
A LOAD BALANCING STRATEGY FOR PARALLEL

COMPUTING SYSTEM USING SMP SUN FIRE X4470

Dissertation submitted to Jawaharlal Nehru University

in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

 COMPUTER SCIENCE AND TECHNOLOGY

TAJ ALAM

ENROLLMENT NO. 10/10/MT/32

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

 JAWAHARLAL NEHRU UNIVERSITY

 NEW DELHI-110067

INDIA

2012

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI, 110067 (INDIA)

Certificate

This is to certify that the dissertation entitled “A Load Balancing Strategy for

Parallel Computing System using SMP Sun Fire X4470” is being submitted by

Mr. Taj Alam to School of Computer and Systems Sciences, Jawaharlal

Nehru University New Delhi-110067, India in the partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer

Science and Technology. This work has been carried out by him in the School of

Computer and Systems Sciences under the supervision of Dr. Zahid Raza. The

matter personified in the dissertation has not been submitted for the award of any

other degree or diploma.

DR. ZAHID RAZA PROF. KARMESHU

(SUPERVISOR) (DEAN)

Declaration

I hereby declare that the dissertation work entitled “A Load Balancing Strategy for

Parallel Computing System using SMP Sun Fire X4470” in partial fulfillment for the

requirements for the degree of “Master of Technology in Computer Science and

Technology” and submitted to School of Computer & Systems Sciences, Jawaharlal

Nehru University, New Delhi-110067, India, is the authentic record of my own work

carried out during the time of Master of Technology under the supervision of Dr. Zahid

Raza. This dissertation comprises only my original work. This dissertation is less than

100,000 words in length, exclusive tables, figures and bibliographies.

The matter personified in the dissertation has not been submitted for the award of any

other degree or diploma.

 Taj Alam

Enrollment No. 10/10/MT/32

 M. Tech (2010-12)

 SC&SS, JNU

 New Delhi India -110067

Acknowledgement

I am very glad to express my sincere gratitude and thanks to my supervisor Dr.

Zahid Raza for his guidance. I would like to express special thanks to Dr. Zahid Raza for

many helpful discussions and his intellectual input to make dissertation work worthy. His

extensive and invaluable research experiences were very helpful in my dissertation and

the most important thing was the helping nature of him that contributes an important

share in fulfillment of this work. The mythology, philosophy and problem solving

methods learned by him have been very beneficial in this work and would be afterward. I

would like to express my thanks to Dr. D. P. Vidyarthi for his valuable help, suggestions

and encouragement.

I would like to express my thanks to Dean SC&SS JNU, Prof. Karmeshu in

support to pursue my work in the School. Also my thanks go to School administration

and librarian of software library and main library for supporting me, in whatever way

they can, to make dissertation a success. Their support has been a real emphasize in

completing this dissertation.

I would like to accord my sincere thanks to Mr. Mohammad Sajid, Mr.

Mohammad Shahid, Mr. D. P. Sahu and Mr. Kapil Gupta for their valuable suggestions

for my dissertation work.

My parents and family members have been my strength through the long hours of

study and research. I especially thank my father and mother for their patience,

unconditional love and economical as well as moral support for completing this

dissertation. Finally I would like to express thanks to each person & thing which is

directly or indirectly related to my dissertation work.

 TAJ ALAM

Dedicated to Almighty (Allah)
Who Created Everyone

Table of Contents

Abstract ...………………………………………………………………………...... (i)

List of Acronyms…………………………………………………………………… (iii)

List of Figures………………………………………………………………………. (v)

List of Tables………………………………………………………………………... (vi)

Chapter 1 Introduction……………………………………………………… 1

1.1 Parallel and Distributed Computing ……………………………………. 1

1.2 Types of Parallelism….…………………………………………………. 2

 1.2.1 Bit Level Parallelism……………………..……………………... 2

 1.2.2 Instruction Level Parallelism…………………………………… 2

 1.2.3 Data Level Parallelism………………………………………….. 3

 1.2.4 Task Level Parallelism………………………………………….. 3

 1.3 Issues in Parallel Computing…………………………………………… 3

 1.4 Challenges in Parallel Computing.. 5

 1.5 Parallel Computer Memory Architecture……………………………….. 7

1.6 Symmetric Multiprocessor………………………………………………. 8

 1.6.1 SMP……………….……………………………………………. 9

 1.6.2 Symmetric Multiprocessor v/s Other Parallel Technologies...…. 9

 1.6.3 SMP Sun Fire X4470 Server……...…………………………….. 10

 1.7 Programming Tools for Parallel computing…….……………………… 13

 1.7.1 Message Passing Interface (MPI)…….….……………………. 14 1

 1.7.2 OpenMP………………………………….……………………. 14

 1.7.3 Mixed Mode Programming.…………………..………………..... 14

Chapter 2: Load Balancing...………... 16

 2.1 Load Balancing.. 16

 2.2 Issues and Challenges in Load Balancing……...……………………... 17

2.3 Classification of Load Balancing Approaches …………………………. 19

2.4 Load Balancing Algorithms…………... 23

 2.5 Review of Load Balancing Strategies…...…......……………………... 29

 2.6 Quality of Service Parameters in Load Balancing …………………… 30

 2.7 Load Balancing NP- Complete Optimization Problem...……..………. 31

 2.7.1 Solution to NP Class Problems.. 33

Chapter 3: The Proposed Model.………….………….…………………….. 34

 3.1 The Scheduler ……………………………………………...……............. 34

 3.1.1 Scheduling Strategy and Algorithm Used…………..…..……..... 37

 3.2 An Illustrative Example……………………………...……..……………. 44

 3.3 Simulation Study……………………….………………………………… 48

Chapter 4: Conclusion and Future Scope……………………..…………… 53

References……………………………………………………..……………… 56

i

ABSTRACT

Parallel computing is an evolution of serial computing that attempts to imitate what has

always been the state of affairs in the natural world: many complex, interrelated events

happening at the same time, yet within a sequence, whether it is galaxy formation, planetary

movement, weather and ocean patterns etc. Historically, parallel computing has been considered

to be "the high end of computing", and has been used to model difficult problems in many areas

of science and engineering. Today, commercial applications provide an equal or greater driving

force in the development of faster computers. These applications require the processing of large

amounts of data in sophisticated ways. Some of the examples could be databases, data mining,

oil exploration, web search engines, web based business services etc. Main reasons for using

parallel computing is that it saves time and money with the philosophy that if an application has

modules that can run in parallel, deploying more computational resources will shorten it’s time

of completion, with potential cost savings. The development of parallel computers has seen an

enormous growth, with the advancements in the area of chip fabrication. Thus parallel computers

can now be built from cheap, commodity components. The use of parallel computers is primarily

to solve large scale problems which are either impractical to solve on a single computer,

especially given limited computer memory or can be solved more efficiently on a parallel

machine owing to the inherent parallelism in the job.

 Parallel systems main goal is to minimize turnaround time by parallel execution of the

job(s) by distributing the entire workload on the available computational resources, thus allowing

various modules of the job to run simultaneously. To meet this objective, parallel computing has

to deal with a lot of issues which crop up while working with parallel code. These issues can

result in bottleneck and restrict the behaviour of parallel program in attaining an aforesaid

speedup suggested by Amdahl Gene. The most problematic issue that crops up is the distribution

of workload in both the categories of parallel system viz. homogenous and heterogeneous

system. In homogenous system the processor with maximum load overpowers the working of

system resulting in poor job turnaround time whereas in heterogeneous system the slowest

processor dominates the job turnaround time. Therefore, in parallel systems, distribution of

workload could result into some nodes to be heavily loaded and some nodes to be under loaded.

This situation demands an effective load balancing strategy to be in place which ensures a

ii

uniform distribution of load across the board. Load balancing mechanism could be treated as a

software approach to redistribute system wide workload among the nodes of the system in order

to reduce the mean job execution and hence the turnaround time. An efficient load balancing

strategy must exhibit the features like creating little traffic overhead, low overhead for running

the load balancing algorithm, must be fair enough so that heavily loaded node is balanced first

with lightly loaded node, should utilize minimum CPU time to name a few.

This dissertation presents a model for the load balancing strategy for a multiprocessor

system that aims to minimizing the turnaround time for a job(s) submitted for execution. The

model is developed using Sun Fire X 4470 server as a test bed using OpenMP as a programming

tool. Sun Fire X 4470 server is a multiprocessor system with four nodes each with eight cores.

Since, each core can be treated as a node; it makes available thirty two nodes that can be

programmed. OpenMP is used as a programming tool as it is suitable for the shared memory

programming applications.

The proposed scheduler allocates the modules of the job(s) over the nodes in such a way

that the desired objective of minimizing the turnaround time is met. The proposed model is based

on centralized dynamic load balancing strategy using thresholds. The threshold values set helps

in categorizing the nodes as heavily or lightly loaded nodes. The threshold values used here are

adaptive in nature i.e. as the load on the system increases, threshold values are readjusted to suite

the growing load on the system. The model works in such ways that the thresholds tend to

converge the nodes load towards the mean of the workload. These values becomes

approximately equal when the load becomes evenly distributed depicting the balanced state of

the system. The model is centralized in nature and hence it results in little traffic overhead.

Moreover, the load redistribution process is fair as load is first readjusted between heavily loaded

node and lightly loaded node through the use of max priority queue and min priority queue. The

balancing process utilizes minimum CPU time as redistribution is only carried out when lightly

loaded and heavily loaded nodes are reported.

Simulation study has been carried out for the model to evaluate its performance under

various test conditions. It has been found that the model works well in ensuring an even

distribution of the workload.

iii

List of Acronyms

CPU Central Processing Unit

MPP Massive Parallel Processing

RISC Reduced Instruction Set Computing

IF Instruction Fetch

ID Instruction Decode

EX Instruction Execute

MEM Memory Access

WB Write Back

NUMA Non- Uniform Memory Access

UMA Uniform Memory Access

SMP Symmetric Multiprocessor

CMP Chip Multiprocessor

RU Rack Unit

IMC Integrated Memory Controller

MB Memory Buffer

SMI Scalable Memory Interface

QPI Quick Path Interconnect

HT Hyper Threading

DIMM Dual In-line Memory Module

DDR3 Double Data Rate Type Three

DIM Dual Integrated Memory

GT/Sec Giga Transaction per Second

GB/Sec Gigabytes Transfer per second

SATA Serial AT Attachment

USB Universal Serial Bus

PCI Peripheral Component Interconnect

OpenMP Open Multiprocessing

MPI Message Passing Interface

iv

SPMD Single Program Multiple Data

Tunder Lower threshold

FIFO First In First Out

QoS Quality of Service

I/O Input / Output

TPS Transaction Processed per Second

NP Nondeterministic Polynomial

P Polynomial

Ntask Number of Tasks

Nproc Number of Processors

T lower Lower threshold

Tupper Upper threshold

LHM Lower half mean of li for the nodes sorted in ascending order

UHM Upper half mean of li for the nodes sorted in ascending order

M Mean of li for the nodes sorted in ascending order

L Min priority queue containing nodes having load li below T lower

H Max priority queue containing nodes having load li above T upper

X Queue for nodes having load between T lower & T upper

LQi Local queue of jobs for each processing element Ni

LQLi Length of the local queue for each processing element Ni

TAT Turnaround Time

S Speedup

ξ Efficiency

DLB Dynamic Load Balancing

v

List of Figures

Figure 1.1 Non Uniform Memory Access (NUMA) Model…………………………… 7

Figure 1.2 Uniform Memory Access (UMA) Model….. 8

Figure 1.3 Intel Xeon Processor 7500……………………………………………......... 11

Figure 1.4 Intel 7500 Scalable Memory Architecture ……………..………………...... 12

Figure 1.5 Sun Fire x4470 Server Motherboard ……………………...……………...... 13

Figure 1.6 Hybrid Programming Model …………………………...………………...... 15

Figure 2.1 Model of Local Node …………………………………..………………...... 20

Figure 2.2 Model of Central Node …………………………………………………...... 20

Figure 2.3 Decentralized Load Balancing …………………………………………...... 20

Figure 2.4 Round Robin Load Balancing ………………………….………………...... 24

Figure 2.5 Central Load Manager Algorithm ……………………...………………...... 25

Figure 2.6 Model of Threshold Algorithm ……………………..……….…………...... 26

Figure 2.7 Central Thread Request Queue Working ……..……………..…………...... 28

Figure 3.1 Model of Central Scheduler ……………………………………………...... 36

Figure 3.2 TAT v/s Number of Nodes with No. of Jobs = 100……....................... 50

Figure 3.3 TAT v/s Number of Nodes with No. of Jobs = 500……....................... 50

Figure 3.4 TAT v/s Number of Nodes with No. of Jobs = 1000…......................... 51

Figure 3.5 TAT v/s Number of Nodes with Fixed No. of Jobs Using DLB......... 52

vi

List of Tables

Table 3.1 Parameter Used in the Model …………………….………………………… 38

Table 3.2 Initial Allocation of Load …... 44

Table 3.3 Load on Nodes after Balancing …………………………….…………......... 46

Table 3.4 Sorted Nodes According to Load of Table 3.3…………..………………...... 46

Table 3.5 Load Redistribution of Nodes of Table 3.4…………………...…………...... 46

Table 3.6 Nodes in Sorted Order of Table 3.5……..…………….....………………...... 46

Table 3.7 Load Redistribution of Nodes of Table 3.6……….……..………………...... 47

Table 3.8 Nodes in Sorted Order of Table 3.7…………………………...…………...... 47

Table 3.9 Nodes after 13 Jobs Execution ………………...………..………………...... 47

Table 3.10 Nodes with Number of Jobs Allotted and Executed.……….....…………...... 48

Table 3.11 Comparative Study of the System With and Without Load Balancing........... 49

1

 Chapter 1

Introduction

Traditionally, software has been written for serial computation to be run on a single

computer having a single Central Processing Unit (CPU) where only one instruction may

execute at any moment in time. Parallel computing is an evolution of serial computing

that attempts to imitate what has always been the state of affairs in the natural world.

