
Remote Login 
With 

File Transfer Facility 

Dissertation submitted to 
JAW AHARLAL NEHRU UNIVERSITY 

in partial fulfilment of requirements 
for the award of the degree of 

Master of Technology 
m 

Computer Science 

MUKESH KUMAR 

School of Computer & Systems Sciences 
JAW AHARLAL NEHRU UNIVERSITY 

NEW DELID- 110 067 



CERTIFICATE 

This is to certify that the dissertation entitled "REMOTE LOGIN 
WITH FILE TRANSFER FACILITY" which is being submitted by 
Mr.MUKESH KUMAR to the School of Computer & System Sciences, 
Jawaharlal Nehru University, for the award of Master of Technology in 
Computer Science, is a record of bonafide work carried out by him. 

This work is original and has not been submitted in part or full to any 
university or institution for the award of any degree. 

r;;;;_f~~ 
Prof. P.C. Saxena s-l'fi 7 Dr.R.C.Phoha 

(Dean SC&SS) (Supervisor) 



DECLARATION 

This is to certify that the dissertation entitled "REMOTE LOGIN 
WITH FILE TRANSFER FACILITY" which is being submitted to the 
School of Computer & System Sciences, Jawaharlal Nehru University, for 
the award of Master of Technology in Computer Science, is a record of 
bonafide work carried out by me. 

This work is original and has not been submitted in part or full to any 
university or institution for the award of any degree. ~ 

MUKESH K~"' 



ACKNOWLEDGEMENT 

I wish to convey my sincere gratitude and acknowledgement to my 
guide Dr. R.C. Phoha, School of Computer & Systems Sciences, Jawaharlal 
Nehru University for his wholehearted, tireless and relentless efforts in 
helping me throughout in completing this project. 

I would like to record my thanks to my Dean, Prof. P. C. Saxena, 
School of Computer & Systems Sciences, Jawaharlal Nehru University for 
providing the necessary facilities in the centre for the successful completion 
of this project. 

I take this opportunity to thank all of my faculty members and my 
brother Rakesh kumar & Priyanka friends for their help and suggestions 
during the course of my project work. 

MUKESH KUMAR 



dedicated to my beloved Parents •.. 



ABSTRACT 

1. INTRODUCTION 

1.1 Networks 

1.2 Client - Sever Model 

1.3 Remote Logic 

1.4 File Transfer Facility 

2. MOTIVATION 

3. REMOTE LOGIC 

3.1 Introduction 

CONTENTS 

3.2 Terminal Line Disciplines 

3.3 Pseudo -Terminals 

3.4 Terminals- Modes 

3.5 Control Terminals 

3.6 Remote Login Overview 

3. 7 Windowing Environments 

3.8 Flow Control 

3.9 Pseudo- Terminal Packet Mode 

4 

5 

6 

9 

10 

11 

12 

15 

16 

17 

18 

19 

20 

21 

21 

25 

25 



4. FILE TRANSFER 

4.1 Introduction 

4.2 File Transfer Packets 

4.3 Security 

4.4 Data Formats 

4.5 Client User Interface 

CONCLUSIONS 

BffiLIOGRAPHY 

APPENDIX 

A. USERS MANUAL & GUIDE 

A.1 Getting Started 

A.2 How to Log Out ? 

A.3 About - Command 

A.4 About File Transfer 

B. ABOUT FILES IN SOURCE CODE 

2 

29 

30 

31 

32 

33 

33 

34 

36 

37 

38 

38 

38 

38 

39 

40 



REMOTE LOGIN 
WITH 

FILE TRANSFER FACILITY 

3 



ABSTRACT 

This project "slogan : Remote Logic with File Transfer facility" provides the user of 
UNlX , the ability to logic onto a remote computer and also the facility of 
transferring the files between the remote and local computers. Through the services 
remote logic and file transfer protocol are already provided, the project attempts to 
merge the features of both facilities remote logic and file transfer protocol ignored 
to eliminate the difficulties encountered while using them. 

Highlights of the project : 

• .Remote logic facility :--
The ability to logic onto a remote computer and work on it. 

• File Transfer facility:--
The ability to transfer files(i.e. getting and sending files) between the local and 
remote machines. Transfer of files can be done in two modes ASCII and binary 
modes. 

• Local flow control:--

• Local commands execution :-
The facility to execute any local command is also provided. 

4 



Introduction 

5 



INTRODUCTION 

1.1 Networks 

Computer network have revolutionized our use of computers. They pervade our 
every life, from automated teller machines, to airhne reservation system, used to be 
stand --alone entities. each computer was self contained and had all the peripherals 
and software required to do a particular job. If a particular feature was needed such 
as line printer output, a line was attachedtothe computer If large amounts of disk 
storage were needed, disks were added to the system. what helped change this 

is the realization that computers and there users need to share information and 
resources. 

Information sharing can be electronic mail or file transfer. resource sharing can be 
involve accessing a peripheral on another system. Twenty years age this type of 
sharing took place by exchanging magnetic tapes, decks of punched cards and line 
printer listings. Today computers can be connected together using various electronic 
techniques called network network can be as simple as two personal computer 
connected together using a 1200 baud modem, or as complex as the TAP/PI 
interment, which connects over 150,000 systems together. the number of ways to 
connect a computer to network Armenia, as are the various things we can do once 
connected to a network. some typical network applications are: 

• Exchange electronic mail with users on the computers. It is commonplace these days 
for people to communicate regularly using electronic mail. 

• Exchange files between systems. for many application it is just as easy to distribute 
the application electronically, instead of mailing diskettes or magnetic tapes. file 
transfer across a network also provides faster delivery. 

• Share peripheral device. Examples range from sharing of the line printers to 
the sharing of magnetic tape derives. A large push towards the sharing of peripheral 
device has come from the personal computer and work station 
market, since often the cost of a peripheral can exceed the cost of the computer 
in an organization with many personal computer or workstations sharing peripherals 
makes sense. 

• Execute a program on another computer. There are cases where some other computer 
is better suited to run a particular program. For example, a time sharing system or a 
work station with good program development tools might be the best system on 
which to edit and debug a program . Another system, however. might be better 

6 



equipped to run the program . this is often the case with the programs that required 
the special features, such as parallel processing or vast amount of storage 
The National science Foundation(I'IJ"'FL) has connected the six super computer centers 
using network, allowing scientists to access these computers electronically. Years 
ago, access to facilitates such as this would have required mailing decks of punched 
cards or tapes. 

• Kemme to gin. If two computers are connected using a network, we shouid be able to 
one from the other (assuming we have an account on both system) It is usually 
easier to connect computers that are using a net work network and provide a remote 
login application. than to connect every terminal in an organization to every 
computer. 

1.1.1 Lavering 
Given a particular task that we want , such as providing a way to exchange files 
between two computers that are connected with a network. we divide the task into 
pieces and solve each piece. In the end we connect the pieces back together to form a 
final solution. we could write a single monolithic system to solve the problem in 
pieces leads to and more extensible solution. 

It is possibie that part of soiution for a fiie transfer program can aiso be used for a 
remote printing program is unable for computer connected with a leased telephone 
line. In the context of networking ,this is called layering. we divide the 
communication probkm into pieces (layers) and let each (layer) and let each layer 
concentrate on providing a particular function. well--defined interfaces are provided 
between the layers. 

The principle to be applied : 

1. A layer should be created where a different level of abstraction is needed 
2. Each layer should perform a well defined function. 
3. The function of each layer should be chosen with an eye toward defining 

internationally standardized protocols. 
4. The number of layers should be large enough that distinct functions need not 

be thrown together in the same layer out of necessity, and small enough that 
the architecture dose not become w1wisely. 

1.1.2 THE OSI MODEL 
The international standards orgnazation (OSI ) decided upon a protocol known as 
open System Interconnection ( OSI ). this concept was intend to be of relevance m 
realm of data communication , bring about a standard in the world of networking. 
The OSI model comprises of 7 layers: 

7 



APPLICATION LAYER 

PRESENT! ON LAYER 

SESSION LAYER 

TRANSPORT LAYER 

NETWORK LAYER 

DATALINK LAYER 

PHYSICAL LAYER 

The Physical layer at the lowest level, concerns itself with the bare hardware. It is 
concerned transmitting raw bits over a communication channel. 

The Data link layer ensures error--free data delivery. it is contingent on the physical 
medium. No universal protocol exists at this level. 

The network layer is concerned with controlling the operation of the subnet. A key 
design issue is determining how packets are routed from source to destination. 

The Transport layer monitors the service of the 3 foregoing layers vis-a-vis 
transmission media and information flow. it functions like a pipe between the user 
and the above 3 layers . 

The Session layer controls communication between the application and 
synchronizes data exchange . 

The presentation layer formats the data in a way comprehensible to the application 
and to the application. 

The Application layer is at highest running of the ladder. Communication 
here is handled at the semantic level. The issue of inter-process communication, 
file transfer and broadcast communication fall under its aegis. 

8 



1.2 Client-- Server Model 

The standard model for net work application is the client--server model a server is a 
process that is waiting to be contacted by adient process so that the server can do 
some thing for the client. 

Request 
CLIENT 

SERVER 
Reply 

A typical (but not mandatory) scenario is as follows : 

The server process is started on some computer system . It initializes itself, then 
goes to sleep waiting for a client process to contact it requesting some service. 

A client process is started, is either on the same system or another system that is 
connect to the server's system with a network. Client process are often initiated by an 
interactive user entering a command to atime shareing system. The client process 
sends a request across the network to the serve requesting service of some form. 

Some examples of the same type of service that a server can provide are: 
1. return the time of day to the client, 
2. print afile on a printer 
3. read or write a file on the server's system for the client, 
4. allow the client to login to the server's system, 
5. execute a command for the client on the server's system. 

When the server process has finished providing its service to the client, the server . 
gose to sleep, wating for the next client request to arrive. 

9 



1.3 Remote login 

Remote login is an application which provides the facility of logging onto a remote 
computer and working on it. It provides the user , the feeling as if he is actually 
working on the remote computer. Atypical remote login session would be : 

10 



I. The user invokes the remote login service 
by typing at the command line prompt 

2. The remote login client program start 
executing on the local computer as a result 
of the user invoking it 
3.The remote login client process tries to get 
connected to the remote login server process 
running on the remote computer . 
4 .If connection is refused or is not 
established ,then the client process running 
on the local computer terminates by giving 
an error message stating connection not 
established 
5 .If connection is established between the 

client process on the computer and the server 
processes on the remote computer then the 
server asks for the login and password 
6.The server verifies the validity of the login 
and password sent 
7.If login and password are incorrect the 
connection is closed after sending an error 
message 
8Then the user shell on the remote computer 
is executed by the login program 
9The user on the local computer can start 
working on the remote m/c 

1.4 File Transfer Portico 

File Transfer protocol (FTP) is an application which provides the facility of 
transferring files (i.e. getting and sending files ) between the local and remote 
computer. It also provides security by validating the user by his login and password 
remote and computer and allowing access to the files only which can accessed by 
the remote user. atypical ftp session would be : 

II 



1 Theuserinvoke the FTP service by typing 
the command line prompt 

2TheFTPclient program starts executing 
on the local computer as a result of the user 
invoking it. 
3 The ftp client processes tries to get connected 
to the FTP server process running on remote 
computer 
4 If connection is refused or is not established 
then the client process running on the local 
computer by giving an error message starting 

connection not established 
5 If connections is established between the clien 
processes on the local computer and server process 
on the on the remote computer then the server 
ask for the login and password 
6 The server verifies the validity of the login and 
password sent 

7.Iflogin and password are incorrect the connecticln 
is closed after sending an error message 

8The user change to directory in which the wish 
to get or send files 
9 The user sends (gets) a file to (form) the remote 
computer 
1 OThe user exit from the FTP session 

12 



Motivation 

13 



2. MOTIVATION 

Remote Login is an application which provides the facility of logging onto a remote 
computer and working on it. It provides the user, the feeling as if he is actually 
working on the remote computer. Remote login service also provides local flow 
control. 

File Transfer protocol is an application which provides the facility of transferring 
files between the local and remote computers. It also provide security by allowing 
access to files only which can be accessed by the remote user. 

Let us consider following situation : 

A user wishes to get a file from the remote machine. But he dose not know the actual 
location of the file (i.e the directory containing the file) or he dose not know the actual 
location of the file after viewing it. or He knows the file name but he does not know, 
which file out of many files with the same file name on the remote m/c, he wants. 

In this situation the user follows the method shown on the next page: 

Theuser executes the remote 
login application on the local 
computer 
2Connection is established 
between the local and remote 
computer through the client 
and server processes running 
on the local and remote 
computers respectably 
3 The user search the dictory 
to find the file he wants 
4 The user confirms the 
filename by the file contents 

1 Theuser execute FTP application 
on the local computer 
2Connection is established 
between the local and remote 
computers through the client 
and the server processing 

running on the local and remote 
computers respectively. 

3 The user changes to preseni 
Working directory to the 

Directory in which the file is 
present 

4 The user transfer the file and 
string 

Generally logging on to a remote m/c (i.e. establishing a connection between local 

14 



Remote login Remote logir Remote Login 

~ client Client Server 

/ --......... ...-- \ I I I 

L~ \ L I 
tty Line netwod network tty line 
discipline protocGl~ protocols discipJine 

t• I I f I I I dev1ce1 

driver device ievice pty pty 

II driver driver master slave 

I I 
user at a 
terminal local syste n remote system 

NETWORK 

43 



and remote m/cs) takes time and this delays our main purpose of transferring the file. 
Thus the method discussed above , in getting the file, is the consuming and we have 
to have a better method of solving this problem. 

The problem discussed above provided the motivation for this project. this project is 
designed with eliminating the difficulties encountered and provides a way in which 
the user can login onto the remote computer and simultaneously. 

• Work a: the remote place. 
• Transfer files between local and remote computers. 

15 



Remote Login 

16 



3. Remote login 

3.1 Introduction 

The ability to login from one computer to another is an important net work 
application. there are two remote login applications: rlogin, which assumes the server 
is another 

Unix system, and telnet, Which is a standard internet application that most TCP/JP 
support the remote login protocol. 

The purpose of the REMOTE LOGIN protocol is to provide is a bi directional, eight -
bit byte oriented communication facility. Its primary goal is to flow a standard 
methods of interfacing terminals devices and terminal-- oriented process to each 
other. 

It is envisioned that the protocol may also be used for terminal--terminal 
communication (" linking ") and process--process communication (distribution 
computation). 

Any discussion of the remote login from one computer system to another involves 
the details of the terminal handling. The discussion also requires knowledge and 
pseudo terminals. Pseudo terminals have always been a mystical and undocumented 
feature of unite. but to understand the use of a network to login to another computer, 
knowledge of pseudo -terminals is required. 

3.2 Terminal Line Discipline 

Terminal devices are complicated by the line discipline is with inthe kernel ,some 
where between the actual device driver and the user process. the following figure 
shows this for a normal interactive shell. 

17 



SHELL 

,/ ~ 
Stdout.stderr, 1/ Stdin 

TERMINAL LINE 
DISCIPLINE 

Kernel 

i ,,/ 
TERMINAL 

DEVICE DRIVER 

' 1/ 

USER 
AT 

TERMINAL 

There are several functions that can be done by a line discipline module 

I. Echo the characters that are entered . 
2. Assemble the characters entered into lines, so that a process reading from the 
3. terminal receives complete lines. 
4. Edit the lines that are input. Unix allows you to erase the preceding character and 

also to kill the entire line being input and start over with anew line. 
5. Generate singnals when certain terminals keys are entered. The SIGINT and 

SIGQUIT signals can be generated this way, for example. 
6. Process flow controls characters. For example press the Control-S key, the out put 

to the terminal is stopped. To restart the out put, the Control-Q key is entered. 
7. 6.Allow you to enter an end of-file-character. 
8. Do character conversions . for example ,every time a process writes a new line 

character, the line discipline can convert it is to carriage return and a line feed . 
Also, tab characters that are output can be converted to spaces if the terminal 
doesn't handle tab characters. 

18 



Part of the complication of the terminal handling arises from the many different 
devices that can be connected to an asynchronous serial line on a computer. not only 
are interactive terminals connected this way, but printer's modems, plotters, and the 
like are also attached to the terminals line is being used for interactive input, 
different programs want to access the terminal difficulty . some process lines some 
are full screen editors, some want the echo facility disabled ( when entering a 
password, for example ). 

3.3 Pseudo--Terminals 

Our remote login server process forks a child process and executes the login in the 
child process. The server process (running on the remote computer ) should take the 
input of the user from the client process (running on the computer ) and should give 
it as input to the login shell process. And the server process should take the output of 
the login shell process and should send it to the client process which outputs on the 
local computer ) A pipe could help us in the inter process communication between 
the server process and login shell process . 

A view of the above description : 

Remote login 

server 

user from 

half of stream 
ptpe 

logi shell 

half of stream 
pipe 

There are, however, some problems. When any of the shell start up, they check their 
standard input and standard out put to see if both belong to a terminal device, using 

19 



the standard Unix function is atty. Since both of these descriptors for the shell refer 
to the stream pipe that is created between the shell and the recording process , 
the isatty function returns false for both descriptors. we do not get the prompt We 
the prompt .Also. we can not run the program that we requires a tenninal for 
example, if we. run the vi editor, the edited generates an error message saying that it 
requires an addressable cursor. Finally if we execute the Unix command tty, which 
prints the path name of the terminal device being used, it prints the message "dot a 
tty" 

The problem is that the communication channel between the server process and the 
login shell, dose not look like a terminal device to the system . If there is some way to 
put a block containing the " terminal line discipline" between the server process 
and the login shell, these problems disappear. Indeed, this is what pseudo--terminals 
are designed to do. Doing this the shell thinks that it is talking to a terminal. And vi 
editor works, since it can execute the terminal ioctls that it needs for full screen 
control. And for full screen control. And all the problems, we have got, when we used 
a stream pipe are gone. 

