
Increasing Loose Coupling in SOA through
Implementation

. {Using Java EE and Web Services)

A dissertation submitted to the
School of Computer & Systems Sciences,
Jawaharlal Nehru University, New Delhi

in partial fulfillment of the requirement
for the award of the degree of

Master of Technology
In

Computer Sciences and Technology

by

Ali Alwasouf

Under supervision of

Prof. Pramila N.

School of Computer and Systems Sciences
Jawaharlal Nehru University

New Delhi-110067- India
July 2009

Certificate

This is to certify that the dissertation entitled: "Increasing Loose CoupJing Through

mplementation (Using Java EE and Web Services)" being submitted by Mr. Ali Alwasouf to

he School of Computer and System Sciences, Jawahralal Nehru University, New Delhi-

10067 in partial fulfillment of the requirements for the award of the degree of Master Of

technology in Computer Sciences and Technology is a record of bona fide work carried out by

1im under the supervision of Prof. Parimala N.

This work has not been submitted in part or in full to any university or institution for the

tward of any degree or diploma.

~ '&'!\ l<Si
Supervisor

Prof. Parimala N.

Candidate

Mr.Ali Alwasouf

Gctool of Con1pU l;!';f Systems s(.ic i lc.:;s
Ja·NahrJrfai NShru Uni';er::.!tv

Ntvv Delhi·110067 '

Being grateful to somebody can not be expressed by words or few lines, but at least by these words

they will be able to know that I am really thankful to them.

"Whatever I'll achieve in my life, it will be signed by your imprint'~

"Words which can pay you back_ have not been created yet'~

"You'll be my little toys forever'~

"Hope that you'll be united soul forever'~

"Your words were always my last resort'~

'Tt is always easy to smile when I remember any of you'~

My Supervisor

prof Parimala N

My parents

ProfAhmad Alwassouf

AmaiAhmad

Soamia & Alaa

Sulaf&Majd

AmjadAkel

All my Syrian friends

(Muhanad, Jaffar, Majd, Jawdat, Nisressn, Raida, Rima)

'T have never known the feeling of being lonely whenever I was with any of you'~

All friends who I meet at India

2

(Munir, Ali Barakat, Saleem, Shipra, Dipesh, Maher and Alia, Mandana, Shailendra)

Ali A lwasouf

2Z'd of June 2009

New Delhi-India

Table of Contents

CERTIFICATE•................•.......................•........••... 1

TABLE OF CONTENTS•....•.......••.•....•••....•..•.......•............•..•..•.........................•......................... 3

LIST OF FIGURES•..........................•.....•....•...•............•... S

CHAPTER -1/NTRODUCTJON OF SOA•..................................•.•••..•.......................•....................... 6

1.1. INTRODUCTION ••......•..................•..•..••.•...•••........•.•..•....•....••...•..•.••.•....•••..•••....•.•....•............................ 7
1.2. CHARACTERISTICS OF LARGE DISTRIBUTED SYSTEMS .••.••...•••••••.....•........•...•••....••.•.•.•.......................• 7
1.3 SOA DEFINITIONS•.•....••.•.•.••••••...•.••••...••••••••••••••.••....•.•.........••.•..•.....•..................•....•.......•.•.•• 8
1.4. SOA THE WHOLE PICTURE .•.••..•..•..••.••••..•••..•..•..•••.•.•...••......••.....•.•..•......................................•.•..•••.• 10
1.4.1. SERVICES 1 0
1.4.1.1. Service definition ... } 0
1.4.1.2 Service Attributes 11
1.4.1.3 Service Classification ... 13
1.4.2 ENTERPRISE SERVICE BUS (ESB) .. 13
1.4.3 LOOSE COUPLING .. 14
1.5. SERVICE LIFE CYCLE•.••••...•..•..•......•..........••...•....................•..••......•..•..••.....................•......... 15
]. 6 COMMON QUESTIONS ABOUT SAO•.........•..•••.•.•.••••.•••..•..••..•....... 17
1. 6.1. ARE WEB SERVICES THE BEST TO IMPLEMENT SOA ? 17
1.6.2./S SOA BETTER THAN DISTRIBUTED OBJECTS? .. 17
1.6.3/S SOA SOMETHING NEW? ... IS
1.6.4. DOES SOA INCREASE COMPLEXITY? ... 18
1.6.6. DOES SOA REPLACE 00P? ... 19
1.8. SUMMARY •.•..............•........................•...............•..•.....•.•........•••..•....•.........••........••........................••.. 20

CHAPTER- 2 WEB SERVJCES ..•......••..••..••.•....••......•..•..•...•....•.....................•...........•.•.......•.....••...••••.• 21

2.1. WEB SERVICE ARCHITECTURE .••..•...•.•...........•..........•.......••...•...........•...•...••.•...................•......•.......•• 22
2.2. WEB SERVICES PROTOCOL STUCK•..•..••.•••...••.......•..........••..•...•.•••...•.......................•.............•• 22
2.3. WEB SERVICES STANDARDS•.••••......•.•.••..•..........•..••••••.••.••••..••••................•••......................•....•••.••• 23
2.3.1. WEB SERVICE DESCRIPTION LANGUAGE (WSDL) ... 23
2.3.1.1. The WSDL Document.fonnat .. 23
2.3.2 SIMPLE OBJECT ACCESS PROTOCOL (SOAP) ... 25
2.3.3 UNIVERSAL DESCRIPTION, DISCOVERY AND INTEGRATION (UDDI) ... 27
2.5. WEB SERVICES IMPLEMENTATION USING JAVA EE ..•....................•.•.......••....••••••.•.•.••.•..................... 29
2.5.1. BUJLDING WEB SERVICES WITH JAX-WS ... 29
2.5.2.1. Coding the Service Provider .. 31
2.5.3.2 Coding the Se1·vice Client ... 32
2.6. SUMMARY•......•.................•..•...•................•..•.•.•..•....•...........•.........................••.•...•••.................... 33

3

CHAPTER- 3 LOOSE COUPLI1VG•............•.....•...........•............•............•..••.........•...•....••....... 34

3.1. INTRODUCTIOJV •..•.•.•....•..................•......•...•.•....•.....•..•......•..•..•...•..•.............•.....•.•.......•....................• 35
3.2. FORMS OF LOOSE COUPLING•..•.•.•.........•......•..........•....•.......................•............................. 36
3.2.1. ASYNCHRONOUS COMMUNICATIONS ... 36
3.2.2. HETEROGENEOUS DATA TYPES ... 37
3.2.3. MEDIATOR :(::, ... 37
3.2.4. WEAK TYPE CHECKING ... 38
3.3. SERVICE COUPLING ••••••.•.........•.•••.•.•••...••••••.•••.....•.••..••••....••.••••••.......•....•..•.•.•.•....••.•••.•.•••....••..•..•..•• 38
3.3.1. LOGIC-TO-CONTRACT COUPLING .. 39
3.3.2. CONTRACT-TO-LOGIC COUPLING .. 39
3.3.3. CONTRACT-TO-Itt-tPLEMENTAT/ON COUPLING .. 39
3. 7. SUMMARY •.....•..........•..•....•..............•.••••.••..•..•..••....•.......••.••••.•..•...•...•....•.......••.•.••..••••.....••.•.••••.•..•••. 40

CHAPTER- 4 CONTRACT-CONSUMER COUPLING PROBLEM(SUGGESTED SOLUTION) 41

4.1 CONSUMER-CONTRACTCOUPLJNGPROBLEM •••••.••.•••••••••••..••.••••.•••••••••..•.••...•••••••••••••••••••.••••••••...•••.•• 42
4.2. THE SOLUTION ••••••••••••••.•.•••..••••••••••••••••••••..•••.••••••••••••••••••••••••.••••••••.••••••••••••••••••••..•••.•••••.••••••••••••••••• 44
4.2.1. GENERATING PROXY ... 46
4.2.2. UPDATING A SERVJCE : ... 46

4.3. EXAMPLE ••••.••••••.••.••••••••••••••••••••••••.••.•••.••••••••••••••••••••.•.•..•••••••••••••••••••••••••••.•.•.••.•••••••••••••••.••••••.....•••• 47
4.4. GUI TOOL EXAMPLE •....••.....••••••••••••••••...........••••.••••••••••••••••••........••••••••••••••••••••••...........••••••••••••••••.•. 54

4.4.1. MAINFRAME CLASS ... 55
4.4.2. RESULT FRAME CLASS .. ~: 65

CHAPTER- 5 CONCLUSION AND FUTURE PLAN ••••.•••.•....•••••...•••••••...••.•••.•.....•.••.•.••••.•••.•.•••••••••••• 69

REFERENCES .•••.•.•.•...•..•••••••..•.••.•.••..•.•••.•.••.•••.•••••••.••.••••.•.•••.•••••.••.••••••.•.••••.••..•.••••••••.•••••••••.•••.•..••.••.•• 72

BIBLIOGRAPHY ••.....••.•..•.•••.•.•.••••••.•....•..•..••.••••••••••••..•.••...•...•••••••••••••••.••.••..•.•.•.•.••••••..•••.•••.••.••••••.•..•.• 73

APPENDIXA ••••••••••••••••••••••••••••...••••••••••••••••••.•.•••••••••••••••••••••.•••.•..•.••••..••.••••.•.•..•••.•.. 74

4

List of Figures

Figure 1-1 A Service Lifecycle under development. ... 16

Figure 1-2 A service Lifecycle in production .. 16

Figure 2-1 'Veb Service ... 28

Figure 4-1 Tight coupling between and the consumer and the contract.43

Figure 4-2 The role of the suggesting tool. .. .44

Figure 4-3 Extracting service out ofWSDL file .. .45

Figure 4-4 generate proxy .. 46

Figure 4-5 Update a Service .. 47

Figure 4-6 The Main window of the tool.. ... 54

Figure 4-7 Result Window of the tool..55

5

Chapter -1

6

*Introduction ofSOA *

../ Introduction

../ Characteristics of Large Distributed Systems

../

../

../

../

SOA definitions

SOA the Whole Picture

~ Services

•!• Service definitions.

•!• Service Attributes.

•!• Service Classification.

~ Enterprise Service Bus.

~ Loose Coupling.

Service Lifecycle

Common Questions about SOA

~ Are Web Services The Best to Implement SOA?

~ Is SOA Better than Distributed Objects?

~ Is SOA something new?

~ Does SOA Increase Complexity?

~ Does SOA Replace OOP?

../ What Is Next?

../ Summmy

1.1. Introduction

The fast changes in the economic market have forced big changes in IT. The systems which were

automated individual systems went towards being one large distiibuted system with different

owners and users. Here, the need for software to control, test, debug and allot recourses and

policies to those ovmers arose. Many solutions have been given to achieve previous concepts and

meet the ne\v challenges which arose with the new large systems.

The biggest challenge was how to keep those systems flexible as much as possible to follow the

fast changes in the market and being able to maintain them easily. Many solutions have succeeded

to achieve part of the goals of distributed systems but as these systems are growing up and

becoming more and more complicated, they started to be difficult to scale and maintain. Here, we

can say the need or motivation for service oriented architecture SOA became necessary. As a

result, SOA came to deal with large distributed systems.

In order to keep such systems scalable and flexible as far as SOA can, SOA brought many existing

concepts together like loose coupling. Loose coupling helps our systems to be flexible and scalable

and have fault tolerance; but still achieving loosely coupled systems is a difficult mission for

developers. ln order to improve this concept many researches have suggested some solutions to

decrease coupling in large systems as well as this work will be about.

In order to get better understanding for such concept we introduce characteristics of large

distJibuted systems.

1.2. Characteristics of Large Distributed Syste111s

There are many characteristics of large distributed systems. The following four are the major

common ones that will help us to get better understanding for the motivation behind SO A.

First, large distributed systems must deal with legacies, which means they must accept those

systems which are already in use. We can't build everything from scratch; we have to accept the

systems in use which needed a lot of money, effm1 and time to be like what they are. lt is not

acceptable to throw them away and stm1 again to build new ones.

7

Second, by nature such systems are heterogeneous. They have different purposes, times of

implementation and ages. Also, such systems may have been w1itten in different programming

languages by different progranuners and developers.

Of course, heterogeneity prevents such systems to scale, there were many attempts in the past to

solve su.ch problems by using harmonization. The solution helped but was not a fully integrated

one.

Third, they are complex. That is why maintenance is an impossible option in some cases, because

finding the right place for modification is tough and it needs a lot of effort, although most of the

large distributed systems have many strategies to debug, test and develop.

Fourth, large systems have a certain amount of redundancy. Thus, the Issues of managing

redundancy, detennining which parts must be eliminated and which ones must be kept and be

managed must be taken into account.

1.3 SOA Definitions

"In computing, the term Service-Oriented Architecture (SOA) expresses a perspective of software

architecture that defines the use of services to support the requirements of software users. In an

SOA environment, resources on a network are made available as independent services that can be

accessed without knowledge of their underlying platform implementation" [1].

Thus, SOA is expected to be applied for big distributed systems which have many users and many

resources. Service forms the base for SOA, every order, allotment, query and so on, will be

available as a service for the users. Let's take a look at another definition ofSOA:

"Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different ownership domains."

We can see from the two definitions that both agree SOA is a Paradigm. SOA is not software or

something we can buy from the market. It is a concept that already exists. By applying this concept

to a specific case or situation leads us to make decisions those are appropriate for our

circumstances. SOA came to control resources, allot it to many different owners and ensure that

everything is going correctly with them. Thus, policies and security became a challenge for SOA.

8

_ "A Service Oriented Architecture (SOA) is a style of design that guides all aspects of creating and

using business services throughout their lifecycle (from conception to retirement), as well as

defining and provisioning the IT infrastructure that allows different applications to exchange data

and participate in business processes regardless of the operating systems or programming

languages underlying those applications."[1]

SOA uses services as the basic concept in its architecture; business services can help us out to

decouple systems. Services help us to deliver solutions with high interoperability and loose

coupling. SOA has appeared to keep large distributed systems flexible. Thus, the key of using

SOA is helping people in their business and to deliver solutions on time. SOA has a lot to do with

companies or organizations, roles, processes and so on.

Although, the definitions of SOA have common points but they still have many differences.

Whatever the differences are the question would be here, why there are many differences among

those definitions?

Actually, the point here is how do you look at SOA and what do you need from it. The people who

feel insecure, find a sword is good for protection, the same sword can be seen good for sale for a

merchant, while others can see it as a beautiful thing to show off by hanging on the home's wall

and so on. We can see SOA from different points of view depending on our need.

Now, Let us summarize the previous points as a definition of SOA:

SOA is a paradigm or a concept o_flarge distributed systems (not standalone applications), o_ffers a

good way to manage resources, allot it to d[fferent users and ensure secure systems. It depends on

existing three major Components: services, loose coupling and interoperability. SOA tries to

deliver systems with high interoperability and loose coupling using services and enterprise service

bus balances between them by avoiding applying them blindly in such a way that will not increase

complexity of the systems and remain flexible. So, SOA helps organizations to make decisions

suitable for their own case or circumstances, but it's not a silver bullet which can solve everything.

There are many ways to implement SOA, one o_f the best is Web Services but it's not the only one.

[1, 2]

9

1.4. SOA the Whole Picture

There are thxee concepts on which SOA is based services, interoperability and loose coupling.

*Service: "is a piece of self contained business functionality" [1].

The service can be simple, composed which is composed from more than one simple service.

There are many classifications for services we can mention right here. We can classify them up to

their work or contents or the systems they are connecting with.

*ESB: Enterp1ise Service Bus or ESB is the infrastructure that provides high interoperability

among distributed systems for services. Also ESB offers some· kind of loose coupling for the

systems.

*Loose Coupling: "is a concept that defines how to reduce the dependencies in the systems" (1]. It

has many forms like data types, infrastructure and so on.

1.4.1. Services

1.4.1.1. Service Definition

"Service is a business function" [1], the primary goal of a service is to represent a natural step of

business functionality. In other words it must represent a "self-contained business functionality

corresponding to real word activity" [1].

Technically a service is an "interface that can receive and respond to multiple requests" [2]. Each

service has its signature and contract. Signature is which define the service by its name and the

parameters so it must be unique and be used to call the service while the contact is "all the

information that must be known by a specific consumer to be able to call the service" [1].

It must meet the primary features as being stateless, discoverable, reusable and many others.

We can summarize service definition as follows:

A service is a se(f contained inte1jace that represents business functionality. Each service has its

own signature that can be used to call it, and its contract that it contains all the information

10

needed to call it by a specific consumer. The service must achieve the primary attributes as being

stateless and discoverable, and many other attributes [1, 2].

This definition has been deliberately made sho11 by ignoring many attributes, which if included

could have made the definition longer and confusing. So, we can list the whole attributes of the

service below to explore the tenn 'service' in the best way.