Initially, parallel computing was considered to be "the high end of computing", and was

used to model difficult problems in many areas of science and engineering. Today

commercial applications provide an equal or greater motivating force in the development

of faster computers. Main reasons for using parallel computing are that it saves time and

money. Throwing more resources at a task shortens it’s time to completion, with potential

cost savings. Parallel computers can be built from cheap, commodity components. It

solves very large problems that are impractical to solve on a single computer, especially

given limited computer memory. During the past twenty years, the trends indicated by

ever faster networks, distributed systems, and multi-processor computer architectures

(even at the desktop level) clearly show that parallelism is the future of computing. The

chapter starts with discussion on parallel and distributed computing, the types of

parallelism and various issues and challenges that crop in parallel computing. This is

followed by parallel computer memory architecture, discussion on symmetric

multiprocessor and various programming tools for designing parallel programs.

1.1 Parallel and Distributed Computing

 Parallel computing [1, 2, 3] is a form of computation in which many calculations

are carried out concurrently operating on the rule that large problems can often be divided

into smaller ones, which are then solved in parallel. There are several different forms of

parallelism: bit-level, instruction-level, task-level, data-level parallelism. Parallel

computers can be roughly classified into multi-core and multi-processor computers

having multiple processing elements within a single machine while clusters, MPPs, and

http://en.wikipedia.org/wiki/Bit-level_parallelism
http://en.wikipedia.org/wiki/Instruction_level_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Massive_parallel_processing

2

grids use multiple computers connected via network to work on the same task. Parallel

programs [4] are more difficult to write than sequential ones. Communication and

synchronization between the different subtasks are typically some of the greatest

obstacles to getting good parallel program performance. The maximum possible speed-up

of a program is observed as Amdahl's law [9].

1.2 Types of Parallelism

Various types of parallelism have been defined at various levels such as bit level,

data level, task level and instruction level. Some of these are discussed as follows.

1.2.1 Bit-level Parallelism

Increasing the word size reduces the number of instructions the processor must

execute to perform an operation on variables whose size are greater than the length of the

word. For example, where a 8-bit processor is required to add two 16-bit integers, the

processor must first add the 8 lower-order bits from each integer using the standard

addition instruction then add the 8 higher-order bits using an add-with-carry instruction

and the carry bit from the lower order addition. Thus, an 8-bit processor requires two

instructions to complete a single operation whereas a 16-bit processor requires just one

instruction to complete the operation [1, 2, 3].

1.2.2 Instruction-level Parallelism

The possible overlap among instructions is called instruction level parallelism. A

five-stage pipeline in a RISC machine has the following instruction parts, IF (Instruction

Fetch), ID (Instruction Decode), EX (Execute), MEM (Memory Access), WB (Write

Back). The instructions can be re-ordered and combined into groups which are then

executed in parallel without changing the result of the program. This is known as

instruction-level parallelism. Modern processors have multi-stage instruction pipelines.

Each stage in the pipeline corresponds to a different action. The processor performs on

that instruction in that stage. A five-stage pipelined superscalar processor, capable of

issuing two instructions per cycle have two instructions in each stage of the pipeline, for

a total of up to 10 instructions being simultaneously executed [1, 2, 3].

http://en.wikipedia.org/wiki/Grid_computing
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
http://en.wikipedia.org/wiki/Speedup
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/16-bit
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Carry_bit
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Instruction_pipeline
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Microprocessor

3

1.2.3 Data-level Parallelism

Data parallelism is a form of parallelization of computing across multiple

processors in parallel environments. Data parallelism is the parallelism intrinsic in

program loops which focuses on distributing the data across different computing nodes to

be processed in parallel. Parallelizing loops often leads to similar operation sequences

being performed on elements of a large data structure. Data parallelism focuses on

distributing the data across different parallel computing nodes. In a multiprocessor

system executing a single set of instructions, data parallelism is achieved when each

processor performs the same task on different pieces of distributed data. In some

situations, a single execution thread controls operations on all pieces of data. In others,

different threads control the operation, but they execute the same code [1, 2, 3].

1.2.4 Task-level Parallelism

Task-level parallelism is a form of parallelization of computer code across

multiple processors in parallel computing environments. Task parallelism is the

characteristic of a parallel program that entirely different calculations can be performed

on either the same or different sets of data. This contrasts with data parallelism where the

same calculation is performed on the same or different sets of data. Task parallelism

focuses on distributing execution processes (threads) across different parallel computing

nodes. In a multiprocessor system, task parallelism is achieved when each processor

executes a different thread (or process) on the same or different data. The threads may

execute the same or different code. In the general case, different execution threads

communicate with one another as they work. Communication takes place usually to pass

data from one thread to the next as part of a workflow [1, 2, 3].

1.3 Issues in Parallel Computing

 Parallel computing has to deal with lot of issues which crop up while working

with parallel code. These issues result in bottlenecks and restrict the behavior of parallel

program in attaining an aforesaid speedup given by Amdahl Gene [9]. Some of these

issues are discussed below.

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Control_flow#Loops
http://en.wikipedia.org/wiki/Parallelization
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Workflow

4

 Load Balancing: One of the main problems that need to be tackled by any system

that attempts to provide efficient execution of parallel programs in distributed

environments is load balancing. In order to be efficient, the system must distribute

the workload among the different computing nodes in a way that guarantees

optimal utilization of the available resources and in particular of the CPU [12].

 Portability: A portable high-performance program must be capable of adapting to

the particular environment in which it is running. We call the technique for

achieving this adaptation Two-Phase Adaptation. Firstly, an automatic study and

examination of the underlying architecture environment is carried out. Secondly,

an efficient matching between the application complexity and the environment

complexity is completed [1, 2, 3].

 Problem Size: Applications are often classified according to how often their

subtasks need to synchronize or communicate with each other. An application

exhibits fine-grained parallelism if its subtasks must communicate many times per

second. It exhibits coarse-grained parallelism if they do not communicate many

times per second, and it is embarrassingly parallel if they rarely or never have to

communicate [1, 3].

 Communication: Communication depends upon the size of the problem and how

we are dividing our problem to get solved. More the granularity more will be the

communication between them. However, greater parallelism is achieved but we

have to compromise with the communication cost [1, 2, 3].

 Scalability: Scalability is the capability of a system, network, or process, to

handle growing amounts of work in an elegant manner or its ability to be enlarged

to accommodate that growth. For example, it can refer to the capability of a

system to increase total throughput under an increased load when resources are

added [1, 2, 3].

 Resource Allocation: Performing computing and communication tasks on

parallel and distributed systems involves the coordinated use of different types of

machines, networks, interfaces, and other resources. Resource allocation is used

to assign the available resources in an economic way. Resource allocation is the

scheduling of activities and the resources required by those activities while taking

http://en.wikipedia.org/wiki/Embarrassingly_parallel
http://en.wikipedia.org/wiki/Resource

5

into consideration both the resource availability and the project time. Resource

allocation may be decided by using computer programs applied to a specific

domain to automatically and dynamically distribute resources to applicants. It

may be considered as a specialized case of automatic scheduling. [1, 2, 3]

 Scheduling: The problem of job scheduling is to determine how sharing of

resources should be done in order to maximize the system’s utility. Scheduling is

the method by which threads, processes or data flows are given access to system

resources (e.g. processor time, communications bandwidth). This is usually done

to load balance a system effectively or achieve a target quality of service. The

need for a scheduling algorithm arises from the requirement for most modern

systems to perform multitasking (execute more than one process at a time) and

multiplexing (transmit multiple flows simultaneously). [17, 18].

1.4 Challenges in Parallel Computing

There are many challenges which are hindrance towards the parallel computing

which makes it a difficult task to parallelize a problem. These challenges are discussed

below.

 Concurrency: Concurrency is a system property to execute multiple things

simultaneously, operating on a principle that many instruction can be interleaved

resulting in a minimized job turnaround time. Concurrent use of shared resources

can be a source of indeterminacy leading to issues such as deadlock, and

starvation. The design of concurrent systems often exhibit finding reliable

techniques for coordinating their execution, data exchange, memory allocation,

and execution scheduling to minimize turnaround time and maximize throughput

[1].

 Data Locality Problem: In a distributed memory machine, if iterations are

executed on the processors that initially have much of the data they need, then

communication overhead and latency will be reduced, resulting in better

execution time. Furthermore, if multiple iterations access the same data,

communication requirement can be reduced by executing them on same

processor. If however the data is migrated to another remote location then

http://en.wikipedia.org/wiki/Computer_programs
http://en.wikipedia.org/wiki/Scheduling_%28production_processes%29
http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Flow_%28computer_networking%29
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Multiplexing
http://en.wikipedia.org/wiki/Resource_%28computer_science%29
http://en.wikipedia.org/wiki/Deadlock
http://en.wikipedia.org/wiki/Resource_starvation

6

reduction in execution time should over power the communication time. The

study of this important issue is called data locality problem [1, 3, 16].

 Scalability Support in Hardware: Methods of adding more resources for a

particular application fall into two broad categories, vertical scaling and

horizontal scaling. In the past, the price difference between the two models has

favored "scale out" computing for those applications that fit its archetype, but

recent advances in virtualization technology have imprecise that advantage, since

deploying a new virtual system over a hypervisor (where possible) is almost

always less expensive than actually buying and installing a real one. Larger

numbers of computers means increased management complexity, as well as a

more complex programming model and issues such as throughput and latency

between nodes; also, some applications do not lend themselves to a distributed

computing model. Scalability support in hardware is limited by bandwidth and

latencies to memory plus interconnects between processing elements [1, 3].

 Synchronization Constructs: Synchronization refers to one of two distinct but

related concepts: synchronization of processes, and synchronization of data.

Process synchronization refers to the idea that multiple processes are to

coordinate at a certain point, so as to reach an agreement or commit to a certain

sequence of action. Data synchronization refers to the idea of keeping multiple

copies of a dataset in consistency with one another, or to maintain data integrity.

Process synchronization primitives are commonly used to implement data

synchronization. Synchronization constructs and protocols must be used very

carefully such that programs are free from deadlock and race conditions [1, 3].

 Software Engineering Practices: Software engineering is the study of designing,

implementing, and modifying software in order to ensure it is of high quality,

affordable, maintainable, and fast to build. It is a systematic approach to software

design, involving the application of engineering practices to software. Software

engineering deals with the organizing and analyzing software to get the best out

of them. It doesn't just deal with the creation or manufacture of new software, but

its internal maintenance and arrangement. Appropriate software engineer

http://en.wikipedia.org/wiki/Hypervisor
http://en.wikipedia.org/wiki/Process_%28computer_science%29
http://en.wikipedia.org/wiki/Dataset
http://en.wikipedia.org/wiki/Data_integrity

7

practices have to be adopted such as incremental parallelism or code reuse while

designing parallel program code [1, 3].

 Support for Portable Performance: Portability in high-level computer

programming is the usability of the same software in different environments. The

pre-requirement for portability is the generalized abstraction between the

application logic and system interfaces. When software with the same

functionality is produced for several computing platforms, portability is the key

issue for development cost reduction. The programmer has to adapt right models

so that he can write code once and expect it to execute well on the important

parallel platforms without much modification [1, 3].