A Pseudo--terminal is a pair of devices. One half is called the master and the other 
half is called the slave process open a pair of pseudo --terminal devices and gets two 
file descriptors. The slave portion of a pseudo--terminal present an interface to the 
user process that looks like a terminal device. We can picture this as shown in the fig. 

User Process 
Pty master fd pty slave fd 

T enninal Line 
Discipline 

Kernel 

We use the term "pty" as an abbreviation for pseudo --terminal Anything written to 
the master pty is looped around and appears as input from the slave pty. Similarly 
any thing written to the slave pty appears as input from the master pty. 

20 



3.4 Terminals Modes 

There will be two terminal line disciplines between the actual terminal and login shell 
process, one at the local computer and another will be between the pseudo slave 
device and the login shell on the remote computer . we only want a single line 
discipline module interpreting the character entered on a terminal we want the line 
discipline module associated with the slave 's pseudo -tenninal to do the normal 
terminal processing . So we need to initialize the mode of the pseudo terminal to be 
identical to the mode of the actual terminal . and we need to put terminal line 
discipline module in raw that just passes every character through to the server 
process. 

A terminal device can be one of the three mobes 

• Cooked mode provides all the processing step listed in the terminal discipline 
section . the input is collected into lines and all special character processing is 
done ( erase processing , signal generation , etc) This is the normal mode for 
interactive use. 

• Row mode lets the process receive every character as it is input , with no 
interpretation done by the system . Raw mode is used, for example , by full screen 
editors such as vi, and also by programs that use a serial line for some thing 
other than interactive use . An example of the latter is UUCP . A classic 
problem with raw mode is if a process enables this mode but terminates 
without changing the mode back to cooked mode. You are typically left with a 
"raw" terminal -echoing is probably disabled and you might have to enter the 
line feed key. Instead of the normal return key to end a line , for example. 

• Check mode is some where between cooked mode. The cbreak mode provides 
character at a time to the process reading from the terminal, instead of collecting 
the input into the lines . The signal --generating keys are still processed, the 
editing features are disabled. 

3.5 Control Terminals 

Control terminal is one which is used for dispatching signals, when certain terminal 
keys are pressed and when alogin shell terminates. The terminal group ID identifies 
the control terminal for a process group . Under system V, a process disassociates 
from itself from its control terminals (if it has one) by calling the stepgrp system 
call. An example which requires this disassociation , is adaemon process 
In our application , we want the shell associates with the pseudo terminal slave as 
its control terminal. At the same time , we want that shell process to disassociate 
from the terminaL 

21 



3.6 Remote Login Overview 

Let's first show a picture of all the process involved in the remote login client and 
server. This is shown in the figure on the next page. We will refer to the system that 
you initially login to as either the local system or client system, The system that 
remotely login to is the remote system or server system . 

The terminal line discipline on the local system is placed into the raw mode with 
echoing disabled on the local system is placed into the raw process, so that all 
keystrokes are passed to the remote system. As we saw earlier, The raw mode is 
required to run programs such as Vi editor on the remote system. In the normal 
Unix fashion, character that are entered on the local system are echoed by the 
remote system . If the remote system is in a raw mode ( such the vi editor is being 
run on the remote system the remote system), then the echoing is done by that 
remote process itself (e.g vi) regardless of which box on the remote system is doing 
the echoing, every character that is echoed on your terminal has to go from the 
client system. through the network to the remote system , and then back , before 
being echoed on your terminal 

Notice that the remote login client process forks so that two processes are running 
on the local system, each process handling the flow of data in a single direction of 
data flow . the select system call is used by the server to multiplex its two streams. 
Also there has to be some from of information flow between the parent and child 
client process without stopping the child process . By doing this, we can stop the 
parent . allowing you to enter other commands on the client system , while still 
allowing any out put from the remote system to appear on your terminal. 

The 4.3BSD manual page describes the remote login facility as" remote -echoed, 
locally flow -controlled, with proper back flushing of output". 

3. 7 Windowing Environments 

The typical method used by Unix to specify terminal' features is to have a data file 
of terminal characteristics. 4.3bsd and early versions of system V use the termcap 
file for this, while more resent versions of system V use the term in of file. Contained 
in either of these files for each terminal type the size of terminal 's screen . 
Typical values are 24 lines by 80 columns a problem with these terminal capability 
file that they assume that the size of the terminal window doesn't change the size 
of a terminal window doesn't change . current technology however provides a 
variety of ways for you to change the size of a terminal's window dynamically 
during alogin session . software that uses the full capabilities of the screen, such as 
a screen, such as a full screen editor, has to be made aware of any changes in a 

22 



windows's size so they can redraw the screen. 

The ability to have a terminal device support multiple windows of varying sizes and 
to allow you to change the size of a window during a login session is not restricted 
to bit mapped displays . 4.3 BSD, for example, provides the window program that 
provides these capabilities on standard ASCII terminals. 

To support a windowed environment , the current size of a window has to be stored 
in a central location during a login session . Also , there has to be some way to allow 
process to read the current size , the current size and be made aware whenever the 
size changes 4.3Bsd provides ioctls and store the window size. 
#include <ioctl.h> 

int ioctl (int fd, tiocgwinsz, struct winsize * winptrO;/* get*/ 

int ioctl (int fd, Tiocswinsz, struct winsize* winptr);/* set *I 
struct winsize { 

unsigned short ws_row /*rows, in characters*/ 
unsigned short ws _ col /* columns, in characters *I 
unsigned short ws _ xpixel; /* horizontal size, pixels *I 
unsigned short ws_ypixel; /*vertical size, pixels*/ 
}; 

The kernel maintains a witness a winsize structure for each terminal and pseudo -
terminal, but dose not it for anything . All the kernel dose is provide a central 
location for active processor to keep track of a window's size. 

The kernel also generates the SIGWINCH signal whenever the size of a window 
changes. this signal is sent to the terminal process group associated with the terminal 
as an example, the 4.3BSD vi editor cathes the SIGWINCH signal This editor needs 
to know the size of the terminal's window so that it can wrap long lines from one line 
to the next , and to know where the bottom line of the screen is ( its command and 
output line) Whenever the size of the window changes, It catches the signal and 
redraw the screen . 

When a windowing environment is being used , such as the 4.3 BSD window 
command that we mentioned above , pseudo--terminals are typically used to 
provide one login shell for each active window. under 4.3BSD, we have created 
two windows. we have arrangement as shown in the below 

23 



The layers process is the host process that handles the multiplexed terminal. It 
communicates over a single RS-232 line with the terminal. It also communates with 
the processes running in each window ( layer ) using a pseudo terminal . 
When you resize a window , the operation is done by the firm ware in the 
terminal. ( a small operating system that executes in the terminal ) this firmware 
sends a special sequences of bytes across the RS-232 line to the layers process . 
The layers process figures out which window was resized from the sequence of 
bytes it receives and execute the TIOCSW1NSZ ioctl to set the new window size. 
This system call is applied to the master pseudo -terminals associated with the 
window that resized . The Kernel then sends the SIGWINCH signal to the 
corresponding slave side of the pseudo terminal. 

Not shown in the figure is the login shell that was used to invoke the layer process. 
This login shell is waiting for all the layers process to terminate. Now let's 
consider what effect resizing a window has on a remote login session . The problem 
is that resizing a window on the client 's system . Consider the layers system . 
shown in the figure and assume we have an remote login client running in one 
window . This gives us the processes shown in the figure below. The five steps that 
have that have to be taken by the remote login client and server are shown in the 
figure shown. 

24 



1. You resize the window which causes a special sequence of bytes to be sent to 
the layers process 

2. The layer processes recognizes the sequence of character as a window resize 
command and issue an ioclt of TIOCSWINSZ for the pseudo terminal master 
device This causes the SIGWINCH signal to be sent to the process group of the 
pseudo terminal slave device , the remote login process 

3. The remote login parent process catches the SIGWINSZ signal .It then issues an 
ioctl of of TIOCGWINSZ to fetch the new window size the new size of the 
window of the window is then sent across the network connection to the 
remote login server process. 

4. The remote login server receives the new window size from the client and issues 
an ioctl of TIOCSWINS7 on its pseudo-terminal master device. The SIGWINCH 
signal is then sent by the kernel to the kernal to the process group of the pseudo
terminal slave device, the vi editor in the example. 

As shown by the two horizontal lines, there is typically a link within the line 
discipline from the input queue to the output queue. If the line discipline is echoing 
the input character, this is done by moving a copy of the character that is input to the 
output queue. Also, if flow control is being done, when the stop character is input this 
has to stop the output side of the discipline. Similarly, when the start character is 
entered, the output side has to be notified. 
The interaction that we have to be concerned with is if the interrupt key or the quit key 
is entered. Normally, entering either of these keys flushes both the input queue and 
output queue, in addition to terminating the process that is currently running. When a 
terminal discipline is in the raw mode, these two keys are no longer special and 
entering them won't flush the queues. 

25 



3.8 Flow Control 

Most terminal line disciplines that are intended for interactive use, buffer characters in 
both directions. This allows a process to write data in chunk. Typically these chunks 
are either complete lines or buffers of some size. The driver accepts as much data as it 
can and then outputs it to the terminal as fast as possible .By doing it this way, the 
process that is producing the terminal output can continue executing while the line 
discipline and the terminal device driver output to the terminal device as fast as it can 
accept data. Terminal out put is usually limited by the connection speed-9600 baud, 
for example. If the output is being displayed on the terminal device too fast for you to 
read or comprehend ,you can stop the output by pressing a special character, termed 
the stop character . When you are ready to have more output displayed ,enter the start 
character. The stop character is typically Control-Sand the start character is typically 
control-Q.in addition to this out put buffering, terminal input is also buffered independ 
entry by the line discipline. By doing it this way, you can enter characters before a 
process is ready to read them. We can picture this as two some what independent 
queues within the terminal line discipline. As shown in the figure below. There is an 
input queue and an output queue for every terminal and pseudo-tenninal. 

3.9 Pseudo-terminal packet Mode 

Flow control is best handled by the client system. If it is handled by the remote 
system, then when you enter the stop character, that character has to be transmitted 
across the network to the remote system, where the remote line discipline module will 
stop the output. But in time required to do this ,all the data that was already goi~g 
from the remote system will have been displayed on your screen . The problem wtth 
doing flow control on the client system is that whenever the remote system is in a raw 
mode, the stop and start character cannot be interpreted as flow control. We need some 
way for the remote system's line discipline to notify the remote login server when the 
start and stop character are enabled or disabled. 

26 



There is another condition that we would like the client process to know as soon 
as possible . The terminal ioctl of TIOCFLUSH allows a processes to flush every 
thing that the line discipline has queed for input or output to the terminal device 
. If the process running on the remote system system issue this terminal ioctl, in 
addition to having the line discipline moduled on the remote system flush its 
output buffer , we would also like to flush every thing that is buffer across the 
network for the output on your terminial > This is another condition that the 
remote system's line discipline modules knows about, which we would like the 
remote login server to also know . 

To handle these cases , the 4 .3BSD pseudo -terminial device driver supports an 
optional packet mode . This mode is enable by missing an ioctl of TIOCPKT to the 
pseudo -terminal master device , of certain events that happen in the slave 's line 
discipline moduled. When this mode is enable , every read of the pty master ( by 
the remote login server in our example ) returns either . 

a single byte of zero . followed by the actual data from the pty slave. The first byte 
of zero is a flag byte indicating that the remainder of the buffer is normal data. 
a single nonzero byte > The length returned by the read should be one. This byte 
is a control . byte that indicates a condition that happened on the slave pty. The 
include file < iocth.h > contains the following definitions for this byte. 

TIOCPKT FLUSHBREAD 

Indicates that the terminal's input queue was flushed (i.e) all the characters on the 
read queue are flushed . for example . when you enter either interrupted key or 
quit key . This way . if you abort a running process with either of these keys , any 
out put that this process has already written or any input that you have entered, is 
discarded 
TIOCPKT STOP 

Indicates that the terminal output has been stopped 
TIOCPKT START 

Indicates that the terminal output has been transferred . 
TIOCPKT DOSTOP 
Indicates that some thing has changed so that the terminal stop character is control 
_ s and the start character is not Control _ Q or the terminal is not in raw mode. 
TIOCPKT NONSTOP 

Indicates that some thing has changed so that the terminal stop character is 
not Control_ S or the start character is not Control _ Q or the terminal is in raw mode. 

Whenever one of the above control bytes is available to be read from the master 

27 



pty ~~vice . the file d~scriptor for the master pty indicates that an exceptional 
con~ItiOns IS present , If the select system call issued . This way the process that is 
readmg from the master pty can differentiate between normal data and control 
information, before issuing the read . 

The remote login s~rver is only interested in three of these control indicators 

TIOPKT FLUSHWRITE 

TIOPKT NONSTOP 

TIOPKT DOSTOP 

When the server reads any of these bytes from its master pty, it sends an out-of
band message to the remote olgin client . since the child remote login process is 
reading from the network, it arranges to reo receive the out-of-band notifications 
(the SIGURG signal and its actions are as follows 

TIOCPKT FLUSHWRITE 

Since the server's terminal output queue was flushed, the client should try to flush all 
the pending output that itcan .. It first issues an ioctl of TTOCFLUSHfor its standard 
ouput your terminal to discardany output data that is buffered in the line discipline. It 
then reads everything from the network, upto the out of band byte, and throws the date 
away. This way, any data that is buffered in the network, is also discarded. This is a 
good example of when we want the notification of out of band data to arrive as soon 
as possible. As soon as the receiver reads the out of band byte, it is going to throw 
away all the in band data that the out of band was sent ahead byte, it is going to in this 
case, the slave pty is no longer using control-Q and Contron-S for its start and stop 
character, or the slave pty is in the raw mode. In either case, the remote login client 
can no longer do flow control and the client must pass all characters through to the 
server process. This is what happens, for example, when you start the Vieditor on the 
remote system. 

TIOCPKT -DOS TOP 

Here the slave pty is not is raw mode and its start and stop characters are Control-Q 
and Control-S. This alJows the remote login client to handle flow control on the local 
system.Tdo this, the client puts the line discipline module for your terminal in cbriak 
mode instead of raw mode to have dthe client do the flow control processing.An 
emampleofthis notification is if you terminate the Vi editor, for example. 

The notification provided by the packet mode of the pseudo-terminal is hard-wired for 

28 



having Control-Q and Control-Q and Control -S as the start and stop characters 4.3 
BSD allows you to set the start and stop characters to anything you like. Yet packet 
mode bases its notification on these two specific values. The reason for this is that few 
people change their start and stop characters from their defaults of Control-Q and 
Control-S.BY assuming these values of these characters. This handles most cases. But 
as long as your start and stop characters on the remote system are not Control-Q and 
control-S the client will never do the flow control. 

Now we can reexamine the description that we mentioned earlier the remote login 
facility 1s remote-echoed, locally flow controlled ,with proper back-flushing of 
output. 

1. The remote-echo is because the client has the server do all the echoing. 
2. we describe above how the flow control for the terminal output is done on the 

client s system,as long as the start and stop characters on the remote system are 
Control-Q and Control-S and if the remote line discipline is not in the raw mode . 

3. We also described how the client; back flushes any pending terminal output, when 
it receives the flush notification from the ion from the server. 

In addition to these three points, we can add that the remote facility also propagates 
changes in the clients, window site to the size to server 

29 



File Transfer 

30 



4. FILE TRANSFER 

4.1 INTRODUCTION 

File transfer is an important part of any network. The objectives of the file transfer are 

I. to promote sharing of files computer programsand\ordata), 
2. toen~ourage indirect or implicit (via programs )use of remote computer 
3. to shteld a user from variations in file storage systems among hosts, and 
4. to transfer data reliably and efficiently. 

4.1 file transfer packet formats 

The RRQ and WRQ packets are sent by the client to the server to receive a file form 
the server(RRQ)or send a file to the server (WRQ). They specifY the filename and its 
transfer mode. The file name and mode are both specified in ASCII. Both of these 
strings are variable length and terminated by a zero, which are shown explicitly in the 
figure above as EOS(end-of-string').The mode must be the string net ASCII or the 
string octet.l 

A data packet contains the actual data bytes along with a block number. The length the 
data packet is between Oand 512bytes.If the length of data is between Oand 
5llbytes,that data packet is the final one, otherwise the length is 512and there is more 
data to be sent. The block number is used by the other end to acknowledge which 
packet was the most recently received valid data packet. 
The error packet is sent when an error occurs and it contains both an error code and an 

31 



shown below Every packet begains with a 2-byte opcode. 
opcode string EOS string EOS 

:~~estl 01 ] filename 0 mode 
(RRQ) 2 byte n bytes 1 byte n bytes byte 

opcode I string FOS string FOS 

:;~:stl 01 filename 0 mode 0 
(WRQ) 

opcode 

data 103 I blocks data 

opcode 

acknowledT 04 blocks 

ment (ACK) 2bytes 2bytes 

45 



ERR CODE DESCRIPTION 

0 NOT DEFINED SEE THE ERRSTRING 
PRESENT 

1 FILE NOT FOUND 
2 ACCESS VIOLATION 
3 DISK FULL OR ALLOCATION EXCEED 
4 ILLIGAL FILE TRANSFER OPERATION 
5 UNKNOWN PORT 
6 FILE ALREADY EXIST 
7 NO SUCH USER 

44 



optional message string providing additional detail on the derror condition. The 
errstring is specified in ASCTT and is variable length, terminated with a byte of zero. 
The error codes are given in the following figure4.2. The restring can be present with 
any errcode value, to provide additional information. 

Figure 4.2.File transfer error codes. 

All the 2-byte fields in these packets, the op code, block and err code, are stored in 
network byte order. 

Let us show some examples of the packets that are exchanged between a client and 
server. 

1. The client asks to receive a file from the server. 

CLIENT 
(receiver) 

RRQ 

SERVER 
(sender) 

~ data, block# 1 
ACK, block # 1 ~ 

~ data, block#2 
ACK, block#2 ~ 

data, block # 3 
ACK, block#3 ~ 

Here we use the term receiver to designate the end that is receiving the data packets, 
and the term sender for the end that is sending the data packets. 

