORTH (Y) - Usin the po~nt (O,O,ZN) and 

(c) EAST (X) - By the vector product . 

2.4 Use these direction ratios and the origin to get 

the equations of the three planes that forms the 

new frame of reference. 

2.5 Get the transformation coefficients to map any 

point in the absolute reference onto the radar's 

reference. 

2.6 Using these coefficients in the distance formula to 

map the location of CRC centre o£ earth and 

the point (O,O,ZN) in plane of CRC, onto the n~w 

reference frame at the radar location. 

2.7 Designate the CRC location as the new origin and 

compute the direction ratios of the directions 

ZENITH, NORTH and EAST. 

18 



2.8 Use the equations of planes that forms the CRC's 

coordinate system. 

2.9 Get the transformation coefficients and store 

them for ready use. 

Real time:-
On receipt of the coordinates, find the new 

transformed coordinates using the pre-computed 

transformation coefficients and the incoming coordinates 

using equations 18, 19 and 20. 

The above coordinate transformation method perform 

significantly less processing in real time while meeting the 

accuracy requirements as well. Also it is best suited for 

three dimensional radars. For 2D radars where the height 

component is not available zin may either be kept zero or a 

default value of height chosen. The inaccu~acy so introduced 

shall not be significant. 

ALGORITHM FOR COORDINATE CONVERSION 

Input for Initiation : 

Latittide and lagnitude from each radar location 

Input fo~ processing : 

Plots for coordinate transfer £rom absolute frame of 

referance to central referance coordinate system 
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Algorithm : . 
location = record 

x,y,z : real ; 

end; 

loc : array [1 .. n] of location; 

• d_ratio_1, d ratio_2, d ratio 3 :array [1 •• 3] of real; 

con d :array [1 .. 3] of real; 

for i=1 to n do 

begin 

getloc(lat~long); 

loc[i] .x := R * cos(lat) * cos(long); 

loc[i] .y := R * cos(lat) * sin(long); 

loc[i].z :=R* sin(lat); 

end; 

getlocCRC(lat,long); 

crc.x := R * cos(lat) * cos(long); 

crc.y . R * cos(lat) * sin(long); 

crc.z . R * sin(lat); 

Zn := (R * R) /loc[i] .z ; 

point.x := point.y := 0; 

point.z ·- Zn ;. 

d ratio 3[1] := loc[i].x; 

d_ratio_3[2] := loc[i] .y ; 

d_ratio_3[3] .- loc[i] .z ; 

con_ d [ 3] : = - R * R ; 

d_ratio_2[1] := loc[i].x; 
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d_ratio_2 [1) := loc[i) .y ; 

d_ratio_2[1) := loc[i].z - Zn ; 

con_d[2] := 0 ; 

d_ratio_l[l] :=· loc[i].y_ * Zn ; 

d_ratio_1[1] :=- Zn * loc[i] .x ; 

d_ratio_1[1] := 0; 

con_d[1] := 0 ; 

d1 := sqrt(sqr(d_ratio_1[1]) + sqr(d_ratio_1[2]) + sqr(d_ratio_1[~; 

d2 := sqrt(sqr(d_ratio_2[1]) + sqr(d_ratio_2[2)) + sqr(d_ratio_2[3]; 

d3 := sqrt(sqr(d_ratio_3[1)) + sqr(d_ratio_3[2)) +. sqr(d~ratio_3[3J; 

for j:=1 to 3 do 

begin 

d ratio 1 [ j) := d ratio 1[j)ld1 ; - -
d ratio 2[j] := d_ratio_2[j]ld2 ; - -

d ratio 3·[ j] := d ratio 3[j]ld3 . I - - - -
end; 

con d [ 1] := con d [ 1) I d1 ; - . -

con d (2] := con d [ 2] I d2 ; - -

con d [ 3] . con d [ 3] I d3 ; 
- -

store trans from abs to radar (i;d_ ratio 1, d ratio 21 d ratio 3, - -

crc.x := crc.x * X[1] + crc.y * X[2] + crc.z * X[3] ; 

origin.x := origin.x * X[1] + origin.y * X[2] + origin.z * X[3] ; 

point.x := 0 * X[1] + 0 * X[2] + (R*R)Icrc.z ~ X[3] ; 

Y[1] ::::; crc.x - point.x ; 

Y[2] := crc.y - point.y ; 

Y[3] . - crc.z - poipt.z ; 

D[2] - ( y [ 1] * crc.x + Y[2] * crc.y + Y[3] * ere. z) . . I 

Z[l] := crc.x - origin.x ; 
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Z[2] . - ere.y - origin.y ; .-
Z[3] := ere.z - origin.z ; 

D [ 3] := - ( Z[1] * ere.x + Z[2] * ere.y + Z[3] * ere.z) . , 
X [ 1] := Y[2] * Z[3] - Z(2] * y [ 3]; 

X[2] := Y[3] * Z[1] - Z[3] * y [ 1]; 

X [ 3] . - y [ 1] * Z[2] - Z[1] * Y[2]; .-
0[1] := -( X[1] * e'I'e.x + X(2] * ere.y + X [ 3] * ere. z) . , 

e1 := sqrt(sqr(X[1]) + sqr(X[2]) + sqr(X[3])); 

e2 := sqrt(sqr(Y[1]) + sqr(Y[2]) + sqr(Y[3])); 

e3 := sqrt(sqr(Z[1]) + sqr(Z[2]) + sqr(Z[3])); 
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for j := 1 to 3 do 

begin 

X [ j] := X [ j] I e1 . 
' 

y [ j] := y [ j] /e2 ; 

z [ j] :=.Z[j] /e3 ; 

end . , 

D[1] := D [ 1] /e1 . , 

D[2] := D[2] /e2 ; 

D[3] := D[3] /e3 ; 

store trans from radar to ere (i,X, Y,Z, D) ; 

end. 

Run time:-
for ( radar i do 

if input plot is in loe~plot then 

begin 

Plot ·- trans from abs to radar 

Plot := trans from abs to radar 

end ; 

i, loe_pl.ot 

i, Plot ) 

procedure trans from abs to radar (i, Plot) 

begin 

retreive from abs to frame (i, X, Y, Z, D) ; 

. 
I 

out[1] := X[l] * Plot[1] + X[2] * Plot[2] + X(3] * Plot[3] + D[~J; 

out[2] . Y(1] * Plot[1) + Y(2] * Plot[2] + Y(3] * Plot[3] + D[3); 

out[3] := Z(l] * Plot[l] + Z[2] * Plot[2] + Z[3] * Plot[3] + D["3]j 

return (out) ; 

end ; 
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procedure trans from radar to ere (i, Plot) 

begin 

retreive from radar to ere (i, X, Y, Z, D) ; 

out[l] := X[l] * I;'lot[l] + X[2] * Plot[2] + X[3] * Plot[3] + D[l]:, 

out[2) := Y[l] * Plot[l] + Y[2] * Plot[2] + Y[3] * Plot[3] + D[2J i 

out[3] := Z[l] * Plot[l] + Z[2] * Plot[2] + Z[3] * Plot[3] + D[3)j 

return (out) . ; 

end. 
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REGISTRATION ERRORS 

3.1 THE RADAR REGISTRATION PROBLEM 
In cas~ of Multi Radar Tracking the ~ndividual radar data 

must be expressed in a common coordinate system ·in which the 

errors due to site uncertainties, antenna orientation, and 

improper calibration of range and time have been minimized so 

they do not cause a significant degradation of the system 

operation. The process of ensuring the requisite "error free" 

(or, more precisely, controlled error) coordinate conversion of 

radar data is called registration. Thus, registration is an 

absolute ptequisite for multiple radar tracking or sensor 

netting in general. 