1.5 Parallel Computer Memory Architecture

Main memory in a parallel computer is either shared memory or distributed

memory [1, 5]. Distributed memory refers to the fact that the memory is logically

distributed, but often implies that it is physically distributed as well. Distributed shared

memory combines the two approaches. Accesses to local memory are typically faster

than accesses to non-local.

Figure 1.1– Non Uniform Memory Access (NUMA) Model

A logical view of Non-Uniform Memory Access (NUMA) architecture is shown above in

Figure 1.1. Here the processors in one directory can access that directory's memory with

less latency than they can access memory in the other directory's memory. The computer

http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Abstraction_%28computer_science%29
http://en.wikipedia.org/wiki/Interface_%28computer_science%29
http://en.wikipedia.org/wiki/Computing_platform
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Distributed_shared_memory
http://en.wikipedia.org/wiki/Distributed_shared_memory
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access

8

architectures in which each element of main memory can be accessed with equal latency

are known as Uniform Memory Access (UMA) systems and are depicted in Figure 1.2.

Figure 1.2 – Uniform Memory Access (UMA) Model

Typically, uniform access can be achieved only by a shared memory system, in which the

memory is not physically distributed. A system that does not have this property is known

as Non-Uniform Memory Access (NUMA) architecture. Distributed memory systems

have non-uniform memory access. Computer systems make use of caches—small, fast

memories located close to the processor which store temporary copies of memory values.

Parallel computer systems have difficulties with caches that may store the same value in

more than one location, with the possibility of incorrect program execution. These

computers require a cache coherency system, which keeps track of cached values and

tactically access them, thus ensuring correct program execution. Bus snooping [1] is one

of the most common methods for keeping track of which values are being accessed.

Processor–processor and processor–memory communication can be implemented in

hardware in several ways via shared memory, a crossbar switch, a shared bus or an

interconnect network of various topologies including star, ring, tree, hypercube, or mesh.

1.6 Symmetric Multiprocessor

Symmetric Multiprocessor is among the class of system that come under parallel

and distributed system. Parallel computers can be roughly classified into multi-core and

multi-processor computers having multiple processing elements within a single machine

while clusters, MPPs, and grids use multiple computers to work on the same task

connected via inter connect network. Symmetric Multiprocessor also called SMP is a

http://en.wikipedia.org/wiki/Memory_latency
http://en.wikipedia.org/wiki/Uniform_Memory_Access
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Cache
http://en.wikipedia.org/wiki/Cache_coherency
http://en.wikipedia.org/wiki/Bus_sniffing
http://en.wikipedia.org/wiki/Crossbar_switch
http://en.wikipedia.org/wiki/Bus_%28computing%29
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Ring_network
http://en.wikipedia.org/wiki/Tree_%28graph_theory%29
http://en.wikipedia.org/wiki/Hypercube_graph
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Massive_parallel_processing
http://en.wikipedia.org/wiki/Grid_computing

9

shared memory system with all the processors having access to the same memory. SMP

follow the UMA class of memory architecture. Many SMP can even be grouped together

to execute a parallel job(s) where the resulting system being known as cluster SMP.

Cluster SMP comes under the class of NUMA architecture.

1.6.1 Symmetric Multiprocessing

 In computing, symmetric multiprocessing (SMP) involves a multiprocessor

computer hardware architecture where two or more identical processors are connected to

a single shared main memory and are controlled by a single OS instance [19]. Processors

may be interconnected using buses, crossbar switches or mesh networks. The bottleneck

in the scalability of SMP using buses or crossbar switches is the bandwidth and power

consumption of interconnection among the various processors, the memory, and the disk

arrays. Mesh architectures avoid these bottlenecks, and provide nearly linear scalability

to much higher processor counts. A computer system that uses symmetric

multiprocessing is called a symmetric multiprocessor [1, 3, 5].

1.6.2 Symmetric Multiprocessing v/s Other Parallel Technologies

The parallel computing is a wide field which encompasses many technologies.

Each technology explores the parallelism accordingly. The explanation of each of the

technologies is handled below.

 Multi Core Computing: A multi-core processor is a single computing

component with two or more independent actual processors (called "cores"),

which are the units that read and execute program instructions. The instructions

are ordinary CPU instructions such as add, move data, and branch. The presence

of multiple cores facilitates the user to run multiple instructions at the same time,

increasing overall speed for programs agreeable to parallel computing.

Manufacturers typically integrate the cores onto a single integrated circuit die

(known as a chip multiprocessor or CMP), or onto multiple dies in a single chip

package. A multi core processor can issue multiple instructions per cycle from

multiple instruction streams [1, 5].

 Distributed Computing: It is a field of computer science that studies distributed

systems. A distributed system consists of multiple autonomous computers that

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Multiprocessor
http://en.wikipedia.org/wiki/Main_memory
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Instruction_%28computer_science%29
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Die_%28integrated_circuit%29
http://en.wikipedia.org/wiki/Chip_carrier
http://en.wikipedia.org/wiki/Chip_carrier
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer

10

communicate each other through a computer network to carry out the processing.

A computer program that runs in a distributed system is called a distributed

program, and distributed programming is the process of writing such programs. In

distributed computing, a problem is divided into many tasks, each of which is

solved by one or more computers. Distributed computers are highly scalable [5].

 Cluster Computing: A cluster is a group of loosely coupled computers that work

together closely, so that in some respects they can be regarded as a single

computer. Clusters are composed of multiple standalone machines connected by a

network. While machines in a cluster do not have to be symmetric, load balancing

is more difficult if they are collection of heterogeneous systems [1, 3, 5].

 Massive Parallel Processing: A massively parallel processor (MPP) is a single

computer with many networked processors. MPPs have many of the same

characteristics as clusters, but MPPs have specialized interconnect networks

whereas clusters use commodity hardware for networking. MPPs also tend to be

larger than clusters, typically having far more than 100 processors. In MPP each

CPU contains its own memory and copy of the operating system and application.

Each subsystem communicates with the others via high-speed interconnect [1, 2].

 Grid Computing: Grid computing is the most distributed form of parallel

computing. It makes use of computers communicating over the internet to work

on a given problem. Because of the low bandwidth and extremely high latency

available on the internet, grid computing typically deals only with embarrassingly

parallel problems. Most grid computing applications use middleware, software

that sits between the operating system and the application to manage network

resources and standardize the software interface [1, 2, 5].

1.6.3 SMP Sun Fire X4470 Server

The Sun Fire X4470 server is a symmetric multiprocessor (SMP). It can provide

the critical virtualization platform for consolidating web application servers and

collaboration tools, virtualizing enterprise performance management applications, as well

as batch processing. It is a compact and expandable enterprise class 4-socket x 86 servers,

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Embarrassingly_parallel
http://en.wikipedia.org/wiki/Embarrassingly_parallel
http://en.wikipedia.org/wiki/Middleware

11

delivering an efficient performance, expandability, density and power efficiency in a 3

rack unit (RU) form factor. The server has following main characteristics [6].

 Intel Xeon Processor: This processor has some inherent features which makes it

among the fastest available processors in the world. It has eight cores per die, 24

MB Level-3 shared inclusive cache, two Integrated Memory Controllers (IMCs)

with two Intel Scalable Memory Interfaces (SMIs) each, four full-width,

bidirectional Intel QPI buses within the Sun Fire X4470 server. Intel QPI

technology provides high-speed, point-to-point interconnects between processors

with Intel Hyper Threading (HT) technology between processors and I/O and

Intel Turbo Boost Technology enabled within the system. Figure 1.3 presents an

insight into the Intel Xeon Processor 7500 [6].

Figure 1.3- Intel Xeon Processor 7500

 Intel 7500 Scalable Memory Architecture: Each Intel Xeon Processor 7500

Series CPU provides two integrated memory controllers that each operates on a

12

pair of interlocked memory channels. By default, memory is interleaved between

the two memory controllers belonging to each processor. A pair of SMI links

connects each integrated memory controller to the memory subsystem. To

increase reliability and bandwidth, the SMI links that originate from the same

memory controller operate in lock-step fashion to access memory DIMMs. Intel

7500 Scalable Memory Buffers (MBs) control SMI link access to the memory

DIMMs. Each MB connects to one SMI link and up to four DIMMs using two

DDR3 channels. Figure 1.4 presents the Scalable Memory Architecture for Intel

7500 [6].

Figure 1.4- Intel 7500 Scalable Memory Architecture

 Motherboard configuration: The design of the Sun Fire X4470 server supports

the following system architecture features. There are Four-processor Intel Xeon

Processor 7500 Series CPUs, Dual Integrated Memory (DIM) controller on each

processor with Intel Quick Path Interconnect architecture, providing 6.4 GT/sec

links, delivering up to 25 GB/sec of total bandwidth. The Intel 82801JB I/O

13

Controller Hub, supporting PCI, SATA, and USB connectivity. It has ten high-

speed PCI Express 2.0 slots for high-performance I/O expansion. The architecture

of the motherboard of Sun Fire X4470 server is shown in Figure 1.5 [6].

 Figure 1.5 - Sun Fire X4470 Server Motherboard

1.7 Programming Tools for Parallel Computing

There are three approaches to parallel programming which are popular in research

community. These approaches are defined for working with multithreading on shared

memory systems and message passing for distributed memory system. Multithreading

14

explores the task parallelism in a program whereas message passing explores the data

parallelism in a program. The third is a hybrid approach which combines the both

approaches to achieve the benefits of both programming methodologies. The

programming tools for working on these methodologies are defined as OpenMP designed

by OpenMP Architecture Review Board and the Message Passing Interface handled by

MPI Forum along with a hybrid approach for mixed mode programming involving both

OpenMP and MPI [7-8].

1.7.1 Message Passing Interface

The message passing programming model is a distributed memory model with

explicit control parallelism. This uses an SPMD (Single Program Multiple Data) model.

Processes are only able to read and write to their respective local memory. Data is copied

across local memories by using the appropriate subroutine calls. The MPI standard

defines a set of functions and procedures that implements the message passing model.

MPI codes run on both distributed and shared memory architectures. It is adjustable to

coarse grain parallelism. A large number of vendor optimized MPI libraries exist. Each

process has its own local memory. Data is copied between local memories via messages

which are sent and received via explicit subroutine calls [8].

1.7.2 OpenMP

OpenMP is an industry standard for shared memory programming. Based on a

combination of compiler directives, library routines and environment variables, it is used

to specify parallelism on shared memory machines. Directives are added to the code to

tell the compiler of the presence of a region to be executed in parallel. This uses a fork-

join model. The code will only run on shared memory machines. It is fairly portable. It

permits both course grain and fine grain parallelism. Uses directives help the compiler

parallelize the code. Each thread sees the same global memory, but has its own private

memory [7].

1.7.3 Mixed Mode Programming

A mixed mode programming model should be able to take advantage of the

benefits of both models. It allows us to make use of the explicit control data placement

15

policies of MPI with the finer grain parallelism of OpenMP. The majority of mixed mode

applications involve a hierarchical model with MPI parallelization occurring at the top

level and OpenMP parallelization occurring below as shown in Figure 1.6.

Figure 1.6- Hybrid Programming Model

To ensure that the code is portable, all MPI calls should be made within thread

sequential regions of the code. This often creates little problem as the majority of codes

involve the OpenMP parallelization occurring beneath the MPI parallelization and hence

the majority of MPI calls occur outside the OpenMP parallel regions. MPI calls can occur

within an OpenMP parallel region also but they should occur in restricted constructs only

[7, 8].

16

 Chapter 2

 Load Balancing

Parallel and distributed systems are considered to be the future for scientific and

engineering computing. The main goal of the parallel systems is to minimize job

turnaround time by parallel execution of jobs. Parallel computing has to deal with lot of

issues which crop up while working with parallel code. These issues result in many

bottlenecks that restrict the behavior of the parallel program in attaining an aforesaid

speedup given by Amdahl Gene. The most problematic issue that crops up is the

distribution of workload in both the categories of parallel system viz. homogenous and

heterogeneous systems. In homogenous system the processor with maximum load

overpowers the working of system resulting in poor job turnaround time whereas in

heterogeneous system the slowest processor dominates the job turnaround time. In

parallel systems, distribution of workload could result into some nodes to be heavily

loaded and some nodes to be under loaded. This situation demands an effective load

balancing strategy to be in place which ensures a uniform distribution of load across the

board. The chapter begins with discussion on load balancing, various issues and

challenges that crop during balancing of workload along with classification of various

load balancing strategies. This is followed by discussion on various load balancing

algorithms with insight into some related work reported in the literature. Later, some

important QoS parameters are discussed. The chapter concludes with NP Completeness

of load balancing algorithms and some possible solutions to this problem.