1.4.1.2 Service Attributes

We give an overview of service attributes here and go through it in detail whenever we need to

know more about any of them. The list of all attributes of a service can be given as:

151 Self Contained: All definitions of SOA agree that it's a design goal that services are self

contained, that mean they must be independent and autonomous. However, always there are some

dependencies that can not be avoided.

rd Coarse Grained: Usually, in the services it is better to have one service call instead of multiple

ones to complete the operation of a task. The reason behind this is the cost we pay for the

abstraction (which aims to hide the implementation details) is slower running times. Additional

advantage for coarse grained services is that it helps to separate the internal data structure of a

services provider from its external interface, because having one service for each access to a

service attribute would result in distributed objects which increase the dependencies among

distributed systems.

One problem of coarse granularity is that processing a lot of data takes time while the data may be

unneeded for the customer. As a result, time is being wasted.

3rd Visible/ Discoverable: To be able to call a service, we have to know if the service exists. There

is a public place where we can search for the service. As an example, the repository is the place in

Web Services.

11

41
" Stateless: being a stateless service is a kind of ideal thought. Always there is some state data,

which makes state management of the service one of the most important issues in SOA (note: lot

of complexity is involved in this issue) .

. 5111 Idempotent: The meaning of this tenn in a few words is the "ability to redo an operation if you

are not sure whether it was completed or not" [1]. The service must always be idempotent. But, of

course still there are some cases in which it is difficult to achieve that.

6r" Reusable: Of course, reusability must be a goal but not a rule. It's good to achieve it, but still it

has some cost. As an example, high reusability decreases the performance of the service.

1" Compassable: The service must be able to use or call the other services: actually this discussion

of composing and decomposing leads to business process modeling.

If" Technical: The service can be used for exchanging technical data, "in this case it's not

representing self contained business functionality" [I].

9" Quality of Service (QoS) ami Service Level Agreement (SLA)-Capable: for performance and

reliability reasons, we have to specify some non-functional attributes such as QoS and SLA which

deal with previous issues.

1 rl" Pre- and Post-Conditions: the pre and post conditions help us to specify the semantic

behavior of services. The pre-conditions define the specific service rules the consumer has to meet

when calling the service (constraints). Post-conditions define the output when the service runs

successfully (benefits).

1 f" Vendor-Diverse & J:i" Interoperable: Actually these two attributes are SOA attributes more

than being service attributes. Even though, we see most of the books and articles specify them as

attributes of a Service.

12

13'h Implemented as Web Services: This attribute can be considered to be an option to implement

SOA more than being an attribute for the service. Web services are one option to implement SOA

and there are many other options as well.

1.4.1.3 Service Classification

Services can have different attributes. They can differ within the same system or landscape; they

serve different purposes and play very different roles. Some of them read data, some write and

others read and write. So, we can classify services in many ways. The most common way to

classify services is Fundamental Service Clas;ification which classifies services into:

*Basic Services: presents a basic business functionality, which means there is no way or benefit to

divide it into one more service. They are "usually stateless and short-term running" [1].

* Composed Services: composing services out of existing services is called orchestration and this

name came to express that we are trying to collect services together as orchestra to perform one

melody Composed services are the higher level of basic ones by comparing them with basic

services they share the same points as they are both stateless, shm1-term running but they differ by

their tasks and concepts.

* .Process Services: represent a long-term workflows or business processes. In other words, in

business point of view it represents a macro flow which it can be interruptible by a human.

1.4.2 Enterprise Service Bus (ESB)

Some organizations have faced a problem in their system landscape called "mess" or "lack of

interoperability". Actually, the organizations had a mess of systems and protocols and that is why

they had to create an individual solution for each kind of connection. At the beginning the solution

has been called the magic bus by definition, the magic bus is "a piece of software that reduces the

number of connections and interfaces in our system'· [I].

13

Magic bus needed only one connection for each system and interface. But the solution didn't Jive

for a long time, after they switched to the magic bus and their systems began to grow easily, a new

problem happened to their system. It turned out that with this technique nobody could understand

the dependencies among the systems. Thus, modifying one of them may cause some problems in

the others. We can realize that high interoperability must be accompanied by a well defined

structures, architecture and process; otherwise it will cause problems more than helping us to solve

ours.

After the magic bus failed to solve the problems for enterp1ises, something new has appeared to

take the benefits of magic bus advantages and develop the idea of finding some balance between

the interoperability and well-defined stmcture.

It is ESB or Enterprise service bus which IS a "technical part of SOA that enables high

interoperability" [1] and which became the infrastmcture of SOA. The main reason for depending

SOA on ES:B is that ESB enables us to call services among heterogeneous systems, data

transformation, routing, dealing with security and reliability, service management, monitoring and

logging.

ESBs differ widely from the technical point of view and conceptual point of view. We can classify

ESB into the type of connection they implement (point-to-point ESB versus mediator ESB) or

regarding where the responsibility of an ESB begins for each of consumer or provider (protocol

driven versus API driven ESBs).

1.4.3 Loose Coupling

The term "Coupling" is involved in every part of IT world. IT vocabulary introduces coupling in

simple words "anything that connects has coupling and coupled things can form dependencies on

each other" [2]. However, we can qualify coupling with loose or tight.

"The term couple itself implies that two of something exist and have a relationship" [2]. The most

common way of explaining coupling is to compare it to dependencies. As we saw in ESB section

above, ESB came to reduce dependencies between systems. Also, eliminating objects in object

oriented distributed systems and replace them with services decoupled the system components and

reduced dependencies.

14

Everything is revolving to somehow reduce dependencies among systems as well as among the

components of each system. The dream of being able to update system components and have fault

tolerance in such systems in high percentage is considered as ideal thought. Having loosely

coupled systems or components is a relative thing; nobody can claim that his system is loosely

coupled one hundred percent. For example, web service are considered as loosely coupled services

although web services can not guarantee loose coupled systems, they have many types of tight

coupling forms. Services have different forms of coupling involved among provider and the

contract from on side and the consumer and the contract form the other side.

Coupling can be measured in many ways using many factors. For example, the ability for

updating without effecting the other components in the system.

Web services is the most suitable example to study coupling, therefore we will study forms of

loose coupling in web services later on in third chapter in order to solve a form of tight coupling

between the service consumer and the service contract in the fourth chapter.

1.5. Service Life Cycle

Service is a piece of software, so the same lifecycle for software can be applied here, of course

there are some differences between lifecycles of software under development and the software

under maintenance. Service has the usual software lifecycle which at its core consists of phases of

design, implementation, integration and running or in other words bringing into production

(waterfall approach), see Figure 1-1. Service development usually should be an iterative process; a

service is part of a more general business process. Thus, any modifications of a service's design or

implementation might impact other systems. For this reason, we must think when it is appropriate

to modify a service. If a modification isn't backward compatible, a new service (or a new service

version) is necessary. A new service version is typically considered to be, technically, a new

service. A service under production which is doing some critical business for the company has

different rules to be modified. Because modification became more critical than before, so we have

to search for the suitable moment to withdraw or modify the service. The best way to modify a

service is to issue a new version of the service, leave the existing one under production and try to

identify a new version. Of course, there is an exception for this rule whenever we find a bug in the

15

existing service, then we have to stop it and modify it, see Figure 1-2. It is easy to see the effect of

coupling for updating and modifying the service under production. If the service are basic one,

then some other services are calling it (basic sen,ices never work alone), changing the service

contract will force other changes in the calling services. Thus, loosely coupled services do not

mean they are loosely coupled for modifying or updating.

Figure 1-1 A Service Lifecycle under development.

Figure 1-2 A service Lifecycle in production.

16

Updating composed service is easier because it will affect nothing in the basics services that are

called within it, but still that will impact the other services which they are calling it. However,

loosely coupled services for updating the service under production are required whether they are

basic, composed or process services. Still nobody can claim that we can design a service which can

be updated in any case while it is under production without making the necessary changes in the

calling service or the consumer.

1. 6 Co1nnzon Questions about SA 0

1.6.1. Are Web Services the Best to Implement SOA?

Web services are one option to implement SOA based on three major components -Consumer,

Provider and Repository. Web Services is wide-spread because it introduced many solutions better

than other distributed systems technique. We have to know that "Web services alone will not solve

any of our problems because it introduces some problems". For example Web Services can not

guarantee interoperability and loose coupling. So we can say that we have to use Web Services as

an option to apply SOA but not as the main solution for our problems. For this reason we should

use Web Services only when we feel that it can play a good role in our case. Web services can't
'

guarantee loose coupling but still they are loosely coupled services when they compared with other

technologies. They are interoperable, language independent as well as they are using XML to

exchange the data which is considered as the most common way to decouple systems and

exchange data with high interoperability. Interoperability decouples the dependency between the

software and the landscape or the system.

1.6.2. Is SOA Better than Distributed Objects?

There have been many different options to deal with distributed systems like RMI, CORBA and

DCOM. CORBA was to use distributed objects. CORBA enables remote access to objects of

external systems. It was fine grained kind of interface to remote systems. The difference between

17

COREA and SOA is CORBA "has one business object model spanning distributed systems" [1]

while "SOA is the exact opposite of the concept of distributed objects" [1], so data can be

exchanged between different systems and each one has its local copy with its local methods and

procedures. As a consequence, distributed objects didn't scale in practice while SOA approach

decouples the systems and let them to scale. Also, having one object to present the business

functionality will result in more tight coupled components.

1.6.3 Is SOA Sonzething New?

SOA doesn't introduce any new concept. As been mentioned before it brings together existing

concepts and practices for a specific set of requirements.

Those existing concepts have been applied to large distributed systems individually. So, the

question here we ca ask why we are pretending that we are doing something new by introducing

SOA? Or in other words, what is new about SOA to get all that attention? The answer simply is,

SOA has gathered all those existing concepts and made them clear as never before, but it is still not

enough reason to have all this reputation. The main reason is that SOA has introduced some

improvements through web Services, the most important one being the new standards for

interoperability. In addition, those existing systems were fighting with heterogeneity, meanwhile

SOA accepted it and dealt with it, this issue was never seen before.

1.6.4. Does SOA Increase Conzplexity?

SOA is a concept of large distributed _systems. As we know, large systems are more complex than

simple automated individual systems because distributed systems have different owners,

collaboration and loose coupling are also required.

Debugging and testing need more effort in such systems, where there is nothing under central

control. For these reaso~, SOA can not be an end in itself. We have to apply it whenever we need

it. It doesn't help in case of simple systems, and at the same time applying it to distributed systems

18

can be so useful. Thus, in such a discussion, the next question that can be asked is where SOA is

approp1iate? And where it is not?

Of course the previous discussion clarifies the idea that SOA has some limitations, the

requirements might be so high, SOA in some cases can lead to big problems, more than it solves.

Database replication, mass data processing and local client as examples are not appropriate to

apply SOA. Here, we can find out that the question must not be what is suitable for SOA, but the

question is whether the solution we are taking is suitable for our problem and requirements or not.

1.6.6. Does SOA Replace OOP?

This question is too confused for many people who are trying to find out what is SOA. Actually,

this discussion is helpless to get better knowledge about SOA.

OOP is a concept of standalone applications that is written in the same programming language,

while web services provide a way to communicate among services which may be written in

different programming languages.

Therefore, we can realize that there 1s no sense of comparing the two concepts "OOP is

programming paradigm for application" [I] while "SOA is an architectural paradigm for system

landscapes" [1].

SOA is the approach to connect systems written in object-oriented or other paradigms, we can say

that we need both in some cases.

1. 7. What Is Next?

In this chapter, we introduced SOA, services, ESB and loose coupling. The discussion about such

concepts will help us out to get better understanding for the next chapters. Next chapter will give

an introduction about web services which are an instance of services, its standards as well as how

to implement them using Java EE. Fourth chapter will discuss some forms of loose coupling in

general then service coupling fom1s. The problem of tight coupling between the consumer and the

contract will be discussed in the fifth chapter as well as suggest some solution for it through

implementation.

19

1.8. Sununary

20

./ SOA is a paradigm, or existing ideas that have been put together.

./ SOA is concept of large distributed systems that can solve some problems for it .

./ SOA is not a silver bullet it's something that can raise some problems instead of solving

them, if we don't know where and how to apply it.

./ A service is self-contained business functionality .

./ The service has many attributes, which must be achieved .

./ We can classify services based on many factors and many viewpoints .

./ ESB, service parts and other components of SOA have main role to achieve loosely

coupled systems .

./ Loose coupling is an aim of SOA .

./ Loose coupling is a relative concept which can be measured using many factors. These

factors differ from one system or landscape to another .

./ SOA works with OOP and doesn't replace it .

./ SOA infrastructure is ESB which can be classified into many types based on the type of the

connection (point-to-point or mediator ESB) or up to the where the responsibility of an

ESB begins for the provider and the consumer (protocol driven ESB or API' s driven

protocol) .

./ This work is revolving around increasing loose coupling using web services through

implementation.

Chapter- 2

Web Services

./ Web Service Architecture

./ Web Services Protocol Stuck

./ Web Services Standards

~ Web Service Description Language (WSDL)

•!• The WSDL Document format

•!• Simple Object Access Protocol (SOAP)

•!• Universal Description, Discovery and Integration (UDDJ)

./ Web Services, the Whole picture

./ Web Services Implementation Using Java EE

~ Building Web Services with JAX-WS

./ Summary

•!• Coding the Service Provider

•!• Coding the Service Client

TH-17 49~

21

Web services are easy to be understood after introducing services. Web Services is one option to

implement SOA, as has been mentioned before in the first chapter.

They have many features that make them the best recommended option by all companies and alllT

people to iinplement SOA. Before going through this chapter, we should have the knowledge of

the basics ofXML and Java languages.

2.1. Web Service Architecture

Web Services in definition is "application components". They use open protocol Simple Object

Access Protocol (SOAP) to communicate with each other. Like all other services, web service

must be self-contained, self- describing and discoverable. They use standards to achieve all their

attributes. WSDL or Web Service Description Language is being used by web services to describe

service provider. UDDI or Universal Description, Discovery and Integration are used by service

providers to make the service discoverable and by service consumers to discover the service.

"Don't expect too much, too soon from Web Services" [3]. The Web Services platform is a simple,

interoperable, messaging framework. It still misses many important features like security and

routing. But, these features will be available as soon as SOAP becomes more advanced.

Web-applications are simple applications run on the web. These are built around the Web browser

standards and can mostly be used by any browser on any platform. Web Services take Web

applications to the next level. Using Web services, application can publish its function or message

to the rest of the world. Web services help to solve the interoperability problem by giving different

applications a way to link their data.

2.2. Web Services Protocol Stuck

In order to get better understanding how web services work, it is better to take a look at web

services protocol stuck which consists of four layers as described below:

22

1. Service Transport: responsible for transporting messages between applications. 1t includes

HTTP, SMTP, FTP and BEEP protocols.

2. XML Messaging: this layer is responsible for encoding messages m a common XML

fom1at. It includes XML-RPC and SOAP.

3. Service Description: this layer is responsible for describing the public interface to a specific

\veb service. It is handled via WSDL.

4. Service discovery: this layer is responsible to register services into a public registry and

providing easy ways to publish and find the service. It's handled by UDDI.

2.3. Web Services Standards

There are more than thirteen standards of Web Services. The most important one are those which

play a direct role in web service architecture. So we are going to introduce those standards in detail

right here.

2.3.1. Web Service Description Language (WSDL)

WSDL stands for Web Service Description Language, which it is recommended by World Wide

Web ConsOJiium(W3C)[4]. It is written in XML or in other words we can say that it is XML

document. The main role that WSDL plays with web services is describing the service provider

and also it is used to locate the services.

2.3.1.1. The WSDL Document Format

A WSDL document describes a web service using major elements which can be listed as [4]:

~efines

. - ·-- -!The operations performed by the web service

messages used by the web service

data types used by the web service

communication protocols used by the web service

The main structure of a WSDL document looks like this:

23

<definitions>

<types> definition of types </types>

<message> definition of a message </message>

<portType> definition of a port </portType>

<binding> definition of a binding </binding>

<service> definition of a service </service>

</definitions>

A WSDL document contains other elements, like extension elements and a service element that

makes it possible to group together the definitions of several web services in one single WSDL

document. Let's take a look at the elements ofWSDL document:

1- WSDL Ports: The <port Type> element is the most important WSDL element. It describes a

web service, the operations that can be performed, and the messages that are involved. The

<port Type> element can be compared to a function library (or a module, or a class) in a traditional

programming language. This section has child Element called <operation>. The <operation>

element has <name> attribute and three sub elements which can be used to specify which messages

will be for input, output or fault. The order and existence of these elements reflect the type of the

operation whether it is input operation (one way), input and output operation (request response),

output input operation (solicit response) or only output operation (notification). Additionally,

<operation> element can have <fault> element which can be used to specify exceptions. All

these three elements have a <name> attribute and <message> attribute to specify the messages

which can be used for input, output and fault.