3.2 REGISTRATION ERRORS : 
The objective of this section is twofold : first, the major 

sources of registration error in multiple radar systems will be 

identified; second, the possible impact of these errors on the 

' 
data association and track processes will be discussed on a 

qualitative level to asses their significance. 

3.2.1 SOURCES OF REGISTRATION ERROR 
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The major sources of registration error for radars are 

given in the left-hand column of Table 1 ,and some possible 

corrective actions in· the right-hand column. 

Error source 

Range : 
offset 
scale 
Atmospheric refraction 

Azimuth 
offset 

Antenna tilt 

Elevation : 
offset 
Antenna tilt 

Time 
offset 

scale 

Radar location 

Coordinate conversion 
radar plane 
system plane 

Corrective measure 

Test targets 
Factory calibration 
Tabular corrections 

Solar allignment 
Electronic North 

reference modules 
Electr6nic leveling 

Test targets 
Electronic leveling 

Common electronic 
time reference 

Factory calibration 

Electronic position 
location 

3D radars 
Exact or second order 
stereographic proj. . _... . . ~- ~ ~... . 

Of the sources of registration error listed in Table 1, 

four sources have proved to be major problems in current 

defense and air traffic control systems : 

(1) position of the radar with respect to the system 

coordinate origin , 

(2) alignment of the antennas with respect to a common 

North _reference , 
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(3) range offset errors, and 

(4) coordinate conversion with 20 radars. 

The other errors very well may exist in the current 

radar systems; however, they have not been significant problems 

in the past. As communications and radar technology improves, 

these other error sources could not become more significant in 

the future. 

The potential effects of range and azimuth offset errors 

are illustrated in Fig 7 . Registration errors are systematic, 

not random, errors in the reported aircrafts position; large 

errors will result in two apparent aircraft when only one real 

aircraft exists. Fig.7 shows the expected or average reports 

for a common target from two radars, each of which consistently 

reports (1) a range less than the tr.ue range by a fixed amount 

(i.e.,the offset) and (2) an azimuth ~measured clockwise from 

North) less than the true azimuth by a fixed offset. For any 

specific set of measurements, the random measurement errors 

will be superimposed on the bias or offset errors. 

3.2.2 EFFECT OF REGISTRATION ERROR ON TRACKINGa 
The effect of of systematics errors is to introduce 

biases into the track estimation process. Therefore, failure to 

register adequately a multiple radar system can result in 

varying degree of performance degradation, depending on the 

magnitude of the biases w.r.t. the random measurement errors 

and the track correlation gates. The level of degradation 

ranges, at worst, from the formation of multiple redundant 
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tracks for a single aircraft to reduced track accuracy and 

stability, when the bias is relatively small. In between the 

benefits of a multiple radar system can be negated and the 

system, in effect, reduced to a single rad~r tracking system. 

3.3 REGISTRATION PROCEDURE: 
System registration may be consider~d as a two-phase 

process : sensor initialization and relative alignment. The 

objective of the initial registration procedure is to register 

e.ach sensor indep.endently, with respcet to absolute 

coordinates. Once the position of the sensor has been 

estimated, the range measurements have been calibrated, and an 

initial al~gnment with respect to true North has been 

completed, we can initiate the procedures for relative 

alignment of the system sensors. The initialization procedure 

is generally straightforward; the ·difficult part of 

registration is the relative alignment of the sensors. 

Techniques for relative registration depends on common 

targets. Generally ,data are collected until a sufficient 

number of paired reports have been obtained, and then a set of 

bias corrections are computed. The usual technique for 

obtaining the solutions is either to formulate the problem as 

an ordinary least-square estimation (LSE) problem or to rely on 

simple averaging to remove the random error components. The 

major limitation of either approach is that radar report is 

• 
treated equally when, in fact, the measurement errors are a 

function of both the individual radar parameters and target 

range. 
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3.4 BIAS ESTIMATION: 
Three alternative approaches for registration have been 

sugested by Ficsher, Muehe, and Cameron [Fischer, SO]; 

specially, the generalizeg linear least-squres estimation 

(GLSE) technique and two numerical optimization methods, one 

based on a grid search technique and t~e other on Powell's 

method for steepest descent. 

Commercial array processors or special purpose 

coprocessors now can perform the large scale matrix operation 

required by the GLSE aproach (see [Anderson, 58 J and 

[Mardia,79]). This technique developed by Wax [Wax,83] for 

aircraft location with sensors at uncertain locations can be 

applied to formulate the generalized Gauss-Markov problem. 

Moreov~r, the solutiom can be reduced to a computationally 

tractable algorithm~ as we will demonstrate. 

3.4.1 MATHEMATICAL DEVELOPMENT: 

In the following derivation, assume that master radar 

RA is located at the origin of the coordinate·system and that a 

subordinate radar RB is located at coordinates (u, v) . Also 

assume that there are N targets in the intersection of the 

respective fields of view, denoted by {T1 , T2 , ... ,TN} . 

The basic problem is to determine the range and azimuth 

biases at each radar from the measurements of the set of common 

. ,TN}. That is, we need to estimat~ the 
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azimuth biases .R8 , respectively, 

and the range biases A'tl-A and A l'l-
6 

at . RA ancj. .. R8 . denote the 

vector of biases by 

( 3. 1) 

Where the superscript. T denote the transposition operator. 

For each target Tk, define the vector of radar measurements 

(3.2) 

Where· (rAK'QAK) and (rBK' Q8K) denote the range and 

azimuth measurements from radar RA and radar R8 , respectively, 

and the index k denote the sequence of independent measurement 

over time. 

For each set of measurements, ~K , the observations are 

the seperations in the system (x,y) plane of the reported 

target positions. 