2.1 Load Balancing

The problem of job scheduling is to determine how sharing of resources should be

done in order to maximize the system’s utility. Scheduling is the method by which

threads, processes or data flows are given access to system resources for e.g. processor

time, communications bandwidth [21]. This is usually done to load balance a system

effectively or achieve a target quality of service. The need for a scheduling algorithm

http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Flow_%28computer_networking%29
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Quality_of_service

17

arises from the requirement for most modern systems to perform multitasking (execute

more than one process at a time) and multiplexing (transmit multiple flows

simultaneously). Scheduling of jobs should be done in such a way that each computing

node has its proper share of work so that job turnaround time is minimized. Load

Balancing can be treated as a subset of scheduling where such process is adopted. Load

balancing is a methodology to distribute workload across multiple computers, network

links, central processing units, disk drives, or other resources, to achieve optimal resource

utilization, maximize throughput, minimize response time, and avoid overload [1, 10]. It

is an allocation of system recourses to individual jobs for certain time periods to optimize

an objective function(s). To effectively utilize the resources, the job should be scheduled

in such a way that no resources are underutilized and that the turnaround time is

minimized. Load balancing optimizes the way jobs are scheduled on the system so that

these objective function(s) are met. In order to achieve above goal load balancing strategy

must exhibit the following features:

(i) Must create little traffic overhead

(ii) Low overhead for running the load balancing algorithm

(iii)Must be fair so that heavily loaded node is balanced first with lightly loaded node

(iv) Load balancing should utilize minimum CPU time

2.2 Issues and Challenges in Load Balancing

Various issues and challenges turn up while load balancing. These have to be

tackled so that effective load balancing is done on the system for realizing the objective

function(s) [1, 3, 10-12].

 Synchronization: The load balancing leads to synchronization of jobs so that one

does not lag behind the other during resource utilization. Synchronization refers to

one of the two distinct but interrelated concepts: synchronization of processes,

and synchronization of data. Process synchronization refers to the idea that

multiple processes coordinate at a certain point, so as to reach an agreement or

commit to a certain sequence of action. Data synchronization refers to the idea of

keeping multiple copies of a dataset in consistency with one another, or to

maintain data integrity. Process synchronization primitives are commonly used to

http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Multiplexing
http://en.wikipedia.org/wiki/Process_%28computer_science%29
http://en.wikipedia.org/wiki/Dataset
http://en.wikipedia.org/wiki/Data_integrity

18

implement data synchronization. Synchronization constructs and protocols must

be used very carefully such that programs free from deadlock and race conditions.

 Communication Overhead: Communication refers to the interaction between the

processes to reach a valid conclusion. During program execution in parallel, a lot

of data is communicated so that a valid result is achieved. Load redistribution is

handled between the processes via communication of messages only. A lot of

messages are communicated to processes to make the system consistent. During

balancing, if this combination overhead is more than benefits of transferring work

then it is useless to redistribute the work. Hence this overhead is a factor that

comes up while balancing of load. More communication means less computation

and hence speedup will be affected.

 Locality Principle: In a distributed memory machine, if iterations are executed

on the processors that initially have much of the data they need, then

communication overhead and latency will be reduced, resulting in better

execution time. Furthermore, if multiple iterations access the same data,

communication requirement can be reduced by executing them on the same

processor. Locality is an issue which must be weighed against load balancing. It

has to be checked that process migration does not over power the computation

time on local processor due to excess in data transfer time to remote location.

 Scalability: Larger numbers of computers results in an increased management

complexity, a more complex programming model and issues such as throughput

and latency between nodes. Also, some applications even do not lend themselves

to a distributed computing model. Scalability support in hardware is bandwidth

and latencies to memory plus interconnects between processing elements. More

the numbers of nodes in a system mean more will be the load on the load

balancing algorithm to effectively utilize the resources. As the number of nodes

increases, the communication overhead also increases to validate the system state.

This in turn affects the speedup that has to be achieved. In normal scenario the

speedup attained is less in comparison to the speedup proposed by Amdahl Gene.

 Reliability: Reliability means features that help avoid and detect system faults. A

reliable system should not silently continue and deliver results that include

19

incorrect and corrupted data instead it should correct the corruption as and when

possible. Further, the algorithmic approach should also be reliable. Centralized

approach makes the system less reliable as the functioning of the system totally

depends on the central node. If the central node fails, the whole system collapses.

On the other hand, in the decentralized approach, the system is not dependent on

one node with the control and decision power resting with multiple nodes. Thus,

if any node fails, the system continues to work while producing correct results.

 Excessive Page Migration: Excessive page migration results in thrashing which

is normally used to describe a computer whose virtual memory subsystem is in a

constant state of paging. This is due to the rapidly exchanging data in memory for

data on disk to the exclusion of most application-level processing. This causes the

performance of the computer to degrade or collapse. The situation may not

resolve itself quickly but can continue indefinitely until the underlying cause is

addressed. Locality of data leads to excessive page migration. This further leads

to thrashing as system involves in more paging than computation while giving a

false impression that the processors are busy.

2.3 Classification of Load Balancing Approaches

There are many approaches to classify the load balancing strategies. Broadly, load

balancing can be classified as centralized/ decentralized, static / dynamic, periodic / non

periodic and with threshold / without threshold. Each of the above could be used either

alone or in combination with others to provide effective load balancing [1, 11, 12].

 Centralized v/s Distributed Load Balancing: In centralized load balancing

scheme the global load information is collected at a single node called central

scheduler [12]. Local nodes send their load update messages to central scheduler.

The central scheduler maintains three queues corresponding to lightly loaded

nodes, medium loaded nodes and overloaded nodes. According to this information

central scheduler balances the load from overloaded nodes to lightly loaded

nodes. A typical model of local node and central node is presented in Figure 2.1

and Figure 2.2 respectively.

http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Paging

20

 Figure 2.1- Model of Local Node Figure 2.2- Model of Central Node

 In decentralized load balancing, each node broadcasts (periodically or

instantaneously) its load information to other nodes to update their locally

maintained load information table whenever its load state changes. According to

this load information received the node with under loaded state requests for the

jobs from overloaded nodes. The jobs are transferred to the requesting node if

extra load is there on requesting node else the negative response is send. On

receiving the negative response the requesting node searches for the other

overloaded node in its information table. The process is continued till the node is

successful in receiving jobs from other overloaded node. The model however

incurs lot of cost during the whole process due to message overhead. A typical

model of decentralized load balancing scheme is depicted in Figure 2.3 [11].

 Figure 2.3 - Decentralized Load Balancing

 Periodic v/s Non Periodic Load Balancing: In periodic load balancing approach

the load redistribution is carried out at a predefined interval of time. The CPU

21

time is divided in computation time and communication time. During this

communication time the procedure for load redistribution is carried out. The

information for load status is maintained up during this phase only. As the uneven

distribution of load is received the under loaded node requests for jobs from

overloaded nodes (decentralized case) or central node asks the overloaded node to

transfer extra jobs to its peer under loaded node (centralized case). Moreover

unnecessary transfer of jobs is also restricted as the system is allowed to continue

its execution until periodic time is reached. This scheme is usually adopted in

combination with other schemes.

 In non periodic load balancing approach the load redistribution is carried

out instantaneously whenever the load state of nodes changes on arrival of new

jobs. This process is carried out only when both under loaded node and over

loaded node are reported. The load redistribution is initiated as this case appears

else the nodes continue their processing until uneven state is reached. The process

incurs less cost in comparison to messages communicated to update the state of

nodes. As the uneven state is reached the system is brought to even state so that

job turnaround time is minimized. Frequent load distribution however incurs lot

of cost in comparison to periodic load balancing. The system in this approach is

not allowed to stay in uneven state of load whereas in periodic the load

redistribution is not initiated until the periodic time is reached [11, 12].

 With Threshold v/s Without Threshold Load Balancing: In threshold load

balancing the workload is divided into three categories namely lightly loaded,

medium loaded and overloaded. The parameter is assigned to check in which

category of load state the node falls. Usually two parameters are set to account for

the state of the node. Tlower checks the lower bound of load. The nodes reporting

load below this value are treated as under loaded state. Tupper checks the upper

bound of load on any node. The nodes whose load falls above this threshold value

are treated as over loaded. The node whose load falls in between the threshold

values are treated as normal loaded nodes. The parameters are predefined

according to the state of system. Usually constant values are taken for both these

parameters. However if the jobs arrival rate is quiet high then this constant

22

allotment becomes useless. In such scenario adaptive threshold values are to be

used to make system consistent towards the growing state of load.

 In without threshold no threshold is maintained at individual nodes.

Individual nodes maintained the load information table regarding the load on

other nodes (decentralized case). Whenever the node becomes idle it searches its

table for the requesting node for extra jobs. The request is send to the requesting

node for the load redistribution. In centralized case central node maintains the

information about the load state of individual nodes. It is the responsibility of the

central node to ask the node with maximum load to transfer its jobs to idle node.

This approach works on the process of work stealing as the load redistribution is

only initiated when node becomes completely idle. This process incurs additional

cost even in the case when jobs are not to be transferred but load redistribution is

still carried out e.g. when one node is idle and other node just has two jobs to

execute [10, 12].

 Static v/s Dynamic Load Balancing: In static load balancing the main systems

parameters are predefined and jobs are dispatched according to the rules that are

set a priori and are not affected by current state of the system. The jobs are

allocated to individual nodes according to the predefined rules. If the job gets

allocated initially on any node then it has to complete its execution on that node

only. The process chooses the rules such that uneven state does not arises but as

the system is dynamic there are situation when after careful allotment also the

uneven sate is reached. This further decreases the assumed speedup. Various

static load balancing algorithms are random, round robin, first come first serve

etc.

 In dynamic load balancing approach the load is distributed in the system

dynamically. Allocation of threads to processors is done during the run time.

Thread migration is allowed from one processor to other during application

execution. The jobs are allotted to nodes on their creation. During the execution

the state of nodes are continuously checked according to the various parameters.

If the system benefits in redistribution of jobs the load on the nodes is readjusted.

In this approach no node is kept idle even after execution of jobs after initial

23

allotment. The jobs are reassigned to it (periodically or instantaneously) as the

case may be according to the algorithm definition. Various dynamic load

balancing algorithms are central queue scheme, local queue scheme etc. [11, 12].

2.4 Load Balancing Algorithms

Load balancing algorithms could be of various types keeping in view the

principles behind their working. These algorithms can be based on centralized model or

decentralized model, static or dynamic model, with threshold or without threshold model,

periodic or instantaneous model. The algorithms can be designed using more than one

principle to have more effective approach. Each approach has its pros and cons, so before

designing our model the designer has to keep in view the basic system requirements and

architecture which the approach has to support. Primarily all load balancing algorithms

are classified into static and dynamic with all the algorithms mainly falling under these

two categories only. Some of the major static and dynamic algorithms are as follows.

 Random Algorithm: The random algorithm is the simplest load balancing

algorithm supported by the system. It is static, selecting a host for a new thread

when the thread is being created. The thread runs on this host during its entire

execution. Here the host is selected at random from the set of processors

participating in the application execution. There is no predefined rule except the

random selection process. The random algorithm can produce even load

distribution also and an uneven load distribution also. The process is simple and

easy to design without any overhead in after initial allotment. An advantage of

random algorithm is the absence of load balancing inter-process communication

which increases message overhead. Hence, the scheme can even attain the best

performance among all the load balancing algorithms for particular special

parallel applications. Nevertheless, random algorithm is not expected to achieve

good performance in the general case [11].

 Round Robin Algorithm: The round robin algorithm is a static load balancing

scheme where new threads are divided evenly between all the processors. The

threads are assigned to processors in a “round robin” order, i.e., each new thread

is sent to the next processor. The order of thread allocation is maintained on each

24

processor locally, independent of allocation from remote processors. As the jobs

are created each job is assigned to the processor and next job to the next

processor. The algorithm does not assess the viability of job allotment on

individual processor. There could be the case that some processors are fast

enough to execute the jobs where other processors are still lagging behind (typical

case of heterogeneous system). As the process is static the allotment is done

according to round robin rule only. An advantage of round robin algorithm is the

absence of load balancing inter-process communication which increases message

overhead. Hence, the scheme can even attain the best performance among all the

load balancing algorithms for particular special parallel applications.

Nevertheless, round robin algorithm is not expected to achieve good performance

in the general case. A typical model of round robin algorithm is shown in Figure

2.4 [11].