The request-response type is the most common operation type, but WSDL defines four types:
~yp;----·-----~----·-"--·-- fD~fi,;-itio~---~--------~------------------·-··--·---------~-l

~--------··-···-········--········ ···-······ ·············-·····--········-········--···--···i·---·--'--·······-.----····-···----··-------··--···-···--··············•··-------·······---··-····--···-········-···-··········•··--·---·-···-------····-----···-···········-l
lOne-way jThe operation can receive a message but will not return a response j
'···--·--··-'·········-·······-· ········-·+-- __ -.. -... ___________ .. ___ -.................. ,..l
;Request-response ffhe operation can receive a request and will return a response
~,._....,._.,_~,-Y,.,._.,_,_.~-·----~·~•-••••-"''''''"'-·'-- .,,.,, ___ ~._, __ ,, ,,._,,_,_ _!~ .. ~-••o¥••••¥••••~¥••-¥-•••••••""'''''''"'-•'¥......__,'-"~'-•..._<-•~·••"-•••n••.._"~•·'•••-•<~>,••"""' ___ ._.,__., ___ ,.__, ___ . _____ ...__, ___ ••••-~.,~-~'"-'-""•~-~>•J

~he operation can send a request and will wait for a response ..l.'
•• ~··• ~· •••••..••.•. -·· ~-- • • .•• --. -·-Y~~'--•••••• -·· · •••••••• ""'""'""""•••••••·····u···~•····•-·•-··•·•-~-~ ~··-·•••••••-.·-··--•·•' .. .,- ··--• _., -. ,

jThe operation can send a message but will not wait for a response

Solicit-response

]Notification

24

2- WSDL Messages: The <message> element defines the data elements of an operation. Each

message can consist of one or more parts. The parts can be compared to the parameters of a

function call in a traditional programming language. The <part> element has a name attribute

which present the parameter name. It has also two attlibutes <element> and <type>. Both the

attributes can be used to specify the type of the parameter. <Element> attribute can be used in

document oriented files and <type> attribute can be used in RPC oriented files. The difference

between the two is <element> refers to another element in XML schema which been specified by

<type> section, while name attribute refers to a type directly in XML schema whether the type is

simple or complex. The <message> element has <name> attribute which accepts a simple string

value.

3- WSDL Types: The <types> element defines the data types that are used by the web service. For

maximum platform neutrality, WSDL uses XML Schema syntax to define data types [to know

more about XML Schema].

4- WSDL Bindings: The <binding> element defines the message format and protocol details for

each port. It has two attlibutes - the name attribute and the type attribute. We can use any name we

want for the attribute's name defines the name of the binding, and the type att1ibute points to the

port for the binding. The <soap: binding> element has two attributes- the style attribute and the

transport attribute. The style attribute can be "rpc" or "document". The transport attribute defines

the SOAP protocol to use. The <operation> element defines each operation that the port exposes.

For each operation the corresponding SOAP action has to be defined. We must also specify how

the input and output are encoded.

2.3.2 Simple Object Access Protocol (SOAP)

SOAP stands for Simple Object Access Protocol. It is recommended by W3C[4]. It is a protocol

for communication among applications, or in other words we can say it is a format to send

messages over internet. The advantages of using this protocol are that it is platform independent,

language independent (because it's based on XML) that is why SOAP is extendable and simple.

There are some rules that must be followed in message syntax:

25

1- It must be encoded using XML.

2- It must use the SOAP envelope namespace.

3- It must use the SOAP encoding namespace.

4- It must not contain a DTD reference.

5- It must not contain XML processing instructions.

We take a look at SOAP message syntax below:

<?xml version="l.O"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:header> </soap:Header>

<soap:body>

<soap:fault>

</soap:body>

</soap:envelope>

</soap: Fault>

The previous syntax contains the following elements:

26

1- The SOAP <Envelope> Element: It's the root of the.SOAP message. It defines the XML

document as a SOAP message. Actually anyone knows XML can recognize its attribute

immediately.

2- The SOAP <Header> Element: The optional SOAP Header element contains application

specific information about the SOAP message. If the Header element is present, it must be

the first child element of the Envelope element.

Note: All immediate child elements of the <Header> element must be namespace-qualified.

3- The SOAP <Body> Element: The required SOAP <Body> element contains the actual SOAP

message intended for the ultimate endpoint of the message. Immediate child elements of

the SOAP Body element may be namespace-qualified.

4- The SOAP <Fault> Element: The optional SOAP Fault element is used to indicate enor

messages. If a <Fault> element is present, it must appear as a child element of the <Body>

element. A <Fault> element can only appear once in a SOAP message. This element has

many sub elements.

2.3.3 Universal Description, Discovery and Integration (UDDI)

UDDJ stands for Universal Description, Discovery and Integration. It is a directory service where

businesses can be registered and search for Web services as well. It is a platform-independent

framework for describing services, discove1ing businesses, and integrating business services by

using the Internet. Thus, in other words we can say UDDI is a directory for storing information

about web services or a directory of web service interfaces described by WSDL which

communicates via SOAP. It uses Internet standards such as XML, HTTP, and DNS protocols.

There are many benefits of using UDDI. Actually, any industry or businesses of all sizes can take

the benefits from UDDI. Before UDDI, there was no Internet standard for businesses to reach their

customers and partners with information about their products and services. Nor was there a method

of how to integrate with each other's systems and processes.

Problems which UDDI can help to solve are as following:

1- It offers a way to discover right business among many businesses which are currently

online.

2- It enables to describe servtces and business processes m a single, open and secure

environment.

3- lt enables to expand the internet capability to add new users and manage access of existing

ones.

27

2.4. Web Services, the Whole Picture

File

Service Consumer

Repository
UDDI

4: Response

3: Call

Figure 2-1 Web Service

Service Provider

Let us summarize the way the web services work in few steps as we can see in the Figure 2-1.

28

1- Register a Service: Service provider registers itself in the UDDI repository, to enable other

to discover it by sending WSDL file which contains the service interface description.

2- Discover a Service: Service consumer can discover a service by searching UDDI

Repository.

3- Make a call: At any time, the service consumer can make a direct call to a service provider

after it gets the infonnation necessary to call the service by discovering the service, using

SOAP message.

4- Get a response: In return the provider must give back a response of the call as a SOAP

message as well.

Note: All messages can be sent only using SOAP Protocol.

2.5. Web Services lntple1nentation Using Java EE

The Java EE platfmm provides the XML API and tools which are needed to quickly design,

develop, test, and deploy web services and clients that fully interoperate with other web services

and clients running on Java-based or non-Java-based platfmms. To write web services and clients

with the Java EE XML API, all we need is passing parameter data to the method calls and process

the data returned; or for document-oriented web services, we send documents containing the

service data back and forth. No low-level programming is needed because the XML API

implementations do the work of translating the application data to and from an XML-based data

stream that is sent over the standardized XML-based transport protocols. The translation of data to

a standardized XML-based data stream is what makes web services and clients written with the

Java EE XML APis fully interoperable. This does not necessarily mean that the data being

transported includes XML tags because the transported data can itself be plain text, XML data or

any kind ofbinary data such as audio, video, maps, program files and so on.

2.5.1. Building Web Services with JAX-WS

JAX-WS stands for Java API for XML Web Services. It allows developers to write message

oriented as well as RPC-oriented web services. In JAX-WS, a web service operation invocation is

represented by SOAP. Although, SOAP messages are complex, the JAX-WS API hides this

complexity from the application developer. On the server side, the developer specifies the web

service operations by defining methods in an interface written in the Java programming language.

The developer also codes one or more dasses that implement those methods.

A client creates a proxy (a local object representing the service) and then simply invokes methods

on the proxy. With JAX-WS, the developer does not generate or parse SOAP messages. It is the

JAX-WS runtime system that converts the API calls and responses to and from SOAP messages.

With JAX-WS clients and web services have a big advantage. The platfmm independence of the

Java programming language. In addition, .lAX-WS is not restrictive. A JAX-WS client can access

a web service that is not running on the Java platfonn, and vice versa.

29

The starting point for developing a JAX-WS web service IS a Java class annotated with the

j avax. j ws. WebService annotation.

The @\!>JebService mmotation defines the class as a web service endpoint.

A service endpoint interface or service endpoint implementation (SEI) is a Java interface or class

that declares the methods that a client can invoke on the service. An interface is not required when

building a JAX-WS endpoint. The web service implementation class implicitly defines an SEI.

One may specify an explicit interface by adding the endpointinterface element to the

@WebService annotation in the implementation class. One must then provide an interface that

defines the public methods made available in the endpoint implementation class. Now, we can list

the basic steps for creating t~e web service and client:

1. First, we have to code the implementation class.

2. Then, we have to compile the implementation class.

3. Using wsgen tool we can generate the artifacts required to deploy the service.

4. The next step is packaging the files into a WAR file.

5. Then, we have to deploy the WAR file. The web servtce artifacts (which are used to

communicate with clients) are generated by the Application Server during deployment.

6. Finally, we can code the client class.

7. Using wsimport we can generate and compile the web service artifacts needed to connect to the

service.

8. Again, we have to compile the client class.

JAX-WS endpoints have some strict rules to be followed. We can list them as follows:

-The implementing class must be annotated with either the javax.jws. WebService or

javax. jws. WebServiceProvider annotation.

The implementing class may have explicit reference to a SEI through the

endpointinterface element of the @WebService annotation, but is not required to do so.

If no endpoint Interface is specified in @WebService, an SEI is implicitly defined for the

implementing class.

- The business methods of the implementing class must be public, and must not be declared static

or final.

30

- Business methods that are exposed to web serv1ce clients must be annotated with

javax.jws.WebMethod.

- Business methods that are exposed to web service clients must have JAXB-compatible

parameters and retum types.

- The implementing class must not be declared final and must not be abstract.

- The implementing class must have a default public constructor.

- The implementing class must not define the finalize method.

-The implementing class may use the j avax. annotation. PostConstruct

or j avax. annat a tion. PreDestroy annotations on its methods for life cycle event

callbacks. The @ Pos tCons truct method is called by the container before the implementing

class begins responding to web service clients. The @PreDestroy method is called by the

container before the endpoint is removed from operation.

2. 5.2.1. Coding the Service Provider

The following example is a simple hello example which is recommended by all programming

languages as a standard example to stmi with:

package pachage name;

import javax.jws.WebService;

@WebService

public class Class Name

//some code

public Class_Name() {} // the constructor

@\!VebMethod

public String the_Methode_Name(list of_parameters)

II implemen~ation details

return some result;

31

2. 5.3.2 Coding the Service Client

When invoking the remote methods on the port, the client performs these steps:

1. Uses the j avax. xml. ws. vJebServiceRef annotation to declare a reference to a web service.

@WebServiceRef uses the wsdlLocation element to specify the URI of the deployed service's

WSDL file.

@vJebServiceRef (wsdlLocation="http: I I localhost: 8080/pachage _Name/ implementaion _ c

lass?wsdl").

2. Retrieves a proxy to the service, also known as a port, by invoking getClass _Name Port on the

service.

Class Name port= service.getClass NamePort();

The port implements the SEI defined by the service.

3. Invokes the port's sayHello method, passing to the service a name.

Return_Type response= port.the_Methode_Name(name);

Here, the complete code for the client :

package simpleclient;

import j avax. xml. ws. vJebServiceRef;

import package_Name;

import package_Name.Class Name;

public class Client Name

32

@WebServiceRef(wsdlLocation="http://localhost:8080/

package_Name/Class_Name?wsdl");

static class Service service;

public static void main(String[] args) {

try {

Client Name client= new Client_Name();

client.doTest(args);

catch(Exception e)

e.printStackTrace();

}

public void doTest(String[] args) {

try {

System.out.println("Retrieving the port from

the following service: " + service);

Class_Name port

//some code

service.getClass_NamePort();

Return_Type response =

port.the Methode_Name(list of_parameters);

catch(Exception e) {

e.printStackTrace();

2. 6. Summary

v' Web Services have many standards as WSDL, SOAP and UDDJ.

v' WSDL file plays the role of the contract in web services

v' SOAP is the protocol which is used by web services to exchange data and messages.

v' UDDI is the standard to manage and control the repository of web services.

v' Java EE is an easy Option to implement Web Service.

33

Chapter- 3

34

./ Introduction

./ Forms of Loose Coupling

>- Asynchronous Communications

>- Heterogeneous Data Types

>- Mediator

>- Weak Type Checking

./ Service Coupling

>- Logic-to-Contract Coupling

>- Contract-to-Logic Coupling

>- Contract-to-Implementation coupling

Loose Coupling

>- Consumer-to-Contract and Consumer-to-Implementation Coupling

./ The Solution

>- Generating Proxy

>- Updating a Service

./ Example

./ Summary

3.1. Introduction

As we know, SOA is applied to large disttibuted systems. The most important keys for such

systems are scalability and fault tolerance. Therefore, decreasing the impact of the modifications

and failures on the system is a goal right here. Thus, loose coupling is a key concept of SOA.

The ability to grow fast for such systems keeps them in the market. If they are not growing with

enough speed and are not cheap enough that means they will be out of business sooner or later.

"Loose coupling is the concept which is used to deal with the requirements of scalability,

flexibility and fault tolerance" [1]. Loose coupling minimizes dependencies. Thus modification or

fault in one system will have fewer results in other systems.

Loose coupling is not a tool or something that can be applied in certain degree, or can be measured

by a tool. Loose coupling degree can differ from one system to another, it is up to us how much we

want to make our systems scalable, flexible and have a fault tolerance.

In the past, many custom applications were developed with certain types and levels of coupling. As

examples consider the following:

1- In traditional two-tier client-server architecture, the clients were developed specifically to

interact with a designated database. Proprietary commands were embedded within the

client programs and changes to this binding affected all client installations.

2- In a typical multi-tier component-based architecture, components were often developed to

work with other specific components. Even shared components that became more popular

after Object Oriented principles were applied, still required tight levels of coupling when

made part of inheritance structures.

3- When Web services emerged they were often mistakenly perceived to automatically

establish a looser fonn of coupling within distributed architectures. While Web services

can naturally decouple clients from proprietary technology, they can just as easily couple

client programs to many other service implementation details.

35

3.2. Fornts of Loose Coupling

There are many fonns of loose coupling. Sta11ing with the type of communication, landscape, and

some designing issues we are going to apply whenever we are implementing our system.

3.2.1. Asynchronous Comnzunications

36

To explain this type of communication, imagine that someone has sent you a mail to do some

work for him. After you received the mail the sender will not wait for answer, he will continue

his work till you answer him that you have done it for him or delivering the results to him.

This example is the best for loose coupling that is because both the sender and receiver will not

affect each other whenever one of them is not available immediately or is out of the service.

But, such type of communication has a drawback. When the sender needs a reply, m

asynchronous communication, the sender does not get replies to its messages immediately. So

when it gets the reply it must associate the answer with the original request, for example,

"correlation ID". In addition, it has to process the reply, which usually requires some

knowledge of some of the initial state and context when the request was sent. Both correlating

the response to the request and transfmming the state from the request to response need some

effort. Now, imagine that the sender sends a lot of messages to one or many destinations. Thus,

the order of responses becomes an issue here. In addition, what will happen if some replies

didn't arrive at all? Programming, testing and debugging have to take into account all

possibilities which can be very complicated and time consuming.

Here, we can summarize the previous discussion in two points:

-The advantage is that the systems exchanging service message don't have to be online at the

same time. In addition, we can get the benefits of non-blocking service providers and

consumers.

- The drawback is service consumer gets much more complicated.

3.2.2. Heterogeneous Data Types

Of course, having harmonized data types among different systems will make such systems

easier to deal with each other. For this reason, harmonizing data type became usual approach

for those systems.

In fact, when Object-Oriented came into play, having a common business object or BOM

became a goaL But it tumed out that this approach caused a crisis for large distributed systems.

The first reason for the disaster was that it is not possible to make an agreement among all

systems, because they have different interests about the same topic. Thus, we will reach one of

the two ends. Either we will not be able to fulfill all interests or our model will be more

complicated.

As we saw, sooner or later the price of harmonization will become too high. For this reason we

have to accept heterogeneity among distributed systems.

However, this approach proves that heterogeneity decouples components of large systems. The

service provider will introduce new types which will be con"sumed by the service consumer.

Anyway, having no BOM offer us some advantage and drawback as well:

- The advantage is that the systems can modify their data types without affecting other systems.

- The drawback is that we have to map data types from one system to another.

Note: Of course we need some kind of harmonization for primitive data types among all

systems.

3.2.3. Mediator

A third example of loose coupling is how a consumer finds the provider that has to process its

request.

One option is, sending the request to one specific system using its physical address. This

approach is tightly coupling one, because whenever the receiver moves or changes his address

the consumer will not be able to find it again before finding its address somehow. This kind of

mediator is called a broker.

37

Second type of mediator chooses the 1ight endpoint for the request; the consumer sends the

request to a symbolic name and the infrastructure (network, middleware, ESB) routes the call

to the appropriate system according to routing rules.