These are 

XK = [rAK + rA] cos[~AK + eA] - u - [rBK + r 8 ] cos[QBK + Q8 ] 

YK = [rAK + rA] sin[GAK + GA] -v - [rBK + r 8 ] sin[QBK ·+ 88 ] 

( 3. 3) 

To apply the theory of generalized least-squre 

estimation, we need to represent the observations as a linear 

function of parameters to be estimated, namelly A. This can be 

accomplished by defining a function f as follows 

f ('1'K' A) = [~xK, 6..yK]T (3.4) 

Further, let '-\'~and A' denote the. actual measurement sets 

and an initial esimate of A, respectively. Now, Taylor's theorm 

can be used to approximate the function f at the true values of 
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~K and A in terms of the measurements ~'K and the initial 

estimate 'A' : 

f { IVK ' A) -=-=-. f { ~ K' A I ) + 'J A [ f { ~K' A) ] ('A - A' ) 

+\7'f[f{\fJK, 'A)J <o/K- ~K) •• {3.5) 

Where the differential operators 'A and are defined as 

follows : 

\] 'P [ f <.. 'f~ I i\ I) :> 

"d(~'ll<) d(lY~K) o(~) d(~.J 

d?lAII. O~Ak d\~K 1Se,ll 

~(D~~) 'd(D'dk) ~(~~0 6(~'!i) 
d?t_AK.. d8AK. ~\.&'J:. 'd 88"' 

a (]SX.k) 4( ~X.J }(~ l..,> 

o(~X.A) ;}(M~II) C>(Mtt.) 
'Jl~~ 
~(b&~ 

-;:,ct-~!Y 'd(~~.v o<ts~ It) 
~C~~,\l "t>(M~ ()(to\&) 

~ (t>),y 
~(.b&p) 

F\<. 

( 3. 6) 

For convenience later in the development, the 2 X 4 

matrices \/"t' [ f (lVK', A') ] and \]A'[ f { 'f'K', A')] has been labeled Fk 

and ~' respectively. If the errors 
I . 

{ 't'~ - '-""" ) and 

(A- A') are sufficiently small that the higher-order terms can 

be neglected, the approximation in ~.5) may be regarded as an 

equality. Note that 

[f('¥K' A)] = 0 {3.7) 

by definition; therefore, 

. . {3 . 8) 

where o'\Jk: (.\..f'k- l.f'~) . Also, note that the matrix Gk is a 

matrlx of known parameters, Fk ~\.Vtt is error due to the 

measurement noise, and that the terms on the right hand side of 

(3.8) now represent the observations. 
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With all this notation and the approximation of (3.5),(l·~ 

( 3. 3) may now be reformulated as the classical model of GLSE 

theory (see, for example, [Anderson,58] or [Mardia,79]). 

xA + ~ = y 

by setting 

X = [ G1' G2, G3, . 

~ = [ F, ~"P. , F ... ~'f1. , . 
= [ G,"P/-rc~:,~·), 

. 

. . ,~]T 

, ~..., ()\..jJN ] T 

C,1A'- f (~;I A~) 

.. (3.9) 

.. (3.10) 

.. (3.11) 

• • ~ N ~·- f<~V~ 11')] T 

.. (3.12) 

Note that parameter matrix X is of dimension 2N X 4 

whereas the error vector ~ and the observation vector Y are of 

dimension 2N. 

The last step in the application of the Gauss-Markov mode{ 

is to develop the covariance ~~ matrix for the error vector ~ . To 

this end, define a 2N X 2N matrix : 

• . (3. 13) 

The terms in (3.13) can be simplifietl·if it is noted tha 

I 
the measurement vectors or sets '+'~ and ~.p.' are independent 

J 

therefore, 

(3.14) 

if i f j. if i = j, then 

<r., ... ( Po.) 0 0 0 

.z~ E ({ .. '0\}' ~ '+'~ l] = 0 cr;(P..) 0 0 
::: 

_ ... 

0 0 cr;c~) 0 
~ 

0 0 0 a; (3.15) . . 
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Now note that Fk is a 2 X 4 matrix and that 2~ is a 4 X 4 

matrix; therefore, 

.. (3.16) 

is a 2 X 2 matrix. This implies that, finally,~~ _is a block 

diagonal matrix with the 2 X 2 blocks {~ 1 ,i2 , .. ,"iN} along the 

main diagonal and zeros in the off-diagonal positions. 

The solution of the Gauss-Markov equation, <~·9), is simply 

pt = (X T 2.~X)_, XT 2i' y .. (3.17) 

where 
-I 

COV (~~) ::: ( 'XT ~~~ x) 
(3.18) 

because zfis_ a 2N X 2N block-diagonal matrix< we thus have 

y.'L£;''1-. = ~ G,:-z.:'c,·K .. (3.19) 

where the individuftl terms of the sum are 4 X 4 matiices. 

Similarly, 
T -1 

x zlf Y - ~ G: ~-~ [~~~'- f(~~,A')J. 
"~· 

(3.20) 

If the individual radar measurement error are normally distribute~ 

o'fK is a normally distributed vector; F1<.'i-'1<. is a linear 

combination of normal variablesJso it is normally distributed. Thus 

is distributed as N (0 , 2:.1-f). 

Equation (3.17) is the minimum variance solution under any 

error distribution. For the norma~ distribution (that is 7 

distributed as N (0, £'fl)), A* also is the maximum- likelihood_ 

solution. By these criteria, .A* in (3.17) is the "best" solution to 

the minimum variance problem as defined by (3.9) . 
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The estimation technique just outlined attempts to minimize the 

effects of registration errors in the system plane with corrections 

in the radar measurement plane. If the transformation (3.3) of the 

data from the radar to the radar system plane introduces an erro~ 

of the same order of magnitude as the observation errors, then the 

utility of the solution is open to question. Fortunately, the issue 

can be resolved by use of the second-order stereographic 

transformation between planes. As shown by Burke [Burke,73], tht 

error induced by the second-order stereographic transformation ~ 

1 e s s t h an . 2 m · o v e r a n y r e a 1 i s t i c s e n s o r g e om e t r y . T h is 

transformation error is at least one o~der of magnitude less than 

the random measurement errors of modern surveillance radars. 
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DATA FUSION INCLUDING AlTRIBUTES 

4.1 FUSION AND CORRELATION FOR DATA INCLUDIN 
ATTRIBUTES 

This section develops a Bayesian mathematical structure 

based upon ,[At k ins on , 8 0 ] , under w hi c h o b s e r vat ion con t a in i ng 

attribute data as well as kinematics can be combined and update 

estimates thereby formed. Attributes are sensed target quantitie 

that are associated with a particular type or class of target 

These may include such quantities as wheel type fo~ ground targets 

engine type for aircraft, type of emitting radar for either grouna 
. 

or aircraft targets, or target image sh~pe. Also, the class or type 

of target may itself be considered an attribute. 