 Figure 2.4-Round Robin Load Balancing

 Central Load Manager Algorithm: The central load manager algorithm is a

static load balancing algorithm where a host for allocation of a new thread is

selected by the central load manager [10, 11]. The thread is allocated to the

minimally loaded host. The central load manager runs on the main host known to

all remote load managers. All requests for host selection are sent to the central

load manager. If a parent thread runs on the main host, then the central load

manager is called directly without sending a message. Hosts for new threads are

25

selected by the load manager so that the processor load after thread allocation is

as uniform as possible. The central load manager reaches a decision based on the

available information on the system load state. This information is updated by

remote thread managers, which send a message each time the load on their nodes

changes. The message overhead of the central load manager algorithm is one

message for each change of load and two messages per thread allocation from

remote hosts. The typical model of central load manager algorithm is depicted in

Figure 2.5. A general disadvantage of all static schemes is that the final selection

of a host for thread allocation is made when the thread is created, and cannot be

changed during thread execution to accommodate changes in the system load. All

the same, the central load manager scheme is expected to perform much better

than the simpler schemes for parallel applications,

 Figure 2.5- Central Load Manager Algorithm

 Threshold Algorithm: According to this algorithm, the threads are allocated

immediately upon creation to hosts selected by the load manager. The load

manager is distributed between the processors, and hosts are selected locally

without sending remote messages. Each local load manager keeps a private copy

of the system’s load state. The load state of a processor is characterized by one of

the following three levels: under loaded, medium and overloaded. These levels

are defined by two threshold parameters, Tunder and Tupper, which can be defined

by the user: a processor is under loaded when load < T under; medium when T under

 load Tupper and overloaded when load > Tupper. Default values of Tunder = 2

26

ready threads and Tupper = 4 ready threads. Initially, all the processors are

considered to be under loaded. When the load state of a processor exceeds a load

level boundary, the local load manager sends messages regarding the new load

state to all remote load managers, constantly updating them as to the actual load

state of the entire system. A host is selected for a new thread according to the

following algorithm: if the local state is not overloaded then the thread is

allocated locally; otherwise, a remote under loaded host is selected, and if no such

host exists, the thread is also allocated locally. The message overhead of the

algorithm is N-1 messages for every exceeding load level boundary on a

processor, where N is the total number of processors. Among the advantages of

the thresholds algorithm are relatively low inter process communication and a

large number of local thread allocations. A disadvantage of the algorithm is that

all threads are allocated locally when all remote processors are overloaded (their

load is more than the constant parameter Tupper). A load on one overloaded

processor can be much higher than on other overloaded processors, causing

significant load imbalance, and increasing the execution time of an application.

The typical model of threshold algorithm is depicted in Figure 2.6 [11].

 Figure 2.6- Model of Threshold Algorithm

 Central Queue Algorithm: The central queue algorithm is a dynamic load

balancing algorithm where new parallel activities are not allocated immediately

after creation. Instead they are buffered in the central thread-request queue on

27

main host and allocated dynamically upon request from remote hosts. Queue is

maintained by the central load manager running on main host. The purpose of the

central thread-request queue is to store new activities and unfulfilled requests. It is

structured as a cyclic FIFO queue on the main host. Each new activity arriving at

the queue manager is inserted into the queue. Then, whenever a request for an

activity is received by the queue manager, it removes the first activity from the

queue and sends it to the requester. If there are no ready activities in the queue,

the request is buffered until a new activity is available. If a new activity arrives at

the queue manager while there are unanswered requests in the queue, the first

such request is removed from the queue and the new activity is assigned to it. The

central thread-request queue can contain in any given moment either new

activities or unanswered requests; they cannot be interleaved in the queue. When

a processor load falls beneath the threshold Tlower, the local load manager sends a

request for a new activity to the central load manager [11].

The central load manager answers the request immediately if an activity is

found in the thread-request queue, or queues the request until a new activity

arrives. The parameter Tlower is user-defined as the minimal number of ready

threads on each processor. Its default value is two ready threads. The central

queue algorithm provides at least Tlower ready threads on each processor if a

sufficient number of activities have been created. The message overhead of the

central queue algorithm is three messages per parallel activity (one message

transfers a new thread to the central load manager, another makes the request and

the third is for thread allocation). The load manager running on the main host

does not send any messages to the central load manager, but rather requests new

activities directly from it, decreasing the overall message overhead of the

algorithm.

The most important advantage of the central queue algorithm is dynamic

distribution of threads. Unlike static algorithms, dynamic algorithms allocate

threads dynamically when one of the processors becomes under loaded. The

working of central request queue is depicted in Figure 2.7.

28

 Figure 2.7- Central Thread Request Queue Working

 Local Queue Algorithm: Local queue algorithm is a dynamic load balancing

algorithm where local queue is maintained at each node with new threads as

entries. The basic idea of the local queue algorithm is static allocation of all new

threads with thread migration initiated by a host when its load falls beneath a

threshold Tunder where Tunder is a user-defined parameter of the algorithm with

default value of 2. The parameter defines the minimal number of ready threads the

load manager attempts to provide on each processor if at least one host with more

than Tunder ready threads exists. The local load manager attempts to get several

threads from remote hosts. It randomly sends synchronous requests with the

number of local ready threads to remote load managers. When a load manager

receives such a request, it compares the local number of ready threads with the

received number. If the former is greater than the latter, then some of the running

threads are transferred to the requester and a positive confirmation with the

number of threads transferred is returned. A negative reply is sent to the requester

if the local number of ready threads is less than the number received. If the

29

requester receives a negative reply, or if the number of threads received is not

sufficient to reach the Tunder threshold, the load balancing process is continued

with another remote processor. If, after trying all remote processors, the Tunder

threshold is still not reached, the load balancing is periodically repeated until the

threshold is met. All the hosts apart from the main one also initiate periodic load

balancing at the beginning of an application execution, until the Tunder threshold is

achieved. The local queue load balancing algorithm is expected to achieve the

best performance, as it is dynamic and can redistribute running threads during

application execution. Static allocation of new activities decreases the overhead of

remote thread allocations and the overhead of remote memory accesses, thus

improving performance significantly. Another advantage of the algorithm is that

its message overhead is relatively low; messages are sent only when a host

becomes under loaded and thread redistribution is required. One apparent

drawback of the algorithm is that it ignores the locality principle. A thread for

transfer is selected randomly regardless of the threads running on the under

loaded and local processors. This decreases the performance of parallel

applications with massive data exchange between subsequent parallel iterations or

blocks [11].

2.5 Review of Load Balancing Strategies

A dynamic load balancing mechanism for distributed system is proposed in [10]

with adaptive threshold where central node is used for maintaining load state information

and decision for balancing is taken at local nodes. Six load balancing strategies are

studied in [11] with application on four problems. These schemes include random, round

robin, central load manager, threshold, central queue and local queue. In [12] various

strategies for dynamic load balancing are explored which include sender initiated

diffusion, receiver initiated diffusion, hierarchical balancing method, gradient model,

domain exchange method. Loop re-partitioning has been reported as a runtime load

balancing function for data parallel applications [13]. Although dynamic and guided

options of OpenMP can achieve load balancing to some extent a profiled clause is added

to the schedule clause in OpenMP to optimize dynamic load balancing where schedule is

30

given by Schedule (profiled [chunk_size]). In [14] the generic N+ 1 dimensional

perfectly nested loop is parallelized across the outermost N dimensions, so as to perform

sequential execution along the innermost dimension in a pipeline fashion, interleaving

computation and communication phases. The parallelization of outermost loops is done

according to the tiling transformation. A simple load balancing strategy for task

allocation in parallel machine has been proposed in [15] where load balancing is

decentralized and execution of load balancing is decided among processors using the

local queue length of individual processor. The processor with minimum queue length is

given task of executing the load balancing. A comparison of three approaches of guided

self scheduling, irregular parallel programs and lazy task creation without taking data

locality into consideration has been done in [16]. It employs dynamic load balancing

scheme implementing central queue and local queue while considering data locality

problem.

2.6 Quality of Service Parameters in Load Balancing

 Load balancing is a method to ensure a uniform distribution of load over the

constituent nodes. Load balancing can be used for improving the system performance

considering various QoS parameters. Thus a load balancing strategy can be designed

while considering either one or a combination of many QoS parameters. Some of the

QoS parameters are listed below.

 Throughput: The amount of work performed by a computer within a given

time. It is a combination of internal processing speed, peripheral speeds (I/O) and

the efficiency of the operating system, other system software and applications all

working together. Transactions processed per second (TPS) is one metric

commonly used to gauge throughput.

 System Utilization: It is to keep system as busy as possible so that no resource is

ever kept idle and it has work to execute.

 Turnaround time: It is estimated as the time taken by the job from its

submission to the final execution. Thus, it is always expected from a scheduler to

allocate the job to those resources which results in the faster overall execution of

the job i.e. with minimum turnaround time.

31

 Waiting time: It is the amount of time spends to wait by a particular job in

system for getting a resource. In other words waiting time for a job is estimated as

the time taken by the job from its submission to the get system for execution. The

waiting time depend on the parameters similar as turnaround time.

 Response time: It is the amount of time to get first response in time sharing

system. The response time depend on the parameters similar as turnaround time.

 Fairness: It is defined as the time taken by each system in load balancing

environment is same. Fairness deals with fair utilization of each available

resource such that no resource is over utilized and no resource is underutilized.

 Reliability: It is the ability of a system to perform failure free operation under

stated conditions for a specified period of time.

2.7 Load Balancing NP-Complete Optimization Problem

Computation problems broadly can be classifies as two class of problems, P class

and NP class. The types of problem which can be solved by exact methods in polynomial

time are the polynomial time solvable problems referred to as class P problem. An

algorithm is said to be polynomial or a polynomial-time algorithm, if it’s running time is

bounded by a polynomial in input size. The other class of optimization problems is

known as NP-hard (NP-complete) problems. For such problems, no polynomial-time

algorithms are known and it is generally believed that these problems cannot be solved in

polynomial time. If a problem is NP-complete it is likely that it does not admit a

polynomial-time algorithm, and should be treated by some other means [1].

Another class of problem is decision problem. A problem is called a decision

problem if the output range is decidable. P is the class of decision problems which are

polynomial time solvable. NP is the class of decision problems with the property that for

each “yes”-answer, a certificate exists which can be used to verify the “yes”-answer in

polynomial time. For two decision problems R and Q, we say that R reduces to Q

(denoted by R α Q) if there exists a polynomial-time computable function g that

transforms inputs for R into inputs for Q such that x is a “yes”-input for R if and only if

g(x) is a “yes”-input for Q. If R and Q are decision problems and R α Q then Q R

32

implies R R (and, equivalently, R R implies Q R). A transitive relationship exists

between decision problems. If Q, R, S be decision problems and R α Q, Q α S, then R α

S. A decision problem Q is called NP-complete if Q NP and for all other decision

problems R NP, we have R α Q. If any single NP-complete decision problem Q could

be solved in polynomial time then we would have P = NP. To prove that a decision

problem R is NP-complete it is sufficient to prove the following two properties:

i. R NP, and

ii. There exists an NP- complete problem Q with Q α R.

An optimization problem is NP- hard if its decision version is NP-complete. For

such problems, no polynomial-time algorithms are known and it is generally believed that

these problems cannot be solved in polynomial time. Most of the scheduling problems

(including load balancing) are optimization problems, i.e., a schedule that optimizes a

certain objective function. Load balancing is an NP-Complete problem owing to the large

number of resources and jobs along with their heterogeneous nature demanding

scheduling. The input size of a typical balancing problem is bounded by the number of

jobs 'n', the number of machines 'm' [1].

Load-balancing problem falls into the ``easy class'' of NP-complete optimization

problems [20]. Computational complexity theory provides a mathematical framework

that explains why some problems are easier to solve than the others. It is accepted that

more computational complexity means problem is harder and vice versa with their

computational complexity depending on their input size and the constraints imposed on

it. Irregular loosely synchronous problems consist of a collection of heterogeneous tasks

communicating with each other at the synchronization point, is the characteristic of this

problem class. Both the execution time per task and amount and pattern of

communication can differ from task to task. It is noted that formally this is a very hard-

so-called NP-complete-optimization problem. With Ntask tasks running on Nproc

processors we cannot afford to examine every one of the assignments of tasks

to processors. This problem is easier as one does not require the exactly optimal

assignment. Rather, a solution whose execution time is within 10% of the optimal value

can be quite acceptable. The physical optimization methods and more problems specific

33

heuristics have shown themselves very suitable for this class of approximate optimization

problems [20].

2.7.1 Solution to NP Class Problems

At present, all known algorithms for NP-complete optimization problems require

time that is super polynomial in the input size, and it is unknown whether there are any

faster algorithms. Small sized problems can be solved by mixed integer, linear

programming, dynamic programming, branch and bound methods. To find a “good”

solution within an acceptable amount of time for problems of larger size, two types of

algorithms can be used:

 Approximation Algorithms: Approximation algorithms are algorithms used to

find approximate solutions to optimization problems. An algorithm is called an

approximation algorithm if it is possible to establish analytically how close the

generated solution is to the optimum. Approximation algorithms are often

associated with NP-hard problems as it is implausible that there can be efficient

polynomial time exact algorithms solving NP-hard problems, so one has to settle

for polynomial time sub-optimal solutions. Ideally, the approximation is optimal

up to a small constant factor (for instance within 5% of the optimal solution).