Note: Web Services use a Point-to-Point communications.

3.2.4. Weak Type Checking

Usually, in most programming languages, we use checking type to detect errors early. The

languages which have this feature are better than the other in sense of avoiding disasters. But,

such a way to detect errors takes time and needs effort, so it doesn't work with large distributed

systems.

In addition, in order to check types in SOA by ESB it needs to know some information about

those types. As has been mentioned before, we also have a problem to introduce types in

advance. That will increase complexity of services.

3.3. Service Coupling

All points discussed in this chapter are too general and applicable to any distributed software.

Service coupling types can be discussed from another point of view.

Services are loosely coupled. Service contract imposes low consumer coupling requirements and

themselves are decoupled from their environment or landscape.

The service contract is the core element of the service which most coupling design issues revolve

around it.

We can design the contract with dependencies on the underlying service Logic or we can design

the service logic with dependencies on the service contract. Thus, from the relationships and

dependencies between service logic and contract we can extract a set of coupling types those are

related to a service design directly:

Logic-to-Contract Coupling

38

Contract-to-Logic coupling

Contract-to-Implementation Coupling

3.3.1. Logic-to-Contract Coupling

This type of coupling result fi·om approach which is known as "contract first" process. This

approach allows us to tune the underlying logic in support of service contract which can optimize

runtime performance and reliability.

Following such approach can result m the serv1ce logic being tightly coupled to the service

contract, because it has been created specifically in support of independent designed contract. But,

still it is considered as a positive type of coupling.

3.3.2. Contract-to-Logic Coupling

This type of coupling appears whenever we derive contracts from existing logic. An example of

this type of coupling in web services is when we derive the WSDL file from the implementation

of the service provider using an automated tool.

3.3.3. Contract-to-lmplenJentation Coupling

Sometimes, technology-specific characteristics force the contract to be coupled to them, as being

implemented in a specific technology which needs to use a specific driver to communicate to

database or being implemented in a specific programming language. Thus, consumer has to do as

well. Using Web Services can help to eliminate a portion of this type of coupling by using WSDL

files to describe or define the service. Service contract is written in XML language, therefore,

consumer can have its own choice to be implemented in any language.

There are many other types of service coupling, but still our interest is about those types which are

related to the contract and the consumer. We discuss another type of service coupling in the next

39

chapter which we will suggest some solution in order to reduce coupling between the consumer

and the contract.

3. 7. Suntntary

v' The key of scalable, flexible large distributed systems is fault tolerance which can be

achieved by applying loose coupling concepts .

./ There are many forms · of coupling as heterogeneous data types, mediator, and

asynchronous connections.

v' There are many forms of service coupling.

Chapter- 4

Contract-Consumer Coupling Problem

(Suggested Solution)

./ Consumer-Contract Coupling Problem

./ The Solution

>- Generating Proxy

>- Updating a Service

./ Example

./ GUI Tool Example

>- MainFrame Class

>- ResultFrame Class

41

4.1 Consunzer-Contract Coupling Proble111

After this overview about coupling type between the service contract and its logic or

implementation, we have to take a look at the other side of the min~or, which means the coupling

type but from the consumer point of view, we can name it as consumer-to- contract and

implementation coupling.

To understand the consumer dependencies, let us recall the way that web services have been

implemented, as we saw in the chapter 3.

Starting point to implement web service is coding the service provider then extracting the contract

which is WSDL file here, then publish it at the repository.

The consumer using a tool can extract types and messages from the contract to know how to call

the service provider. Coding the consumer must be accompanied with reference to the location of

the contract. First question that comes into the mind here is:

Q: suppose the location of the contract has been changed or moved. What will be the result at

the consumer side? Is not it true that we will be forced to mod~ty the consumer code? Thus, is

not this a type of tight coupling between the consumer and the contract up to location of

contract (repository)? see Figure 4-1.

Second point that can be discussed here is that there are many strategies to update a service

provider. One of them to mark a service as a depreciated one and publish a new service, then

delete the old one whenever it becomes out of use. This strategy can work easily whenever the old

service was working properly and was in use for short time so there are a few consumers are using

it. Also, this strategy does not work to fix the bugs which are necessary for any new service.

Suppose we want to update the service provider for fixing some bugs. There are two probabilities

right here from the technical point of view.

First, the bug will not modify the contract, which means we just can modify the body of the

method without modifying the interface or technically API. Therefore, no modification will result

in the consumer code. The second possibility is, the modification will result in modifying the

contract as we change the name of the service, the location of the service, name of any of its

42

methods or its API. Thus, the modification will force us to republish the contract, and make

conesponding updates to the consumer code as well.

!New Repository

~---(1--------
Consumer -

/
Old Repository

/

Publish
SDL file

/

/

)---~-a_;_~-~-~-~~-;r_i:_:_ca_~_i~-o-+--7_----------------------- -..lOLL~--~---P=r_o_v=I_._d=e=r=====lt-;-71

Figure 4-1 Tight coupling between and the consumer and the contract

Thus, up to the previous discussion, the second question raises up.

Q: Isn't this a kind of tight coupling between the consumer and contract for updating the

contract? In other words, isn't it a kind of tight coupling if we can not update the contract and

meanwhile the consumer can not resume working without modifying its code?

As a summary for the discussion above, we can say that contract (WSDL file) can increase loose

coupling from the consumer point of view, but also create other types of coupling as those between

the consumer and the contract.

4.2. The Solution

This section is specified to suggest a solution for the problem of tight coupling between the

consumer and the contract through a set of classes (organized in packages) which are implemented

in Java. These classes can be used to build a tool which can increase loose coupling between the

consumer and the contract.

Let us staJi first to explain the idea behind these classes, then give a simulation how they work

together to achieve the aim. We can find in appendix A the complete code of the classes.

Additionally, we can find a working example of how to build a tool using these classes at the end

of this chapter as well as another example about how the actions will be performed by the tool.

The idea depends on creating a proxy which plays the role of a broker between the consumer and

the provider. This proxy will contain all the information about the WSDL file and how to call the

service. The picture will be like this now, first the consumer will call the service through the proxy

which has a reference to WSDL file and some methods which have the same name and parameters

and return type of the service provider methods. If, the location of the contract (WSDL file) has

been updated or the contract itself has been updated then the developer using the tool has to update

the proxy as well. Thus, consumer code will not be changed or detect any problem with the new

serv1ce.

The proxy also provides a way to map between the old and new services (updated Service). Take a

look at Figure 4-2to get a better understanding of the role of the proxy and the tool:

44

Proxy

- Reference to
WSDL File
-Methods

call a Joe 1 method

Consume

!.generate proxy
2. update proxy(map
old to new call)
3. compose a service

Repository

extract info from WSDL
file or detect any changes

sing listener

Repository

Figure 4-2 The role of the suggesting tool.

publish

Service
Provider

publish

All that has to be done now is that the developer has to use the tool to reflect the changes in the

proxy, and then the consumer will be able to call the new service without changing its code. First

step to achieve our solution is illustrated in Figure 4-3.

WSDL File

objectFactory WsdlFileReader
extract 1-------------t

- <namespace>
- <types>
- <messages>
- <portType>
- <binding>
- <service> Service Binding

Port Type

Type

Figure 4-3 Extracting service out ofWSDLfile.

It the figure we can see that WsdlFileReader class use Obj ectFactory class to create a

Service object using the information which has been extracted from WSDL file. The tool has to

support the following actions:

1- Generate a proxy for a specific service.

2- Update a service.

Next section will discuss the way to implement the basic actions of the tool and will be followed

by an example [see the whole code of classes, Appendix A].

4.2.1. Generating Proxy

To generate a proxy for a specific service, there are some classes which can help to accomplish

this mission. Look at Figure 4-4. The tool uses ProxyCodeCreator class to generate proxy

w1itten in java code which uses a Service object as input. The generated code can be compiled

using the Compiler class.

Compiler

comoile

ByteCode
Proxy

ProxyCodeCreator

Java Class
input

Figure 4-4 generate proxy

4.2.2. Updating a Service

Service

To update a service (updating the contract), we need a way to map between the old and new

services. This can be done using XML, the developer must write an XML code to express how to

map new service to the old one. The XML code can be checked using a schema with the help of a

class.

Let's take a look at the figure below. The XML updating code can be checked by

Upda teServiceSchema. xsd to ensure that it is a well fonned XML code. Then it will be

checked by UpdateServiceCodeChecker which checks names of the service, operations,

parameters and so on. Additionally, the class will extract all information related to mapping.

After extracting all classes we need to create the proxy as can be seen from the Figure 4-5. These

classes will be used as an input to the class named by UpdateServiceCodeCreator which

creates java class proxy which will be compiled by the Compiler class.

46

Error

UpdateServiceShema.xsd

well formed xml
file

JJ\XBChecker

UpdateServiceCodeChecker

UpdateServiceCodeCreator

Java Class

Byte Code
Proxy

xml updating
code .----------.

Template

Error

UpdateOperationMap

AddedParam

RemovedParam

Operation

Figure 4-5 Update a Service

4.3. Exa1nple

We have seen pseudo code how to implement a web service at chapter three. Let us take an

example and apply the given idea to it. Even though the example itself is too simple, the idea is not

related to the logic of the service, it is related to the service contract. Therefore, we are going to

apply the idea to Hello service.

The service provider code looks as follows:

package endpoint;

import javax.jws.WebService;

@WebService

public class Hello{

private final String message "Hello";

47

public Hello() {

} // the constructor

@WeblvJethod

public String getHello(String name)

return message + name;

The generated WSDL file forms the input data for the tool. You can take a look at the WSDL file

ofHello service example:

<definitions targetNamespace="http://endpoint/

name="HelloService">

<types>

<xsd:schema>

<xsd:import namespace = "http://endpoint"

schemaLocation="http://localhost:8080/Hello/

HelloServce?xsd=l"/>

</xsd:schema>

</types>

<message name="getHello">

<part name="parameters" element="tns:getHello"/>

</message>

<message name="getHelloResponse">

<part name="parameters" element="tns:getHelloResponse"/>

</message>

<portType name="Hello">

<operation name="getHello">

<input message="tns:getHello"/>

<output message="tns:getHelloResponse"/>

</operation>

</portType>

<binding name="HelloPortBinding" type="tns:Hello">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

<operation name="getHello">

48

<soap:operation soapAction=""/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<service name="HelloService">

<port name="HelloPort" binding="tns:HelloPortBinding">

<soap:address location="http://localhost:8080/Hello/HelloService"/>

</port>

</service>

</definitions>

As has been mentioned in this chapter, the tool will extract information from WSDL file using

WsdlFileReader class. Each instance ofthe previous class read only one WSDL file and the

generated service by this class keeps a reference to it.

The WsdlFileReader gets some help from Obj ectFactory to create a Service object. Let

us see the result will be out from the previous class when it applies to our example:

(1)Service Object (2)Vecotr of Operationlnterface Object

- serviceName = "HelloService"
- operations= vector of Operationlnterface (2) -
-reader= instance of WsdlFileReader which
created the service
-Port: PortType (3)
-packages= vector of String.(4)

(3)PortType Object

name= "He11o"
Operations= set of the
service operations(2)

-
-

(4) Vector of String

item(O)

- package = "endpoint"

item(O)

name = "getHello"
params =vector ofParam(5)
retumType = Param(6)

(5) Vector ofParam

item(O) "

- name = "name"
- type :Type(7)
- in= tnn~

49

(6) Param

name= null
type : Type(7)
out= true

(7) Type Object

name = "String"
fields = null
primitive = tme

These objects will be used by ProxyCodeCreator to create the proxy as a java file which will

be as follows:

import endpoint;

import javax.xml.ws.WebServiceRef;

public class HelloProxy {

@WebServiceRef(wsdlLocation="http://enpoint/hello?wsdl")

private static HelloService service;

public void getHello(String name)

String response =null;

try{

Hello port= service.getHelloPort();

response= port.getHello(name);

} catch(Exception e) {

e.printStackTrace{);

The file above will be compiled by the Compiler class to generate the proxy Byte Code. Now,

the consumer has to call the service through the generated proxy locally without referring to

WSDL explicitly as follows:

package simpleclient;

import javax.xml.ws.WebServiceRef;

public class Client {

50

private HelloProxy hello;

private String name;

public Client{String name)

this.name = name;

hello new HelloProxy();

public void doTest(String name) {

try {

System.out.println(hello.getHello(name));

catch(Exception e) {

e.printStackTrace();

Suppose now that we want to update the service to include the login time and other information.

The updated code for Hello service will look as follows:

package endpoint;

import javax.jws.WebService;

@WebService

public class Hello {

private final String message = "Hello"

public Hello() {} //the constructor

@WebMethod

public String getHello(User user, Time time) {

return message+"" +user.getNarne()+"at"+time.getTime("yy,mm,dd");

To reflect the changes in the service provider the developer has to update the precious proxy. All

he has to do is to use the tool to map between the old and new service using Temp 1 ate class

which gives a general form of updating code w1itten in XML language as follows:

<? xml version="l.O">
.

<service oldServiceName="Hello" newServiceName="Hello">

<operation oldName ="getHello"

oldReturnType="String"

newName ="getHello"

51

newReturnType="String">

<addedParams>

defaultValue="time.now()"/>

</addedParams>

<updatedParams>

<param oldName="name"

type ="string"

newName="user"

type = "User"

map= "user.setName(name)"/>

</updatedParams>

</operation>

</service>

This code will be checked usmg UpdateServiceSchema. xsd and the object of class

UpdateServiceCodeChecker will extract the following objects out ofthe code:

(1)oldService Object

- serviceName = "HelloService"
- operations= vector of Operationlnterface (3)
-reader= instance ofWsdlFileReader which
created the service
- Port : PortType
-packages = vector of String

(3)Vecotr of Operationlnte1face Object

item(O)

- name= "getHello"
- params = vector of Param(6)
- retumType = Param(5)

(5) Param

- name= null
- type :Type(7)
- out= ture

52

(2)newService Object

- serviceName = "HelloService"
- operations = vector of Operationlnterface (4)
-reader= instance ofWsdlFileReader which
created the service
- Port : PortType
-packages = vector of String.

(4)Vecotr ofOperationlnterface Object

item(O)

- name = "getHello"
- params = vector of Param(7)
- retumType = Param(5)

(6)Vector ofParam

item(O)

- name = "name"
- type = String
- out= ture

(7)Vector ofParam (8)Vector OfUpdateOperationMap

item(O) item(l) item(O)

- name = "user" - name= - oldOprName = "getHello"
-type= User "name" - newOprName = "getHello"
-in= true - type= Time -pairs : vector of PairParam (9)

- in= ture - addedParams : vector of AddedParam(l 0)
- removedParams : vector of RemovedParam =
null

(9) Vect0r ofPairParam
(10) Vector ofPairParam

item(O)
item(O)

- oldParam : (6) -item(O)
- newParam:(7)- item(O) param : (7)-item(l)
-map: "user.setName(name)"

We can notice from the previous objects that all we need are objects (1, 8) to create a new proxy as

the follows:

import endpoint;

import javax.xml.ws.WebServiceRef;

import endpoint.Time;

public class HelloProxy

@WebServiceRef(wsdlLocation="http://enpoint/hello?wsdl")

private static HelloService service;

public void getHello(String name)

String response = null;

try{

Hello port= service.getHelloPort();

User user= new User();

user.setName(name);

response= port.getHello(user, Time.now());

catch(Exception e) {

e.printStackTrace();

53

4.4. GUI Tool Exanzple

Here, we can find a simple example about how to use the Classes which we mentioned above to

build the tool. We have the choice to build any Graphical interface we want. Two pictures of the

Interface of the tool (Figures 4-6 and 4-7) as well as some portion of the programming code

written in Java can be found next. This interface is made to enable easy adaptation.

54

<operation oidNarna =~getHeHa" oldRetnnTyi)B=""String ..
nev;Narne ='·getHelio" nswReturnTyps='"Strlng.">

<addedParams>
<param name=:"'th118)} tnJe="''Tin:;e~ dt:fau1t\/alue:=J.·titne.novvft'f:=

-=-..faddEdPa.rams:=·

<updated.Pararns>
<pararn oldNa:ne=·''name~· t~·pe =""'string..,
nev·ll\larne=N:us:er'~ typt = ''"User·
rnap = ""user.sstr--lam·e{na.me.}""f::=-

<lupdatedParsrns>

Figure 4-6 The Main window of the tool.

HeH,;PrJXf {
@WebSeMcaRef(wsd!Localirn=''hit;}:lfanpointlheilo~"tVsdl')

pr(n.tt .static HetoS&f\ice ser-iice:
public void getH8Ho(S1ring name) {

String response ~ nu!!;

Hello pert = ser\f:ce . .getHeHoPG;i(}:
User user= n&wUser();
uw.wr·.J;ame(name):
response:: port.gsfHe!io{user. Time.nowm:

} catch(Ex.ception e) {

Figure 4-7 Result Window of the tool.