Most previously developed MTT system have only use 

kinematics quantities such as position, range rate etc. However 

with the use of sensors other than radar and with advances in radar 

signal processing techniques, the efficient use of other types cl 

attribute data now becomes important. In particular, future 

military MTT systems will use a wide variety of sensors that will 

measure a number of different attributes. The problem is ~ 

correlate these different types of data, to make inference on the 

important attributes such as target type, and to assign confidence 

to these inferences. 

Pattern recognition is one method of using multiple sensor 

data to determine target identification. Using this approach, we 

would determine the appropriate set of features to be formed from 

multiple sensor observation data and the best weighting (confidence 
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level) to use with these data. This is a complex process an 

probably feasible for only a limited number of sensors. Also, 

redefinition of the features and weightings will be required whe~ 

another sensor is added to the system. The approach discussed her 

will assume that each sensor first p~ocesses its own data. The 

each sensor will produce its current best estimate of target 

attributes. The confidence associated with such output also will be 

assumed to be transmitted or known from previous experience. Thus 

the problem becomes one of combining sensor attribute data to 

specify targ~t type and the associated confidence level~ 

As an example of multiple sensor attribute data, fig 8 show 

the information that may be available to an airborne interceptor 

system using multiple sensors and advanced. processing methods. This 

target attribute information may include type of engine, type m 
radar, target shape, response (or lack of) to interrogation friend 

or foe (IFF), and radar cross section (RCS). Finally, other 

information such as flight path characteristics and possible 

intended target destination also may be added from other sources. 

In general, it ii best to keep estimates at the attribute 

level. Directly converting attributes to target type· may keep to 

some inaccuracy. For example, consider the case where radar type rl 

can be carried by target types a 1 and a 2 whereas radar type r2 ca~ 

be carried by target types a 2 and a 3 . We assume that the target 

c~rries a single type of radar. If a return indicating the target 

to be carrying radar type r 1 is converted directly to target type 

<a 1 or a 2 ), the incorrect conclusion can be made that these return 

both correspond to the same target (type a 2 ) .··Thus, we assume than 
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estimates are kept on the attribute level and that these estimate 

are continually updated as new attribute data are received. Then 

attribute estimates are combined, and recombined as new data arc 

received, to form estimates of the target type. We next outline 

three approaches to the process of combining target attribute and 

identification information. 

4.2 BAYESIAN APPROACH 

Application of a Bayesian app+oach to the attribute and 

target identification problem requires a priori information and 

conditional probabilities. First, the measurement process is 

defined by the folowing relationship: 

P(Xm/X) = probability of receiving measurement Xm 

given that the true quantity is X which 

is assumed to be known. 

Then, whenever measurement data are recei~ed, the updated 

probabilities can be computed using bayes's rule : 
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Where 

p (X) 

P(Xm/X)P(X) 

P (Xm) 

= prior probability associated with X 

= ~ P (Xm/X) P (X) 
""" 

The process continues as P(X/Xm) becomes the new prior 

probability for use when further data is received. To initiate the 

process, before any received measurements, Bayesian approach 

require an initial estimate of the probability of X. 

To summarize, Bayes's rule is applied recursively as new date 

recieved. This relatively simpl~ relati~nship provides the 

estimated probablities of target attribute based directly on the 

measurement Xm of involved quantities. The estimated probabilitie 

can be improved using known interrelationships, as expressed b~ 

conditional probabilities between attributes and targ~t types. 

4.3 Dempster-Shafer Evidential Reasoning 
Dempster [Demster,68]] and Shafer have developed a method thal 

generalizes Bayesian inference and which has been denoted the 

Dempster-Shafer or evidential reasoning method~ The evidential 

reasoning approach is more general than the Bayesian. Also, its 

development has been based upon several perceived weaknesses of the 

standard Bayesian formulation. A weakness of the Bayesian approach 

is the lack of a convenient representation for ignorance of 

uncertainty. The evidential reasoning method handles this situation 

quite simply by allowing the assignment of a probabilty mass value 
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directly to uncertainty. 

The evidential reasoning method als6 handles the problem of 

incomplete or uncertain sensor measurements. First, sensor error 

can be conveniently represented by a probability mass assignment 

directly to uncertainty. Also the use of evidential reasonin9 

allows a more convenient and accurate representation of the 

information from certain sensors. 

4.3.1 IMPLEMENTATION OF EVIDENTIAL REASONING 
Assume that we have a set of ·~ mutually exclusive and 

exhaustive propositions, such as that the target is type 

a 1 , a 2 , ... , an. The method of evidential reasoning can assign a. 

probability mass (denoted by m(a 1 ) ) to any of the original Y\ 

propositions or to disjunctions of the propositions. Note that this 

more general form of representation differs from the standard 

Bayesian approach in which probabiliti~s are assigned only to the 

original~~ propositions -disjunctions are not considered. 

The representation of uncertainty is mass assignment to the 

disjunction of all the original propositions and is denoted 

m(S) m(a1 v a 2 v .. v an) 

Finally, mass can be assigned to the negation of a proposition. For 

example, the mass assigned to the negation of a 1 (the target is not 

of type a 1 ) is denoted 

m(-al) = m(al v a2 v .. v an) 

To summarize, probability masses may be assigned to individual 

propositions m(a 1), to disjunction m(a 1 v a 2 ), to uncertainty m(S), 

or to the negation of a given proposition, m(-a 1 ). The sum of these 

masses must equal unity. 
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Another interesting feature associated with the Dempster-Shafer 

method is the concept of support and plausible for propositions· 

the support for a given proposition is the sum of all the masses 

assigned directly to that proposition. To illustrate, consider the 

target type example, The support(spt(a1 >> for the basic proposition 

the target type is a 1 is just t~e mass associated with a 1 (i.e. 

spt(a 1 )= m(a 1 )). For a more complex proposition such as that the 

target is either a 1 ,a2, or a 3 , we have 

spt(a1 v a 2 v a 3 ) = m(a 1 ) + m(a2 ) + m(a 3 ) + m(a1 v a 2 ) 

+ m(a 2 v a 3 ) + m(a1 v a 3 ) + m(a 1 v a 2 v a 3 ) 

The plausiblity of a given proposition is the sum of all mass 

not assigned to its negation. Thus, 

pl~(a 1 ) = 1 - spt(-a1 ) 

Alternatively, pls(a 1 ) can be computed by summing all masses 

associated with a 1 and ill disjuctions, including e that contain 

a 1 . For example 

• +m (~) 

The plausibility of a 1 defines the mass that is free to move to 

the support of a 1 . The interval [spt(~1 ), pls(a1 )J represents the 

uncertaintyinterval with [0,1] representing total ignorance and 

[0.6,0.6] representing a certain probability of 0.6. 

The manner in which data are combined. from multiple sensors is 

through Dempster's rule of combination. this rule is an extention 

of Bayes' rule and its application is explained through the 

following example. 