32 



2. The client asks to send a file to the server. 

CLIENT 
(sender) 

WRQ 

SERVER 
(receiver) 

ACK, block # 1 
data, block# 1 -7 

ACK, block#2 
data, block#2 -7 

ACK, block#3 
data, block # 3 -7 

(etc.) 

Since error free channel is supplied by the transport layer ,we need be concerned 
about the handling of packets being lost. Most errors like network errors and other 
fatal errors cause termination of the program. Some errors like file not found , access 
violation for a WRQ or a RRQ request are just displayed on to the screen and program 
is not terminated. 

Note that once the initial RRQ packet is sent by the client, the remainder of the file 
transfer procedure is symmetrical between the client and server .Both can send and 
receive data packets, acknowledgements, and error packets. We will take advantage of 
this fact in our implementation of the file transfer, to use as dsmush of the source code 
as possible in both client and server file transfer procedures 

4.3 Security 

Security is provided in our file transfer facility added to the remote login application. 
The user can access only files which access only files which have sufficient 
permission to do the required operation (i.e read permission for read operation and 
write permission for write operation). 

In our application, when a user sends a get request, he must be having write 
permissions to write a file in the local directory and read permissions for the remote 
file the user wants. For a send request he must be having write permissions to write a 
file in the remote directory and read permissions for the local file the user wants to 
send. 

Security added to the file transfer facility, is done as follows. 

When a user requests for a get or send file request, a child process is created with user 

33 



iD and group iD of the local (remote)user in the cal(remote)user in the 
client(server)process. The child process wiii be having the permissions of the local 
(remote)user in local remote user in the local (remote)computer. Thus the child 
process can only access those files for which it is given permission. Thus, security is 
incorporated. 

4.4 Data Formats 

There are two formats of data transfer supported by our file transfer facility net ascii 
and octet The net ascii format is used for transferring text files between the client and 
the server. The standard ASCIT character set is used and the end of each text line is 
designated by a carriage return (octal 15)followed by a line feed (octal12).ifthere is a 
carriage return in the text file, it is transferred as carriage return followed by a null 
byte (octal 0). The presence of a carriage return followed by any other character is 
undefined. By defining a standard format for the text file that is being transferred, it is 
possible to transfer data between two different systems, it is the responsibility of the 
client and the server to convert the local file representation to and from net ascii. 

The octet data format is used for transferring binary files. We defined the term octet as 
being an 8-bit quantity, which we call a byte. There are two primary uses of the file 
transfer facility to transfer binary data between systems. First, two systems with same 
architecture can obviously exchange a binary file without any problems. Second, if a 
system receives a binary file and then returns it to the system that sent it originally, the 
format of the file must not change. This scenario can be used to provide a file server. 
The cafile server. The clients send their files to the server in binary made and retrieve 
them later in binary mode. The server would not be trying to interpret the contents of 
the binary file, it is merely storing it on its local file stem. As long as it uses the same 
storage technique to store and fetch a binary file ,the actual contents of the file won't 
change. 

4.5 Client User Interface 

In developing the implementation of the file transfer facility, a user interface Is 
needed. The commands provided to an interactive user are described here. 

34 



Mode transfer-mode 

Set the mode for file transfer .The transfer-mode must be either ascii (for a netascii 
transfer)or binary (for an octet transfer). The default file transfer mode is ascii. 

binary 

Set the mode for file transfer to binary (octet). This command is shorthand for mode 
binary. 

ascii. 

Set the mode for file transfer to ascii (net ascii). This command is shorthand for mode 
ascn 

get remote name {local name} 

Get a from the server. The remote name can be either the name of a file, in relative 
path name or absolute path name of the file. If the local name is not specified, then 
local filename is same as that of the remote name. If the remote file name is given as 
relative path name, then the present working directory of the remote login session is 
taken and prefixed to the remote name. The mode of the file transfer depends on the 
most previous mode command. 

Put localname [renitebane] 

Put a file from the server. The remote name can be either the name of a file, in 
relative path name or absolute path name of the file. If the remote name is not 
specified, then local filename is same as that of the local name. If the local file name 
is given as relative path name, then the present working directory of the remote login 
session is taken and prefixed to the remote name. The mode of the file transfer 
depends on the most previous mode command. · 

Status 

Shows the current status of the file transfer program. 

help 

print a 1-iine summary of each fcommand.Equivalent to the command 
print a 1-Jine summary of each command .Equivalent to the help command. 

35 



5. CONCLUSIONS 

This project provides the combined features of both 

1. RLOGIN 
2. FTP 

Thus it provides the user both the facilities of logging onto the remote system and 
transferring files between the local and remote systems. 

But, our project provides this service to UNIX users only. So, this project can be 
extended to provide its service to all the users by replacing the RLOGL Y with 
TELNET thus mixing the features ofTELNET and FTP. 

36 



BIBLIOGRAPHY 

l.UNIX NETWORKING PROGRAMMING 

W Richard Stevens. 

2 . COMPUTER NETWORKS 
ANDREW S. Tanenbaum. 

3. INTERNET WORKING WITH TCPIIP ( VOL 1, 2, 3 ) 
-Douglas E. Comer 

37 



Appendix 

38 



A User Manual & Guide 

Remote Login With File Transfer facility ;is a utility that allows users on Unix to login 
onto a remote computer and also to transfer files between the local and remote 
computers at the same time. It also has a provision to execute local commands 

A.l Getting Started 

To run the utility, type in at the Unix prompt 

slogin remote host -I remote user name 

Here remote host is the address or name of remote host and remote user name is the 
user name you want to login as, onto the remote computer. Then wait until the 
password (if any)is asked. 

Enter the password of the remote user correctly. Then you will be logged on to the 
remote computer. Then wait until the password (and the prompt appears and you can 
work as if you have really logged at the remote computer. 

A2 How to log out ? 

You can loge at in two ways 

Type exit at the command line prompt and you will be logged out This is the normal 
way of logging out. 

You can type escape character followed by or data the starting of the command line 
prompt and you will be logged out. The difference between these two methods is . 

In the former method, your request will be serviced at the remote system, while in the 
latter method it will be serviced at the local system. 

A.3 About -command. 

39 

\ 



Type i.e escape character)and type any of the following character 

d You are logged out. 
you are logged out 

z suspend remote login process. 

y suspend remote login process, but all out put from remote system. 

A.4 A But File Transfer 

Type as the first character at the command line prompt can type any file transfer 
utility command . Or type help to list out all file transfer utility cornmand. 

you can files through get command and send files through put command. 

40 



B. About files in source code 

1. Client. C 

This is the client program of our application REMOTE LOGIC WITH FILE 
TRANSFER F ACFILITY. This is the program to be compiled to get the executable 
file, to be run on the local computer. When drun, connection is made to the remote 
computer, the login and password are asked and then we are logged on to the remote 
computer. The connection establishment is done by the function remd 1( )present din 
the file mdc 

2. Server. C 

This is the server program of our application REMOTE LOGIC WITH FILE 
TRANSFER UTILITY . This has to compiled to get the executable file, which is run as 
the server for our service. This is what gets connected, when the client program makes 
a request for connection. 

3.DEFS.H 

This contains the definitions for the client and server programs for the file transfer 
purpose. 

4. FTPCLI.C 

This file contains the function ( ) which is called by the client program when the users 
enters a file transfer utility command. 

5. CMD.H 

Header file for user command processing functions of the file transfer utility. 

3. CMDSUBR.C 

Contains functions for user command prOcessing of the file transfer utility. 

4. CMD.C 
Contains one function for every user command of the file transfer utility.These 
functions are called bythe docmd function from the cmdsubr.c. 

5. CMDGETPUT.C 
Contains do get () and do put ()functions that do the file get and put processing. 

41 



6. FILE.C 

This handles all the Unix file 1\0. This includes any required conversions between the 
file transfer formats, netascii and octet, and the Unix file format . 

7. FSMC 

This is the finite state machine that drives the file transfer f processing. when a user 
enters either a get or put command, the functions do fd get and do put that are present 
in the cmd get put. c send the first packet to the server. Then the sm loop ()the the sm 
loop () is called to do the rest of the file transfer processing. The fsm loop()function is 
also called by the server to do all its file transfer processing. 

12. SENDRECV.C 

This file contains all the functions that send and receive packets to peer process 
during the execution of the file transfer of the file transfer utility command. Some of 
these are for only the client or server, and some are used by both. 
12JNITV ARS.C 

This file declares all the global variables and initializes them, used by the files defs.h. 
ftpcli.c. cmd.h. cmdc. cmdsubr.c cmdgetput c, tsmc, sendrecv.nettcpc. 

8. NETTEP.C 

This file does ds all the network handling for connection used by the file transfer 
utility. 

14.REMDH 

This file contains the function rcmtdl() which makes two connections to the remote 
server, one is used for the purpose for the purpose of file transfer. 

15RW.C 

This file contains functions read ()which reads n bytes from a descriptor, 
written()which writes n bytes to a descriptor and readline ( )which reads a line from a 
descriptor. 

16.TIME.C 

This file contains timer routines used for printing the time taken for a file transfer. 

42 



SOURCE CODE 



#define sigmask (m) (1<<((m)-1)) 
# endif 

struct winsize currwinsize /*current size of window*/ 

void sigpipe_parent ( ): /*our signal handlers */ 
void sigwinch _parent ( ): 
void sigcld _ parent ( ) : 
void siggurg _ parent ( ) : 
void sigusr _parent (): 
void sigurg_ child ( ): 

#define get_window_size(fd ,wp) ioctl ( fd, tiocgwinsz, wp) 

int sockfd2=1 ; 

main ( argc,argv) 
int argc; 
char **argv; 
{ 

char *host,*cp; 
struct sgttyb ttyb; 
struct passwd *pwd; 
struct servent *sp; 
int uid , options=O , oldsigmask; 
int on =1; 
if ((host= strrchr(argv ( 0), 'f))! =null) host++; 
else host=argv [ 0 ]; 
argv++;argc--; 
if (strcmp (host, "slogin" ) U ) 

host= argv++ ,argc ; 

strcpy ( hostname, host ) ; 

another: 

/* 

if (argc>O && strcmp (*argv , "-d")==O ) 
{ 

* Tum on the debug option for the socket. 
*I 

argv++;argc-; 
options : =so_ debug; 
goto another; 
} 
if (argc>O && strcmp (*argv, "-1 ") =0) 
{ 
/* 
* specify the server -user-name , insted of using the 
*name of the person invoking us 
*I 



argv ++; argc -; 
if ( argc =0 ) goto usage ; 
name= *argv ++;argc--; 
goto another; 
} 
if (argc>O && strncmp (*argv, "-e" ,2) =0) 
{ 
/* 

*specifY an escape character, insted of the defult tilde. 
*I 

escchar=argv ( 0 J ( 2 ) ; 
argv++; argc--; 
goto another; 
} 
if (argc>O SS strcmp (*argv , "-8" )==0) 
{ 
/* 

* 8-bit input • SpecifYing this forces us to use RAW mode 
* input from the user's terminal. Also, in this mode we 
*won't perform any local flow control. 
*I 

eight= 1; 
argv ++ 

if (argc >0 && strcmp ( *argv , "-L ")= 0) 
{ 
/* 

* 8-bit output. Cause us to set the LLITOUT flag, 
* which teUs the line dicipline : no out put translations . 
*I 

litput +1; 
argv++; argc --; 
go to another ; 
} 
if ( host --NULL ) goto usage; 
if ( argc>O ) goto usage; /* too many command line arguments *I 
/* 
* GET the name of the user invoking us: the client -user-name 
*I 
if (( pwd=getpwuid ())) == NULL) 
{ 
fputs ("Who aer you ?\n",stderr ); 
exit ( 1 ); 
} 

/* 
* Get the name of the server we connect to. 
*I 

if ( ( sp=get serverbyname("slogin", "tcp")) =NULL) 



f puts (" slogiu /tcp: unknown service \n" , stderr); 
exit(2); 
} 
I* Get the name of the terminal from the enviroment . 
*also get the terminal's speed. Both the name and 
* the speed are passed tothe server as the" cmd" 
* the argument of the rcmdl ( ) fuction . this is some thing 
* like "vtl00/9600" 
*I 
if ( ( cp=getevn ("TERM") ) ! = NULL ) strcpy ( term, cp ); 
if (ioct 1 (0, TIOCGETP, & ttyb)==O) 
{ 
strcat(term, "f'); 
strcat (term, speeds[ttyb.sg_ospeed] ); 
} 
get_ window _size ( 0, &currwinsize ); 
signal ( SIGPIPE , &sigpipe _parent ); 
printf ("nclient. c: before rcmdl\n" ); 
/* 

* Block the SIGURG and SIGUSRI signals . These will be handled 
*by the parent and the child after the fork. 
*I 

oldsimask=sigblock ( sigmask ( SIGURG ) : sigmask ( SIGUSRI ) ); 
/* 
*Use rcmd 1 ()to connect the server. We pass the terminal -type/* 
*speed as the "command argument , but the slogin server takes the 
* the command argument from the connection established by rcmdl( ) and 
*passes it to the login shell executed by it . 
*sockfd is the socket for the connection to the slogin server. 
* for the porouse of the remote login . 
* Also , rcmd 1( ) makes another connection to the server for the 
* porpouse of the file transfer between the remote and local m/cs 
* and sock fd2 is the socket for that connection 
*I 

sockfd =rcmdl(&host, sp->s_port, pwd-> pw_name, name ? 
name : pwd·>pw _name, term , (int * )&sockfd2 ); 

if ( sockfd<O) 
exit( I); 

if ( ( options & SO_ DEBUG) && 
SETSOCKOPT (SOCKFD, sol_ SOCKET, SO _DEBUG,on , sizeof (on)< 0) 
perror (" solgin : setsockopt ( SO_ DEBUG ) " }: 
/* 
* Now change to the real user ld and real group ID. 
* we have to get the priviledge port that rcmd l( ) uses , 
* however we now want to run as the reaJ user who invoked us. 
*I 
if ( setgid (getgid( ) ) < 0 ) 
{ 
perror ( " slogin : setgid "); 
exit ( 1); 
} 



uid= getuid ( ) ; 
if ( setuid ( uid ) < 0 ) 
{ 
perror ( "slogin : =setuid " ); 
exit(1); 
} 
doit ( oldsigmask ); 

!* NOTRECHED*/ 
usage: 

fputs ("usage: slogin host [-ex J [ -1 J [usersname J 
,stderr ); 
exit ( 1 ) ; 
} 
int childpid; 
/* 
* tty flags. 
*I 

[ -8 J ( -L J\n" 

int deffiags; 
int tabflag; 
int deflflags; 
char deferase; 
char defkill; 

/* the sg_ flags word from the sgttyb struct *I 
/*the two tab bits from the sg_ flag word */ 

/*client's erase charactermmm*/ 
/* cliient's kill character */ 

struct tchar defcts; 
struct itchas defits; 

/* 
* If you set one of the special terminal characters to-1 , that effectly 
* disables the line discipline from the processing that special character . 
* Weinitialize the following two structures to do this. However,the code 
*replases the -1 enttries for stop the output and start-output with the 
*actual values of these two characters (such as AqfAs ). this way, we 
* can use cbreak mode but only have the line discipline do flow control . 
* all other special characters are ignored by our end and passed to the 
*server 's line discipline • 
*I 

struct tchars notc={-1,-1,-1,-1,-1,-1}; 
/*disables all the tchars : interrupt, quit, stop, --output start -output,edf */ 
struct ltcbars noltc= {-1,-1,-1,-1,-1,-1}; 

/* disables allltcbars : suspend , delayed -suspend , 
reprint -line , flush, word-erase, literal-next *I 
doit (oldsigmask)int oldsigmask; /*mask of blocked signals*/ 
struct sgttyb sb ; 

ioctl ( 0, TIOCGETP, (char *) &sb ); /* get the basic modes */ 
deffiags=sb.sg_ flags; 
tabflag=deffiags & TBDELAY; /*save the 2 tabs bits */ 
deffiags &=ECHO : CRMOD; 
deferase=sb.sg_ erase; 
defkjill=sg_ kill; 

ioctl ( 0, TIOCLGET, (char*) &deflflags ); 
ioctl (O,TIOCLGET,, (char *)&deftc); 
notc.t_startc.t_start; /* replace -1 with one char*/ 



notc.t _ stopc=deftc.t_ stope; /* replace -1 with stop char *I 

iocti(O,TIOCGL TC, (char *)&defltc); 
signal ( SIGNT, SIG_IGN); 
setsignal (SIGHUP,exit ) ; /*HUP or QUIT go straight to exit () */ 
set signal (SIGQUIT,exit ) ; 
if (( childpid = fork ( ) ) <0 ) 
{ 

perror( "SLOGIN : fork" ); 
done (1); 

} 
if (childpid==O) 
{ 

ttty_mode (1); 

/*child process= reader*/ 

if (reader( oldsigmask)==O) 
{ 
/* 
*If reader ( ) returns 0, the socket to the server returned an EOF , 
* meaning the client logged out of the remote system . 
*I 

prf ("Connection closed " ); 
exit ( 0 ); 
} 
/* 
* If the reader ( ) returns nonzero , the socket to the server returned an error . Something 
*went wrong 
*I 
sleep ( 1); 
prf ( "\007 child : connection closed . "); 
exit ( 3 ); 
} 
/* 
* parent process = writer 
* 
*We still own the socket, and may have a pending SIGURG (or might recive 
*one soon) that really want to send to the reader. Set atrap that copies such 
*signals to the child once the two signals handlers are installed , 
*reset the signal mask to what it was before the fork . 
*I 

signal (SIGCLD, sigcld_parent ); 
signal (SIGUSR1, &sigusrl_parent); 
sigsetmask ( oldsigmask); /*reenables SIGURG and SIGUSR! */ 
signal (SIGCLD, &sigcld_parent); 
writer ( ); 