4.4.1. MainFrame Class

package com.yahoo.alwasouf.soa.tools.xmlToJava.GUI;

//import section has been ignored

public class MainFrame extends JFrame

private JTabbedPane actionsTabPanel;

private JPanel downPanel;

private JMenu editMenu;

private JMenuitem exitMenuitem;

private JMenu fileMenu;

private JPanel jPanell;

private JScrollPane jScrollPanel;

55

56

private JScrollPane jScrollPane2;

private JScrollPane jScrollPane3;

private JScrollPane jScrollPane4;

private JMenuBar mainMenu;

private JMenuitem openMenuitem;

private JLabel operationLabel;

private JList operationsList;

private JTextArea scriptTextArea;

private JLabel serviceLabel;

private JList servicesList;

private JLabel typeLabel;

private JList typeList;

private JPanel uperPanel;

private JFileChooser wsdlFileChooser;

II data

private String url;

private String[] wsdlFilesNames;

private Vector<WsdlFileReader> inputBuilders;

private Vector<Service> services;

private String selectedServiceName;

private Service selectedService;

private Operationinterface selectedOperation;

private String selectedOperationName;

private File directory;

II Actions Buttons

private JButton createProxyButton;

private JButton updateServiceButton;

private JButton cancelButton;

private JButton getResultButton;

II result form

private ResultFrame resultFrame;

II construcotr: creating all fields objects and call others

//initialization methods as initcomponents and initlisteners.

public MainFrame()

uperPanel = createPanel();

servicesList

jScrollPanel

creatList("List Of Services Names");

creatScrollPane(servicesList);

operationsList = creatList("List of Operations");

jScrollPane2 = creatScrollPane(operationsList);

typeList = creatList("List of Types Descriptions");

jScrollPane3 creatScrollPane(typeList);

serviceLabel creatJLable("Services Names :");

operationLabel creatJLable("Operations in the

corresponiding selected service :");

type Label creatJLable("Type Description of

corresponding selected operation :");

wsdlFileChooser = creatFileChooser();

jPanell = createPanel();

actionsTabPanel = creatTabbedPane();

downPanel = createPanel();

createProxyButton = createButton("GPS",

"Generate Proxy for a Service", false);

cancelButton createButton("cancel", "cancel the

getResultButton

operation", false);

createButton("Get Result", "show up

the output", false);

updateServiceButton createButton("update Service",

scriptTextArea

"update existing service", false);

createTextArea();

jScrollPane4 = creatScrollPane(scriptTextArea);

mainMenu createMenuBar();

fileMenu createMenu(mainMenu, "File");

openMenuitem = createMenuitem(fileMenu, "Open WSDL

File", KeyEvent. VK_O, InputEvent. CTRL_MASK);

exi U1enui tern createMenuitem(fileMenu,

"Exit", KeyEvent. VK_F4, InputEvent .ALT_MASK);

editMenu = createMenu(mainMenu, "Edit");

setJMenuBar(mainMenu);

II data

inputBuilders =new Vector<WsdlFileReader>();

services= new Vector<Service>();

setDefaultCloseOperation(WindowConstants.EXlT_ON_CLOSE);

initComponentsLayout();

initListeners();

pack();

57

)8

}

II method to create an object of JPanel

private JPanel createPanel()

JPanel panel= new JPanel();

panel.setBorder(Bprderfactory.createEtchedBorder());

return panel;

II method to create an object of JScrollPane

private JScrollPane creatScrollPane(~omponent comp)

JScrollPane jscrollPane =new JScrollPane();

jscrollPane.setViewportView(comp);

return jscrollPane;

II method to create an object of JLabel

private JLabel creatJLable(String text)

JLabel label= new JLabel();

label.setfont(new java.awt.Font("Tahoma", 1, 12));

1abel.setAlignmentY(O.OF);

label.setText(text);

return label;

II method to create an object of JList

private JList creatList(String tip)

JList list= new JList();

list.setBorder(new MatteBorder(null));

list.setSelectionMode(ListSelectionModel.SlNGLE SELECTION);

list.setToolTipText(tip);

return null;

II method to create an object of JFileChooser

private JFileChooser creatFileChooser()

JFileChooser fileChooser =new JFileChooser();

fileChooser.setDialogTitle("Open WSDL File");

fileChooser.setAutoscrolls(true);

fileChooser.setinheritsPopupMenu(true);

fileChooser.setDialogType(JFileChooser.OPEN_DlALOG);

fileChooser.setSelectedFiles(null);

fileChooser.setFileSelectionMode(JfileChooser.DIRECTORlES ONLY);

return fileChooser;

}

II method to create an object of JTabbedPane

private JTabbedPane creatTabbedPane()

JTabbedPane tabbedPane =new JTabbedPane();

tabbedPane.setBackground(new Color(204, 204, 204));

tabbedPane.setForeground(new Color(204, 204, 204));

tabbedPane.setAlignmentX(O.OF);

tabbedPane.setAlignmentY(O.OF);

tabbedPane.setFont(new java.awt.Font("Tahoma", l, 12));

tabbedPane.setOpaque(true);

tabbedPane.addTab("Actions Panel", downPanel);

return tabbedPane;

II method to create an object of JButton

private JButton createButton(String text, String tip, boolean enabled)

JButton button = new JButton(t;

button.setText(text);

button.setToolTipText(tip);

button.setEnabled(enabled);

return button;

}

II method to create an object of JTextArea

private JTextArea createTextArea()

}

JTextArea textArea =new JTextArea();

textArea.setColumns(20);

textArea.setRows(5);

return textArea;

II method to create an object of JMenuBar

private JMenuBar createMenuBar()

JMenuBar menuBar =new JMenuBar();

return menuBar;

Ill/ method to create an object of JMenu

private JMenu createMenu(JMenuBar menuBar, String text)

JMenu menu = new JtrJenu () ;

menu.setText(text);

59

60

menuBar.add(menu);

return menu;

II method to create an object of JMenuitem

private JMenuitem createMenuitem(JMenu menu, String text, int

keyl, int Key2)

JMenuitem menuitem =new JMenuitem();

menuitem.setText(text);

menuitem.setAccelerator(KeyStroke.getKeyStroke(keyl, Key2));

menu.add(menuitem);

return menuitem;

//Action which will be performed by open menu item.

private void openMenuActionPerformed(ActionEvent evt)

if (evt.getSource() == openMenuitem)

int returnVal = wsdlFileChooser.showOpenDialog(this);

if (returnVal == JFileChooser.APPROVE_OPTION)

directory= wsdlFileChooser.getSelectedFile();

//Action which will be performed by exit menu item

private void exitMenuActionPerformed(ActionEvent evt)

if (evt.getSource() == exitMenuitem)

System.exit(l);

//Action which will be performed when we choose a file

private void fileChooserActionPerformed(ActionEvent evt)

url = wsdlFileChooser.getSelectedFile() .getPath();

if (directory.isDirectory())

wsdlFilesNames

wsdlFilesNames

new String[directory.list() .length];

directory.list();

' for (inti = 0; i < wsdlFilesNames.length; i++)

inputBuilders.addElement(new

WsdlFileReader(wsdlFilesNames[i]));

Iterator<WsdlFileReader> buildersiterator=inputBuilders.iterator();

while (buildersiterator.hasNext())

for (int i = 0; i <

buildersiterator.next() .getServices() .size(); i++)

services.addElement(buildersiterator.next()

. getServices () . get (i)) ;

Iterator<Service> servicesiterator = services.iterator();

Vector<String> servicesNames =new Vector<String>();

while (servicesiterator.hasNext())

servicesNames.addElement(servicesiterator.next()

.getServiceName());

servicesList.setModel((ListModel) servicesNames);

//Action which will be performed by selecting an item of the

II service list

private void serviceListActionPerformed(ListSelectionEvent e)

selectedServiceName = (String) servicesList.getSelectedValue();

selectedService = inputBuilders.get(O) .getServiceByName(

selectedServiceName, inputBuilders);

Vector<String> operationsData =new Vector<String>();

for (inti= 0; i < selectedService.getOpetaions() .size(); i++)

operationsData.addElement(selectedService.getOpetaions()

.get (i). toString ());

operationsList.setModel((ListModel) operationsData);

Vector<String> typesData =new Vector<String>();

for (inti= 0; i < selectedService.getOpetaions() .size(); i++)

for (int j = 0; j < selectedService.getOpetaions() .get(i)

.getParams() .size(); j++)

typesData.addElement(selectedService

.getOpetaions() .get(i)

.getParams() .get(j)

. toString ());

61

62

typeList.setModel((ListModel) typesData);

createProxyButton.setEnabled(true);

updateServiceButton.setEnabled(true);

//Action which will be performed by selecting an item of

//operation list

private void operationListActionPerformed(ListSelectionEvent evt)

selectedOperation = selectedService.getOperationByName((String)

operationsList.getSelectedValue());

//Action which will be performed by pressing create proxy

//Button

private void createProxyActionPerformed(ActionEvent evt)

String javaCode=ProxyCodeCreator.getProxyJavaFile(selectedService);

resultFrame =new ResultFrame("Java Code for Selected Event",

UpdateServiceCodeChecker.getOldService()

.getPortType().getName()

+"ProxyA");

resultFrame.getResultEditor() .setText(javaCode);

resultFrame.setAlwaysOnTop(true);

resultFrame.setVisible(true);

//Action which will be performed by canceling the updating.

private void cancelActionPerformed(ActionEvent evt)

cancelButton.setEnabled(false);

updateServiceButton.setEnabled(true);

createProxyButton.setEnabled(true);

getResultButton.setEnabled(false);

//Action which will be performed by pressing get result

//button

private void getResultActionPerformed(ActionEvent evt)

String error = UpdateServiceCodeChecker.checkCode(scriptTextArea

.getText(), UpdateServiceCodeChecker.getOldService()

.getWsdlFileReader());

if (error 1 = null)

final Dialog errorDialog =new Dialog(this);

errorDialog.setTitle("XML Code Compiler : check

your xml code") ;

errorDialog.add(new JLabel(error));

JButton ok = createButton("Ok", "close the dialog", true);

ok.addActionListener(new ActionListener()

}) ;

public void actionPerformed(ActionEvent argO)

errorDialog.setVisible(false);

errorDialog.add(ok);

errorDialog.setVisible(true);

return;

else {

String javaCode OpdateServiceCodeCreator.getProxyJavaFile(

UpdateServiceCodeChecker.get01d5ervice(),

UpdateServiceCodeChecker.getNewService(),

OpdateServiceCodeChecker.getMap());

resultFrame.getResultEditor() .setText(javaCode);

resultFrame.setVisible(true);

resultFrame.setAlwaysOnTop(true);

//Action which will be performed by pressing update service

//button

private void updateServiceButtonActionPerformed(ActionEvent evt)

createProxyButton.setEnabled(false);

updateServiceButton.setEnabled(false);

cancelButton.setEnabled(true);

getResultButton.setEnabled(true);

if (scriptTextArea.getText() == "")

scriptTextArea.setText(Template.getUpdateServiceTemplate(selectedService,

selectedOperation));

/**

* initiate Listeners

*I

private void initListeners()

63

64

II select directory

wsdlFileChooser.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent evt)

fileChooserActionPerformed(evt);

}) ;

openMenuitem.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent evt)

openMenuActionPerformed(evt);

}) ;

II select an item from a service list

servicesList.addListSelectionListener(new ListSelectionListener()

}) ;

public void valueChanged(ListSelectionEvent e)

if (servicesList. getSelectedindex () ! = -1)

serviceListActionPerformed(e);

else

createProxyButton.setEnabled(false);

updateServiceButton.setEnabled(false);

operationsList.addListSelectionListener(new

ListSelectionListener()

public void valueChanged(ListSelectionEvent e)

}) ;

if (operationsList. getSelectedindex () ! = -1)

operationListActionPerformed(e);

else

createProxyButton.setEnabled(false);

updateServiceButton.setEnabled(false);

exitMenuitem.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent evt)

exitMenuActionPerformed(evt);

}) ;

openMenuitem.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent evt)

exitMenuActionPerformed(evt);

}) ;

createProxyButton.addActionListener(new ActionListener()

}) ;

public void actionPerformed(ActionEvent evt)

createProxyActionPerformed(evt);

updateServiceButton.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent evt)

updateServiceButtonActionPerformed(evt);

}) ;

cancelButton.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent evt)

cancelActionPerformed(evt);

}) ;

getResultButton.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent evt)

updateServiceButtonActionPerformed(evt);

}) ;

4.4.2. Resul tFrame Class

package com.yahoo.alwasouf.soa.tools.xmlToJava.GUI;

/*import section is ignored */

public class ResultFrame extends JFrame{

private JButton closeButton;

private JButton saveAndCompileButton;

private JEditorPane resultEditor;

65

)6

private JPanel jPanell;

private JPanel jPanel2;

private JScrollPane jScrollPanel;

private JFileChooser saveDialog;

private File directory;

private MainFrame frame;

private String javaClassName;

·;;constructor which initialize all fields.and call other

//initiating methods like initComponents and initListeners.

public ResultFrame(String title, String javaClassName)

jPanell = createPanel();

jScrollPanel creatScrollPane(resultEditor);

resultEditor creatEditorPane();

jPanel2 = createPanel();

closeButton = createButton("Close", "Close this window",true);

saveAndCompileButton = createButton("S&C",

"Save and Compile Java Classes", true);

saveDialog = creatFileChooser();

this.setTitle(title);

this.javaClassName = javaClassName;

setDefaultCloseOperation(WindowConstants.HIDE_ON_CLOSE);

initComponentsLayout();

initListeneres();

pack();

II create JPanel Object

private JPanel createPanel()

}

JPanel panel= new JPanel();

panel.setBorder(BorderFactory.createEtchedBorder());

return panel;

II create JscrollPane object

private JScrollPane creatScrollPane(Component comp)

JScrollPane jscrollPane =new JScrollPane();

jscrollPane.setViewportView(comp);

return jscrollPane;

}

II create JfileChooser object

private JFileChooser creatFileChooser()

JFileChooser fileChooser = new JFileChooser();

fileChooser.setDialogTitle("Save Java Class Proxy");

fileChooser. setDialogType (JFileChooser. SAVE_ DIALOG) ;

fileChooser.setAutoscrolls(true);

fileChooser.setinheritsPopupMenu(true);

fileChooser.setSelectedFiles(null);

fileChooser.setFileSelectionMode(JFileChooser.DIRECTORI£5 ONLY);

return fileChooser;

II creat Jbutton Object

private JButton createButton(String text, String tip, boolean enabled)

JButton button= new JButton();

button.setText(text);

button.setToolTipText(tip);

button.setEnabled(enabled);

return button;

}

II create JeditorPane object.

private JEditorPane creatEditorPane()

}

JEditorPane editor= new JEditorPane();

editor.setEditable(false);

return editor;

II get access to editor

public JEditorPane getResultEditor()

return resultEditor;

}

II action will be performed bu save and compile button

private void saveAndCompileActionPerformed(ActionEvent evt)

if (evt.getSource() == saveAndCompileButton)

int returnVal = saveDialog.showSaveDialog(this);

if (returnVal == JFileChooser.APPROVE_OPTION)

directory= saveDialog.getSelectedFile();

II action will be performed by close button.

private void closeActionPerformed(ActionEvent evt)

67

8

if (evt.getSource() == closeButton)

this.setVisible(false);

II action will be performed when we choose save action.

private void saveDialogActionPerformed(ActionEvent evt) {

String javaCode = resultEditor.getText();

}

File javaFile =new File(directory.getPath()+ javaClassName);

Writer output;

try {

javaFile.createNewFile();

output= new BufferedWriter(new FileWriter(javaFile));

output.write(javaCode);

output.close();

catch (IOException e)

e.printStackTrace();

Compiler compiler= new Compiler();

File []array= new File[l];

array[O] = javaFile;

boolean res= compiler.compile(array, directory.getPath());

if(res) {

closeActionPerformed(evt);

}else

saveDialog.showSaveDialog(this);

II initialize all listeners.

private void initListeneres()

closeButton.addActionListener(new ActionListener()

public void actionPerformed(ActionEvent evt)

closeActionPerformed(evt);

}) ;

Chapter- 5

Conclusion And Future Plan

69

Large distributed systems must deal with legacies by accepting those systems they are in use and

develop them. Developing such systems is not easy always, they have to be scalable and flexible,

in other words they have to be loosely coupled systems as well as their components. Thus, they

must have strategies for developing, testing and debugging taking into account that such systems

are heterogeneous.

SOA came to deal with large distributed systems; it is a paradigm which brings existing concepts

together. With the help of three concepts (services, interoperability and loose coupling) SOA could

ensure high interoperability for large systems using ESB, it could decouple large system

dependencies using services. SOA could also motivate these systems to scale up by applying loose

coupling concepts.