4.3.2 An Example Using Evidential Reasoning 
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Consider an example where there are f0ur target aircraft types as 

defined : 

a 1 friendly interceptor 

a 2 = friendly bomber 

a 3 = hostile interceptor 

a 4 hostile bomber 

Assume, we start the target type identification problem by noting 

the aircraft behavior appears to be·that of the class cl 

interceptor. However, this information is not certain so that the 

following mass assignment vector is defined 

= l ml (e)=0.4 

m1 (a 1va 2 ) = o.J 
The assignment of 0.4 to m 1 (~) represents the uncertainty 

associated with the rules used to determine that the behavior is 

that of the interceptor aircraft class .. 

Next, assume that the target does not respond to the IFF 

interrogation. _We would expect a response from a friendly aircraft. 

So this indicates that the target is probably hostile, but again 

this is not certain. Thus , we assign to this knowledge source the 

following mass values : 

[ m2 (6) = 0.3 

m2.(a3va 4 ) = 0. J 
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Fig.-lOa APPLICATION OF DEMPSTER'S RULE 
,. ' 

m1 ~~)=0.4 m(a 3':a 4 ) = 0.28 m (0) = 0.12 

. I ' ... 

ml(a 1va 3)=0.6 m(a3 ~ = 0.42 m(alva 3 )~0:18 

m2 (a3va4)=0.7_ mz (~) = 0.3 
-

Dempster's rule can be used to combine m1 and m2 as illustrated in 

the Fig lOa .. The resulting mass vector is 

m ( Q.) = 0 • 12 

m (a 1 v a 2 ) = 0 . 1 8 

m(a 3) =0.42 

m(a 3va 4) =0.28 

Referring to Fig. lOa, Demspter's rule is implemented by forminga 

matrix with the probability mass assignments that are to ~ 

combined given alon9 the first column and last row. Then, the 

computed elements of the matrix are the product of the probabilit~ 

mass values in the same row of the first column and the same column 

of the last row. For example, for (2,2) .element of the matrix shows 

in Fig. lOa. 

The assignment of these elements to the resulting vector is 

according to the following principles : 

1. The product of mass assignments to two pr.opositions that 

are consistent leads to an assignme'nt to another proposition 

combined within the two original propositions. For example, 
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m1 (a 1 ) m2 (a 1 ) = m(a 1 ) 

m1 (a 1 v a 3 ) m2 (a 3 v a 4 ) = m(a 3 ) 

2. Multiplying the mass assignments to uncertainty by the mass 

assignments to any other proposition leads to a contribution to 

that proposition, 

m1 (~) m2 (a 3va 4 ) = m(a 3va 4 ) 

3. Multiplying uncertainty by uncertainty leads to a new assignment 

to uncertainty. 
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DATA FUSION 

5.1 AIM OF DATA FUSION 
Data fusion has been defined as " a process dealing with the 

association, correlation, and combination of data and information 

from multiple source to achieve refined position and identiq 

estimates for entities, and complete and timely assessments ct 

related situations and threatts, and th~ir significance." 

The goal of the data fusion is the devlopment of a complete, 

accurate, concise and timely picture of a environment based on 

sensors that provide only limited observables, coverage, resolution 

and accuracy. The environment can be very complex, consisting d 

potentially large numbers of many classes of both stationary and 

moving entities. Since the analysis of individual sensor repor~ 

can lead to ambiguous, i n c o n s i s t en t an d h i g h l y 1 o cal 

interpret at i on s , t h ·e f us i on o f m u l t i p 1 e sensor data tends to 

enhance the situation understanding process. Although a spatially 

distributed network of hetrogeneous sensors can increase the total 

information available, the non- deterministic nature of the domain 

and the largely expectation-based character of the reasonin9 

process effectively guarantees a degree of uncertainty in the 

fusion product. The uncertainty can be minimized by synergistical!~ 

utilizing all available sensor-derived information and relevant\~ 

priori domain knowledge; the form~r provides dynamic situation 

information, while the latter supports real world, context­

sensitive reasoning. 
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5.2 FUNCTIONAL LEVEL FUSION MODEL 
An abstract, two level functional model of the tactical data 

fusion process is : 

5.2.1 Level-l fusion 

Level-l fusion represents predominantly information extraction 

related to the detection, association, classification and attribute 

refinement, normally associated with single entities, based on the 

analysis of single sensor and multiple sensor measurements. Lavel-l 

processing is largely numeric in character since the measurements 

are metric in nature and amenable to the application cl 

algorithms(typically statistical and estimation/optimization 

methods) . 

5.2.2 Level-2 fusion 

Level-2 fusion is based primarily on the current situation 

description, available a priori (static) domain knowledge and. 

expectation-based world models. Levels-2 fusion extends and enhance 

the completeness, consistency, and level-of-abstraction of the 

situation description· produced by level-1 to : 

1. compensate for the information-deficient and er~orful 

measurement space, 

2. resolve ambiguity in the level-1-products and 

3. develop higher level interpretations of the current 

based on reasoning in context . 

The first stage of level-2 fusion performs situation 

abstraction which include both situation generalization anJ 
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situation specialization. Situation generalization allows bottom-up 

abstraction of entities or events that are either not directl~ 

measurable, or not observed, to be either inferred ot the sensor 

network task to provide critical missing information that supports 

such inference. Situation specialization is a form of top-down 

reasoning where subordinate ~lements are deduced or inferred· 

Situation generalization and specializatio~ develop the structural 

organizational and functional relationship among domain elements 

and suppots developments of a consistent, complete and higher-

!eve-of-abstraction situation description. Level-2 processin9 

is distinguished from Level-l processing by a significant shift in 

emphasis to symbolic rather than numeric processing. 

Once a new target is detected, the fusion system charcterize 

by the multiple level model just described attempts t~ varify the 

targets presence, refine its 1 o cat ion and t raj ector y, it's 

measurable attributes, its p r o b a b 1 e c 1 a s s i f i c a t i o n , i ts 

association with a perticular unit, the association between that 

unit, the current enemy organisation and the preceived situation. 

Thus,the overall fusion process consist of numerous dependent and 

independent multiple level of abstraction functional processes­

Since individual sensors may observe the same target at different 

times and have very different processing and reporting delays, and 

since estimates of the situation description are asynchronous with 

respect to the sensor acquisition process, fusion process are often 

inherently asychronous. Both the sensor systems and the processin9 

nodes can be spatially distributed. Real time performance is 

mandated by time-critical nature of the tactical environment. The 
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dynamic charcter of domain and the limited information content of 

sensor reports insures a degree of uncertainty in the situation 

development process. 