Approximation algorithms are increasingly being used for problems where exact

polynomial-time algorithms are known but are too expensive due to the input size

[1].

 Heuristics: A heuristic is a rule of thumb for solving NP Complete problems.

Heuristics are often used to improve efficiency or effectiveness of optimization

algorithms, either by finding an approximate answer when the optimal answer is

prohibitively difficult or to make an algorithm faster. Heuristics do not guarantee

that an optimal solution to the problem is always found however results about NP-

hardness in theoretical computer science make heuristics the only viable

alternative for many complex optimization problems which are significant in the

real world. The performance of a heuristic algorithm is usually analyzed

experimentally, through a number of runs using either generated instances or

known benchmark instances [1].

http://en.wikipedia.org/wiki/Superpolynomial
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Polynomial_time
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/NP-hard

34

 Chapter 3

The Proposed Model

Scheduling is the problem of mapping the job(s) on the system resources keeping in mind

that all the nodes in the system get equal share of work resulting in minimizing the

turnaround time. The proposed model presents a centralized load balancing strategy for

job(s) submitted for execution on a symmetric multiprocessor system Sun Fire X 4470

server with the aim of minimizing the turnaround time. The model presented follows a

centralized dynamic load balancing with threshold which is used to study the system load

at a given moment of time. The threshold values corresponds to the minimum and

maximum workload assigned to the nodes and are adaptive in nature being adjusted

periodically as the load on the system increases for even distribution of the load. When

the load is evenly distributed these values becomes approximately equal depicting the

balanced state of the system. The load redistribution process is fair as it is periodically

adjusted between most heavily loaded nodes and most lightly loaded nodes through the

use of max priority queue and min priority queue. The balancing process utilizes

minimum CPU time as redistribution is only carried out when lightly loaded and heavily

loaded nodes are reported. The chapter starts with presentation of the scheduler while

discussing the parameters and fitness functions considered for design of the model and

the scheduling algorithm used. This is followed by an example to illustrate the working of

the model. The chapter concludes with simulation study and their analysis.

3.1 The Scheduler

The aim of parallel and distributed system is to primarily minimize the turnaround

time of the job submitted for execution. The parallelism for the system can be considered

from both the hardware and the software angle. Hardware parallelism refers to the

presence and availability of multiple computational resources while parallelism at the

software level refers to the parallelism inherent in the application in the form of

individual grains of program that can be executed simultaneously. Thus, if the application

35

is scheduled on the available nodes in such a way that maximum software parallelism is

exploited can result in the best performance. Symmetric multiprocessor system provides a

hardware platform with identical processors which can be used for scheduling any

parallel application. A mere presence of multiple computational resources does not

ensure maximum performance if the scheduling strategy is incapable of spreading the

parallel executable modules evenly on these resources. Scheduling on a multiprocessor

system can be done to optimize any Quality of Service (QoS) parameters like Turnaround

Time, Reliability, Throughput etc. or could be a combination of a few QoS parameters.

The proposed model presents a centralized dynamic load balancing strategy which

continuously keeps a track of the load on the nodes using threshold with the aim of

minimizing the turnaround time of the jobs submitted for execution. The centralized

scheduling approach is adopted by the model to ensure minimum traffic overhead in

comparison to the distributed approach in which a lot of messages are to be exchanged to

update the locally maintained load information table. The model uses Sun Fire X 4470

server as the test bed providing the users with a maximum of 32 cores for the job

execution. These cores act as the processing elements on which jobs can be submitted for

execution. Since the model follows centralized job scheduling approach, of the available

cores, one core is taken as central scheduler on which job has got submitted and is

eventually used for dispatching the independent job modules to the other cores

(processing elements). Each processing element has a local queue where the allotted jobs

are queued up and are taken up for execution one by one in the order of their arrival. The

scheduler used in the work is as shown in Figure 3.1.

The job submitted for execution can be considered to be comprising of sub-

modules which can run in parallel and are independent in nature so that there is no order

in job execution and any job/sub-module can finish its execution irrespective of job

number or order of precedence in the job. The process starts by randomly allocating these

sub-modules of the job(s) to the processing elements. This random allocation results in a

possible scenario in which few of the nodes gets a large number of sub-jobs to execute

while some may get very less or no module to execute. This result in an imbalanced state

with few processing elements heavily loaded and few are remaining idle thus demanding

36

Figure 3.1 – Model of Central Scheduler

load balancing which becomes the additional responsibility of the central scheduler.

Whenever, the model experiences an uneven distribution of load, a readjustment of load

is initiated to evenly distribute the load over the nodes till a balanced state is reached. The

37

load on the nodes is evaluated by using two threshold values viz. Lower Threshold

(Tlower) and Upper Threshold (Tupper) values which are adaptive by nature. Tlower

corresponds to threshold value indicating the minimum workload that is allowed on a

node while Tupper representing the maximum value of the workload accepted on any node.

As a node is assigned a workload, the same enters its job execution queue. The global

queues are maintained by the central scheduler only and are implemented as maximum

priority queue for heavily loaded nodes and minimum priority queue for lightly loaded

nodes. As the load on the system changes these thresholds are adjusted to suite the

changing load on the system making the threshold selection adaptive i.e. the threshold

values increases with increasing load and vice versa. As the average number of jobs in

local queues of processing element increases, the threshold values are readjusted and so

the global queues regarding the normal loaded nodes, lightly loaded nodes and heavily

loaded nodes are adjusted. The process is continuously repeated till the load is evenly

distributed on the computing nodes with Tlower and Tupper becoming approximately equal

depicting a balance state of the system. The load balancing process is instantaneous. As

soon as the heavily loaded nodes and lightly loaded nodes are reported, the central

scheduler starts load balancing between the nodes responsible for the imbalance. The

load balancing strategy is fair as the load is adjusted first between most heavily loaded

node and the most lightly loaded node with the process being repeated for the next most

heavily loaded nodes and the next most lightly loaded nodes using max priority queue

and min priority queue. Further, the balancing process utilizes minimum CPU time as

redistribution is only carried out when lightly loaded and heavily loaded nodes are

reported. The scheduling strategy has been explained in detail in the next section.

3.1.1 Scheduling Strategy and Algorithm Used

The scheduler aims in minimizing the turnaround time for the job(s) submitted for

execution by effectively load balancing the jobs on various computing nodes available.

This further, adds towards better utilization of the computational resources as well. The

various parameters used in the model are presented in Table 3.1 along with their

description.

38

Table 3.1-Parameter Used in the Model

Parameters Description

K Number of nodes

J Number of jobs

Ji Job identifier where 1 <= i <= J

Ni Node identifier where 0 <= i <= K-1

li Workload on each node Ni

T lower Lower threshold

Tupper Upper threshold

LHM Lower half mean of li for the nodes sorted in ascending order

UHM Upper half mean of li for the nodes sorted in ascending order

M Mean of li for the nodes sorted in ascending order

L Min priority queue containing node identifier for nodes having load li

below T lower

H Max priority queue containing node identifier for nodes having load li

above T upper

X Queue for nodes having load between T lower & T upper

LQi Local queue of jobs for each processing element Ni

LQLi Length of the local queue for each processing element Ni

The scheduler uses the Sun Fire X4470 Server as a test bed which comprises of 4

processors each with 8 cores. Therefore, the maximum number of nodes available to the

scheduler becomes 32 represented by K. Since the test bed for the scheduler is Sun Fire

X4470 Server, the processing elements are homogenous. The individual node under

consideration has been represented by Ni where 0 <= i <= K-1. The load on each node is

given by li. The model uses the centralized approach for load balancing. Thus, out of the

nodes selected for job execution, one node is used as central scheduler who serves two

objectives viz. dispatching the jobs to the remaining nodes and making load balancing

decisions depending on the system state. The remaining nodes simply act as processing

elements for jobs execution. Each processing element has a local queue where jobs can

be queued. The central dispatcher/scheduler node maintains the load information of each

39

processing element by maintaining the information about the nodes with high load, low

load and normal load using threshold values. This is done using the priority queues being

H for heavily loaded nodes, L for lightly loaded nodes and X for normal loaded nodes. If

L and H queue is non empty then jobs from node in H are transferred to node in L. If any

of the queues L or H is empty, load balancing will discontinue as this is the stopping

condition for balancing.

Since the scheduler load balances the workload using thresholds, these values for

under loaded nodes and overloaded nodes are considered as Tlower and Tupper which are

calculated using Lower Half Mean (LHM), Upper Half Mean (UHM), and Mean M

values. The nodes are sorted in ascending order of their workloads before calculating

LHM, UHM and M such that li >= li-1. LHM, UHM and M are calculated using equations

(i) – (iii).

)()2/)1/((1
2/)1(

1
l iKLHM

Ki

i
i

)()2/)1/((1
1

12/)1(
l iiKUHM

Ki

Ki
i

)()1/(1
1

1
l iiiKM

Ki

i
i

The values of Tupper and Tlower are calculated using Upper Half Mean, Lower Half

Mean and Mean of load of all nodes sorted according to workload. These values are

readjusted as load on individual node changes. We want maximum number of nodes

whose load is normal. In our definition normal load is the load which is approximately

equal to average load of the system. Numbers of nodes whose load is normal falls under

the range of Tupper and Tlower. The model has been implemented taking work offloading as

basic load redistribution strategy. Before the node becomes completely idle it receives a

share of work from other heavily loaded nodes where as in work stealing the node asks

for share of load from heavily loaded nodes when it completely becomes idle. So no node

is idle if extra load is there on any node in a system. Moreover the load redistribution

criteria makes system resistive towards imbalance as same node does not result in

40

imbalance after load redistribution. Here the heaviest loaded node is balanced with

lightest loaded node first making balancing process fair. Using equations (i) – (iii), Tlower

and Tupper can be calculated as equations (iv)-(v).

LHM: LHM >=0.9M

 Tlower = 0.9 M: LHM <0.9M ------------------------------------- (iv)

1: LHM<1, 0.9M < 1

UHM: UHM<=1.1M

Tupper = 1.1M: UHM > 1.1M ------------------------------------- (v)

2: UHM<2, 1.1 M < 2

In proposed model both Tupper and Tlower are adaptive in nature. LHM and UHM

provide us the reference points using which Tlower and Tupper are set. The scheduler works

with the intention of bringing that state of the system in which both LHM and UHM (and

hence Tlower and Tupper) ranges between ±10% of the mean M resulting in a load balanced

state. If LHM and UHM are outside this range Tlower and Tupper are set to be 90% and

110% of M respectively. Thus the scheduler continues to load balance the system to bring

the average workload between ±10percent of the mean M.

Initially the values of thresholds Tlower and Tupper are taken as 1 and 2 respectively

and are gradually adjusted using the node’s workload sorted in the ascending order. Now,

as the load on a node increases the value of thresholds are readjusted and accordingly the

number of nodes in L, H and X keeps on changing. Sorting the nodes in terms of their

workload enables the scheduler to have an idea about the nodes and their workloads.

Further, in this way, the nodes gets divided into under loaded, overloaded and normal

loaded which are handled via minimum priority queue L, maximum priority queue H and

queue X which are the workload queues for lightly loaded, heavily loaded and medium

loaded nodes. The scheduler then tries to converge the workload of these nodes towards

the mean value M. Nodes belonging to L, H and X can be decided using equation (vi),

(vii) and (viii) respectively.

NiL if li < Tlower --- (vi)

NiH if li > Tupper -- (vii)

NiX if li >= Tlower & li <= Tupper -- (viii)

41

As the values of LHM and UHM approaches M the system approaches balanced

state with even distribution of workload. The load balancing process is instantaneous in

nature. As the heavily loaded and lightly loaded node are reported, the central scheduler

assumes its job of load redistribution deciding on the nodes for job transfer and the

number of jobs that needs to be transferred. Since the nodes are in ascending order of

workload, the job transfer is done in such a way that it is done between most heavily

loaded node (last in the order) to the lightest node (first in the order). The process of load

redistribution continues for remaining number of nodes in L and H, reporting lightly

loaded and heavily loaded status until either of the queue L or H becomes empty. This

way, the load between these two nodes in which load distribution has taken place,

becomes approximately equal. Simultaneously, the threshold values are also adjusted

with the changing queue lengths thereby changing the values in H, L and X as well. It is

necessary that once the load has got redistributed the same node doesn't become

imbalanced quiet frequently. Accordingly, the number of jobs that are transferred from a

heavily loaded node to the lightly loaded node is governed by equation (ix).