Loose coupling concepts must be applied in a certain degree, it must not be an aim in itself. There

are many forms which must be applied to the system according to our understanding of the system

dependencies among it's components as well as among other systems.

In order to build loosely coupled systems we have to apply loose coupling forms to the services

which form the components of the system. Understanding the dependencies among services and

internals of the service itself will help us out to have loosely coupled services. Any service has a

provider, consumer and contract. The role of the contract is providing the consumer with all the

information which is necessary to call the provider. Handling service lifecycle has the same

process as any usual software which can be managed easily whenever it is under development but

that will be too complicated and must be handled carefully whenever it is under production.

There are many strategies to update or modify a service under production, but still it is difficult to

apply any of them without affecting the caller or the other interacting services. These difficulties

come from the dependencies between the consumer and the contract according to the contract

modification and the contract location.

Using web services can help to solve the problem using simple common standards. They use

WSDL file as a contract which is written in XML as well as they use SOAP to exchange data.

Thus, using web services and Java EE we could suggest a solution for this kind of coupling in

order to increase loose coupling between the consumer or the service caller and the contract of the

service. The solution suggested a tool which has been implemented in Java EE. The tool explore

the service repository looking for WSDL files and lists them at the tool interface with a description

about the service accompanied with service's methods and used types.

70

The tool take the service's WSDL file as input and extract inf01mation from it, out of this

inf01mation the tool builds a local proxy and places it at the consumer side. The proxy has all

infonnation how to call the service provider. All that has to be done now from the consumer side is

to call the proxy which will call the service provider. Any updating for the contract location can be

reflected by the service developer using the tool to update the reference to the WSDL file location,

thus, location transparency will be achieved as well.

Another benefit of the tool is increasing loose coupling according to the contract modification. In

case of contract modification the developer can use the tool to map between the old and the new

services and reflect this mapping in the proxy. The consumer will not need any modification and it

will be able to call the new service according to the mapping values. Thus, we could achieve our

goal by increase loose coupling through implementation using web services. The tool is able to

compile the generated Java source proxy.

This work can be the first step to find some ways to mcrease loose coupling through

implementation. In fact, most types of coupling between the consumer and the contract and

between the provider and the contract would be as a result of the need for information from both

sides to be able to interact with each other. The consumer needs previously all information from

the contract to be able to call the service. Also, all the information would be provided by provider

will be reflected in the contract. Thus, consumer depend on the contract to extract some

information about the provider, any changes in the contract will force to make the conesponding

changes in the consumer. In the same way, the provider depends on the contract to publish its

information. Any changes in the provider implementation will be reflected in the contract as well.

Thus, finding a way to enable the consumer to call the service with less information will decrease

the coupling. In the same way trying to keep some information from the provider side till run time

will result in decreasing the loose coupling as well. Therefore, the next step of this work must be

trying to shift some information which is necessary for both sides for calling or publishing till the

run time will result in decreasing loose coupling.

The GUI tool must get improved to be usable easily. We can add some code assistant to the code

editor and drag and drop options.

71

72

References

1. SOA in Practice, Nicolai M. Josuttis, O'Reilly, 2007.

2. SO.A: Principles of Service Design, Thomas Erl, Prentice Ha11,2007.

3. The Java EE 5 Tutorial For Sun Java System Application Server 9.1,

Sun Microsystems, Inc. , 2007.

4. w3school WSDL Tutorial, www.w3school.com , 2009.

Bibliography

1. Enterprise SOA by Dan Woods and Thomas Mattem (O'Reilly).

2. SOA in Practice, Nicolai M. Josuttis, 0 'Reilly, 2007.

3. SOA: Principles of Service Design, Thomas Erl, Prentice Ha/1,2007.

4. The Java EE 5 Tutorial For Sun Java System Application Server 9.1,

Sun Microsystems, Inc. , 2007.

5. w3school WSDL Tutorial, www. w3school.comlwsdlldefault.asp.

6. w3school XML Schema Tutorial, www.·w3schools.com/schema!de[ault.asp.

7. Java SE 5 API documentation, Sun Microsystems, Inc., 2007.

8. Understanding WSDL , Aaron Skonnard

Northface University, MSDN Library, http://msdn.microsoft.com, October 2003

9. XML Web Services Basics, Roger Wolter, Microsoft Corporation, MSDN Library,

http://msdn.microsoft.com, December 2001.

73

./ Classes Code

4

*Appendix A *
Classes Source Code

Classes Code

1- Type Class

*Fields:

o name : the name of the type.

o fields : vector of types which present the fields of the type.

o primitive : a field which reflect if this type is a primitive or non-primitive type.

* Constructors:

o First one assign value to the name of the type, create a fields vector and set the type

to primitive.

o Second one assign values to the name of the type and fields vector as well as set

primitive field to false.

*Getters and Setters

*Public Methods:

o addField : simply add field to the vector of fields.

o to String : return a string description of type.

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

import java.util.Vector;

public class Type {

private String name;

private Vector<Type> fields;

private boolean primitive;

public Type(String name)

this.narne = name;

fields= new Vector<Type>();

primitive = true;

public Type(String name, Vector<Type> fields)

this.narne = name;

this.fields = fields;

primitive = false;

public void addfield(Type field) {

fields.add(field);

75

public Vector<Type> getFields()

return fields;

public void setFields(Vector<Type> fields)

this.fields = fields;

setPrimitive(false);

·public boolean isPrimitive()

return primitive;

public void setPrimitive(boolean primitive)

if (primitive)

fields = null;

this.primitive = primitive;

public String getName()

return name;

public String toStringDescription()

if (primitive)

return name;

String res

for (int i

name + ":\n";

0; i < fields.size(); i++)

res= res+" "+ fields.get(i) .toString();

return res;

End of Type class ======

2- Pararn Class

*Fields

o name: the name of the parameter.

o type: type of the parameter.

o in & out: boolean fields to express if the parameter is input or output.

76

* Constructors

o There is one constructor which initialize the name and the type.

*Getters and Setters

*public Methods

o toString : descibe the parameter as String.

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

public class Param {

private String name;

private Type type;

private boolean in;

private boolean out;

public Param(String name, Type type)

this.name name;

this.type type;

public String getName()

return name;

public~]?~ getType()

public boolean isin()

return in;

public void setln(boolean in) {

this .in = in;

public boolean isOut ()

return out;

public void setOut(boolean out) {

this.out = out;

public String toString()

String parambool "[";

if (in)

77

parambool

if (out)

parambool + "In ";

parambool = parambool + "Out ";

parambool = parambool + "]";

return type +" "+name + "·" + parambool;

End ofParam class=======

3- Message Class

*Fields

o name : name of the message.

o params: vector ofParam class to express the params which are used with

the message.

o in & out & fault fields : to express if the message are ued as

input , output or fault message.

* Constructors

o First constructor initialize the name and pararns fields.

o Second one initialize the name of the message only.

* Getters and Setters

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

import java.util.Vector;

public class Message

78

private String name;

private Vector<Param> params;

private boolean in;

private boolean out;

private boolean fault;

public Message(String name, Vector<Param> params) {

this.name = name;

this.params = params;

public Message(String name)

this.name = name;

this.params =new Vector<Param>();

public String getName()

return name;

public Vector<Param> getParams()

return pararns;

public void setParams(Vector<Param> params)

this.params = params;

public void addParam(Param param)

this.params.add(param);

public boolean isin()

return in;

public void setln(boolean in)

this. in = in;

public boolean isOut()

return out;

public void setOut(boolean out)

this.out = out;

public boolean isFault()

return fault;

public void setFault(boolean fault)

this.fault = fault;

End of Message class

79

4- Operationinterface Class

*Fields

o name : name of the operation or the method.

o params : vector of the passed parameters to the operation.

o return Type : type of return value of the operation.

* Constructors

o First one initialize the name of the operation and the vector object.

o Second one initialize the name and the parameters of the

operation.

* Getters and Setters

* Public Methods

o toString : describes the operation API as Stirng.

o addParam : add a param object to vector of params.

o notAddedBefor : check if any parameter has been added to the operation

parameters in the same name of passed one.

o getParamByName: search for param who has the same name as the passed

name and return object ofParam.

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

import java.util.Vector;

public clagg Op~rationlnterface

privat~ String name;

80

private Vector<Param> params;

private Param returnParam;

public Operationinterface(String name) {

this.name = name;

this.params =new Vector<Param>();

public Operationinterface(String name, Vector<Param> params) {

this.name = name;

this.params = params;

public String getName() {

return name;

public Vector<Param> getParam~: ()

return params;

public Param getReturnParam()

return returnParam;

public String toString()

String result = name + (";

for (inti= 0; i < par,ms.size(); i++)

result = result + " " +params. get (i) . toString ();

result= result+");";

return result;

public boolean addParam(Param param)

int pos = notAddedBefor2(param);

if (pas== -1 && !param.isOut())

params.add(param);

return true;

else if(pas == -1){

if (param.isOut())

params.get(pas) .setOut(param.isOut());

returnParan = param;

return false;

return false;

public int natAddedBefore(Param param)

int pas = -1;

for (inti= 0; i < pa::ams.size(); i++)

if (params.get(i .equals(param))

pos = i;

break;

81

return pos;

public Param getParamByNarre(String name)

for (inti= 0; i <)arams.size(); i++)

if (name== pa~ams.get(i) .getName())

return p.!rams.get(i);

return null;

End c f Operationlnterface class ======

5- Port Type Class

*Fields

o name : name of ser rice port Type.

o ·operations : vector of operations.

* Constructors

o First one assign vah·e to the name and create object of vector of

Operationlnterface.

o Second one assing v 1Iues to the name and and the vector of

Operationlnterface.

* Getters and Setters

*Public Mehtods

o addOperation : add a single operation to the vector.

o addOperations : appe 1d vector of operations to the vector.

.package com. yahoo.alwasouf. soa. tool!; .xml ToJava .module;

import java.util.Vector;

public class PortType {

private String name;

private Vector<Operationinterf~ce> operations;

public PortType(String name) {

82

this.name = name;

operations= new V"ctor<Operationinterface>();

public PortType (String n<.me, Vector<Operationinterface> oprs)

this.name = name;

this.operations = OJrs;

public String getName()

return name;

public Vector<Operationinterface> getOperations() {

return operations;

public void addOperation(Operationinterface opr)

operations.add(opr);

public void addOperations(Vector<Operationinterface> operations)

for (inti= 0; i < oJerations.size(); i++)

this.operations.add(operations.get(i));

6- Binding Class

* FieJds

End of PortType class ====

o name : name of sevi< e binding.

o p011: an refrence to t1e port type of binding.

* Constructors

o initialize the name anl the pot1.

* Getters and Setters

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

public class Binding

private String name;

private PortType port;

83

public Binding(String name, PortType port) {

this.name

this.port

name;

port;

public String getName()

return name;

public PortType getPort()

return port;

========= End of Binding class

7- Service Class

*Fields

84

o serviceName: the naue of the service.

o operations : vector of')perations included in the service.

o reader: refrence to a \ilsdlFileReader which has read the WSDL file of the

service.

o port: portType which l1as been used by this service.

o packages : vector of Sti ing included all the packages of the service.

* Constructors

o First one assing a value to the service name and create object of vectors of

Operationlnterface and ~ ltring.

o Second one assign a vah es to service name, operations, reader, port as weel

as packages.

* Getters and Setters

* Public Methods

o toString: describe the senice as a String(Service name only).

o addOperation: add the pa:;sed operation to the operations vector.

o addOperations : append a ·1ector of operations to operations vector.

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

import java.util.Vector;

public class Service

private String serviceName;

private Vector<Operationinterface> operations;

private WsdlFileReader reader;

private PortType port;

private Vector<S~ring> packages;

public Service(String serviceName)

this.serviceName = serviceName;

operations= new Vector<Operationinterfac~>();

packages= new Vector<String>();

public Service(String serviceName, PortType port, Vector<String>

packages, WsdlFileReader reader)

this.serviceName = serviceName;

this.operations = port.getOperations();

this.port = port;

this.reader reader;

this.packages = packages;

public String getServiceName()

return serviceName;

public WsdlFileReader getWsdlFileReader()

return reader;

public void setWsdlFileReader(WsdlFileReader reader)

this.reader = reader;

public Vector<Operationinterface> getOpetaions()

return operations;

public void setOpetaions(Vector<Operationinterface> operations)

this.operations = operations;

public PortType getPortType()

return port;

85

public void setPortType(PortType port) {

this.port = port;

public Vector<String> getPackages()

return packages;

public void setPackages(Vector<String> packages)

this.packages = packages;

public String toString() {

return serviceName;

public boolean addOperation(Operationinterface opr)

for (inti= 0; i < operations.size(); i++)

if (operations.get(i) .getName() == opr.getName())

return false;

operations.add(opr);

return true;

public Operationinterface getOperationByName(String operationName)

for (inti= 0; i < operations.size(); i++)

if (operationName == operations.get(i) .getName())

return operations.get(i);

return null;

====:-- End of Service class

8- JAXPChecker Class

*Fields

o document : a refrence of string or url to the WSDL file.

o factory : refrence to a factory which builds the xml document object.

o parser : check if the xml document is \veil fonned document.

86

* Constructors

o assing uri to document field and create object of factory.

* Getters and Setters

*public Methods

o check : call the parser to check if the document is well formed or not.

package com. yahoo. ahvasouf. soa. tools. xml ToJava .module;

import java.io.IOException;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.FactoryConfigurationError;

import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;

public class JAXPChecker {

private String document;

private DocumentBuilderFactory factory;

private DocumentBuilder parser;

public JAXPChecker(String docUrl)

if (docUrl == null)

System.out.println("Usage: java JAXPChecker URL");

return;

document = docUrl;

factory = DocumentBuilderFactory.newJnstance();

factory.setNamespaceAware(true);

factory.setValidating(true);

public DocumentBuilder getParser()

return parser;

public void check()

try {

parser= factory.newDocumentBuilder();

parser.parse(document);

catch (SAXException e)

System. out .println (document + "is not 1rJell-formed");

catch (IOException e)

87

System.out.println("Due to an IOException, the parser could

not check"+ document);

catch (FactoryConfigurationError e)

System.out.println("Could not locate factory");

catch (ParserConfigurationException e) {

System.out.println("Could not locate JAXP parser");

========= End of JAXPChecker class =======

9- Obj ectFactory class

* Getters and Setters

* Public Methods

o createType: create vector Type Object out ofxml document.

o createParameter: create a Param object out ofxml node.

o createMessage : create a Message Object out of xml node.•

o createOperation : create a operationlnterface out of xml node.

o createService :create a Service out ofxml node.

o getMsgByName: search a vector of Message for a Message using it's name.

o getPm1ByName : search a vector ofPortType for a port using it's name.

* Private Methods

o addPackage : add a package to a srvice object.

o extractPackage : extract package name out of namespace or uri.