5.3 Data fusion reasoning classes 
Data fusion is supported by three underlying reasoning classes 

spatial, hierarichical and temporal. Spatial reasoning deals with 

the spatial relationships among entities (e.g.,distance metrics, 

relative locations, doctrinal patterns~ apparent goal states), as 

well as their association with geographic and cultural domain 

f e a t u r e s ( e .- g . , s u p p o t a b i 1 i t y , m o b i 1 i t y , v i s i b i 1 i t y a nd. 

communicability). Hierarchical reasoning is required due to 1) the 

predominantly vertical organisation of military entities (e.g. 

v e h i c 1 e s , com pan i e s , batt a 1 ions ) , 2 ) the · m u 1 t i p 1 e 1 eve 1 of 

abstraction nature of the reasoning process (e.g., local 

stra~egies vs more global strategies), 3) the inherent efficienct 

of top-down problem solving. 

Because of the dynamic nature of the tacticle domain and the 

asynchronous nature of the sensor reports, temporal reasoning 

underlies the entire fusion process. 

5.4 Memory elements 

The fusion of multiple sensors information to enhpnce situation 

understanding in a tactic1e environment is metaphorically similar 

t o the f u s i o n o f m u 1 t i p 1 e sen s o r y ( e . g : , s i g h t and sounds 

information for perception enhancement in biological systems. Based. 

on an extention of the human memory metaphor, the primary elements 

of the fusion process can be associated with short term, medium 
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term and long term memory [Antony,87) .. Short term memory holds 

highly transient short term knowledge, medium term memory holdS 

dynamic, but less transient medium term knowledge and long term 

memory h o l d s r e l at i v e 1 y stat i c 1 on g term know 1 edge . Long t e rrn 

knowledge in biological system as well as data fusion systems 

represents factual and interpretive reasoning knowledge. 

A primary objective of an automated tactical situation 

understanding system is the development of the current relevant 

perception in the fusion system's metphorical medium term memo~ 

element. For automated fusion systein, current emphasizes the 

character· of the dynamically changing scene under observation, as 

well as the time- evolving interact~on among a network cl 

distributed processes. Because of memory limitations and the 

critical role medium term memory can play in system .survivability, 

only relevent states are maintained by tacti~al fusion system. Fo~ 

a frog, danger and moving insects represent highly relevent states} 

while for a human driving a car, the relative location of near~ 

vehicles, stoplights and pedestrians represent highly relevenl 

states. The notion of relevence proves to be crucially -important to 

supporting decision-making under stress, and is a challenge to the 

fusion system designer to develop systems which prevent degradation 

in reasoning and sub-optimal stress-related coping patterns. 

Summary: 
Tactical data fusion systems requires fusion among 

1) sensor derived information, 

2) the current situation understanding ancl. 

3) relatively static factual and procedural information as 

dlp•d(.d. in f,~._Ne. I I. 
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BLACK BOARD ARCHITECTURE 
FOR IMPLENTATION 

6.1 Black Board Architecture 
The opportunistic collaboration of a group of human experts 

from multiple disciplines seated in front of a chalkboard provide 

the problem solving metaphor for the BB paradig~. As their 

expertise permits, individual experts participates in the 

evolutionary development of the problem solution that is maintained 

on the chalkboard. The true human metaphor is opportunistics 

however, it has proven difficult to achieve this explicit behavior 

in computer- based systems due to concurrency, consistency, and 

control factors. Thus, in most cases, the computational BB, to 

varying degrees dependent on the detaile~· control paradigm 

reflects a "moderated" problem-solving paradigm. Thus, in the 

computational analog, a conceptual framework for communication and 

result-sharing permits a group of independent processes 

(specialized knowledge sources) under some degree of· centralize 

control (the moderator) to cooperatively and/ or compet it i ve.l~ 

interact with the evolving problem solution state (held by the BB)· 
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6.2 Tbe Generalized Blackboard (BB) Problem Solving 
Paradigm 

The requirements of the tacticle data fusion process were. 

summarized in column 1 of Table 2;the second column suggests 

natural strategies for dealing with each of the fusion proble~ 

characteristics. In this section the ·capabilities of o.. 

generalized blackboard (BB) - based paradigm are shown to be 

ideally matched to tactical fusion system requirements as suggestes 

by column 3 of Table 2. 

TABLE-2 

.. 
. - --- . -.- ---- -. --- ---- -· . . -. -- -- -- --

Fusion system Strategy BB Paradigm 
character Implication . 

---- - -· -- - -
Co""fiu , ~~,._ SCA\t pvobltm . \as\< n e.tomposl·ho, . . . ."""BB pqv\:i~ionin3 
])ls,hib~.<~td Stnso• ~"rr~S .. .. s. pn.t i<l\\~ d..\s'h-ib.ltd. f>oC'"' · · Co't"'"'munic.~\-ion ~ con~Yol 
'R e.Q.t \::( 1"1"1 (. "-.e.'\ u..i vt. mc.nts. . . . 'J:hs\vi b"'\ed. j>'YOC..e s.S.in~ · · G:otnmunic~h·o'l'\ ~ C.Onh-ol 
Mult\\>la Q..e.vd Jt · a.bs)...Q.c..\{ol) TCls\( d..~c.omposi·h'on .. .. \1 ,· Vl.O. C:. \.U c.<l.i "-..eO S 0 I') j 113 
l<eoJ.h~"~'~e. ~~ u..'-"f'e.Yl'lents .. . . Eftic:..l(.Y)~ f>YOC..~~5.in~ . · · .1'a. ~tl e. \(2o.hon 
"D~no..mic. si\. u..a.b·o\'1 ... .. "D~V10.m\c pYoc.ess moci~. ... Te..mpovQ..l x.e.o..soni n3 

IJnc.e>~_~n~ (..d-<l.\-a.. ~ <l~tis~ .. Mu..\b~(.- ~~f?~~~i~ -~~~~ , -~~~-o.A.,~ -n,ClhO.~~ 
-- --

The BB paradigm represents a special form of Object- Orientet 

( 0 0 ) r e a s o n i n g . I n g e n e r a 1 , o b j e c t s p o s s e s s a r b i t r a r~ 

characteristics and degree of autonomy .. Objects can either direct!~ 

or indirectly interact. Indirect interaction occurs if individual 

objects both monitor and modify the overall problem solution state 

Modifications include posting locally generated solutions, partia 
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solutions, hypotheses and unsolved problems. From this viewpoint 

the conventional BB is merely a specialized object that maintain 

the problem solution state. 

The functional-level fusion model supports arbitrary 

implementati?n architectures in software and hardware consisting, 

for example, of potentially large numbers of homogeneous and/or 

non-homogeneous spatially-distributed processing nodes. The 

individual processes can represent a mix .of technical disciplines 

and problem solving approaches. If each separate piocess is treatel 

as an object, an 00 problem solving environment supports the 

required process encapsulation, BB interaction, and overall process 

control. 