 Number of jobs to be transferred= (l iH – l jL)/2 ----------------------------- (ix)

The model aims to minimize the turnaround time for the jobs submitted for

execution. Initially, the jobs are submitted randomly to individual processing elements by

the central scheduler and afterwards, load balancing is initiated as discussed above.

Accordingly, the load balancing strategy on an average results in the total number of jobs

executed by individual processing elements to be near the average value of the workload.

Since, this result in an even distribution of load on all the processing elements, the

turnaround time for the job is minimized. The processing element with maximum number

of jobs for executed decides the overall turnaround time. At any moment of time, the

scheduler ensures the load on individual nodes to be around the average workload of the

jobs submitted for execution.

This model is best worked around in situation where jobs arrival rate is very high

in comparison to service rate. So, if the jobs are heavily fired, resulting in changing load

on the nodes, the scheduler changes the threshold values to adapt to such situation. If the

workload remains constant or very small, the system results in unnecessary initiation of

load balancing thereby resulting in thrashing. Therefore, the model is best suited for the

42

job execution scenarios with heavy workloads. The algorithm for the load balancing

strategy is presented in the box.

Load_Balancer ()

{ Submit Jobs // Submit the jobs for execution

Initialize () // Select N0 as central dispatcher and scheduler

 // Tlower =1, Tupper = 2, LQLi =0

 // Move all nodes to minimum priority queue L

For Processor N0

{

 Do

 {

 Allocate (Ni, Ji) //randomly allocates jobs to nodes

 LQLi = LQLi +1 // Update queue length with each allocation

 Sort () // Sort nodes in ascending order as per their LQL

 Calculate LHM, UHM & M

 Calculate Tlower, Tupper

 Update () // Update L, H and X

 }

 If (H≠NULL and L≠NULL)

 {

 Extract (Ni) // Extract the heavily loaded node Ni from H

 Extract (Nj) // Extract the lightly loaded node Nj from L

 Transfer (Ni, Nj) // Transfer jobs from node Ni to node Nj

 Execute (Jj) // Execute the jobs allocated

 }

 } while (LQi ≠ NULL)

 Calculate TAT // TAT =Time taken by the processing element assigned with

 // maximum number of jobs

}

43

The algorithm starts with submission of the jobs demanding execution on the

multiprocessor system in the format as discussed in Section 3.1. Therefore, a job is

considered to be comprising of sub-modules which can run in parallel. Node N0 is

selected as central dispatcher and scheduler with the remaining nodes simply acting as

processing elements for the job execution. Once the jobs are submitted, LQLi for each

processing element/ node is initialized to 0 with Tlower and Tupper being assigned the

values of 1 and 2 respectively. All the nodes using node identifiers are then moved to

minimum priority queue L. The central scheduler N0 is then assigned the jobs that need to

be executed by dispatching them randomly to the individual processing elements.

 As soon as the jobs are assigned to the processing elements, the parallel execution

can start. The jobs assigned to each processing elements are first allocated to their local

queue LQi with the local queue length LQLi updated accordingly. The processing

elements are sorted simultaneously according to the queue length LQLi to calculate

LHM, UHM and M as per equations (i)-(iii). The central scheduler then modifies the

threshold values Tlower and Tupper as per the changed values of LHM, UHM and M as per

equations (iv)–(v). According to the new threshold values, minimum priority queue L,

maximum priority queue H and queue X gets updated as per equations (vi)-(viii) to group

the nodes as lightly loaded, heavily loaded and medium loaded nodes respectively. If L

and H are not empty, the central scheduler starts load balancing the workload by

transferring jobs from most heavily loaded node to the most lightly loaded node as per

equation (ix). This process continues till either minimum priority queue L or maximum

priority queue H becomes empty. While the central node N0 is busy accepting new jobs,

dispatching them and load balancing, the processing elements Ni (where i≠0), continue

extracting the jobs assigned to them from their local queues and executing them.

The job execution continues till there is no job to execute and each local queue of

individual processing element becomes empty. The turnaround time for the jobs

submitted depends on which processing element is taking the maximum time in

execution. Therefore, the TAT for the jobs submitted becomes equal to the time taken by

that processing element which has executed the maximum number of jobs. Effectively,

for the job submitted, each processing element gets the number of jobs nearly equal to the

44

average of the workload of the system. Thus, the algorithm ensures a uniform distribution

of load resulting in effective resource utilization.

3.2 Illustrative Example

To better understand the model, an example is illustrated in this section to present

the basic working of the model in terms of the turnaround time computation. The

example considers that no new job is added to local queue of a node and no job is taken

away from the queue until the load balancing is done making it static whereas in practice,

the model performs load balancing on the workload dynamically. In other words, the

model considers the job service rate to be less than job arrival rate leading to removal of

no job from the queue until the allotment has been done.

The example considers a scenario with a total number of available nodes for

execution as 11. As per the scheduling strategy presented in Section 3.1.1, N0 acts as the

central node and N1 to N10 acting as the processing elements for job execution. Load on

each node Ni is represented by li. Initially Tlower and Tupper are assumed to be 1 and 2

respectively. Total 134 jobs are assumed to be submitted to the system for execution and

the allotment after random distribution of the load is as shown in the Table 3.2.

Therefore, each entry in the table opposite to the node identifier indicates the number of

jobs assigned to a node. The allotment clearly suggests an unbalanced state of the system

thus prompting the scheduler to take corrective measures.

Table 3.2-Initial Allocation of Load

N1

N2 N3 N4 N5 N6 N7 N8 N9 N10

1 2 3 4 6 9 15 22 25 47

Initially the nodes are sorted in ascending order of their workload. In this case, the

allotment is already in the sorted form. The process starts with the calculation of LHM,

UHM and M. Using equation (i), LHM is calculated as the mean of workload on N1, N2

N3, N4 and N5 which are the nodes in the lower half of the table sorted in ascending order

and is calculated as

LHM = (1+2+3+4+6)/5

 = 3.2.

45

Similarly, UHM is also calculated as per equation (ii) which is the mean of load on N6,

N7, N8, N9, and N10 and is calculated as

UHM = (9+15+22+25+47)/5

 = 23.6.

The value of M is then calculated as per equation (iii) and is mean of load on N1, N2 N3,

N4, N5, N6, N7, N8, N9, and N10 which is calculated as

M = (1+2+3+4+6+9+15+22+25+47)/10

 = 13.4.

It can be seen from the example till now that the system started with the threshold

values Tlower and Tupper as 1 and 2 respectively. Here, the mean M of the workload is 13.4,

requiring the Tlower and Tupper values to be modified to move the bias towards M which

acts the average workload of the system. Since, the difference between LHM (3.2) and

UHM (23.06) from M (13.4) is very large, it indicates that there are many nodes which

are under loaded and overloaded necessitating the load balancing to continue.

Accordingly using equations (iv) – (v), the new value of Tlower and Tupper can be calculated

as

Tlower = max (max (LHM, 0.9M), 1)

 = max (max (3.2, 12.06), 1)

 = 12.06.

 Tupper = max (min (UHM, 1.1M), 2)

 = max (min (23.6, 14.74), 2)

 = 14.74.

The nodes that come under L and H as per equation (vi) – (vii) becomes

L (N1, N2 N3, N4, N5, N6)

H (N10, N9, N8, N7)

It can be seen that node N1 is the most lightly loaded node with N10 being the most

heavily loaded node. Thus node N1 is workload balanced with N10 as per equation (ix) by

transferring some jobs from N10 to N1. Similarly, N2 is balanced with N9, N3 is balanced

with N8 and N4 is balanced with N7. This results in emptying the queue H. Therefore, the

scheduler stops the load balancing for the moment. The resultant load on each node after

redistribution is shown in Table 3.3.

46

 Table 3.3: Load on Nodes after Balancing

N1

N2 N3 N4 N5 N6 N7 N8 N9 N10

24 13 12 9 6 9 10 13 14 24

The resultant nodes after load balancing are again sorted to calculate the new

values of thresholds Tlower and Tupper. The nodes with new resultant load in sorted order

are shown in Table 3.4. In practice, this process is dynamic as the jobs are added and

removed from the queue simultaneously. However, the example just illustrates the

working of model till load is balanced without considering the addition and removal of

new jobs for the sake of simplicity.

Table 3.4- Sorted Nodes According to Load of Table 3.3

N5

N4 N6 N7 N3 N2 N8 N9 N1 N10

6 9 9 10 12 13 13 14 24 24

In the way as illustrated till now, the new values of LHM, UHM and M now

becomes 9.2, 17.6 and 13.4 respectively. It can be seen now that difference between

LHM and UHM with M has reduced considerably indicating some load balancing which

can be observed from Table 3.4 as well where the distribution of workload is more

uniform as compared to the initial state. Similarly, the values of Tlower and Tupper are

calculated as 12.06 and 14.74 respectively. The nodes that come under L are N5, N4, N6

and N7 and with H are N10 and N1.

Table 3.5-Load Redistribution of Nodes of Table 3.4

N5

N4 N6 N7 N3 N2 N8 N9 N1 N10

15 16 9 10 12 13 13 14 17 15

The load is again balanced and the result is shown in Table 3.5 with Table 3.6

presenting the same in the sorted order.

Table 3.6-Nodes in Sorted Order of Table 3.5

N6

N7 N3 N2 N8 N9 N5 N10 N4 N1

9 10 12 13 13 14 15 15 16 17

47

Again, the values of LHM, UHM and M are calculated and found as 11.4, 15.4

and 13.4 respectively with the values of Tlower and Tupper being 12.06 and 14.74

respectively. Now, the nodes that come under L are N6, N7 and N3. The same for H

becomes N1, N4, N10 and N5. Table 3.7 presents the load balanced system after this step

with Table 3.8 presenting the nodes in a sorted order according to their workload

Table 3.7- Load Redistribution of Nodes of Table 3.6

N6

N7 N3 N2 N8 N9 N5 N10 N4 N1

13 13 13 13 13 14 15 14 13 13

Table 3.8-Nodes in Sorted Order of Table 3.7

N1

N2 N3 N4 N6 N7 N8 N9 N10 N5

13 13 13 13 13 13 13 14 14 15

The new values of LHM, UHM and M are now calculated as 13, 13.8 and 13.4

respectively which are approximately equal. This is the driving condition which depicts

the even distribution of load. The values of Tlower and Tupper are 13 and 13.8 respectively.

Therefore, no node is found to be under L whereas nodes that come under H are N5, N10

and N9. The load is readjusted only when L and H is non empty. Since L has become

empty, no load balancing is needed any further. The nodes will execute the jobs allocated

to them till each node executes 13 jobs. The load status of nodes after execution of 13

jobs is shown in Table 3.9.

Table 3.9-Nodes after 13 Jobs Execution

N1

N2 N3 N4 N6 N7 N8 N9 N10 N5

0 0 0 0 0 0 0 1 1 2

The new values of LHM, UHM and M are 0, 0.8 and 0.4 respectively. So the

values of Tlower and Tupper are 1 and 2 respectively. The nodes under L are N1, N2, N3, N4,

N6 and N7 and there is no node under H. This state presents the other extreme in which L

is non empty and H is empty again indicating the balanced state. Therefore, the nodes

carry on execution till all local queues become empty. The final allocation of the

workload to the nodes after complete load balancing is shown in Table 3.10 presenting

48

the nodes with exact number of jobs allocated and hence executed. It can be seen that this

value is near 13.4 which is the mean M of the workload.

Table 3.10-Nodes with Number of Jobs Allotted and Executed

Node

No

Number

number

N1

N2 N3 N4 N5 N6 N7 N8 N9 N10

Allotted 1 2 3 4 6 9 15 22 25 47

Executed 13 13 13 13 13 13 13 14 14 15

In the above example, the number of jobs considered for execution is 134 with

each job executing in 0.264 seconds. Therefore, the time taken by 134 jobs to execute

sequentially on one processing elements becomes 35.376 seconds. However, for parallel

execution, the total turnaround time (TAT) can be calculated as

TAT= Max number of jobs executed on any node * Execution Time of a Single Job ----(x)

In the given example, since the maximum number of jobs executed on any processing

element is 15 as shown in Table 10, the TAT using equation (x) can be calculated as

TAT= 15*0.264=3.96 seconds

The speedup for such a system can be calculated as the ratio of the time taken Tseq

by the job when executed sequentially on a node to the time taken for parallel execution

Tpar

 Speedup ‘S’= Tseq / Tpar --- (xi)

 = 35.376 /3.96

 = 8.93

As can be seen, the speedup obtained is 8.9 indicating approximately 900 % faster

execution of the job. Similarly, the normalized speedup can be stated as

 Efficiency =Speedup/Number of nodes -- (xii)

 = 8.93/10=0.89

Thus, the system is resulting in an efficiency of 89% which can be treated as fairly good.