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

import java.util.Vector;

import org.apache.xml.Schema;

import org.w3c.dom.Attr;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

public class ObjectFactory {

88

public static Vector<Type> createType(Node typeNode)

Schema schema= new Schema(typeNode);

Vector<Object> objs = schema.extractTypes();

Vector<Type> types =new Vector<Type>();

for (inti= 0; i < objs.size(); i++)

try {

types.add((Type) objs.get(i));

catch (Exception e)

e.printStackTrace();

return types;

public static Param createParameter(Node partNode, Schema schema)

String paramName;

String paramType;

Element nodeElement = (Element) partNode;

Attr nameAttr = nodeElement.getAttributeNode("name");

paramName = nameAttr.getValue();

Attr typeAttr = nodeElement.getAttributeNode("type");

if (typeAttr == null)

typeAttr = nodeElement.getAttributeNode("element");

paramType = typeAttr.getValue();

return new Param(paramName, (Type)

schema.extractType(paramType));

public static Message createMessage(Node msgNode, NodeList

paramsNodes, Schema schema) {

Element msgElement = (Element) msgNode;

Attr msgNameAttr msgElement.getAttributeNode("name");

String msgName = msgNameAttr.getValue();

Vector<Param> params =new Vector<Param>();

for (inti= 0; i < paramsNodes.getLength(); i++)

params.add(ObjectFac~ory.createParameter(

paramsNodes.item(i),schema));

return new Message(msgName, params);

public static Operationinterface createOperation(Node

operationNode, NodeList parts,

Vector<Message> msgs,

89

90

WsdlFileReader reader) {

Element oprElement = (Element) operationNode;

Attr oprNameAttr = oprElement.getAttributeNode("name");

String operationName = oprNameAttr.getValue();

Operationinterface opr = new

Operationinterface(operationName);

for (inti= 0; i < parts.getLength(); i++)

Element partElement = (Element) parts.item(i);

String partName = partElement.getTagName();

Attr msgAttr= partElement

.getAttributeNode("message");

String msgName = msgAttr.getValue();

Message msg = getMsgByName(msgName, msgs);

if (partName == "input")

msg.setin(true);

else if (partName == "output")

msg.setOut(true);

else

rnsg.setFault(true);

for (int j = 0; j < msg.getParams().size(); j++)

opr.addParam(rnsg.getPararns() .get(j));

return opr;

public static Service createService(Node serviceNode,

NodeList children, Vector<PortType> ports,

Node types, WsdlFileReader reader)

Element serviceElement = (Element) serviceNode;

Attr serviceNameAttr

=serviceElernent.getAttributeNode("name");

String serviceName = serviceNarneAttr.getValue();

int i = 0;

boolean found = false;

while (!found)

if (children.item(i) .getNodeNarne() "port")

i++;

found = true;

break;

Element portElement (Element) children.item(i);

String portName =

(portElement.getAttributeNode("type")) .getValue();

PortType port = getPortByName(portName, ports);

NodeList typesSubNodes = types.getChildNodes();

Vector<String> packages= new Vector<String>();

for (int j = 0; j < typesSubNodes.getLength(); j++)

if (typesSubNodes.item(j) .getNodeName() == "import") {

Element importElement=(Element) typesSubNodes.item(j);

Attr namespaceAttr=importElement

.getAttributeNode("namespace");

String namespaceUrl = namespaceAttr.getValue();

addPackage(packages, namespaceUrl);

return new Service(serviceName, port, packages, reader);

public static Message getMsgByName(String msgName,

Vector<Message> msgs)

for (inti= 0; i < msgs.size(); i++)

if (msgName.equals(msgs.get(i) .getName()))

return msgs.get(i);

return null;

public static PortType getPortByName(String portName,

Vector<PortType> ports)

for (inti = 0; i < ports.size(); i++)

if (portName.equals(ports.get(i) .getName()))

return ports.get(i);

return null;

91

private static void addPackage(Vector<String> packages, String ur1) {

String packageName;

packageName = extractPackage(ur1);

packages.add(packageName);

private static String extractPackage(String ur1) {

inti= ur1.1astindexOf("//");

String temp= ur1.substring(i + 2);

i = temp.1astindex0f("/");

while (i != -1) {

temp= temp.substring(O, i);

i = temp.lastindexOf("/");

String temp2 = "";

i = temp.lastindexOf(".");

while (i ! = -1) {

temp2 temp2 + temp.substring(i + 1, temp.length())

temp= temp.substring(O, i);

i = temp.1astindex0f(".");

temp2 = temp2 + temp;

return temp2;

End of ObjectFactory class

+ " "· . '

10 - WsdlFileReader Class

92

*Fields

o types : vector of types are listed in WSDL file.

o · wsdlFileUrl: uri to WSDL file.

o checker : JAXPChecker object to check xml file.

o rootNode: root node OfWSDL file.

o schema : schema object which can be used to read chema part ofWSDL file.

o services : vector of services listed in WSDL file.

o operations : vector of operations are used on the file.

o bindings : vector ofbinding types.

o ports: vector of p011s.

o msgs : vector of messages.

* Constructors

o Take a url to WSDL file and make sure that it's well formed and extract all

information are needed to build the objects.

* Getters and Setters

* Public Methods

o getServiceByN ame: search for a service in one WSDL file using it's name.

o getOperationByName: search for an operation using it's name.

o getServiceByName: ovenides the method above and search for the sevice in all

WSDL files using it's name.

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

import java.io.IOException;

import java.util.Iterator;

import java.util.Vector;

import org.apache.xml.Schema;

import org.w3c.dom.Attr;

import org. vl3c. dom. Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

public class 1rJsdlFileReader {

private Vector<Type> types;

private String wsdlFileOrl;

private JAXPChecker checker;

private Node rootNode;

private Schema schema;

private Vector<Service> services;

private Vector<Operationinterface> operations;

private Vector<Binding> bindings;

private Vector<PortType> ports;

private Vector<Message> msgs;

93

94

public WsdlFileReader(String wsdlFileUrl)

this. wsdlFileUrl = vJsdl Fi leUrl;

types= new Vector<Type>();

services= new Vector<Service>();

operations= new Vector<Operationinterface>();

bindings= new Vector<Binding>();

ports= new Vector<PortType>();

msgs =new Vector<Message>();

checker= new JAXPChecker(this.wsdlFileUrl);

checker.check();

try {

rootNode = checker.getParser() .parse(wsdlFileUrl);

catch (SAXException e)

e.printStackTrace();

catch (IOException e)

e.printStackTrace();

NodeList rootChildNodes = rootNode.getChildNodes();

for (inti= 0; i < rootChildNodes.getLength(); i++)

if (rootChildNodes.item(i) .getNodeName() == "message")

NodeList msgChildNodes =

rootChildNodes.item(i) .getChildNodes();

msgs.add(ObjectFactory.createMessage(

rootChildNodes.item(i),

msgChildNodes, schema));

Node typesNode = null;

for (inti= 0; i < rootChildNodes.getLength(); i++)

if (rootChildNodes.item(i) .getNodeName()=="types")

typesNode = rootChildNodes.item(i);

schema= new Schema(rootChildNodes.item(i));

break;

for (inti= 0; i < rootChildNodes.getLength(); i++)

if (rootChildNodes.item(i) .getNodeName()=="portType"){

NodeList operationsNodes = rootChildNodes.item(i)

Element portElernent

Attr portNarneAttr =

.getChildNodes();

(Elernent)rootChildNodes.itern(i);

portElernent. getfl,t tributeNode ("name") ;

String portNarne portNarneAttr.getValue();

for (int k = 0; k < operationsNodes.getLength();

k++) {

NodeList oprChildNodes operationsNodes.itern(k)

.getChildNodes();

operations.add(

ObjectFactory.createOperation

(operationsNodes.itern(i),

oprChildNodes, rnsgs,this));

ports.add(new PortType(portNarne, operations));

for (inti= 0; i < rootChildNodes.getLength(); i++)

if (rootChildNodes. i tern (i) . getNodeNarne () == "binding") {

Element bindingElernent = (Element)

rootChildNodes.itern(i);

Attr bindingNarneAttr =

bindingElernent.getAttributeNode("narne");

Attr bindingPortAttr =

bindingElernent.getAttributeNode("type");

String bindingNarne =

bindingNarneAttr.getValue();

String bindingPortNarne =

bindingPortAttr.getBaseURI();

PortType port = ObjectFactory.getPortByNarne(

bindingPortNarne, ports);

bindings.add(new Binding(bindingNarne, port));

for (inti= 0; i < rootChildNodes.getLength(); i++)

if (rootChildNodes.itern(i) .getNodeNarne() == "ser-vice")

NodeList serviceChildNodes = rootChildNodes.itern(i)

.getChildNodes();

95

96

services.add(ObjectFactory.createService(

rootChildNodes.itern(i),

serviceChildNodes, ports,

typesNode, this));

public Vector<Service> getServices()

return services;

public Vector<Operationinterface> getOperations()

return operations;

public Vector<Type> getTypes()

return types;

public Vector<Message> getMsgs()

return rnsgs;

public String getWsdlFileUrl()

return wsdlFileUrl;

public Service getServiceByNarne(String serviceNarne)

for (inti= 0; i < services.size(); i++)

if(services.get(i) .getServiceNarne()

.equals(serviceNarne))

return services.get(i);

return null;

public Operationinterface getOperationByNarne(String

serviceNarne, String operationNarne)

for (inti= 0; i < services.size(); i++)

if (services.get(i) .getServiceNarne() .equals(serviceNarne))

for (int j = 0; j <

services.get(i) .getOpetaions() .size(); j++)

if (services.get(i) .getOpetaions() .get(j)

.getNarne() .equals(operationNarne))

return services.get(i) .getOpetaions() .get(j);

return null;

public Service getServiceByName(String serviceName,

Vector<WsdlFileReader> inputBuilders)

Iterator<WsdlFileReader> it= inputBuilders.iterator();

Service service = null;

while (it.hasNext()) {

ss = it.next() .getServiceByName(serviceName);

if (service!= null)

break;

return service;

End of WsdlFileReader class ---------
11- AddedParam Class

*Extends

o Param class.

*Fields

o defaultValue: default value of the added param.

* Constructors

o First one assign param name and type from super dass and default value of th

parameter.

o Second one assign name and type of parameter of super calss.

* Getters and Setters.

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

public class AddedParam extends Param

private String defaultValue;

public AddedParam(Param param, String defaultValue)

super(param.getName(), param.getType());

this.defaultValue = defaultValue;

97

public AddedParam(Param param)

super(param.getName(), param.getType());

public String getDefaultValue()

return defaultValue;

public void setDefaultValue(String defaultValue)

this.defaultValue = defaultValue;

========= End of AddedParam class =======

12- RemovedParam Class

* extends

o Param class.

* Constructors

o assign values to name and type of the super class.

package com.yahoo.a1wasouf.soa.tools.xmlToJava.module;

public class RemovedParam extends Param {

public RemovedParam(Param param)

super(param.getName(), param.getType());

=====--=--= End of RemovedParam class =======

13- PairParam Cia~

* Fields

o oldParam : the parameter which we want to update.

o newParam :the updated parameter.

* Constructors

o Assign values to old and new parameters.

* Getters and Setters

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

public class PairParam {

private Param oldParam;

private Param newParam;

98

private String map;

public PairParam(Param oldParam, Param newParam)

this.oldParam

this.newParam

oldParam;

newParam;

public Param getOldParam() {

return oldParam;

public void setMap(String map) {

this.map =map;

public String getMap()

return this.map;

public Param getNewParam()

return newPararn;

public void setNewParam(Param newParam)

this.newParam = newParam;

public void setOldParam(Param oldParam)

this.oldParam = oldParam;

End of PairParam class

14 - UpdateOperationMap Class

*Fields

o oldOprName: name of the operation which we want to update.

o newOprName: name of the operation which we want to call instead of the old

one.

o currentPairParam, getPairCounter, currentAddedParam, getAddedCounter,

currentRemoveParam and getRemovedCounter: all these parameters are used to

refer to pair parameters , added ones and removed parameters.

o pairs: vector ofupdated parameters as pairs.

99

o removedParams: vector of removed parameters.

o addedParams: vector of added parammeterss.

* Constructors

o Assign values to each of old and new operations names and initialize the other

fields.

• Public Methods

o addPair, addAddedParam and addRemovdParam : all these methods add param

to the suitable vector.

o getNextPair, getNextAddedParam amd getNextRemovedParm: all these

methods give the next parameter of the suitable vector.

o getParamOperationType: get some parameter and check if this param has been

added, removed or updated and return the related operation which will be

applied to the parameter.

package com.yahoo.alwasouf.soa.tools.xmlToJava.module;

import java.util.Vector;

public class UpdateOperationMap

private String oldOprName;

private String newOprName;

private int currentPairParam;

private int getPairCounter;

private int currentAddedParam;

private int getAddedCounter;

private int currentRernoveParam;

private int getRernovedCounter;

private Vector<PairParam> pairs;

100

private Vector<RemovedParam> rernovedPararns;

private Vector<AddedParam> addedPararns;

public UpdateOperationMap(String oldOprName, String newOprName)

this.oldOprNarne

this.newOprNarne

oldOprNarne;

newOprNarne;

currentPairPararn = 0;

pairs= new Vector<PairPararn>();

removedParams =new Vector<RemovedParam>();

addedParams =new Vector<AddedParam>();

getPairCounter = -1;

currentAddedParam = 0;

getAddedCounter = 0;

currentRemoveParam = 0;

getRemovedCounter = 0;

public void addPair(Param oldParam, Param newParam, String map)

PairParam pair= new PairParam(oldParam, newParam);

pair.setMap(map);

pairs.add(currentPairParam, pair);

currentPairParam++;

if (getPairCounter == -1)

getPairCounter = 0;

public PairParam getNextPair()

if (getPairCounter == -1)

return null;

getPairCounter--;

return pairs.elementAt(getPairCounter + 1);

public void addRemovedParam(Param oldParam)

RemovedParam param =new RemovedParam(oldParam);

removedParams.add(currentRemoveParam, param);

currentRemoveParam++;

if (getRemovedCounter == -1)

getRemovedCounter = 0;

public RemovedParam getNextRemovedParam()

if (getRemovedCounter == -1)

return null;

getRemovedCounter--;

return removedParams.elementAt(getRemovedCounter + 1);

public void addAddedParam(Param newParam, String value)

AddedParam param =new AddedParam(newParam, value);

addedParams.add(currentAddedParam, param);

currentAddedParam++;

101

if (getAddedCounter == -1)

getAddedCounter = 0;

public AddedParam getNexUI.ddedParam ()

if (getAddedCounter == -1)

return null;

getAddedCounter--;

return addedParams.elementAt(getAddedCounter + 1);

public String getOldOprName()

return oldOprName;

public String getNewOprName()

return newOprName;

public void getParamOperationType(String paramName, Param

param, String type, String value)

for (inti= 0; i < pairs.size(); i++)

if (paramName

pairs.get(i) .getNewParam() .getName())

param = pairs.get(i) .getOldParam();

type = "pair";

return;

for (inti= 0; i < addedParams.size(); i++)

if (paramName == addedParams.get(i) .getName())

param = addedParams.get(i);

type = "added";

value= addedParams.get(i).getDefaultValue();

return;

for (inti= 0; i < removedPararns.size(); i++)

if (paramName == removedParams.get(i) .getName())

param = removedParams.get(i);

type= "removed";

return;

========= End of UpdateOperationMap class =======

15- Compiler Class

*Fields

o verbose :java compiler parameter.

o memorylnitialSize: java compiler parameter.

o memoryMaximumSize: java compiler parameter.

o quiet: java compiler parameter.

o debug: java compiler parameter.

o cp: classpath enveronrnent parameter.

o javacPath: java compiler path.

* Constructors

o Initialize all fields of the class.

* Getters and Setters

* Public Methods

o compile: take list of java source files and output directory path and compile the

fil_es usingjavac compile

package com.yahoo.alwasouf.soa.tools.xmlToJava.outputUtilities;

import java.io.File;

import java.util.List;

import java.util.Vector;

import org.apache.xmlbeans.impl.common.IOUtil;

import org.apache.xmlbeans.impl.tool.CodeGenUtil;

public class Compiler

private boolean verbose;

private String memoryinitialSize;

private String memoryMaximumSize;

private boolean quiet;

private boolean debug;

103

. private File [] cp;

private String javacPath;

public Compiler()

verbose = false;

memoryinitialSize

memoryMaximumSize

quiet

debug

true;

false;

CodeGenUtil.DEFAULT MEM START;

CodeGenUtil.DEFAULT MEM MAX;

File[] tempClasspath = CodeGenUtil.systemClasspath();

cp =new File[tempClasspath.length + l];

System.arraycopy(tempClasspath, 0, cp, 0,

tempClasspath.length);

javacPath System.getenv("JAVA_HOME") + "\\lib\\javac.exe";

public boolean compile(File[] srcFiles, String outputDir)

File outputDirFile = IOUtil.createDir(new File("."),

outputDir);

List<File> srcFilesList = null;

Vector<File> filesVector =new Vector<File>();

for (int i = 0; i < srcFiles.length; i++)

filesVector.add(srcFiles[i]);

srcFilesList = filesVector;

System.out.println("Compiling Java source files ... ");

return CodeGenUtil.externalCompile(srcFilesList,

outputDirFile, cp, debug, javacPath,

memoryinitialSize, memoryMaximumSize,

quiet, verbose);

End of Compiler class ---------

16 - ProxyCodeCreator Class

* Public Methods

104

o creatProxyJavaFile: take a service as input and return a string which is java

source code for the proxy.

package com.yahoo.alwasouf.soa.tools.xmlToJava.outputUtilities;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.Service;

public class ProxyCodeCreator {

public static String getProxyJavaFile(Service service)

String code - ""· - '

II packages section

for (int i

code

0; i < service.getPackages() .size(); i++)

code+ "import " + service.getPackages() .get(i)

+ ";\n";

code = code + "import javax.xml.ws.WebServiceRef;\n";

II class section

code = code + "public calss"

+ service.getPortType() .getName()

+ "Proxy {\n";

code code + "@WebServiceRef(wsdlLocation =\""

+ service.getWsdlFileReader() .getWsdlFileUrl()

+ "\")\n";

code code + "private static" + service.getServiceName()

+ l.l service;\n";

II operations

for (inti= 0; i < service.getOpetaions() .size(); i++)

String returnType;

if (service.getOpetaions().get(i).

else

code

getReturnParam() .getType()

returnType = "void";

returnType =

service.getOpetaions() .get(i)

.getReturnParam()

.getType() .getName();

code + "public " + returnType

null)

+ service.getOpetaions() .get(i) .getName()

+ n (n;

for (int j = 0; j <

service.getOpetaions() .get(i) .getParams()

if (j

.size(); i++)

service.getOpetaions()

105

106

code

code

code

else

code

.get(i) .getParams()

.size() - 1)

code = code +

+

service.getOpetaions()

.get(i)

.getParams() .get(j)

.getType ()

+ service.getOpetaions() .get(i)

.getParams() .get(j)

.getName();

code + service.getOpetaions().

get(i) .getParams() .get(j)

. get Type ()

+

+ service.getOpetaions() .get(i)

.getParams() .get(j)

. getName() + It II •

' '

code + ") \n";

code + "try {\n";

code+ service.getPortType().getName()

+ "port= service."