/* If the writer returns , it means the user entered "-." on the terminal o~ an 
*error ocured during fde transfer in this case we terminate and the server will 
*eventually get an EOF on its end of the net work connection .This should 
* cause the server to log you out on the remote system 
*I 

prf ("Closed connection . "); 



done (0); 
} 

I* 
*Enables a signal handler, unless the signal is alreaddy being ignored • 
*This function is caUed before the fork ( ), for SIGHUP and SIGQUIT. 
*I 

setsignal (sig, action) 
int sig; 
void (*action) ( ); 
{ 
register int omask ; 
omask = ( sigblock ( sigmask ( sig ) ) ); 
if ( signal ( sig ,action ) = SIG _ IGN ) 

signal ( sig,SIG_ING); 
sigsetmask ( omask); 

} 
/*we send the child a SIGKILL signal, which it can't ignore, then 
* wait for it to terminate . .. , 
done ( status ) 
int status; 
{ 

int w; 
ttty_mode (0); 
if ( childpid > 0 ) 
{ 
signal ( SIGCLD, SIG_DFL ); 
if ( kill ( childpid , SIGKILL) >=0) 

} 
exit ( status ) ; 
} 

while (( w =wait (0) ) >0 && w!= childpid); 

/* Copy SIGURGs to the child process. 
* the parent shouldn't get any SIGURGs, but if it dose. just pass 
* them the child , as it"s the child that handles the the out -of -band 
* data from the server . 
*I 

void sigurg _parent ( ) 
{ 

kiD( childpid , SIGURG ) ; 

/* 
* I<'rist time . Send the initial winndow sizes to the server 
* the TIOCPKT WINDOW indicator from the server . This tells the 
* client to the enable the in-band window -changing protocol. 
*I 

void sigusrl _parent ( ) 
{ 



if ( dosingwich=O ) 
{ 

/* 

/* frist time */ 

*frist time . send the initial window size to the server 
* and enable the SINGWINCH signal , so that we pick up 
*any changes from this point on 
*I 

send window ( ); 
signal ( SIGWINCH,& sigwinch_parent ); 
dosigwinch= 1; 

} 

/* 

* SIGCLD signal handler in parent . 
*I 

void sigcld _parent () 
{ 

signal ( SIGPIPE, SIG_IGN); 
prf ("\007client : sigpipe _parent :connection closed "); 
done ( l ); 
} 

/* 

*writer main loop : copy standrad input ( user 's terminal ) to network .the 
*standrad input is in the raw mode , however, we look for four special sequense 
* of characters: 
* -. 
* -1\D 

* -1\Z 

* -1\Y 
* 
* 

terminate; 
terminate; 
suspend slogin process; 
suspend slogin process; but leave reader alone ; 
file tranfer commands and execution of local commands ; 

*This handling of escape sequences ist't perfect .however For example, use 
* slogin , then turn the vieditor on the remote system . 
*Enter return , then tiled (vi convert-case-of-character command). 
*then dot(vi's redo last command) and you are logged out. 
*I 

writer () 
{ 

char c; 
register n; 
register bol =1; /* beginning of line */ 
regester locai=O; 
for ( ;; ) 
{ 

n=read (O,&c,l ); 
if (n<=O) 
{ 
if (n < 0 && errno=ENTER) 

continue; 
break; 



} 
/* 
*If we are at the beginning of the line and recongnize the escape character, 
* then we echo the next character locally . If the commannd character is 
*doubled, for ex If you enter ~.at the biginning of the line, nothing is 
* echoed locally and - • is sent to the server if you entered ! at the biginning 
*of the line , then ftle transfer and local commands execution starts. 
*I 

if (bol) 
{ 

{ 

{ 

bol =0; 
if ( c=escchar ) 

locaii=I; 
continue; 
} 
else if ( c='!') 

char ch; 
int chipd; 
int status; 

/*local echo next char*/ 
/*next iteration of for -loop 

/*restore user 'sterminal mode*/ 
ttty_ mode ( 0 ); 
write (I, & c,I); 
signal ( SIGCLD, SIG _DFL); 
!* 
* fork a child process the 
* user 's ftle transfer or local commands 
*I 

if (( chpid =fork()) < 0) 
return; 

if ( chpid =0 ) 
{ 

ftploop( stdin ) ; 
exit ( 0 ); 
} 

} 

status =I; 
wait ( & status ) ; 
signal ( SIGCLD,&sigcld _parent ); 
/* 
*If exitstatus of the child is 4, 
* an error has occerd during ftle 
*transfer and we have to exit , 
*other wise we continue. 
*I 
if (WEXITSTATUS(status)=4) return ; 
ttty_moce (I); 
ch='\n' ; 
write ( sockfd, &ch, I); 
continue; 
} 



else if (local =I) 
{ 
/* 

* The previous char ( the first char of a line ) 
* was · the escape char • look at the second char 
* of the line and determinen if some thing 
*special should happen • 
*I 
local =0; 
if (c='.' •. c=deftc.t_eofc ) 
{ 

/* 

* A -. or- edf terminates 
* the prent .Echo the period or EDF 
*then stop. 
*I 
echo (c); 
break; 
} 
if ( c=deOtc .t _suspc C==deOitc.t_dsuspc) 
{ 

} 

I* 
*a tilde _Az or tilde _Ay stops the 
"' parent process • 
*I 
bol =I; 
ehoc ( c ) ; 
stop (c) ; I* returns only when we are continued *I 
continue; 

/*If the in put was tilde -some other character, 
*then we have to write both the tilde and the 
"' other char to the network . 
*I 

if ( c ! =escchar ) 
if ( write ( sockfd , & escchar ,1 ) ! =1) 
{ 

break; 
} 
} 

prf ( " line gone ") ; 

if(write (socked fd, &c, I) != I) 
{ 
prf ( " line gone " ); 
break; 
} 

/* Set a flag if by Joking at the current character 
"' we think the next char is going to be the first 



*I 
bol= ( c=defkill ) 

(c=deftc.t _enofc) · · 
(c deftc.t _intrc) : : 
(c=defltc .t _suspc) .. 
(c=' \r'):: 
(c='\n'); 

} 
} 
I* Echo acharacter on the standard output ( the user 's terminal ). 
* This is called only by the writer ( ) function above to the handle the 
* escape character s that we echo . 
*I 
echo (c) 
register char c; 
char buf [8]; 
register char * p + buf ; 
*p++ = escchar; I* print the escape char first *I 
c &= 0177; 
if ( c < 040) { 

I* 
* Echo ASCII control character as a caret , followed 
* by the upper case character 
*I 
* p++ = •A>; 
*p++ = c + ' @' ; 
} 

else if ( c == 0177) I* ASCII DEL character *I 
{ 

} 

*p++= 
*p++= 

' 1\ ' • 

' 
' ? '· . ' 

else *P++ = c; 
*p++ = '\r' ; I* need a retumn _linefeed, since it 's in 

*raw mode. 
*I 

*p++ = '\n'; 
write (1, buf, p_buf ); 

I* Stop the parent process (job control ) • If the character entered by the 
*user is the "stopprocess''("'z) character, then we send the SIGTSTP signal 
*to both our self and the reader ( all the processes in the sending processes 
*processes group )When this happens any thing sent by the server to us will 
* 8be buffered by the network until the reader starts up again and reads it . 
*however, if the character is the "delayed stop process" ("y) character. then 
*we stop only ourself and not the reader . this way the reader continues output 
*ing any data that it recives from the server. stop (cmdc) 
*char cmdc; 
{ 



*I 
/* 

ttty_mode ( 0 ); I* Frist reset the terminal mode to normal *I 
signal (SIGCLD , SIG _ ING); I* ignore SIGCLD in case of child stops too 

kill (cmdc = deOtc.t_suspc)? 0: getpid (), SIGTSTP) 

* SIGWINCH signal handler. 
* we are also called above • after we've ressumd after being stopped . 
*We only send a window size message to the server if the size has changed 
*note that we used the flag " dosigwinch" to indicate if the server supports our 
*window_size_change protocol. Ifthe server dose not tell us that it supports it 
*(see sigusr1_ parent () 
*I 

{ 

} 

} 

struct winsize ws; 

if(dosigwinch && ( get_window_size ( O,&wsk) = 0) &&(bcmp((char * ) 
&currwinsize,size of ( struct winsize )) ! = 0)) 

currwinsize=ws ; I* store new size for next time *I 
send window ( ); I* and tell the server *I 

I* send the window size to the server via the magic escape. Note that we 
* send the 4 unassigned shorts in the structure in network. byte order , as it 
*is possible to be running the client and the server on system with different 
* byte orders ( avax and asun , for example ). 
*I 

send window ( ) 
{ 

char obuf [4+sizeof(struct winsize )]; 
register struct winsize *wp; 

wp= (struct winsize *) (obuf+4); 

obuf [0]=0377 ; I* these 4 ,bytes are the magic sequences *I 
obuf [1) =0377; 
obuf [2]= 's' ; 
obuf [3]= 's'; 

wp->ws_row = htons ( currwinsize-ws_row ); 
wp->ws_col = htons (currwinsize.ws_col); 
wp->ws_xpixel =htons ( currwinsize .ws_xpixel ); 
wp->ws_ypixel = htons ( currwinsize .ws_ypixel ); 

writer (socked, obuf, sizeof(obuf)); 

I* 
"' Reader main loop: copy network to standrad output ( user's terminal) 
*I 

char rcvbuf [8*1024]; 
int rcvcnt; 

I* read into here from the network *I 
!* amount of data in rvcbuf [] */ 



JilL I "V~lllte ~, .t<.t.;ADING OR WRITING: cossigurg_child knows whether 
aread or write system call was interrupted • *I 

int parentipd ; 
imp_buf rcvtop; 

/*parent PDI , from the fork */ 
/* set jump /long jump buffer */ 

/* values for rcvstate */ # define READING I 
reader ( oldmask ) 

int oldsigmask ; /* signal mask from the parent *I 

{ 

int pid = getpid ( ) ; 
int n, renameining; 
char * bufp=rcvbuf; 
signal ( SIGTTOU ,SIG_ING ); 
signal (SIGURG, &sigurg _child ); 

I* out _of _band data from the server */ 
fcntl (sock fd,f _SETOWN, pid ); 

/*to recive SIGURG signals at bigning */ 

parentpid=getppid (); /*see the long jump in sigurg _child () */ 

sigsetmask (old sigmask ); reset signal mask*/ 

for (;;) 
{ 

standrad 

/* 
* Reader main loop - read as we can form the network and write it to the 

noutput 
*I 

While (( remaning + rcvcnt --(bufp -rcvbuf )) > 0 ) 

/* 
*while there is a data in the buffer to write 
*write it to the standrad output 
*I 

{ 

{ 

} 

} 

rcvstate =WARNING; 
if (( n=write (I, bufp, renaming )) < 0) 

if (error ! =EINTR ) return -I; 
continue; 

bufp=n; /* incr pointer past what we wrote*/ 



I* 
* There is nothing in our buffer to weite , so read , so read from the net work 
~ . 

bufp = cvbuf; I* ptr to start of buffer */ 
rcvcnt =0 ; /* # bytes in the buffer *I 
rcvstate =reading ; 
rcvcnt =read ( sockfed, rcvdnt =0) return /* user logged out from the remote system *I 
if ( rcvcnt < 0 ) 
{ 

} 

I* 

if ( error = EINTR ) continue ; 
perror ("read ") ; 

return -1; 

* This is the SIGURG signal handler in the child . here we process the out-of
* bamd signals that arrive from the server . 
*I 

viod sigurg_ child ( ) 

int flushflag , atoobmark,n,rcvd ; 
char waste [BUFSIZ], ctlbyte; 
struct sgttyb sb; 

rcvd =0; 
while (recv (sockfd , &ctlbyte ,l,msg_oob) <0 ) 

{ 
switch ( errno ) 

case EWOULDBLOCK: 

I* 
* The urgrnt data is not here yet. 
* it may not bepossible to send it 
*yet if you are blocked for output and our input buffer is full. first 
* try to read as much as the tecive buffer has a room for . 
*Note that nither of reads below will go past the oob mark. 
*I 

if ( rcvcnt < size of (rcvbuf)) 

{ 
n=read (sockfd , rcvbuf+rcvcnt, 
sizeof (rcvbuf)-rcvcnt; 
rcvd +=n; 

/* rember how much we read */ 
*we have no choice but to read in to the waste basket 
*I 

n= read (socked, waste ,size of(waste)); 
if (n < +0) return 



} 
continue; 
I* try to read oob byte again *I 
default: 

return; 
} 

I* note that in the TICOPKT mode , any number of control bites 
*may be on the control byte . so we have to test for all the 
*ones we reintrested in . 
*I 

if ( ctlbyte & TIOCPKT _WINDOW) 

{ 

I* We get this control byte from the server after it has started. It means that 
*the server is started and it needs to know the current window size. We sent 
" the window size to the server . 
*I 

kill ( parent'pid, SIGUSR!); 

} 
if (! eight && ( cdbyte & TIOCPKT _NONSTOP )) 
{ 

I* Either the server is not using ASIAQ or the server is in raw mode. We 
* must set the user's terminal to raw mode . This disables flow control the 
*client system. 
*I 

ioictl (O,TIOCGRTRETP, (character " & sb ); 
sb .sg _flags & = - cbreak ; I* Cbreak off* I 
sb.sg_flags :RAW: /*RAW ON *I 
not.c t_stopc == deftc.t_ stope; I* enable stop */ 
notc.t_startc = deftc.t_startc; /*enable start */ 

iotcl (0, TIOCESETC, (char *) &noct ); 
} 

if ( ctlbyte & TIOCPKT _ FLUSHWRITE) 
{ 

/* The terminal output queue on the server was flushed . Frist we 
* flush our terminal output queue ( the output queue ( the out put queue for the 

terminal*~ 

{ 

flushflag = FWRITE ; 
ioctl (1, TIOCFLUSH, (char *) & flushflag ); 
for(;;) 

if ( ioctl (sockfd , SIOCA TMARK , & atoobmark ) < 0) 



{ 

} 

perror (" ioctl SIOCATMARK error"); 
break; 

if ( atoobmark ) 
break; 

if ( ( n=read (sockfd , waste, suize of ( waste) )) < = 0) 
break; 

I* 
* We do not want any pending data that ew have already read in to the reciver 
*buffered to be out put so deal"' the reciver buffer ( i.e just set event = 0 ). also , 
* if we were hanging on a write to standrad output When interrupted , we dont want 
*it to restart , so we long jump back to ht etop ofthe loop if we were reading , we 
*want to restart it any way. 
*I 

rcvcnt = 0; 

longjump ( rcvtop, 1); 

} 
/* 

I* back to the setjump */ 
/* the arg of 1 is not used *I 

* if we read data the recive buffer above ( so that we could read the OOb byte ) 
*and if we were interrupted during aread, then longjmp to the loop to the write 
"'the data that was recived.don't abort a pending write, however, 
*I 

if ( rcvd > 0 && rcvstate =READING ) 
longjmp (rcvtop,l } 

return; /*from the signal handler ; probally causes an EINTER *I 
} 

/* Set the terminal mode. this fuction affects the user's terminal 
* We are called by both the parent and child • 
*.I 

ttty_mode(mode} 
int mode; I* 0-> reset to normal; 1-> set for login */ 
{ 

struct tchars "' tcptr ; 
struct itchars * ltcptr 
struct sgttyb sb; I* local modes "'I 
int 1 flags; I* local mode word *I 

ioctl (0, TIOCGEtP, (char *) & sb) 
ioctl (0, TIOCLGET , ( char * ) & lflags ); 
switch (mode) 
{ 

case o: 
I* 



case 1: 

* This is to reset the terminal to how it is found before • 
*I 

sb.sg_flafs &=-(CBREAK : RAW: TBDELAY ); 
sb.sg _flags:= deffiags : tabflag; 
tctpr= &deftc; 
ltcptr = &defltc ; 
sb.sg_ kill=detkill; 
sb.sg_ erase=deferase 
Iflags=deflflags; 
break; 

/*to set terminal to raw mode .we default to CBREAK mode unless the -8 
* flag is specified in which case we have to use the raw mode • 
*I 

sb.sg_ flags := (eight ? RAW : CBREAK ); 
sb.sg _flags&= -deffiags; 

if (( sb.sg_flags & TBDELAY) =XTABS) 
sb.sg_ flags & =-TBDELA Y ; 

return; 
} 

tcptr = &noct; 
ltcptr = & noltc ; 
sb.sg_kill = -1; 
sb.sg_erase = -1; 
if (litout) 

iflags :=llitout; 
break; 
default: 

ioctl (0, TISCOLTC, (char*) Itcptr ); 
ioctl (0, TIOCSCETC, char *)tcptr ); 
ioctl (0, TIOSCTEN, (char*) &sb ); 
ioctl (0, TIOCLSET,(char *) &IOags); 
} 
/* 
* Fatal error. 
*I prf (str)char 
* str; 

fputs (str, stderr ); 
fputs ("\r\n", stderr ); /*return & new line, in case raw mode*/ 



SERVER.C 
*************************************************************************************/ 

/* 
*slogin server: the following data is sent across the network connection by the rcmd 1() 

*function that the slogin client uses: 
*secondary connection port number, 
*client user's name, 
*server user's name , 
*terminal type /speed , 
*data. 
*I 

# define SERVER 

#include < stdio.h> 
#include < sys/param.h> 
#include < sys/stat.h> 
#include < sys/socket.h> 
#include < sys/wait.h> 
#include < sys/file.h> 
#include <sys/file.h> 
#include < sys/types.h> 
#include < sys/time.h> 
#include < netinet/in.h.> 
#include < pwd.h> 
#include < signal.h> 
#include < bsd/sgtty.h> 
#include < stdio.h > 
#include < netbd .h> 
#include < syslog.h> 
#include < strings.h> 
#include < errno.h.> 
#include " file .c" 
#include " fsm.c" 
#include " invitators.c" 
#include " sendrecv.c" 
#include " nettcp.c" 

extern int errorno; 