3.3 Simulation Study

To evaluate the performance of the model, simulation study was performed. The

SMP used for the study was Sun Fire X4470 Server using Linux operating system.

OpenMP was used as the tool for programming as it is suitable for SMP. The jobs

49

submitted are independent to each other and can be scheduled and executed in any order.

The composition of the individual job considered here is such that it has single instruction

being executed in a nested loop with 10
8
 iterations further divided in 10

4
 and 10

4
 iteration

of each for loop. The simulations has been done on Sun Fire X4470 with each job found

to be executing in 0.264 seconds on any individual node out of the available 32 nodes.

The experiments were designed to observe the change in total turnaround time of

job(s) submitted to the system by varying the number of nodes available for execution

with the provision of even varying the workload by changing the number of jobs

demanding execution. Table 3.11 summarizes some of these results keeping the numbers

of jobs fixed and increasing the numbers of nodes for the system with and without

dynamic load balancing. Further, it has been assumed that the communication cost for the

threads migrating from central dispatcher to the processing elements and between the

processing elements is the same for all the jobs and processing elements and has been

considered negligible as compared to the overall turnaround time. In addition the time

taken by the scheduler in making the scheduling decisions is also very small and do not

affect the turnaround time of the job significantly. For each set of experiments the arrival

rate and service rate of jobs of nodes are considered to be the same.

Table 3.11-Comparitive Study of the System With and Without Load Balancing

 Number of Jobs 100 Number of Jobs 500 Number of Jobs 1000

Number

of

Nodes

TAT

With Load

balancing

(in

Seconds)

TAT

Without

Load

Balancing

(in

Seconds)

TAT

With Load

balancing

(in

seconds)

TAT

Without

Load

Balancing

(in

Seconds

TAT

With Load

balancing

(in

seconds)

TAT

Without

Load

Balancing

(in

Seconds

4 8.123 8.732 39.93 43.407 86.22 86.502

8 4.817 7.688 22.506 31.129 45.282 62.659

12 3.017 3.622 13.786 15.902 27.285 30.948

16 2.199 3.618 10.213 12.612 20.763 21.932

20 2.532 5.116 10.868 16.422 18.929 28.115

24 1.604 3.358 9.025 12.227 17.449 24.237

28 1.576 1.879 6.248 7.504 12.68 13.775

50

 Figures 3.2 to 3.4 illustrate the above results with the number of jobs being fixed to

100, 500 and 1000 respectively. Further, Figure 3.5 summarizes the results reported in

Figures 3.2 – 3.4 using Dynamic Load Balancing (DLB). In the figures, X-axis represents

the number of nodes in the system and Y-axis the turnaround time of jobs execution

measured in seconds.

Figure 3.2-TAT v/s Number of Nodes with Number of Jobs = 100

Figure 3.3-TAT v/s Number of Nodes with Number of Jobs = 500

51

Figure 3.4-TAT v/s Number of Nodes with Number of Jobs = 1000

Observations

 As the number of nodes increases, the turnaround time decreases for both the

strategies involving load balancing and without load balancing as a general trend.

 The decrease in turnaround time for the load balanced system is smooth in

comparison to the system without load balancing which is abrupt at many times.

 The system is observed to be fairly scalable with the increase in the number of

jobs as well as computational resources. As the resources are added, the growing

amount of load is handled efficiently.

 The model exhibits an even distribution of load leading to effective utilization of

resources. Considering the arrival rate as same in both the scenarios of with and

without load balancing, the former has even distribution of load.

 The adaptive nature of threshold parameters makes system robust to the growing

amount of load. The nodes are idle only when there is no extra load on any node

in the system.

 The model conforms to the Amdahl’s law [9]. This is evident from the

observations reported in Figure 3.2 where the effect is more noticeable being the

case of small workload. Here, an increase in the number of nodes does not

52

translate into an equal gain in performance, which becomes steady after a certain

point, if the workload remains the same.

Figure 3.5- TAT v/s Number of Nodes with Fixed Number of Jobs Using DLB

Figure 3.5 illustrates the summarizes the results of Figure 3.2, Figure 3.3, and

Figure 3.4 with graphs presenting the results using Dynamic Load Balancing (DLB) used

by the model. It can be observed that the system works well even if the workload is

continuously increased with the efficient utilization of resources.

53

 Chapter 4

Conclusion and Future Scope

It is always desired from a computing system that it should execute the job in the

fastest possible way. Several measures were undertaken to achieve this goal leading to

the use of parallel and distributed systems. Parallel computing systems are one of them

that aim to minimize the task execution time. Distributed systems have led to multi-

computer systems with various computing nodes communicating with each other, moving

towards concurrent and cooperative engineering. Parallel computing has to deal with lot

of issues which crop up while working with parallel code. These issues result in

bottleneck and restrict the behavior of parallel program in attaining an aforesaid speedup

given by Amdahl Gene. The most problematic issue that crops up is the distribution of

workload in both the categories of parallel system viz. homogenous and heterogeneous

systems. In homogenous system the processor with maximum load overpowers the

working of system resulting in poor job response time whereas in heterogeneous system

the slowest processor dominates the job response time. Therefore, in parallel systems,

distribution of workload could result into some nodes to be heavily loaded and some

nodes to be heavily under loaded. This situation demands an effective load balancing

strategy to be in place which ensures a uniform distribution of load across the board.

Load balancing mechanism is a software approach to redistribute system wide workload

among the nodes of the system in order to reduce the mean job execution and hence the

turnaround time. An efficient load balancing strategy must exhibit the features like

creating little traffic overhead, low overhead for running the load balancing algorithm,

must be fair enough so that heavily loaded node is balanced first with lightly loaded node,

should utilize minimum CPU time to name a few. Load balancing is not only an issue in

distributed memory system but also for shared memory system. In such systems the

processing power of elements can only be utilized when efficient scheduling of jobs is

done. Dynamic Load Balancing (DLB) is very useful as it helps the system to adapt to the

changing workload and can be implemented using adaptive threshold values. This creates

54

the scenario where no node is ever idle even if there is extra workload on any node in the

system.

Load balancing on a parallel system has been established as an NP Complete

problem. Therefore, heuristic approach is considered as the best way to deal as no exact

solution can be established for such problems. The model proposed in this literature is a

heuristic approach towards an optimized solution to the load balancing problem. This

dissertation presents a model for the load balancing strategy for a multiprocessor system

that aims to minimizing the turnaround time for a job(s) submitted for execution. The

model is developed using Sun Fire X 4470 server as a test bed using OpenMP as a

programming tool. Sun Fire X 4470 server is a multiprocessor system with four nodes

each with eight cores. Since, each core can be treated as a node; it makes available thirty

two nodes that can be programmed. OpenMp is used as a programming tool as it is

suitable for the shared memory programming applications.

The proposed scheduler allocates the modules of the job(s) over the nodes in such

a way that the desired objective of minimizing the turnaround time is met. The proposed

model is based on centralized dynamic load balancing strategy using thresholds. The

threshold values set helps in categorizing the nodes as heavily or lightly loaded nodes.

The threshold values used here are adaptive in nature i.e. as the load on the system

increases, threshold values are readjusted to suite the growing load on the system. The

model works in such a way that the thresholds tend to converges the load towards the

mean of the workload. These values becomes approximately equal when the load

becomes evenly distributed depicting the balanced state of the system. The model is

centralized in nature as it results in little traffic overhead. Moreover, the load

redistribution process is fair as load is first readjusted between heavily loaded node and

lightly loaded node through the use of max priority queue and min priority queue. The

balancing process utilizes minimum CPU time as redistribution is only carried out when

lightly loaded and heavily loaded nodes are reported.

Simulation study has been carried out for the model to evaluate its performance

under various test conditions. It has been found that the model works well in ensuring an

even distribution of the workload.

55

In the present work, it has been assumed that if average of the workload is

distributed and hence executed by the processing elements, best results can be realized in

terms of the turnaround time. Even better solution can be obtained if the model is made

more realistic by considering other issues related to load balancing like communication

cost and data locality.

56

References

1. http://en.wikipedia.org/wiki.

2. Tanenbaum, A., “Parallel and Distributed Systems”, PHI, 2002.

3. Barney, Blaise, "Introduction to Parallel Computing", Lawrence Livermore

National Laboratory.

4. Foster, Ian, “Designing and Building Parallel Programs", Addison-Wesley

Longman Publishing Co., 1995.

5. Steen, A.J. Van Der, Dongarra Jack, "Overview of Recent Supercomputers":

http://www.phys.uu.nl/~steen/web03/contents.html.

6. www.oracle.com/us/products/.../sun-fire-x4470-server-077286.html

7. Chapman, Barbara, Jost, Gabriele, Pas, Ruud van der, Kuck, David J., "Using

Open MP: Portable Shared Memory Parallel Programming", The MIT Press,

2008.

8. Gropp, William, Lusk, Ewing, Thakur, Rajeev, “Using MPI-2”, MIT Press, 1999.

9. Amdahl, Gene, "Validity of the Single Processor Approach to Achieving Large-

Scale Computing Capabilities", AFIPS Joint Computer Conference, 1967, pp 1-4.

10. Youran, Lan, "A Dynamic Load Balancing Mechanism for Distributed Systems”

J. of Computer Science & Technology, May 1996, Vol. 11, No. 3, pp 1-13.

11. Dubrovsky, Alexander, Friedman, Roy, Schuster, Assaf, “Load Balancing in a

Distributed Shared Memory System”, IBM, 2005.

12. Willebeek, Marc, Reeves, Anthony P.,” Strategies for Dynamic Load Balancing

on Highly Parallel Computers”, IEEE Transaction on Parallel systems Software,

1999, pp 51-59.

13. Sakae, Yoshiaki et al, “Preliminary Evaluation of Dynamic Load Balancing Using

Loop Re-partitioning on Omni/SCASH”, Third IEEE International Symposium on

Cluster Computing and the Grid, May 12-May 15 2000.

14. Drosinos, Nikolaos, Koziris, Nectarios,”Load Balancing Hybrid Programming

Models for SMP Clusters and Fully Permutable Loops”, Supercomputing IEEE

2000 Conference, 04-10 Nov. 2000, pp 10-10.

http://en.wikipedia.org/wiki
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www.google.com/url?q=http://www.computer.org/csdl/proceedings/ccgrid/2003/1919/00/index.html&sa=U&ei=g7nUTttLyOeIAsur0ZcO&ved=0CAYQFjAB&client=internal-uds-cse&usg=AFQjCNHfP-rv5J9ipA486ldRago6XU_b6Q
http://www.google.com/url?q=http://www.computer.org/csdl/proceedings/ccgrid/2003/1919/00/index.html&sa=U&ei=g7nUTttLyOeIAsur0ZcO&ved=0CAYQFjAB&client=internal-uds-cse&usg=AFQjCNHfP-rv5J9ipA486ldRago6XU_b6Q
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10616
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10616

57

15. Rudolph, Larry et al, “A simple load balancing scheme for task allocation in

parallel machines”, Proceedings of the third annual ACM symposium on Parallel

algorithms and architectures, p.237-245, July 21-24, 1991

16. Keckler, W. Stephen, “The Importance of Locality in. Scheduling and Load

Balancing for. Multiprocessors”, IEEE Transactions on Software Engineering,

May 1986, pp 675-680.

17. Michael, Pinado, “Scheduling: Theory, Algorithms, and Systems”,

http://www.amazon.com/Scheduling-Theory-Algorithms-Systems-

2nd/dp/0130281387

18. Baker, K.R., "Introduction to Sequencing and Scheduling”, John Wiley, 1974.

19. Tanenbaum, A., “Operating Systems”, PHI, 2004.

20. http://www.netlib.org/utk/lsi/pcwLSI/text/node248.html

21. Brucker, P., “Scheduling Algorithms”, Fifth edition, Springer, Heidelberg, 2007.

http://dl.acm.org/citation.cfm?id=113401&CFID=99126162&CFTOKEN=18338507
http://dl.acm.org/citation.cfm?id=113401&CFID=99126162&CFTOKEN=18338507
http://dl.acm.org/citation.cfm?id=113401&CFID=99126162&CFTOKEN=18338507
http://www.amazon.com/Scheduling-Theory-Algorithms-Systems-2nd/dp/0130281387
http://www.amazon.com/Scheduling-Theory-Algorithms-Systems-2nd/dp/0130281387
http://www.netlib.org/utk/lsi/pcwLSI/text/node248.html