Sophisticated control may be required due to the potentially 
. 

complex mix of dependent and independent process operating across 

multiple levels of abstraction. In an 00 environment,· distribute~ 

hierarchical control allows each object to maintain its own local 

control element. In addition, higher level of abstraction objects 

can task lower level objects. Thus, individual processes can 

operate synchronously, be triggered by other processes, or operare 

fully asynchronously responding autonomously to the state of the 

BB. The overall processing net supports both data- driven (locaL 

process originated) and goal-driven (higher level process-directed 

problem solving, as well as elements of both centralized and 

distributed control. 

Thus, a generalized BB-based problem solving paradigm clear~ 

supports the first four requirements of the tactical·data fusioh 

problem listed in table 2 . While an argument could be made thah 

an 00 problem solving model intrinsically support all seven problem 
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characteristics, the 1 as t three items require further­

consideration. As will be argued next, data representation is a ke~ 

aspect of 1) the efficiency of indivi~ual fusion processes and 2) 

the maintenance of competing BB hypotheses. 

6.3 Problem solving efficiency 
Because of the limited computational resources and typicall~ 

time-critical requirements for fusion products in the tactic~ 

environment, _highly efficient fusion processing required in mosl 

applications. Since even an intrinsically efficient algorithm can 

become I/0 bound, efficient problem solving requires both efficient 

algorithms and efficient database access. Efficient algorithmS 

imply efficient support for spatial, hierarchical and temporal 

reasoning. In terms of database acess efficiency, rapid location cl 

appropriate database information requires ~upport for efficient 

problem- dependent search dimensions. 

In the "target detection-to-track assignment" problem, for 

example, all candidate track files must be evaluated before makin9 

a track assignment decision. Candidate tracks are those tracks than 

are ''close" to the new sensors- derived report based on metrics 

such as spatial/temporal proximity, speed, velocity, cross section 

or radio frequency. Rather than evaluating all possible tracks 

database search dimensions should permit direct access to candidate 

track files. If "close" is defined by a Euclidean distancemeasure, 

f o r i n s t an c e , e f f i c i e n t d a t a a c e s s de m a n d s a d at a b a se 

representation for both static and dynamic data for preserves the 

Euclidean metric. Single-dimensional representaion of 2-D data such 

as vector, boundary and linked lists do not preserve the spatial 
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distance metric, and thus do not support true 2-D indexing 

{i.e.,data that is "near" in 2-D space may not be "near" in the 

database regardless of the indexing scheme) . On the other hand, ~ 

true 2-D spatial data organization {points are stored as points, 

lines as lines, and regions as the enclosed area) can preserve the 

Euclidean metric among 2-D spatial features, and leads itself to 

associative processing. 

Thus, both algorithm efficiency and database access efficiency 

can be highly sensitive to data representation. In many cases, the 

use of "natural" data representations {e.g.,2-D spatial data stored. 

as true 2-d representations, solid objects as true 3-d. 

representations, hierarchies as hierarchies, tables as tables, 

rules as rules) offer inherently powerful and efficient database 

search dimensions and reduce the requirement for "artificial 

i n de x i n g . I n add i t i on t o e f f i c i en t . s e a r c h , n at u r a 1 d a tn. 

representations tends to preserve key relationships among the dat! 

{e.g., spatial distance metrics) that enhance algorithm efficiency. 

Although the relational database is the current industrial 

standard, the relational model fundamentally supports only table 

based data. Regardless of the number of fields that are conjoined 

only linear search dimensions are supported [Antony,91]. Since 

efficient 2-D spatial reasoning requires support fbr true 2-d 

spatial search dimensions, and efficient hierarchical is enhance 

by true hierarchical representations,· the relational data mode 

tends to be suboptimal for both of these reasoning classes. 

The search·for BB objects that are close both in time and space 

to a new target report is fundamental to the fusion process. If 

in the 2-D case, stationary and moving entities are maintained as 
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discrete 3-tuples (i.e.,xi,yi,zi), indexing or sorting along an 

individual dimension is straightforward. A spatially-coded temporal 

history file is a typical example single dimension indexing (i.e. 

3-tuples ind~xed by t). 

Although a moving target is often obse~ved only at discrete 

points in time, the actual trajectory of the entity is a continuous 

fun c t i o n i n b o t h spa c e and t i me . T· h u s , t he d a t a f u s i on 

applications, indexing (or search) along the continuous dimension 

of space and time is ideally required. Consider the analysis of 

sensor reports using the discrete data.represented in fig. 12 and 

by the diagram in fig.l3 . If the database is indexed by time, 

for ta=l, tb=lO, tc=td=S, 1) query point d will appear close to 

point c since tc=td and 2) point d will appear far from either a or 

b. In reality, query point d is far from point c and v"ery close to 

trajectory represented by line a-b. Although the discrete database 

-can be analysed to produce the desired product, a high 

computational overhead may result for inappropriately organizes 

real world size databases. 

Although it does not independently index all three dimensions, 

a time-coded true 2-D representation (fig.l2) of a target trac~ 

effectively captures the true continuous c~aracter in all thr~ 

dimensions and at the same time preserve spatial relation~h~ 

between the track and the other database elements. Rather than ~ 

extensive computational approach, d can be determined to be 

spatially near line a-b by highly localised spatial search 

[Antony,90]. Next, for all spatially "near" candidate tracks, the 

time attribute can be efficiently tested by interpolation between 
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ta and tb. Search efficiency can be similar~y enhanced for time 

varying point and region data. Rather than an exception to the 

argument in favor of natural search dimensions, the time dimension 

can often be subordinated to other natural search and problem 

solving dimensions (e.g., spatial dimensions). Thus, "time" become 

an attribute for data stored along its "primary" natural 

dimensions. 

In general, data fusion requires efficient association between 

dynamic (i.e., vehicles, units, events) and static domain elements 

(i.e., buildings, geographic and cultural features). The efficiencl 

of spatial, temporal and hierarchical reasoning is enhanced if bo~ 

the dynamic (situation description) databases and static (long ter~ 

factual and reasoning knowledge) are maintained in fully cornpatib~ 

representations within the same databa~e. Thus, the overall 

efficiency of the data fusion process can be enhanced if the BB is 

maintained within the system database. 

6.4 BLACKBOARD MANAGEMENT 
Due to the dynamic, evolving nature of the tactical 

environment, time-late information, limited sensor-derive 

information, deliberate deception, ignorance of an adversary' 

intent and imperfect reasoning knowledge, uncertainty in perception 

is inevitable. The dynamic, sequential nature of the decision 

process leads inevitably to the maintaipance of multiple hypothese, 

which, over time, can· generate a combinator i a 1 explosion of 

hypotheses. Thus, in order to support the tactical fusion process 

the BB must 1) hold the confidence in all existing BB hypothese 

(or states), 2) maintain multiple conflicting hypotheses, 3) 
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support multiple views and 4) permit efficient retraction of belief 

and all associated backtracking operations. 