/* 
*We send aTIOCPKT_ WINDOW notification to the client when we start up. 
*This tells the client that we support the window size change protocol • The 
*value for this (Ox80) can't over lap the kernel defined TIOCKPT_xxx values. 
*I 

#defind TIOCPKT _WINDOW 
#defind TIOCKPT _WINDOW Ox80 
#define 
char* env [2]; /*the enviroment we built */ 
static char term (64)=" TERM="; 
#define ENVSIZE ( sizeof ("TERM=")-1) 
# define NMAX 30 



char cliuname [nmax+l]; /*user name on the client' host */ 
char servername[NMAX+1); /*user's name on the server host */ 
char *dir _name; 
int keepalive =1; /*set to 0 with -n flag * 
#define SUPER USER ( pwd) (( pwd) ->pw _pwuid = 0) 

int reapchild ( ); 
struct passwd * malloc ( ) ; 
int one =1; /*for set socked opt () */ 
int sockfd 2: /*socked for the file transfer connection */ 

main ( argc , argv ) 
int argc; 
char "* argv; 
{ 
extern int opterr , optiond; 
int ch, addrlen ; 
struct socaddr _in cli_addr; 

openlog ("slogind ", LOG_PID :LOG_COSN, LOG_AUTH ); 
opterr=O; 
while ((ch gettopt (argc,argv, "In")) !=EOF) 
switch (ch) 
{ 

case '1' 
{ 
extern int _check_rhosts_file ;_check_rhosts_file=O; 
} 

break; 
case 'n' : /* dont enable SO_KEEPALIVE*/ 

keepalive =0; 

/* 

break; 
case'?' : 
default: 

argc -= optind; 
argv +=optind; 

syslog (LOG_ ERR, 

} 

"usage: slogin (-1] [-n]"); 
break; 

* we assume we are invoked by intend , so that the connection is on , is 
*open on description 0,1 and 2 get the inter net address of the process to 
*perform authentication checking. 
*I 

addrlen =size of (eli _addr); 
if (getpeername (O,(struct socked dr *)&cli_addr, &addrlen) < 0) 



{ 

} 

syslog (LOG_ ERR, 
"couldn't get peer name of remote host: %m"); 

fatal perror("cant get peer name of host "); 

if (keepalive && setsockedpt (0 
SOL_SOCKET, 
SO_ KEEP ALIVE, 

(char*) &one, size of(one)) < 0) 
syslog (LOG_ WARNING, "setsocked ( SO_KEEPALIVE): %m"); 

do_it (&cli_addr); 

int child: 
void cleanup( ) ; 
char line [11]; 
extern char* inet_ ntoa ( ); 
struct winsize win ={ 0,0,0,0,}; 

do_it (cli_addrp) 
struct sockeddr in * cli_addrp; /*client's internet address */ 
{ 

int I, masterfd, slavefd, chilpid; 
int authenticated =0, hostok =0; 
char remothost [2*MAXHOSTNAMELEN + 1); 
regester struct hostent * hp; 
struct hostent hostent ; 
char c; 
short clisecport ; 
int cc, oursecport 

/* try to lok up the client's name , given its internet address , since we use the name 
for the *authentiction. 

*I 

eli_ addrp-> sin _port =nthos ((unsigned short) eli_ addrp-> sin_port ); 
hp= gethostbyaddr (( const char*) &cli_addrp->sin_addr, 

{ 

sizeof (struct in_ addr), 
cli_addrp->sin_family); 

if (hp==NULL) 

I* 
* Couldn't find the client's name. 
* use its dotted_ decimal addess as its name . 
*I 

hp=&hostent; 
hp-> _name =inet_ntoa (cli_addrpaddrp-> sin_addr); 
hostok++; · 
} 
else 
{ 
hostok++; /* to be written afterwards *I 



/" 

*Verify that the client's address is an internet address and that is an internet 
* addess and that it was bound to a reserved port. 
*I 

if( cli_addrp-> sin family ! =AF_inet :: 
cli_addrp-> SIN_PORT>=IPPORT_RESERVED :: 

cli_addrp-> sin _port < IPPORT_RESERVED /2) 
{ 
syslog (LOG _NOTICE 

} 

/* 

"connection from %son illegal port", 
inet_ntoa(cli_addrp-> sin _addr)); 

fatal (0, "permission denied"); 

* read the secondary port no . at which the client is listening and connect to that port • 
and *esttablished a connection for file transfer. 

*I 
alarm (60); 
clisecport =0; 

for(;;) 
{ 

if (( cc ==read (0, &c,l)) ! = 1) 
{ 

if( cc < 0) 

} 
if ( c=O) 

break; 

syslog (LOG_NOTIC," read: %m" ); 
shutdown (0, 2); 
exit (1) ; 

clisecport = (cliseport * 10) + ( c-'0'); 
} 
alarm (0); 

if (clisecport ! =0) 
{ 

if (clisecport >= JPPORT_RESERVED) 
{ 
SYSLOG ( LOG_ ERR, "2nd port not reserved "); 
exit (l); 
} 

/* 
* Write null byte back to the client telling it that everything is o.k. 
*I 

write (0, "",1); 
if(do_rlogin (hp->H_name)=O) 
{ 



if (hostok) 

authenticated ++; 
else 
write(O, "slogin : Host address mismatch. \r\n", size of ("slogind: Host addess mismatch. 

\r\n ")-1 )} 
/* 

"' Alloocated and open amaster pseudo_ terminal. 
*/ 

for (c='p';c<='q';c++) 
{ 

struet start statbuff; structpy (line, "\dev\ptyxy "); 

line [S]=c; 
line [9]='0' ; 
if (start (line , &statbutl) <0 ) break; 
for ( i=O;i<l6;i++) 

{ 

} 

line [9]="0123456789abcdef" [I]; 
if (( masterfd +open (line ,O_RWDR)) > 0) 

goto gotpty 

}fatal (0, "Out ofptys "); 
I* NOTREACHED */ 

gotpty: 
I* set window size all to 0*/ ioctl (masterfd, TIOCSWINSZ, & win);"'/ 

I* 
*Now open the slave pseudo _terminal corresponding to the master that opned above 
*/ 

line [S]='t'; I* change"/ dev /pty/xy "to "dev /ttyxy" *I 
if ((slaved =open (line ,0 _ RDWR) )<0) 

fatal perror (0, line); 
if (fcbmod (slavedfd ,0)) 
fatal perror (0, line ); 
/* 
*Now reopen the slave pseudo -te1·minal again and set it's mode. This 
* gives us a clean control terminal . 
*I 
line (SJ='t'; /* change" I dev /ptyxy" to "/dev /ttyxy */ptyXY *I 

if ((slaved fd =open (line ,O_RWDR )) <0) 
fatal perror (O,Iine); 

if (fchmod (slavefd ,0 )) 
fatal perror (O,Iine ); 
signal (SIGHUP<SL~_ING ); 
vhangup ( ); 
signal (SIGHUP,SIG _DFL); 



/* 

*Now reopen the slave pseudo _terminal again and set it's mode. this gives 
* us a clean control 
*terminal. 
*I 

if ((slavefd =open (line, O_RWDR )) <0) 
fatalperror (O,Jine); 

setup_term (slavefd ); 
#ifdef DEBUG 
{ 

int tt; 
if((tt=open ("/dev/tty", O_RWDR))>O) 
{ 

} 

#end if 

{ 
/* 

ioctl(tt, TIOCNOTTY<)O); 
close(tt); 

} 

if (( childpid=fork ()) < 0 ) 

fatal perror (0," " ) ; 
if (childpid -0) 

* Child process. Become the login shell for the user • 
*I 

close ( 0); 
close (master fd ); 

close ( sockfd 2); 

dup2 (slavefd, 0 ) ; 
dup2 (slavefd,l ) 
duf2 (slavefd,2) 
close (slavefd); 

/* 

/* close socket *I 
/* close pty master *I 

/* close secondary connection socket *I 

/* pty slave is 0,1,2, of login shell */ 

*invoked the /bin/login with _p and _h options ._P flag tells login not to distroy the 
enviroment . 

* -h flag passes the name of the client 's system to login , So it can be placed in the utmp 
and wtmp 

*entries 
*I 

execl ( " /bin/login ", " login " , "-p" , "-h" , hp -. _name , 
servuname, ( char * ) 0 ); 

fatalperror (2, "/bin/login"); 



I* NOTREACHED */ 
} 

/* 

* parent process . 
*I 

closed ( slavedfd ) ; /* close slave pty , child uses it *I 
ioctl (0, FIONBIO, &one ) ; /* nonblocking i/o for socket *I 
ioctl (master FIONBIO, &one);/* BSD pty packet mode*/ 

signal (SIGTSTP, SIG_ING); 
signal (SIGCLD , &cleanup ); 
setpgrp. (0,0); /* setout our process group to 0 */ 

protocol (0, masterfd, socked2 ); 
signal (SIGCLD,SIG _ IGN); 
cleanup ( ); 
} 

#define pkcontrol (c) ((c)& (TICOPKT _FLUSHWRITE :\ 
TIOPKT_ NONSTOP: TIOCPKT _ DOSTOP)) 

/* 

* The following byte always gets along with the pty packet mode control 
* byte to the client .It 's initialized to TIOCPKT _ \VINDOW but this bits gets 
* turned off after the client bas sent the first 
* window size . there after this byte is 0. 
*I 

char oobdata ( J ={ TIOCPKT_ WINDOW}; 
char magic [2)={0377,0377}; /*in-band magic byte*/ 

int control (pty,cp,n,) 
int pty; /* fd ofpty master*/ 
char* cp; /* pointer to first two bytes of control sequence */ 
int n; 

{ 
struct winsize w; 
if ( n< 4+ sizeof (w) :: cp [2) !='s' :: cp [3) ! ='s') 

return 0; 

/* 

*once we recive one of these in_band control request from the client 
* we know that itrecived the TIOCPKT _WINDOW message that we sent 
* it on start up. We only send this control byte at the begning toteD the client 
* that we support window support window size changes. now we can tum off the 
* TIOCPKT _WINDOW bit in our control byte. 
*I 

oobdata[O] &=-TIOCPKT _WINDOW; 
bcopy(cp+4,(char *)&w,sizeof (w)); /*copy into structure*/ 



/*and change to host byte order*/ 
w.ws_row = ntohs (w.ws_row); 
w.ws_col = ntohs (w.ws_col); 
w.ws_xpixel = ntohs (w.ws_ypixel); 
ioctl (pty,TIOCSWINSZ,&w); /*set the new window size*/ 
return (4+sizeof(w)); 
} 
I* 
*slogin server protocol machine. 
* 
*The only condition for which we can return to the caller is if we get 
*an error or EOF on the network connection. 
*I 
protocol (socketfd, masterfd,sockfd) 
int socketfd; /*network connection to client for remote login*/ 
int masterfd; /*master pseudo terminal*/ 
int socket; /*secondry connection to client for file transfer*/ 
{ 

char mptyibuf f1024],sockibuf {1024], *mptybptr, *sockbptr; 
register int mptycc,sockcc; 
int cc; 
char cntlbyte; 
mptycc=O; /*count of#bytes in buffer */ 
sockcc=O; 
/* 
* we must ignore SIGTTOU,otherwise we 'II stop when we try and set the slave pty's 
* window size (our controlling ttyis the master pty. 
*I 
signal (SIGTTOU,SIG_IGN); 
/* 
* send the TIOCPKT_ WINDOW control byte to the client( as an OOB data byte )telling it 

that we 'II 
* accept window size changes . 
*I 

send (socketfd,oobdata,l,MSG _ OOB); 
/* 
*in this loop 
* network input ->sockibufl ] 
* sokicibufl ) --> master pty (input from client) 
*master pty input -->mptyibuff[ ] 

mptyibuff[ ] ->network (output for client) 
*secondry socket input --> {then file transfer occurs). 
*/ 

for(;;) 
{ 

fd _set ibits,obits,ebits; 
FD _ZERO(&ibits); 
FD_ZERO (&oBITS); 
if ( socked) FD _SET ( masteredfd, orbits); 
if ( mptycc > = 0) 
{ 

if ( mptycc) FD_SET ( socketfd, & orbits); 
else FD _SET ( mastered , &iorbits ); 



} 
FD _SET( socked , &ibits ); 
FD _ZERO ( &ebits ); 
FD_SET ( masterefd, &orbit); 
if ( select ( 32, & ibits, 
FD_ISSET (socked, &orbits):: 
FD_ISSET ( sockedfd, &orbit)? 
&orbit : (FD_SET *)NULL ,&ebits, 
(struct timeval *) 0)< 0) 
{ 
if ( errno = ENTER ) continue ; 
fatalperror (sockedfd, "{select "); 
} 

if(((! FD _ISSET( socketfd , &orbits)) && 
if(((! FD _ISSET(masterfd , &ibits))&& 
if(((! FD_ISSET(sockfd, &ibits ))&& 
if(((! FD_ISSET(masterfd, &ibits )))&& 
if(((! FD_ISSET(sockfd, &obits)))&& 
if(((! FD _ISSET(masterdfd, &ebits))) 
{ 

} 

/*shouldn't happen */ 
sleep ( 5 ); 
continue; 

if ( FD _ ISSET ( masterfd, &ebits )) 
{ 
/* 

*There is an exceptional condition on the master pty • In the pty packet mode, 
* this means ther is 
"' asingle TIOCPKT _ xxxcontrol byte to the client as oob data . 
*I 

cc =read (masterfd, &cntlbyte, 1); 
If ( cc=l && pkcontrol (cntlbyte )) 
{ 

cntlbyte & TIOCPKT_FLUSHWRITE) 
{ 
/* 

* if the pty slave flushed its output 
*I 

* queue , then we want to throw away any thing we have in our buffer to send to the 
client. *I 

mptycc=O; 
FD CLR (masterdfd. &ibits); 

} 



} 

} 

if ( FD_ISSET ( sockfd,&ibits )) 
{ 
/* 

" There is input ready on the socket from the client . 
*I 

sockcc=read (socketfd, sockedibuf, sizeof(sockibuf)); 
if ( sockcc < 0&& errno EWOULDBLOCK) 

sockcc=O; 
else 
{ 

regester char *ptr; 
int left, n; 

if ( sockcc <=0; ) break ; 
sockbptr =sockibuf+ sockcc-1; 

ptr++) 
{ 

if ( ptr [OJ magic[O] && 
ptr[l] =magic[l]) 

{ 
/*We have an in-band control message. processit. after we have processed it have to 

move aD the 
*remaning data in the butler left , and check tor any more in -
*-band control messages / 
"i 

left =sockcc-(ptr -sockibuf); 
n=control {mastered, fd, ptr ,left); 
if(n) 
{ 

left-= n; 
if(ieft > 0) 
bcopy (ptr+n, 

sockcc -= n; 
goto top; 

} 
} 

ptr, 
left); 

} 



FD _SET ( masterfd, &orbits ); I* try write *I 
} 

} 

if (( FD_ISSET ( masterd, & orbits )) && sockcc > 0) 
{ 

I* 
"' The master pty is ready to accept data and there data from the socked to write to the 

mpty. *I 

cc =:; write ( masterd fd, sockbptr , sockcc); 
if (cc > 0) 
{ 

} 

sockcc -= cc; 
sockbptr +=cc; 
} 

if (FD_ISSET (masterfd, &orbits )) 
{ 

I* 
*There is input from the master pty. Read it into the bigining of our mptyibuf.bufTer. 
*I 

mptycc =:; read (masterd, mptyibuf, 
size of ( mptyibuf )); 

mptybpt =mptyibuf; 
if ( mpytycc <0 && errno =EWOULBLOCK ) 
mptycc=O; 
else if ( mptycc < =0 ) break ; 
else if ( mptyibuf [0]=0) 
{ 
I* 
"' if frist byte is 0, then real data 
*I 
mptybptr++; 

mptycc-; 
FD _SET( sockefd ,&obits ); 
} 
else 
{ 

I* 
* It's possible for the master pty to generate a control byte for us , between the select 

above and the 
* read taat we just did . 
*I 

if ( pk control ( mptyibuf [OJ)) 
{ 
mpty ibuf [0] , 



I, 
MGS_OOB); 
} 
/*else it has to be one ofthe packet mode control bytes that we' er not intrested */ 
* mptycc=O; 

/*there can't be any data after the control byte */ 

} 

} 
If (( FD _ ISSET (socketfd,&obits )) && mptycc >0 ) 
{ 
I* 
* The socket is ready for more output and we have data from the master pty 
* to send to the client . 
*I 

cc=write (socketfd, mptybptr,mptycc); 
if (cc < 0 && errno=EWOULDBLOCK) 
{ 

} 

sleep (5); 
continue; 

if (cc> 0) 
{ 

} 

mptycc -=cc; 
mptybptr += cc; 
} 

if ( FD _IS SET 9sockfd, &ibits )) 
{ 
/* 
* Recived arequest on the secondary connection for file transfer . Get pwd 
* from the login sheD and pref"n: it to the remote file name ( if remote file 
* transfer is relate to one ) for a child process and process the file transfer request . 
* An exit status of 4 from child process is got when an error has occured and 
"' the program terminates , other wise continue. 
*I 

int chipd; 
int status; 
signal (SIGCLD, SIG_DLF); 
if (( chpid =fork () < 0) 

{ 

fatalperror (0,""); 
if (chipd = 0) 

char buff(MAXFILENAMEJ; 
int count , i; 
char mesg (20); 



/* 
* set the uid and gid of the process to the remote user so that the process 
*canopen /read writea file 
* only when it has premission to do . 
*I 

setgid (getpwname(servemame) -> pw_gid ); 
setuid (getpwnam (server name)-> pw_uid ); 

while ( write (masterfd 
"pwd\n" 
sizeof (" pwd\n")-1) != 

size of("pwd\n")-1 )); 
while ((count =read (masterfd, 

butT, 
sizeof(buft))) < =l); 