+ service.getPortType() .getName()

+ "Port();\n";

String returnPart;

if (returnType == "void")

else

returnPart = "". '

returnPart = "return ";

code = code + returnPart + "port."

for (int k

+ service.getOpetaions() .get(i) .getName()

+ " (";

0; k <

service.getOpetaions().get(i) .getParams(J

.size(); i++)

if (k

else

service.getOpetaions().

code

get(i) .getParams() .size() - 1)

code+ service.getOpetaions() .get(i)

.getParams() .get(k)

.getName();

code code+ service.getOpetaions()

.get(i) .getParams()

.get(k)

.getName ()

+ " II •

'

code code+ ");\n }";

code code

+ "catch(Exception e) \n {

e.printStackTrace();\n}\n}\n";

code code + "}";

return code;

End of ProxyCodeCreator class

17- UpdateServiceCodeChecker

*Fields

o oldService: the service which we want to update.

o newService: the updated service.

o map: save how to map between the two services.

* Getters and Setters.

* Public Methods

o check Code: take a prameter of String of updatedCode and call other methods to

check and extract

107

* Private Methods

o createXMLFile: take a string and save it as XML file then check it using the

schema.

o checkServicePart: check service elemnet of the XML file.

o checkOperationPart: check an operation element.

o checkAddParamsPart: check addedparams element.

o checkRemoveParamsPart: check removedParams element.

o checkUpdateParamsPmi: check updatedParams element.

package com.yahoo.alwasouf.soa.tools.xmlToJava.outputUtilities;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.io.Writer;

import java.util.Vector;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.JAXPChecker;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.Operationlnterface;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.Param;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.Service;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.UpdateOperationMap;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.WsdlFileReader;

public class UpdateServiceCodeChecker {

108

private static Service oldService;

private static Service newService;

private static Vector<UpdateOperationMap> map;

static {

map new Vector<UpdateOperationMap>();

indes = 0;

public static String checkCode(String code, WsdlFileReader reader)

String message= creatXMLFile("xmlUpdateServiceFile", code);

if (message 1 = null)

return message;

JAXPChecker checker new JAXPChecker("xmlUpdateServiceFile");

checker.check();

Node rootNode;

try {

rootNode = checker.getParser() .parse("xmlU~dateServiceFile");

catch (SAXException e)

return e.getMessage();

catch (IOException e)

return e. geU1essage ();

oldService

newService

null;

null;

map= new Vector<UpdateOperationMap>();

message = checkServicePart(rootNode,

oldService, newService, reader);

if (message != null)

return message;

return null;

private static String creatXMLFile(String fileName,

File xmlFile =new File(fileName);

Writer output;

try {

xmlFile.createNewFile();

String FileContents)

output= new BufferedWriter(new FileWriter(xmlFile));

output.write(FileContents);

output.close();

catch (IOException e)

e.getMessage();

return null;

109

110

private static String checkServicePart(Node rootNode,

Service oldService,

Service newService,

WsdlFileReader reader) {

Node serviceNode = rootNode.getChildNodes() .item(O);

Element serviceElemment = (Element) serviceNode;

String oldServiceName = serviceElemment

.getAttributeNode("oldService")

.getValue();

String newServiceName serviceElemment

.getAttributeNode("newService")

.getValue();

reader.getServiceByName(oldServiceName); oldService

newService reader.getServiceByName(newServiceName);

if (oldService == null)

return "Error : Message (the old serivce name are

not found in the services list, check it)";

if (newService == null)

return "Error : Message (the new serivce name are

not found in the services list, check it)";

NodeList operationNodes

rootNode.getChildNodes() .item(O)

.getChildNodes();

for (inti= 0; i < operationNodes.getLength(); i++)

String message = checkOperationPart(operationNodes

.item(i),oldService, newService);

if (message 1 = null)

return message;

return null;

private static String checkOperationPart(Node operationNode,

Service oldService, Service newService)

Element operationElement = (Element) operationNode;

String oldOperName = operationElement.getAttributeNode("oldName")

.getValue();

String oldReturnName operationElement.getAttributeNode(

"oldReturnType") .getValue();

String newOperName operationElement.getAttributeNode("newName'')

.getValue();

String newReturnName operationElement.getAttributeNode(

"nev1ReturnType") . getValue ();

Operationinterface oldOpr oldService

.getOperationByName(oldOperName);

Operationinterface newOpr oldService

.getOperationByName(newOperName);

UpdateOperationMap tempMap =new UpdateOperationMap(

oldOperName, newOperName);

if (oldOpr == null)

return "Error : operation name("

+ oldOperName

+ ") is not found at the same service,

you maybe mistyped the name, check it";

if (newOpr == null)

return "Error : operation name("

+ newOperName

+ ") is not found at the same

service, you maybe mistyped the name, check it";

if (oldReturnName != oldOpr.getReturnParam()

.getType() .getName())

return "Error you mistyped the return type of the

operation"+ oldOperName;

if (newReturnName != newOpr.getReturnParam() .getType() .getName())

return "Error : you mistyped the return type of the

operation" + newOperName;

NodeList operationChildNodes operationNode.getChildNodes();

String message= "";

for (inti= 0; i < operationChildNodes.getLength();i++)

if (operationChildNodes.item(i) .getNodeName() ==

"addParams")

message checkAddParamsPart (

operationChildNodes.item{i),

oldService, newService, n~wOpr);

} else if (operationChildNodes .itern(i) .getNodeName()

111

12

"removeParams")

message checkRemoveParamsPart (

operationChildNodes.item(i),

oldService, newService, oldOpr);

} else if (operationChildNodes.item(i) .getNodeName()

"updateParams")

message checkUpdateParamsPart(

operationChildNodes.item(i),

oldService, newService,

oldOpr, newOpr);

if (message != null)

return message;

map.add(index, tempMap);

index++;

return null;

private static String checkAddParamsPart(Node addNode,

Service oldService,

Service newService,

Operationinterface

NodeList nodes= addNode.getChildNodes();

for (inti= 0; i < nodes.getLength(); i++)

Element addElement = (Element) nodes.item(i);

String name = addElement

newOpr) {

.getAttributeNode("name") .getValue();

String type addElement

String defValue

.getAttributeNode("type") .getValue();

addElement.getAttributeNode("defaultValue")

.getValue();

Param param = newOpr.getParamByName(name);

if (param == null)

return "Error :Added param " + name

+ "doesn't belong to operation"

+ newOpr.getName()

+ "parameters, check it.";

if (param.getType() .getName() 1 = type)

return "Error :Added param type" + type

+ "doesn't match with type of "

+ name

+ "Param of operation"

+ nevJOpr. getName () + "check it.";

map.elementAt(index- l) .addAddedParam(param, defValue);

return null;

private static String checkRemoveParamsPart(Node removeNode,

Service oldService,

Service newService,

Operationinterface oldOpr)

NodeList nodes= removeNode.getChildNodes();

for (inti= 0; i < nodes.getLength(); i++)

Element removeElement = (Element) nodes.item(i);

String name = removeElement

.getAttributeNode("name") .getValue();

String type removeElement

.getAttributeNode("type") .getValue();

Param param = oldOpr.getParamByName(name);

if (param == null)

return "Error :Added param " + name

+ "doesn't belong to operation"

+ oldOpr.getName()

+ "parameters, check it.";

if (param.getType() .getName() !=type)

return "Error :Jl,dded param type" + type

+ "doesn't match with type of "

+ name

+ "Param of operation"

+ oldOpr.getName()

+"check it.";

map.elementAt(index- l) .addRemovedParam(param);

return null;

113

114

private static String checkUpdateParamsPart(Node updateNode,

Service oldService, Service newService,

Operationlnterface oldOpr, Operationinterface newOpr)

NodeList nodes= updateNode.getChildNodes();

for (inti= 0; i < nodes.getLength(); i++)

Element updateElement = (Element) nodes.item(i);

String oldName = updateElement.getAttributeNode("oldName")

.getValue();

String oldType

String newName

String newType

updateElement.getAttributeNode("oldType")

.getValue();

updateElernent.getAttributeNode("newNarne")

.getValue();

updateElernent.getAttributeNode("newType")

. get Value () ;

String mappingMethod updateElement

.getAttribute("rnappingMethod");

Param oldPararn = oldOpr.getParamByName(oldName);

if (oldParam == null)

return "Error :Added param " + oldName

+ "doesn't belong to operation"

+ oldOpr.getName()

+ "parameters, check it.";

if (oldParam.getType() .getName() != oldType)

return "Error :Added param type" + oldType

+ "doesn't match with type of "

+ oldNarne

+ "Pararn of operation"

+ oldOpr.getName() + "check it.";

Param newParam = newOpr.getParamByName(oldNarne);

if (newParam == null)

return "Error :Added param " + newName

+ "doesn't belong to operation"

+ newOpr.getName()

+ "parameters, check it.";

if (newParam.getType() .getName() != oldType)

return "Error :Added param type" + ne'''Type

+"doesn't match v1ith type of" .
+ nevJNarne

+ "Param of operation"

+ newOpr.getName() + "check it.";

map.elementAt(index- 1) .addPair(oldParam,

return null;

public static Service getOldService()

return oldService;

public s~tic Service getNewService()

return newService;

new Par am, ~~fllJ~N1f~]tg&!

public static Vector<UpdateOperationMap> getMap()

return map;

End of UpdateServiceCodeChecker class

18 - UpdateServiceCodeCreator Class

*Public Methods

o getPrixyJavaFile: get old and new services and their mapping to produce java

source code.

* Private Methods

o isltUpated: check if a specific method has been updated or not.

package com.yahoo.alwasouf.soa.tools.xmlToJava.outputUtilities;

import java.util.Vector;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.Operationinterface;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.Param;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.Service;

import com.yahoo.alwasouf.soa.tools.xmlToJava.module.UpdateOperationMap;

public class UpdateServiceCodeCreator

public static String (Service oldService,

Service newService, Vector<UpdateOperationMap> map)

115

116

String code

II packages

for (int i

code

- ""· - '

section

0; i < oldService. getPackages ().size (); i++) {

code + "import " +

oldService.getPackages() .get(i) + ";\n";

for (inti= 0; i < newService.getPackages() .size(); i++)

code+= "import " + newService.getPackages() .get(i) + ";\n";

code+= "import javax.xml.ws.WebServiceRef;\n";

II class section

code+= "public calss" + oldService.getPortType() .getName()

+ "Proxy {\n";

code += "@WebServiceRef(wsdlLocation =\"" +

newService.getWsdlFileReader()

.getWsdlFileUrl() + "\")\n";

code += "private static" + newService.getServiceName()

+ " service;\n";

for (inti= 0; i < oldService.getOpetaions() .size(); i++)

String returnType;

if (oldService.getOpetaions() .get(i) .getReturnParam()

.getType() ==null)

returnType

else

return Type

nvoid";

oldService.getOpetaions()

.get(i) .getReturnParam()

.getType() .getName();

code += "public " + returnType + oldService.getOpetaions()

for (int j

if (j

.get(i) .getName() + "(";

0; j < oldService.getOpetaions()

.get(i) .getParams()

. size () ; i ++)

oldService.getOpetaions() .get(i) .getParams()

.size() - 1)

code code+ oldService.getOpetaions()

-+ tl "

.get(i) .getParams() .get(j)

. get Type ()

else

code code

+ oldService.getOpetaions()

.get(i) .getParams() .get(j)

.getName();

+ oldService.getOpetaions()

.get(i) .getParams() .get(j) .getType()

+

+ oldService.getOpetaions()

.get(ii.getParams() .get(j) .getName()

+ n I It;

code += ") \n";

code += "try {\n";

code+= newService.getPortType() .getName()

+ "port= service."

+ newService.getPortType() .getName()

+ "Port();\n";

II map into the new operation

int found = isJtUpdated(oldService

.getOpetaions() .get(i), map);

String returnPart;

if (returnType == "void")

returnPart =

else

return Part

"n •
'

"return ";

if (found != -1)

String newOprName = map.get(found) .getNewOprName();

Operationinterface newOpr = newService

.getOperationByName(newOprName);

Param param = null;

String dfValue = null;

String paramOprType =

String mappingMethode

"" 6 '
_ Ulfa

- '

String newOprCall newOprName + "(";

for (int k = 0; k < newOpr.getParams() .size(); i++)

map.get(found) .getParamOperationType(

newOpr.getParams() .get(k) .getName(), param,

117

I 18

paramOprType 1 dfVal ue 1 mappingl'1ethode) ;

if (paramOprType == "pair")

code+= newOpr.getParams() .get(k) .getType()

. getName ()

+ " " + param.getName()

+ " = new"

+ newOpr.getParams()

.get(k) .getType() .getName()

+ n (); ";

code += mappingMethode;

else if (paramOprType == "added")

newOprCall += dfValue;

else if (paramOprType == "removed")

II nothing to do just ignore it

for (int k = 0; k < newOpr.getParams() .size(); i++)

map.get(found) .getParamOperationType(

newOpr.getParams()

.get(k) .getName() 1 param,

paramOprType 1 dfValue 1

mappingMethode);

if (paramOprType "pair")

newOprCall += "("

+ newOpr.getParams() .get(k)

.getType() .getName()

+ ")" + param.getName();

else if (paramOprType == "added")

newOprCall += dfValue;

else if (paramOprType == "removed")

II nothing to do just ignore it

if (k != newOpr.getParams() .size() - 1)

newOprCall += " ". I

code+= returnPart + (oldService.getOpetaions()

.get(i) .getReturnParam()

else {

.getType() .getName()) +"port."

+ nevJOprCall;

code+= returnPart +"port."

for (int k

if (k

else

code+= ");\n }";

+ oldService.getOpetaions()

. get (i) . getName () + " (";

0; k < oldService.getOpetaions() .get(i)

.getParams() .size(); i++)

oldService.getOpetaions()

.get(i) .getParams()

.size() - l)

code+= oldService.getOpetaions()

.get(i) .getParams()

.get(k) .getName();

code+= oldService.getOpetaions()

.get(i) .getParams()

.get(k) .getName()

+ " ".
'

code += "catch(Exception e) \n {

e.printStackTrace();\n}\n}\n";

code += "}";

return code;

private static int isitUpdated(Operationinterface opr,

Vector<UpdateOperationMap> map) {

for (inti= 0; i < map.size(); i++) {

if (opr.getName() == map.get(O) .getOldOprName())

return i;

return -1;

End of UpdateServiceCodeCreator class

119

	TH174990001
	TH174990002
	TH174990003
	TH174990004
	TH174990005
	TH174990006
	TH174990007
	TH174990008
	TH174990009
	TH174990010
	TH174990011
	TH174990012
	TH174990013
	TH174990014
	TH174990015
	TH174990016
	TH174990017
	TH174990018
	TH174990019
	TH174990020
	TH174990021
	TH174990022
	TH174990023
	TH174990024
	TH174990025
	TH174990026
	TH174990027
	TH174990028
	TH174990029
	TH174990030
	TH174990031
	TH174990032
	TH174990033
	TH174990034
	TH174990035
	TH174990036
	TH174990037
	TH174990038
	TH174990039
	TH174990040
	TH174990041
	TH174990042
	TH174990043
	TH174990044
	TH174990045
	TH174990046
	TH174990047
	TH174990048
	TH174990049
	TH174990050
	TH174990051
	TH174990052
	TH174990053
	TH174990054
	TH174990055
	TH174990056
	TH174990057
	TH174990058
	TH174990059
	TH174990060
	TH174990061
	TH174990062
	TH174990063
	TH174990064
	TH174990065
	TH174990066
	TH174990067
	TH174990068
	TH174990069
	TH174990070
	TH174990071
	TH174990072
	TH174990073
	TH174990074
	TH174990075
	TH174990076
	TH174990077
	TH174990078
	TH174990079
	TH174990080
	TH174990081
	TH174990082
	TH174990083
	TH174990084
	TH174990085
	TH174990086
	TH174990087
	TH174990088
	TH174990089
	TH174990090
	TH174990091
	TH174990092
	TH174990093
	TH174990094
	TH174990095
	TH174990096
	TH174990097
	TH174990098
	TH174990099
	TH174990100
	TH174990101
	TH174990102
	TH174990103
	TH174990104
	TH174990105
	TH174990106
	TH174990107
	TH174990108
	TH174990109
	TH174990110
	TH174990111
	TH174990112
	TH174990113
	TH174990114
	TH174990115
	TH174990116
	TH174990117
	TH174990118
	TH174990119
	TH174990120