The hypothesis explosion problem can be minimized by 1) 

powerful, context sensitive algorithms that establish only relevenl 

hypotheses in the first place and 2) representations that supporl 

efficient pruning of low confidence hypotheses, as well as 

straightforward hypothesis retraction. Reasoning in context depends 

heavily on the association among entities and events and with 

respect to extensive natural and cultural dom~in feature databases. 

The most plausible hypotheses tend to be "close" alon9 

spatial,organizational or other natural problem solving dimensions. 

Hypothesis pruning.occurs as additional information becomes 

available that reduces the overall situation uncertainty. Thus,~ 

data representation that supports efficient, highly localizes 

spatial and semantic search facilitates both complex contextual 

reasoning and the development and maintenance of multip~ 

hypotheses. Consider the basic track assignment problem depicteJ 

in Fig. 14. At time t 1 the detection represented by object~ 

supports three hypotheses: 1) A is an extension of Track Tl, 2)A 

is an extention of Track T2 or 3) A represents the initiation of~ 

new track, T3. As discussed previous1y, candidate tracks can by 

efficiently located if data represention preserves the appropriate 

distance metrics. At time t 2 , detection B supports the extention cl 

T2 to point B and refutes hypothesis (T2, A) . At time t 3 , detection 

C supports four seperate hypotheses as depicted in Fig.IS. 

Designation of new hypotheses by "attaching" detection objects 

(e.g.,A,B,C) to the established tracks (i.e., high confidence 
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hypotheses) permits straighforward hypothesis retraction. Each time 

new evidence appears (either from a sensor report or from a change 

in the stste of the BB), all hypotheses that have depended on thi! 

hypothesis are reevaluated. Fig 15 depicts both the external, as 

well as internal BB operations. Sensor-derived evidence A,B and C 

directly support the inferences denoted by the thin lines, while 

hypothesis retraction and internal BB modification operations a~ 

denoted by thick lines. For instance, at time t 2 , sensor data.. 

refutes hypothesis (T2,A), which leads to the redistribution of the 

support for competing hypotheses (Tl,A) and (T3,A) . Once ~dequate 

confidence in a hypothesis has been· developed and no further 

hypothesis retraction is required, the supporting object extentions 

t o t he t r a c k · name can be de 1 e t e d . T h u s , at t i me t 2 , t race 

hypothesis (T2,B) would be renamed T2 since evidence B supports 

only a single, high confidence hypothesis. 

In summary, although the potential ·tor a combinatorics 

explosion of hypotheses is an inherent characteristic of multiple 

hypothesis system, the impact can be minimized by l) powerfull 

context-sensitive ~lgorithms that establish only relevant 

hypotheses and 2) representations that support efficient pruning 

of low co~fidence hypotheses and straightforward hypothesis 

retraction. Data representations that ·supports efficient, highl~ 

localised spatial and semantic search facilitates both complete 

contextual reasoning and the development and maintenance o~ 

multiple hypotheses. 
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6.5 ARCHITECTURAL ISSUES 
The key BB design aspects are asso~iated with the partitioning 

and allocation steps in the classical system engineering methods 

and in the use of moderate-grained parallelization within the de­

coupled functions in order to achieve balance between speed-up 

reliable behaviors, and goal convergence. 

There are some other summary observatiqns on architectural 

issues that form an analysis of the survey data : 

a typical system employs many type of knowledge 

Data consisten~y and control issues are very important 

these issues are magnified with parallelization since the BB 

system is then analogous to a shared, distributed data base 

system. 

-> Design fector : Maximum data de-coupling and 

information-hiding techniques are required; private anQ 

public data sets; intelligent BB data manager. 

Choice of hardware architecture are also very important. 

-> Design fector : In general, high ptocessing power is 

catgori~ally desired. Shared-memory multiprocessors 

should be avoided. 

Other design features and system qualities would include 

-> Design factor : An object-oriented approach, . 

A·truth maintenance system to accomodate non-monotonic 

reasoning processes, Some type of uncertainty propagation 

and management approach, and Intelligent use of demon-

concepts for process control and data management. 
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6.6 Blackboard concepts for Data Fusion 

The concept of blackboard architecture is illustrated .in Fig 

16. This figure shows a problem space or domain partitioned into 

subproblems. Each subproblems has a separate knowledge base 

comprising rules, frames, networks, scripts, etc. which define the 

knowledge which pertains to the subproblem. For each subproblem an· 

associated knowledge base, (KB), a knowledge agent (KA) activel~ 

searches the shared memory and knowledge base to evolve solutions· 

Thus, while each portion of the problem is being addressed by 

logically separte KA, evolving solutions are shared via a share 

memory, accessable by all knowledge agents. A control structure 

seeks to balance the separate knowledge agents to achieve a~ 

overall solution to the problem and provide access to enternal datQ 

or human control. 

The fundamental power of the blackboard architecture is 

twofold. Fir:st, by partitioning a problem into subproblems, a. 

complex problem may be reduced to more readily soluable component 

pro b l ems . S e con d , b l a c k boa r d l o g i c a 1 a r c h i t e c t u r e may b~ 

implemented by a variety of physical implimantations, i.e., all 

KA's,KB's, control structure,etc. can be implemented on a single 

computer (viz. single instruction, single memory (SISM), or on a 

computer having a single processors wi~h multiple memories (single 

instruction, multiple data (SIMD)), or multiple processors and 

multiple memories (multiple instruction, multiple data (MMD)). Ver~ 

complex problem may be solved in an efficient way, approaching real 

time performance. On a SISM architecture, a single inference engine 

operates, as required, on each knowledge base. 
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FURTHER STUDY 

This section describe new areas of research in the field of 

netted systems. Two major items are considered, namely : 

1) the netting of other types of sensors in addition to 

radars and, 

2) advaced concept for the design on-line management and 

control of netted systems. 

Development of modern air-defence system motivates the 

introduction of such advanced concepts in sensor netting. The 

novelty of these topics has meant that the theory is not yet well 

established. 

By a multisensor system is meant a net formed of both active 

and passive sensors such as monostatic and bistatic radars 

laser, radiometer and identification systems) covering the whol 

frequency spectrum together with acoustic sensors. The different 

data provided by sensors are synergistical1y fused into a high 

quality and reliable estimation of the surrounding scene. This 

estimate should be maintained at the best quality during the time 

even though the envi~onment changes and technical failure and/or 

destruction of part of the system may occure. 
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The fundamental issues which arise is the development of a 

multisensor net are : 

the design of multisensor architectures. 

the algorithmic procedure for data fusion. 

the performance evaluation of a multisensor configuration. 

the on-line management/control of an implemented 

mulisensor net. 
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