} 

for (i=O; 
i<count && butT (I] ! +'I' ); 
i++); 
H (i==count ) 

send _ERROR (ERR_UNDEF, 
"system failuer"); 

else 
dir _name =butT+i; 

fsm_lop( 0); 
exit ( 0); 
} 
status =1; 
wait( &status); 
if (WEXITSTA TUS (status ) =4 )return; 
signal (SIGCLD,&cleanup ); 

} 
} 
void clean up () 

{ 
char* p; 
I* 

} 

* Remove the /etc/utmp entery by calling the logout ( ) fuction . then add the 
* terminating entry to /usr/adm/wtmp/ file. 
*I 

p=line+5; 

if ( logout(p)) 
logwtmp(p," "," "); 



chmod( line,0666); 
chown (line, 0666 ); 
*p='p'; 

/*change mode of slave to rw-rw-rw- */ 
!* change ower=root* I 

chmod(line,0666); /*change mode of master to rw-rw-rw- */ 
chown(line,O,O ); /* change ower to root *I 

shut down(0,2); /* close both directio of socket 
shutdown (sockfd2,2); /* close both directio of socket 

exit (l); 

} 
/* 

*send an error message back to slogin cliient . the first byte must be a binary l, 
* followed by the ASCIT 
error message followed by areturn /newline. 
} 

/* 
* Same as fatal. 
*I 
fatalperror (fd,msg) 
int fd; 
char *msg; 
{ 
fatal (fd,msg ); 
} 
int do_rlogin (host) 
char *host; 
{ 
/* 
*read the three strings that rcmdl( )wrote to the socket 
*I 
getstr (cliuname,size of (clitinane),"remuser two long"); 
getstr ,(servunane,size of(servunane), "locuser too long"); 
getstr (tern+envsize 
sizeof(tern )--ENVSIZE, 
"terminal type too long"); 
if (getuid( )) 
return-l; 
/*return (ruserok (host,SUPERUSER (pwd),cliuname,servuname)); 
*I 
return 0; 
{ 
/* 
*read a stringfrom the socket 
*I 
getstr (buf,cnt,errmsg ) 
char *buf; 
int cnt; 
char *errmsg ; 
} 

{ 

char c; 
do 

if (read (O,&c,l)!=l) 



} 

exit(l); 
if (-cmt< 0) 

fatal (l,errmsg); 
*buf++ = c; 
}while (c!=O); 

extern char **environ; 

char *speeds[ ]={ 

"0"' "50", "7 5"'" 11 0" ," 134 "'" 150"' "200"' "300" ,"600" ," 1200" ,"1800" ,"2400" ," 4800 
"' "9600" ,"19200"' "38400" ,} 
#define NSPEEDS sizeof( (speeds )/sizeof( speeds (OJ)) 
/* 
*Setup the slave pseudo terminal device. 

* We take the terminal that was sent over by slogin client,along with 

* speed and and set the speed of slave pty accordlingly. 
*I 

setup_term (fd) 
int fd; 

{ 

{ 

{ 

regester char *cp, **cpp; 
struct sgttyb sgttyb; 
char * speed; 
ioctl (fd, TIOCGETP, & sgttyb ); /*fetch modes for slave pty */ 
if(( cp=struct (speed ,'f))! =NULL) 

* cp++ == '\0' ; 
speed =cp; 
if (( cp=stchr (speeds; cpp< [NSPEEDS) ;cpp++ ) 

if (strcmp (*cpp,speed)=O) 
{ 

} 
} 

sgttyb.sg _ispeed=sgttyb.sg_ ospeed 
sgttyb.sg_ ospeed=cpp-speeds; 
break; 
} 

sgttyb.sg_flags=ECHO: CRMOD:ANYP:XTABS; 
/* echo on*/ 
/*map CR into LF; output LF as CR, LF */ 
/* accept any parity ,send none *I 
/* replace tabs by space on output *I 

ioctl (fd, TIOCSETP, &sgttyb); 
/* 
*Initialise the enviroment that we will ask !bin/login to mantain • !bin/login wiD then 
" append its variables 



* (HOME, SHELLS, USER,PAm, ... ) to this. 
*I 

env[O]=term; 
env[l]=(char * )0; 
environ=env ; 
} 

/* 
*check whether the specified host is in our local domain, as determined by the part 
* of the name following the first period, in its name and in ours • If either name is 
* unqulified (contains no period) assume that the host is local, as it will be 

interuptt'das such • 
*I 
int local_domain (host)/* return 1 iflocal domain, else return 0*/ 

char *host; 
{ 
register char *ptr1, *ptr2; 
char local host [MAXHOSTNAMELENJ; 
if(( ptr1=strchr (host, '.'))=NULL)) 

return 1; /*no period inthe remote host name */ 
gethostname (localhost, size of(Jocalhost)); 
if ((ptr2=struchr(localhost ,' .') ) NULL) 
return 1; /* no period in local host name*/ 

/* 
* Both host names contain a period . now compare both names starting with the 
*first period in each name if equla , then the remote domain equals the local domain , 
*return 1; 
*I 

if ( strcasecmp (ptr, ptr2 ==0) /*case insensitive compare*/ 

} 

return 1;. 
return 0; 



0 

***************************************************************** 

*****************************************************************' 

#include <studio.h> 
#include < sys/types.h> 
#include <set.jmp.h. 

#define MAXBUFF 2048 
#define MAXDATA 512 

/* Transmit and recive buffer length 
/* Max size of data per packet to sen' 

I* 512 is specified by RFC */ 
#define MAXFILENAME 128 /* Max file name length*/ 
#define MAXHOSTNAME 128 /*Max host name length*/ 
#define MAXLINE 512 /*Max command line length*/ 
#define MAXTOKEN 128 /*Max token length*/ 
/* 
*Externels 
*I 
extern char command[]; 
extern char host name [ ]; 
extern jmp _ buf jmp _ mainloop; 
extern int lastsend ; 
extern FILE *localfp; 
extern int modetype ; 
extern int next blknum; 
extern int check ; 
extern long totnbytes; 

#define MODE_ASCII 0 

#define MODE_ BINARY 1 
I* 

/* The command being processed 
/* name of host system *I 
I* To return to main command I 

/* # bytes of data in the last data 
/* fp of local file to read or write 
/*see MODE_XXX values */ 
I* next block# to send I recive *I 

/* for get /put statistics printing * 

I* values for modetype *I 
f1t ascii = netascii *I 

I* binary = octet *I 

*One recive buffer and one transimit buffer • 
*I 
extern char recvbuff ( ] ; 
extern char send butT [ ] ; 

extern int sendlen ; 
I* Define the tftp opcodes. *I 
# define OP _PQR 1 
#define OP _ WRQ2 
#define OP_DATA3 
# define OP ACK 4 
#define OP_ERROR 5 

#define OP MINI 
#define OP MAX 5 
extern int op_sent; 
extern int op _recv; 
I* 

/*#bytes in send buff [ I *I 

/* Read request *I 
I* Write request *I 
/*Data*/ 
I* acknowledgment */ 
/* Error, see error codes below als() 

/*Minium opcode value */ 
I* Maximum opcode value */ 
/* Last opcode sent *I 
/* Last opcode recived *I 

* Define the error codes • These are transmitted in an error packet ( t 
*with an optional netascii error message describing the error • 
*I 



#define ERR_ UNDEF 0 
#define ERR_NOFILE I 
#define ERR_ ACCESS 2 
#define ERR_ NOSPACE 3 
#define ERR_BADOP 4 
#define ERR_BADID 5 
#define ERR_ FILE 6 
#define ERR_NOUSER 7 
I* 

I* not defined , see error message *I 
I* File not found *I 
I* Access violation *I 

I* Disk full or allocation exceeded *I 
I* Dligal TYfP opration *I 
I* unknown TID (port#)*/ 
I* File already exists *I 
/* NO such user *I 

*Define macros to load and store 2_byte integers, since these are used in the TFTP 
headers for *opcodes , block numbers and error numbers . these maros handle the 
comservation between host *format and network byte odering . 

*I 
#ifdeflint 
#under ldshort 
# undef stshort 
short ldshort ( ) ; 

/* hush up lint */ 

#endif I* lint *I 
/* 

* Datatype offuction that don't return an int. 
*I 
char *get token ( ) ; 
FILE *file _open (); 



************************************************************************************** 
FfPCLI.C 

************************************************************************************** 
# include " defs.h" 
#include <signal.h > 
extern intsockfd2; 
ftploop (fp) 
FILE *fp; 

{ 
/* 
*Read acommand and execute it and return to client . 
*I 
if ( getline (fp)) 
{ 
if (gettoken (command) !=NULL) 

docmd (command); 
} 

} 



CMD.H 
************************************************************************************** 

!* 
* Header file for user command rpocessing functions • 
*I 
#include "defs.h" 

extern char temptoken []; /*temporary token*/ 
typedef struct Cmds { 
char * cmd _name; /*actual command string*/ 
int (* cmd _ func ) ( ) ; !* pointer to ruction *I 

} 
Cmds; 
extern Cmds commads[] ; 
extern int ncmds ; /* number of elements in array*/ 



CMDSUBR.C 
************************************************************************************** 

#include "cmd, h" 

I* all the following functions are in cmd.c *I 
int cmd_ascii ( ), cmd_binary( ); 
int cmd_get () ,cmd _help ( ), cmd_put ( ), cmd_status ( ); 
extern int sockfd2; 

Cmds commands [ ) = { 
/* keep in an alphabetical order for binary search *I 

"?", cmd_help, 
"ascii", cmd_binary, 
"binary", cmd_get, 
"get", cmd_get, 
"help", cmd_belp, 
"mode", cmd_mode, 
"put ", cmd _put , 
"status", cmd_status, 
}; 

#define NCMDS (size of (commands) I size of (Cmds)) 

int ncmds = NCMDS; 
static char line [MAXLINE) { 0 }; 
static char *lineptr = NULL; 
int check; 

/* 
*Fetch the command line • 
*Return 1 if OK, else 0 on error or end of life. 
*I 
int getline (fp); 
FILE *fp; 
{ 

/* 

check =1; 
if (fgets (line ,MAXLINE, fp ) = NULL ) 

return ( 0); I* error or end -of-file *I 
linerptr =line; 
return ( 1 ); 

* Fetch the next token from the input stream . 
"' we use the line that was set up in the most previous call to get line ( ) 
* Return a pointer to the token or NULL if no more exit 
*I 

char "' get token (token ) 
char token [ ] ; 
{ 
register int c; 
register char* tokenptr; 

while (( c= * lineptr++ ) = " :: c= ' \t' ) 



if ( c= '\0 : : c= '\t' ); I* skip leading white spaces *I 
if ( c= '\0' :: c= '\n') 
return (NULL); I* no token *I 
* tokenptr++ =c; 
While (( c= * lineptr ++) != · · && c! ='\t • &&c!= '\0') 

* tokenptr++ =c; 
*tokenptr = 0; I* null terminate token *I 
return ( token ); 

} 
I* 
*verify that their are no more token left on the command line. 
*I 
checkend ( ) 
{ 

if (gettoken (temptoken) ! =null ) 
{ 

} 
} 
docmd (cmdptr) 
char *cmdptr; 
{ 

err_cmd ("trailing garbage"); 
return; 

register int I; 
I* 
*get the no of command by performing a binary search on the command array. 
* If not found, then it must be a local command and execute the local command 
* through system function. 
*I 
if ( ( I =binary ( cmdptr,ncmds ) )<0 ) 
{ 

} 
I* 

system (line); 
return; 

*call the appropriate function. If all goes well ,that function will return ,otherwise an error 
has occured .In *this case the error will be displayed and program exits. 

*I 
(*commands [ I] .cmd _func )( ); 
I* 
* verify there is no trailing garbage . 

*check=O when the command ( like get ,put) has no third argument • 
*In this case there is no need to check for trailing garbage • 
*I 

if ( check ) checkend ( ); 
} 
I* 
*perform a binary search of the command table to see if a given token is a command in the 

given table. 
*I 
binary (word ,n) 
char *word; 
int n; 



{ 
register int low ,high ,mid,cond; 
low=O; 
high =n--1; 
while ( low <=high ) 
{ 

} 

mid =(low+high )/2; 
if (( cond=strcmp(word,command [mid ].cmd_name)) <0) 

bigh=mid--1; 
else if ( cond >0 ) 

low=mid+1; 
else return (mid); /*found the command return index in array*/ 

return-1; /*command not found in command table*/ 
} 

/* 

*command error.(like trailing garbage). 
*print out the command line too,for information. 
*I 
err_cmd (str) 
char *str; 
{ 

} 

fprintf(stderr," '%s' command error" ,command ); 
if (strlen (str)>O) 

fprintf (stderr,": o/os",str); 
fprintf (stderr,"\n"); 
mush( stderr ); 



CMD.C 
************************************************************************************* 

/* 
* command processing functions. 
*I 

extern int check; /*to check for two or one argument to put ,get *I extern int sockfd2;/* 
socket for secondary connection*/ 

I* 
*ascii 
*equivalent to "mode ascii" 
*I 

cmd _ascii ( ) 
{ 

mode type=MODE_ASCII; 
write (1,"\t mode set to ASCII\n",sizeof ("\t mode set to BJNARY\n")--1); 

} 
/* 
*binary 
*equivalent to "mode binary" 
*I 

cmd_binary () 
{ 
modetype=MODE _BINARY; 

write (1,"\t mode set to BJNARY\n",sizeof("\t mode set to BJNARY\n")--1); 
} 
/* 
* get <remotefilename> [ <localfilename> ] 
*I 

cmd_get () 
{ 

} 

char remfname [ MAXFILENAME ],locfname [ MAXFILENAME ]; 
if (gettoken (remfname) NULL 
{ 

err_cmd ("the remote filename must be specified"); 
return; 

if (gettoken (locfname )=NULL ) 
{ 

} 

strcpy (locfname,remfname ); 
check=O; 

do _get(remfname,locfname ); 
} 
/* 
*help. 
*I 

cmd_help () 
{ 

register int I; 
for (i=O;i<n cmds;i++) 



printf (" o/os\n",commands [I ).cmd_ name); 
printf ("any local command (creates a local shell and executes)\n"); 

} 

/* 
*mode ascii 
* mode binary 
* Set the mode for the file transfers. 
*I 
cmd_mode () 
{ 

{ 

if ( gettoken ( temptoken )=NULL) 
{ 

} 
else 
{ 

err_ cmd (" a mode type must be be specified " ) =0) 
return; 

if ( strcmp (temptoken , " ascii ") = 0 ) 
{ 

} 

modetype =MODE_ ASCII; 
printf ("\tmode set to ASCIDn"); 

else if ( strcmp (temptoken , "binary" ) ==0 ) 

modetype=MODE_BINARY; 
printf("\tmode set to BINARY\n"); 
{ 
else 
{ 

} 

/* 

err_ cmd("mode must be ascii or binary "); 
return; 

} 
} 

*put < localfile name> [<remotefilename >]. 
*I 
cmd_put () 
{ 

char remfname [MAXFILENAME), locfname [MAXFILENAME); 
IF ( gettoken (locfname ) = NULL ) 
{ 

} 

err_cmd C the local file name must be specified"); 
return; 

if (gettoken (remfname, locname ); 
check=O; 
} 

do_put (remfname,locfname ); 



} 

/* 

* Show current status . 
*I 
{ 
printf(" connected to o/os\n", hostname ); 
print ("mode="); 
switch(modetype) 
{ 

case MODE ASCll : 

} 

print (" netascii\n"); break; 
case MODE BINARY : 

} 

printf("octet (binary)\n"); break; 
defult: 

err_ cmd ("unknown modetype"); 
return: 



************************************************************************************** 
CMDGETPUT.C 

************************************************************************************** 
/* 

* File get /put processing. 
*I 
#include "defs. h" 
#include "time.c" 

/* 
* execute a get command -
* read aremote file and store on the local system . 
*I 

do _get (remfname, locfname) 
char * remfname , * locfname ; 
{ 

char mesg[30]; 
if ( ( localfp=file _open (locfname, "w" ,1)) NULL) 

{ 
spritf ( mesg, " can't fopen %s for writing " ,locfname ); 

perror (mesg); 
return; 

} 

totnbytes =0; 

t _start ( ) ; I* start timer for statictics *I 
send _RQ(OP_RRQ,refname ,modetype ); 
fsm _loop (OP_RRQ); 
t_stop () ; /* stop timer for statistics */ 

file_ close (localfp ); 
/* print statistics */ 

print f(" Recived% lb bytes in %.if second from %s\n', 
totnbytes, t_getrtime (), hostname; 

} 
!* 
* Execute a put command send a local file to remote system . 
*I 

do_ put (remfname, locfname) 
char * remfname , "'locfname; 

char mesg [30]; 

{ 

} 

if (( localfp=file_open (locfname, "r'',O)) ==NULL) 

sprint ( mesg ,"can't fopen %s for reading", locfname ); 
perror (msg ); 
return; 

totnbytes=O; 



t_start (); /* start time for statistic */ 

lastsend =MAXDATA; 
send_ RQ90P _ WRQ, refname,modetype); 
fms_loop (OP_ WRQ); 
t_stop (); /* stop timer for stastics */ 
file_ close (localfp ); 

I* print statistics */ 
printf(" Sent o/olb bytes in o/o .H seconds from o/o s\n", 

totnbytes, T_getrtime (), hostname; 
} 



************************************************************************************** 
FILE.C 

************************************************************************************** 
/* 
*Routines to open I close /read/ write a file. 
*For "binary" (octet) transmissions, we use the unix open /read /write system calls. 
* For "ascii " (netascii ) transmission , we use the unix standrad i/o routines fopen 

/getc/puttL 

#include "defs.h" 
stastic int laster =0; /* 1 if last chr was a carriage_ return */ 
static int nextchar =0; 

/* 
*Openthe file for reading or writing . 
*Return a file pointer , or NULL on error. 
*I 

FILE * file_ open (fname , mode , initblknum ) 
char " fname ; 
char* mode; /*for fopen ()- "r" or" w" */ 
int initblkum ; 
{ 
register FILE * fp ; 
if ( strcmp (fname, mode)) =NULL) 

return (( FILE *) 0); 
/"for first data packet or first ACK *I 
next char = -1; /" for file_ write ( )*I 
return ( fp ); /* for file _read () */ 
return ( fp ); 
} 
/* 
*Close the file . 
*/ 

file _close (fp)FILE "fp; 
FILE *fp; 
{ 

} 

if (laster) 
{ 
perror ("final character was a CR"); 
exit ( 4) ; 

if (fp = stdout ) 
return; 

else if (fclose (fp) =EOF) 
{ 

peror ("fclose error"); 
exit ( 4); 

} 



/* 
*Read data from the file. 
*Here is where we handle we handle any conversion between the file's mode 
*on the local system and the network mode . 

*Return the number of bytes read (between 1 and maxnbytes , inclusive ) or Oon EOF. 
*I 

int file _read (fp,ptr, maxbytes.mode) 
FILE *FP; 
register char *ptr; 
register int maxbytes ; int mode ; 
{ 

regester int c, count ; 
if( mode= MODE_BINARY) 

{ 
count =read (fileno(fp),ptr, maxnbytes ); 
if (count) ; 
return (count); /* will be 0 on edf */ 

} 
/* 
* For files that are transferd in netascii ,wemust perform the reserve conversions that_ write 
* ()dose. 
*I 

for (count =0; count < maxnbytes; ;count++) 
{ 

{ 

} 

if (next char > = 0) 

*ptr ++ = nextchar ; 
nextchar = -1 ; 
continue; 

c=getc(fp); 
if (c=={EDF) 

{ /* EOF return means eof or error */ 
if (ferror (fp)) 
{ 
perror (" read err from getc on local file "); 
exit ( 4 ); 
} 
return count ; 
} 
else if (c='\r' 

nextchr = '/n' ; 
} 
else if (c='\r') 
{ 

/* newline -.> CR, LF *I 

next char = '\0'; /* CR -> CR, NULL */ 
} 
else nextchr 
*ptr++ = c; 

= -1; 



} 
return count ; 
l 
J 

else 
{ 

} 

/* 

perror ("unknown MODE value"); 
exit (4); 

*Write data to the file • 
* here is where we handle any conversiton between the mode of the file 
*on the network and tjhe local system 's conversations. 
*I 

file _write ( fp, ptr, nbytes, mode) 
FILE *fp; 
register char *ptr; 
register int nbytes ; 
int mode; 
{ 

{ 

regester int c, i ; 
char mesg [30J ; 
if (mode MODE_ BINARY) 

} 

{ 
/* 

I* 
* For binary mode files , no conversions is requred . 
*I 

i=write (fileno ( fp), ptr, nbytes ); 
if ( i !=nbytes ) 
{ 
sprintf (mesg," write error to local file, i= %d", i ); 
perror (mesg.); 
exit (4); 
} 

else if ( mode MODE_ ASCD) 

* For files that are transfered in netascii, we must perform the following 
* CR,LF ->newline ~·\n· 
* CR,NULL -CR ='\r' 
* CR,anything _else -> undefined . 
*I 

for (i=O;i < nbytes ; i++ ) 
c = *ptr++; 
if (laster) 
{ 

if (c='\n') 
c '\n.; 

else if(c='\0' ) 



{ 

} 

} 

c ='\r'; 
else 

sprintf (mesg. "CR followed by Ox%02" , 
c); 

perror (mesg) ; 
exit ( 4); 

} 

lastcr=O; 
} 
else if ( c='\r' ) 
{ 

} 

lastcr=l; 
continue; 

if (putc (c,fp) EOF) 
{ 

perror ( " write error from putc to local file "); 
exit ( 4 ); 

} 

else 

} 

} 

{ 
perror ("unknown MODE value-); 
exit (4) 



************************************************************************************** 
FSM.C 

************************************************************************************** 
I* 
* Finite state machine routines • 
*I 
#include "defs.h" 
# include < signal .h> 
# ifdef CLIENT 
int recv _ACK (), recv_ DATA (), recv_PQERR( ); 
#end if 
# ifdef SERVER 
int recv_RRQ ( ), recv_ WRQ, recv _ACK ( ), recv_DATA (); 
#endif 
int fsm_error () fsm_invalid (); 
/* 

* Finite state machine table . 
*This is just a 2-dimensional array indexed by the last opcode sent and the opcode just 

recived theresult is the address of afunction to call to process the recived opcode. 
* the 2-d table is 
*I 
*for client :-

for client :-

Packet Packet recived 
sent 

RRQ WRQ DATA ACK ERR() ~ 
RRQ * * 

WRQ * * 

DATA * 

ACK * 

IF.RIU\D * 

for server :-

Packet Packet recived 
sent 

RRQ WRQ DATA ACK ERROR 
nonein * * 

RRQ 

WRQ 

DATA * 

ACK * 
ERR OF 



int ( *fsm _ptr[ OP_MAX+l} [ OP_MAX+lJ) () ={ 
# ifdef CLIENT 
fsm_invalid, 
fsm_invalid, 
fsm _invalid, 
fsm_ invalid, 
fsm_ invalid, 
fsm_ invalid, 
fsm _invalid, 
fsm _invalid, 

fsm _invalid, 
fsm _invalid, 
recv_ACK, 
fsm _invalid, 
fsm_invalid, 
fsm _invalid, 
fsm_invalid, 
fsm _invalid, 
fsm _invalid, 
fsm_invalid, 
fsm_ invalid, 
fsm invalid 
fsm _invalid, 
fsm _invalid, 
fsm _invalid, 
fsm _invalid, 
fsm _invalid, 
fsm _invalid, 
fsm_invalid, 
fsm _invalid, 
fsm_invalid, 
#enfif /* CLIENT *I 
#ifdef SERVER 
fsm invalid 
fsm invalid 
fsm invalid 
fsm invalid 
fsm invalid 
fsm _invalid 
fsm invalid 
fsm invalid 
fsm invalid 
fsm invalid 
fsm invalid 
fsm invalid 
fsm invalid 
fsm _invalid 
fsm invalid 
fsm invalid 
fsm invalid 
fsm invalid · 
fsm invalid 



fsm _invalid 
fsm invalid 
fsm invalid 
fsm invalid 
fsm _invalid 
fsm_error 
fsm invalid 
fsm invalid 
fsm _invalid 
fsm invalid 
fsm invalid 
fsm error 

#end if I"' SERVER *I 
}; 

I* 
*Main loop ofthe finite state machine. 
"' For the client , we are called after either an RRQ or a WRQ has been sent 
* to the Otherside For the server , we called after either an RRQ or a WRQ 
"' has been recived from the other side. in this case , the argument will be a 0 
*(since nothing has been sent ) but the state table above handles this 
*I 
int fsm_loop (opcode) 

int opcode 

I* 

{ 

register int nbytes ; 
char mesg [40] ; 

op_sent =opcode; 
for ( ; ;) 
{ 
if (( nbytes =net _recv( recv (recv (recvbuff, MAXBUFF )) <0) 
{ 

{ 

perror ("net _recvv error"); 
exit (4); 
} 

if (nbytes < 4 ) 
. { 

sprint (mesg," receive length = o/od bytes", nbytes ); 
perror (mesg); 
exit (4); 

if ( op_ recv < OP_RECV > OP_MIN :: OP_RECV > OP_MAX) 

sprintf (mesg , " invalid opcode recived : o/od op _ recv ); 
perror ( mesg ); 
exit (4 ); 

} 

"'We call the appropriate fuction, passing the address of the recive buffer and its 
length . *These argument ignore the recived opcode , which we have already processed 



*/ 

if (( *fsm_ptr[op_recv ])( recvbuff+2, nbytes-2) <0) 
{ 
/* 
*When the called function returns -l, this loop is done . 
*I 
return ( 0 ); 

} 
} 

} 

/* 

* Error packet recived and we were not expected it • 
*I 
int fsm_error (ptr,nbytes) 
char * ptr; 
int nbytes; 
{ 

char mesg [ 40] ; 
sprintf ( mesg, "error recived : op _recv =%d", 

op_sent, op_recv); 

/* 

perror (mesg ) ; 
exit ( 4 ); 
} 

*Invalid state transmission . Some thing is wrong . 
*I 
int fsm_invalid ( ptr, nbytes) 
{ 

charmesg [ 40 ]; 
sprint (mesg, .. protocol both: op _sent =%d, op_recv =%d; 
perror ( mesg ); 
exit ( 4); 
} 



SENDRECV.C 
************************************************************************************** 

only 
or the 

# include " defs.h " 
# include < sys /stat.h> 
#include< ctype .h> 

# ifdef CLIENT 
/* 
*Send a read -request or a write -request to the other system . These two packets are 
*sent by the client to the server. this function is called when either the "get" command 
*"put" command is executed by the user • 
*I 
send _ RQ ( opcode , fname , mode ) 
int opcode ; /* OP _ RRQ or OP _ WRQ *I 
char * fname ; 
int modestr; 

stshort ( opcode , send bufl); 
strcpy (send buff+2, fnme ); 
len =2+strlen ( fname )+1; /*for null byte at end of fname */ 

switch ( mode ) 
f 

} 

} 
/* 

case MODE_ASCll: modester =" netascii"; break; 
case MODE_BINARY: modest ="octet"; break; 
defult: 

err_ cmd("unknown mode "); 
return; 

strcpy (sendbuff+len , modestr ); 
len +=strlen(modestr)+l; /* +1 for null byte at the end ofmodestr */ 
send len =len; 
net _send( sendbuff, sendlen ); 
op _ sent=opcode; 

*Error packet recived in responce to an RRQ or a WRQ. Usally means the file we are 
asking *for on the other system can't be accused for some reasons . We need to print the error 

*message that 's returned . 
*called by finite state machine. 
*I 

int recv =RQERR( ptr, nbtes) 
char * ptr; 
int nbytes; 

{ 
register int ecode ; 
ecode= ldshort (ptr); 
ptr +2; 
nbytes -=2; 
ptr [nbytes ]=0; 

/*points just past recived opcode */ 
/* dose't include received opcodes */ 

/* assured its nul terminated •••• */ 



_DATA() 

.{ 

ffiush (stdout ); 
fprint f(stderr, "Error# %d: %s\n", ecode, ptr ); 
flush (stderr); 

/*terminate finite state loop *I 
return -1; 

} 
#end if I* CLIENT* I 
I* 
* Send an acknowledgement packet to tbe other syatem . caHed by the recv 
* function below and also called by recv _ WRQ ( ). 
*I 
send _ACK ( blocknum,) 
int blocknum; 
{ 

stshort (op_ ACK, .send bufl); 
stshort(blocknum, sendbufT+2); 

sendlen =4; 
net_send (sendbufT,sendlen); 

op_sent=OP_ACK; 
} 
/* 
*Send data to the other system . 
* the data must be stored in tht ". sendbuff'' by the caller. 
*Called by therecv_ack() function below. 
*I 

send _ data(blocknum,nbytes) 
int blocknum,sendlen ); 
op_sent=OP_DATA; 
} 

I* 
* Data packet recived • Send an acknowledgement 
* Called by finite state machine . 
* Note that this function is called for both the client and the server . 
*/ 

int recv_DATA (ptr, nbytes) 
regester char *ptr ; 
regester int nbytes; 

register int recvblknum ; 
char mesg (40); 
recvblnum =ldshot(ptr) 
ptr +=2; 
nbytes -= 2; 
if(nbytes > MAXDATA) 
{ 

/*points just past recived opcodes */ 
/* dosent include recived opcodes */ 

sprintf(mesg," data packet recived with length = %d bytes", 
nbytes); 
perror (mesg); 
exit (4); 
} 



the 
expecting N+2. 

#end if 
} 

if ( recvblknum = nextblkum ) 
{ 
I* 
*The data packet is the expected one . 
*Increment our expected block for the next packet. 
*I 

I* 

nextblknum ++; 
totnobytes += nbytes ; 
if ( nbytes > 0) 
{ 

*Note that the final data packet can have a data 
* lenth of zero , So we only write the data 
* to local file if there is a file 
*I 

file _write (local fp, ptr,nbytes , modetype ); 
} 

#ifdef SERVER 
I* 
If the length of the data is between 0-511, 
This is the last data block • For the server , 
here's Where we have to close the file. 
for the client , "get" command processing 
will close the file • 

if (nbytes < MAXDATA) 
file _close (local fp); 

else if (recvblkum < nextblkum --1 )) 
{ 
I* 
*We have just recived the data block# N (or earlier, such as N-1, n-2 ect .) from 

*other end but we were expecting data block# N+2. But if we were 

N+1, so the other*end went 
*I 

*but if we were expecting N+2 it means we have already recived 
backwards from N+l toN (or earlier) some thing is wrong 

perror (" recvblknum > nextblknum"); 
exit ( 4 ); 
} 

I* 
* The only case not handled above is 
* "recvblknum = ( nextblknum -1 )".this means the other end 
* never saw our ACK for the last data packet and retransmitted 
* it. We just ignore the transmission and send another ACK. 
* Acknowledge the data packet . 

*I 
send _ACK ( recvblkunum ); 

I* 
*If the length of the data is between 0-511, we have just 



I* 

} 

, .. 

"' recived the final packet , else there is more to come • 
*I 

return (( nbytes = MAXDATA)? 0: -1 ); 

"' ACK packet recived • Send some more more data . 
* called by finite state machine • also called by recv _ rrq ( ) to start the 
* retransmission of afile to the client. Note that this fuction is 
"' called for both the client and the server • 
*I 

int recv_ACK (ptr, nbytes) 
register char * ptr 
regester int nbtes ; 
{ 
regester int recvblknum ; 
char mesg ( 40 ]; 
recvblknum = ldshort (ptr ) ; 
if ( nbytes !=2 ) 

{ 
sprintf (mesg ," ACK packet recived with lenth =%d bytes" 

,nbytes+2); 
perror (mesg ); 
exit(4); 
} 
if ( recvblknum = nextblknum) 
{ 

* The recived acknowledge ment is fro the expected data that we sent .Fill the transmitted 
*buffer with the next block of data to send if there is no more data to send , then then 

we *might be finished note that we must send a finial data packet contaning 0-5.11 bytes 
of data . *if the length of the last packet that we sent was excately 512 bytes , then we 
must send a 0 *length data packet. 
I I* 

if (( nbytes =file _read (local fp, sendbutf+4 MAXDATA, modetype ))=0) 
{ 

if( lastsend < MAXDATA) 
return -1 ; /* doue */ 
I* else we will send 0 bytes data "'I 

} 
lastsend=nbytes ; 
next blknum ++; I* incr for this new packet of data */ 
} 
totnbytes +=nbytes ; 
send _data (nextblknum , nbytes ); 
return ( 0); 
} 
else if (recvblknum < ( nextbloum - 1)) 
{ 



/* 

*We've just recived tbe ACK for block# N from the other end , but we were 
expecting the ACK for block# N+2 it means we have already recived the ACK for 
N+l , so the other end went backwards from N+ I to N . some thing is wrong,. 

perror (" recvblknum < ( nextblknum -1 )) 
exit ( 4); 
} 
else if (recvblknum > nextblknum ) 
{ 
I* 
*We'ev just recived the ACK for block# N (or later , such as N+1, N+2 etc.) 
from the other end , but we were expecting the ACK for block# N-! . but this implies 

that the other end has already recived data block # N-1 from us . 
Some thing wrong 
*I 

} 

else 
{ 

perror (" recvblknum > nextblknum " ); 
exit ( 4); 

*Here we have "revvblkum = (nextlknum -1)". this means we recived aduplicate ACK 
This means either : 
( 1 ) the other side never recived our last data packet ; 
( 2 ) the other side ACK got delayed some how. 
if we were to retransmit the data packet , we would start the " sorcerer' Apprentice 

syndrome . "we' II just ignore this duplicate ACK, returning to the FSM loop, which will 
initiate another recive . 

return 0; 
} 
/* notreached *I 

#ifdef SERVER 

/* 
* RRQ packet recived . Called by the finite state machine 

This ( and reciving a WRQ ) are the only ways the server gets 
started 

int recv_RRQ (ptr, nbytes) 
char* ptr; 
int nbtes; 
{ 

char ackbuff [2]; 
recv_Xrq (op_RRQ, ptr, nbytes ); 

/* Set things up so we can just recv -ACK ()and pretend we recive an ACK, so it 'II 
send the frist data bock to the client . 

*I 

lastsend =MAXDATA; 



stshort ( O,ackbuft); 
recv-ACK (ackbuff ,2); 
return ( 0 ); 

} 
/* 

WRQ packet recived • called by finite state machine • this ( and recive an RRQ ) 
are the only ways the server . gets started . 
*I 

nextblknum =1; 
send_ACK ( 0 ); 
return ( 0 ); 

} 
/* 
* process an RRQ or WRQ that has been recived • 
* Called by the 2 routines above . 
*I 

int recv_xRQ ( opcode, ptr,nbytes) 
int opcode; 
regester char * ptr; 
stshort (ecode, send buff+2); 
strcpy (sendbuff+4, sendbuff+4)+1; /*+I for null at end */ 
net_ send (send buiff, sendlen ); 
exit ( 0); 
} 
/* 
*Copy a starting and convert it to lower case ijn the processo. 
*I 

strlccpy ( dest ,scr ) 
regester char *dest , *scr; 
{ 

register char c; 
while (( c= * scr++) ! ='\0'); 
{ 

} 

} 

if ( isupper ( c) ) 
c+tolower ( c) ; 

*dest++ =0; 

*dest = 0; 

#endif /*SERVER*/ 



************************************************************************************** 
INITVARS.C 

************************************************************************************** 
/* 
* Initialize the external veriables • 
*I 

#include "defs.h" 

char command [ MAXTOKEN] ={0}; 
char bostname [MAXHOSTNAME ]={0}; 
jmp_buf_mainloop={O}; 
int lastsend =0; 
FILE *localfp=NULL; 
int mode type=MODE_ASCll; 
int nextblknum=O; 
int op_sent=O; 
int op_recv=O; 
char recvbuff[MAXBUFF]={O}; 
char send bufllMAXBUFF)={O}; 
int selden=O; 
char temptoken(O)={O}; 
long totnbytes =0; 



************************************************************************************** 
NETTCP.C 

************************************************************************************** 
#include "rw.c" 
extern int sockefd2; 
/* 
* Close the file transfer net work connection . 
*I 

net _close ( ) 
{ 

} 

/* 

close (sockfd2); 
sockfd2= -1; 

*send arecord to the other end. Used by the client and the server. 
*we prefix each record with its length . 
* we encoded the length as a 2-byte integer in network byte order . 
*I 
net_send (buff,len) 
char* buff; 
int len; 
{ 

} 

/* 

register int rc ; 
short templen ; 
templen =htons(len); 
rc=writen =(sockfd2, (char*)& templen, size of short)); 
if ( rc ! =size of (short )) 
{ 
perror C written error of length prefix"); 
exit ( 4 ); 
} 
rc=written (sockfd2, buff,len ); 
if ( rc !=len) 
{ 

} 

perror ("written error"); 
exit (4 ); 

* Receive arecord from the other end • used by client and server . 
*/ 

int net_recv(bufT,maxlen) 
char *buff; 
int maxlen; 
{ 

regester int nbytes ; 
short templetn; 



again J.; 

.{ 
if (( nbytes =readn (sock fd2, (char * )& templen , size of (short))) <0) 

if (errno =Einter) 
{ 

errno=O; /*assume SIGGLD */ 
goto again; 
} 

perror ("readn error for length· prtfix ''); 
exit ( 4); 
} 
if ( nbytes ! = size of length prefix"); 
{ 

} 

perror C error in readnof"length prefix"); 
exit (4); 

templen =ntohs (templen ); 
if (templen > maxlen ) 

/* # bytes that follow *I 

{ 

} 
again2: 

perror ("record length too large"); 
exit (4); 

if ((nbytes ==readn (sockfd2, bufT,templen ")) < 0 ); 
{ 

} 

( errno =ENTER) 
{ 
error =0; /*assume SIGCLD */ 
goto again 2; 
} 
perror ("readn error"); 
exit (4); 

return (nbytes); /*return the actual length of the message*/ 

ntohs ( templen ); 



for a 

} 

if(eerrno=EAGAIN) 
fprintf(stderr, 

"socket: ALL PORTS inuse \n"); 

else 
perror ("rcmd: socket "); 

sigsetmask (oldmask ); 
return -1; 

I* Set pid for socket signals *I 
fcntl (socked I ,F _SETOWN, getpid ( )); 
/*Fill in the socket address of the server , 
and connect to the server */ 
bzero ((char *) & server _addr, size of (serv _addr)); 
serv _ addr .sin _famaly = hp-> _ addrtype ; 
bcopy ( hp->h_addr list (0], 

( caddr _ t)& serv _ addr.sin _ addr, 
hp->h _length ); 
serv _ addr.sin _port=rport; 

if(connect (sockfd 1, 
(struct sockaddr *) &serv_addr, 
size of (serv_addr)) >= 0) 
break; /* o.k., continue onword */ 

close (sockfd1); 
if (error==EADDRINUSE) 
{ 

} 

{ 

/*We were able tobind the local address, but could not connect to the server. 
decrement the starting port no for rresvport ( ) and try again *I 
1port ---; 
continue; 

if errno ECONNREFUSED &&timo <= 16 

/* the connection was refused . the server 's system is probably over load . sleep 
while, then try again .we try this 5 times (total 31 seconds)*/ 

sleep (timo ); 
timo * =o=2; /* increse timer :1,2, 4,8,16, sec* I 
continue 

if ( hp-> h_addr_list[1) ! NULL) 
{ 
/* if there is another 
address for the host try it *I 
int oerrno =errno; 
fprint f(stderr, 

fprintf(st 

"connect to address %s ", 
inet_ noat(serv _ addr.sin _ addr, 
hp-> _length ); 
dderr 



RCMD.H 
************************************************************************************** 

#include <sys/types-h> 
/* 
*fordefinitions of FD-xxxmacros include sys /types-h and sys/time-h 
*I 
#include<sys/time' 'h> 
#include <sys/socket-h> 
#include<sys/file-h> 
#include<sys/file=h> 
#include<netinet/in=h> 
#include<arpalinet=h> 
#include<stdio:h> 
#include<netdb:h> 
#include <errno:h> 
extern int errno: 
/*Return socket descriptor-sockfd*/ 
int rcmd 1(ahost:rport ,cliuname,servuname,cmd,fd2ptr) 
/*Pointer to address of host name*/ 
char **abost; 
/*Port on server to connect to -network byte order*/ 
unsigned short rport;; · 
/*Username on client system (i:e :cller s username*/ 
char *cliuname:; 
/*Username touse on server system*/ 
char *servuname: 
/* Command string to execute on the server *I 
char * cmd; 
I* ptr to secondary socket descriptor ( if not NULL )* I 
int * fd2ptr; 
{ 

int socked 1, timo , 1port ; 
long oldmask ; 
char c; 
struct sockaddr _in serv_addr, serv 2_addr; 
struct hostent *hp ; 
fd _ set readfds ; 
if (( hp=gethostbyname (*ahost)) -NULL) 
{ 

} 

perror C at gethostbyname 11 ); 
return -1; 

oldmask =(sigblock ( sigmask (SIGURG ))); 

1 port =IPPORT _RESERVED -1; 
timo=1; 
for(;;) 
{ 
if ((sockfd1 =rresvport (&1port)) < 0) 
{ 



} 

" Trying %s •.•• \n, 
inet_ noat (serv _ addr.sin_ addr)); 

continue; 

perror ( hp -> f_ name; /* none of the above, quit */ 
sigsetmask ( oldmask ); 
return -1; 
} 
if ( fd2ptr = (int * )0) 
{ 
/* 

* caller dose't want asecondary channel . write 
*a byte ofO to the socket, to let the server know this 
*I 

write (sockfd1," ",1); 
1 port==O; 
} 
else 
{ 

/* Create the secondary socket and connect it to the server also • 
we have to bind the secondary socket to a reserve TCP port also */ 
char num [8]; 
int socktemp,sockfd2,1en; 
I port--; /*decrement for starting port #*/ 
if((socktemp =reserved =rresvport (&1port)) <0) 

goto bad; 
listen socktemp,l); 
/*Write 

/*caller does t want a secondary channel. write 
*abyte ofO to the socket,to let the server know 
*/ 

write (sockfdi," ,1 ); 
lport==O; 
} 
else 
{ 
/*create the secondary socket and connect it to the server also .We have to bind the 

secondary socket to a reserved TCPport also */char num[8]; 
int sock temp,sock f d 2, len; 
lport-;/*decrement for starting port#*/ 
if((sock temp=rresvport( lport))<O) 

goto bad; 
listen(sock temp,l); 
'*write an ASCIIstring with the port number to the server so it knows which port to 

connect"Yprint f (num, %d;,1port); 
if(write (sock fdl,num,str len(num+l)=str len(num)+1) 
{ 

perror('write;setting up stderr'); 
close(sock temp); 
goto bad; 
} 



FD-ZERO (&read fds); 
FD-SET(sock fdl,&read fds); 
errno=O; 
if ((select(32, 

} 

else 

&read fds, 
fd-set*)O 

(fd-set *)0 
(strict to,eva; *)0)<1) 

FD-lSSET{sock temp,&read fds}; 

if(errno=O) 
perror(select;setting up secondconnection); 

fprint f(stderr, 
select 
protocol failure in circuit setup.\n); 

close(sock temp); 
goto bad; 
} 
/*The server does the connect() to us on the secondary socket *I 
len=sizeof (ser v2addr); 
sock fd2=accept (s~ck temp, 

(struct sockaddr *)ser v2-addr, 
&len); 

close(sock temp);/*done with this descriptor*/ 
if (sock fd2<0}; 
{ 
perror("accept ") ; 
lport =0, 
goto bad; 
} 
*fd2ptr =sockfd2; /* to return to caller *I 
/* the server has to its end of this connection to a 
reserve port also, or we don't accept it */ 
serv 2 _ addr.sin _port = 
noths ( unsigned short ) serv2 _ addr.sin _port ); 
if(( serv2_addr.sin famaly ! =af_INET):: 
(serv2_addr.sin_port > IPPORT _RESERVED):: 
(serv2_addr.sin_port < IPORT_RESERVED/2)) 
{ 

} 

fprint (stderr, 
"socket: protocol failuer in circuit setup .\n"); 
goto bad 2; 

printf ( "\nescondary connection established \n"); 

write (sockfdl, cliuname ,strlen (cliuname )+1); 
write (sockfdl,servername, strlen (servuname ,strlen (servname)+l); 
write (sockfdl ,cmd ,strlen (cmd)+l); 
if(read ( sockfd 1, &c,l) ! = 1) /*read one byte from server*/ 
{ 

perror (*ahost ); 



goto bad 2 
} 
if (c != 0) 
{ 

I* We didn't get back the byte ofzero. There was an error detected 
* by the server . Read every thing else on the socket up through anew 
*line Which is an error message from the server,and copy to the sender 
*I 

while (read (sockfdl,&c,I)=l 
{ 
write (2, &c,l); 
if(c=='\n')break; 
} 

goto bad 2; 
} 
sigsetmask (old mask ); 
return sockfd I; I* all OK, return socket descriptor */ 
bad2: 
if ( I port) close ( * fd2ptr ); 
I* then fall through *I 

bad: close (sockfdl ); 
sigsetmask (old mask ); 
return -1; 
} 



.. \ 
,.nb fO' pn( OOf !OCJfiQ!Oii' fpG OfiJI (fpG ~IJWG ~~~ 2fLJGO (J) ) 
,. JA.flrr ( fpG 28WG 32 fPG tiiG(2 (J) )•JJ..G LG(OLU fPG OOWpGL Ol tp3L3(;fGL 

.. tPG oG.u,HoG • JJ.. G l!fOLG fPG oG.u,HoG !D tPG POU.GL • fPGo tono.u, !f .u,!tP 8 

,. JfG8Q 3J!OG tLOW 8 QGl!CL!b(OL .J{G3Q (pG ODG p/.(G 3( 3(!WG ' (001(!0~ lOL 

\ .. 
} 

{ 

{ 

LG(OLU (op/.(Gl!-D(Glf)! 

} 
b(L += O.U,L!ffGO ! 
OJGlf -=D.U,L!ftGO ! 

LG(IJLD ( O.U,L!UGO )! \,. GLLOL ,. \ 

!l ( O.U,L!UGO < =0 ) 
O.U,L!((GO = JI,L!(G (lQ' btL'OJGl()! 

.u,p!JG ( OJGlf > O) 

DfGlJ = opA(G~: 
!Of DJGlf' OJI,L!UGO ! 

LGiiG2(GL !Df DpA(Gl! ! 

LG!iGl!(GL tp3L ,.b(L ! 
LG~Gl!fGL !Of tQ! 

!Of JI,L!fGD(lQ btL opA(Gi!) 

.. , 
,.02G !D b(3CG Ol.U,L!fG ( ).u,pGo lQ !l! 3 l!(LG3W l!OttrGf 

"'H.L!fG DpfGl! lLOW QGl!tL!bfOL: 

'"' } 
LG(OLU(DpA(Gl!-OJGtf)!\"'HGfOLD >=0 .. \ 
} 
b(L+=OLG3Q! 

O(Gl(-=0LG3Q! 

PLG3Jf!\,.EQh,.\ 

GJ2G !l (oLGIJQ=O) 

LG(OLU(OLG3Q)!\,.GLLOL'LG(OLD<O,.\ 

!l (OLG3Q<O) 
OLG8Q=LG3Q(lQ'btL'D(Gl()! 

{ 
».p!fG(OJGtJ>O) 

OfGtf=Op/.(Gl!! 

!Df D(Glf'ULGSQ: 

LG~!l!fGL!Df DpAfG2: 

L~fGL Cp8L ,.btL: 

LGii!l!fGL !Df lQ: 

!Dt LG8QD(lq:btL:opJ. (Gi!) 

"'' "'Ol!G !0 b)3CG Ol LG3Q .u,pGU lQ !i! 8 i!fLG3W i!OttrG( 

,.JfG3Q up). (Gl! tLOW QGl!CL!b(OC 

'"' 



int readline (fd,ptr,maxlen) 

Register char*ptr: 
Register int maxlen: 
{ 

int n,rc; 
char c; 
for(n=1;n<maxlen; n++) 
{ 
if ( ( rc=read(fd,&c,1) )= 1) 
{ 
*ptr++=c; 
ifl \n)break; 
} 
else if(rc=O) 
{ 
ifln=1)retum0;/*EOF,no date read */ 
else break;/*EOF,some data was read */ 
} 
else return-1;/*error*/ 
else return -1/*error* I} 
*ptr=O; 
return n; 
} 

• 



************************************************************************************** 
TIME.C 

************************************************************************************** 
# include < studio.h> 
#include < sys /types .h> 
#include < sys/param.h> 
#define TICKS HZ 

/*Need the definition ofbz */ 
? * usally 60 or 100 */ 

static long time _start, time _stop; 
static struct tms _start , tms _stop ; 
long time ( ) ; 
static double seconds : 
/* 
*start the timer .We don't return any thing to the caller, 
We just store some information fort some timer routine to access. 
*I 

void t_ start ( ) 

{ 

} 

} 
/* 

if ((time _start= time ( &tms _start))= -1 ) 

perror (" t_start : times ( ) error" ); 
exit ( 4) 

* stop the timer and save the appropriate information . 
*I 
void t_stop () 
{ 

if ((time _stop =times ( &tms_stop )0 = -1) 
{ perror(" t_stop : times ( ) error " ); 

} 
} 
/* 

exit ( 4); 

Return the real ( elasped ) time in seconds . 
*I 
double t_get rtime ( ) 
{ 

seconds =(double) time _stop- time _start)/( double )TICKS 
return seconds 
} 



************************************************************************************* 
CLIENT.C 

************************************************************************************** 

* 

#include CLIENT 
#include " rcmd .h " 
#include < sys/param .h> 
#include < sys/file.h> 
#include < sys/socket.h> 
#include < sys/time.h> 
#include < sys/recource .h> 
#include < sys/types.h> 
#include <sys/wait.h> 

#include < netinet/in.h> 

#include < stdio.h > 
#include <bsd/sgtty.h> 
#include < pwd.h> 
#include <signal.h> 
#include <setjmp.h> 
#include < netbd.h> 
#include <error.h> 

#include " ftpcli.c" 
#include " cmdsubr.c" 
#include "cmd.c" 
#include "initvars" 
#include " cmdgetput.c" 
#include " file.c" 
#include "fsm.c" 
#include "senddrcv.c" 
#include "nettcp.c" 
extern int erno; 

/* 
* The server sends us a TIOCPKT _WINDOW notification when it starts up. 
Thevalue for this (Ox80) can't over lap the kernel defined 
TIOCPKT _ xxx values 

#defined TIOCPKT _WINDOW 
#define TIOCPKT_ WINDOW Ox80 
#end if 

char * struchr ( ) , * strrchr , ( ) * getenv ( ) , * strcat ( ) , * strcpy ( ) ; 
struc passwd * getpwuid ( ) ; 

char *name; 
int sockfd; 

char escchar ='-'; 
int eight; 

/* socet to server *I 



mt uout; 
char * speeds( ) ={ 

"0"" 50" "75" "110" "134" "150" "200" "300" "600" "1200" "1800" 
"2400" "4800" "9600" "19200" "38400" 
}; 

char term [256) ="network" ; 
int dosigwinch=O; 

/*set to l if the server support our window -size-change protocol*/ 

#ifndef sigmask 


	TH76510001
	TH76510002
	TH76510003
	TH76510004
	TH76510005
	TH76510006
	TH76510007
	TH76510008
	TH76510009
	TH76510010
	TH76510011
	TH76510012
	TH76510013
	TH76510014
	TH76510015
	TH76510016
	TH76510017
	TH76510018
	TH76510019
	TH76510020
	TH76510021
	TH76510022
	TH76510023
	TH76510024
	TH76510025
	TH76510026
	TH76510027
	TH76510028
	TH76510029
	TH76510030
	TH76510031
	TH76510032
	TH76510033
	TH76510034
	TH76510035
	TH76510036
	TH76510037
	TH76510038
	TH76510039
	TH76510040
	TH76510041
	TH76510042
	TH76510043
	TH76510044
	TH76510045
	TH76510046
	TH76510047
	TH76510048
	TH76510049
	TH76510050
	TH76510051
	TH76510052
	TH76510053
	TH76510054
	TH76510055
	TH76510056
	TH76510057
	TH76510058
	TH76510059
	TH76510060
	TH76510061
	TH76510062
	TH76510063
	TH76510064
	TH76510065
	TH76510066
	TH76510067
	TH76510068
	TH76510069
	TH76510070
	TH76510071
	TH76510072
	TH76510073
	TH76510074
	TH76510075
	TH76510076
	TH76510077
	TH76510078
	TH76510079
	TH76510080
	TH76510081
	TH76510082
	TH76510083
	TH76510084
	TH76510085
	TH76510086
	TH76510087
	TH76510088
	TH76510089
	TH76510090
	TH76510091
	TH76510092
	TH76510093
	TH76510094
	TH76510095
	TH76510096
	TH76510097
	TH76510098
	TH76510099
	TH76510100
	TH76510101
	TH76510102
	TH76510103
	TH76510104
	TH76510105
	TH76510106
	TH76510107
	TH76510108
	TH76510109
	TH76510110
	TH76510111
	TH76510112
	TH76510113
	TH76510114
	TH76510115
	TH76510116
	TH76510117
	TH76510118
	TH76510119
	TH76510120
	TH76510121
	TH76510122

