
REMOTE PROGRAM EXECUTION

Dissertation Submitted to
JA WAHARLAL NEHRU UNIVERSITY

in partial fulfilment of requirements
for the award of the degree of

Master of Technology
m

Computer Science & Technology

by

RAKESH KUMAR

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI -110 067
January 1997

CERTIFICATE

This is to certifY that the dissertation entitled REMOTE PROGRAM

EXECUTION being submitted by RAKESH KUMAR to School of

Computer and System Sciences, Jawaharlal Nehru University, New Delhi , in

partial fulfilment of the requirements for the award of the degree of Master of

Technology in Computer science, is a bona fide work carried by him under the

guidance and supervision Prof. C.P. Katti. This work has not been submitted

elsewhere for any other purpose.

Dean ,SCSS

~ (~~ (Prof.G.V~ Ing~
SC&SS,J .N U.
New Delhi II 0067

Su~
(Prof. C.P .Katti)
SC&SS,J.N. U.
New Delhi 110067

ACKNOWLEDGEMENT

I wish to express my profound -sense of gratitude to Prof. C.P.Katti,

SC&SS, JNU, under whose invaluable guidance and incessant encouragement,

my work has taken its present shape.

I wish to express my sincere than~s to the staff members of the computer

lab, SC&SS for providing me with all the facilities required during the project.

Finally I would like to thank all my friends especially Mr Arun Kumar

and Mr Gaurav Maheshwari without whose support it may have been difficult

to complete the project.

R-oJ<__&h ~
(RAKESH KUMAR)

Contents

Page No.
1. Introduction 1-7

• Overview

• Objective
• Theoretical Background

• Remote Program Execution & it's relevance

• Organization of The Dissertation

2. Organization of RPE 8-11

• The Organization
• The User Interface

3. Introduction to NetBIOS 12-19

• History
• NetBIOS Services
• Network Control Block

4. Advanced DOS Programming 20-24

• Introduction to Interrupts

• MS-DOS File System

5. Design Of Different Layers above NetBIOS 25-37
• The Design of Error Correcting Layer
• The Design Of Presentation Layer

6. Design and Implementation of Main Program 38-56
• Design Considerations

• Design ofLauncher

• Design of Executioner

7. Result and Future Extensions 57-58

A. The NETBIOS.H Header file 59-61

B. TheiNTERRUPT21REFERENCE 62-67

Bibliography 68
~·

Chapter One

INTRODUCTION

• Overview
• Objective
• Theoretical Background
• Remote Program Execution and its relevance
• Organization ofThe Dissertation

1.1. Overview :

The main motivation for constructing computer networks is

data sharing and resource sharing among computers. The resource sharing

allows a computer to use other computer's resources such as files, printers etc.

Also the concept of virtual terminals come in where one computer can login

on other computer and then act as a terminal to the other computer getting

input and writing output for the programs running on the other computer. So

this system allows to run a program in the other computer's processor and

memory space and redirecting input and output to the first machine. Various

protocols such as TELNET, rlogin and rsh exists for such type of resource

sharing. These protocols are designed for certain environment and suits them.

But in some conditions they are not very efficient. For example, when there is

a small networking environment with much faster communication protocol ,

the use of TCPIIP based protocol is not suitable. TCPIIP based protocol are

most suitable for UNIX environment in which the operating system supports

them and also for larger area network where the packets transfers through a

variety of network and packet transmission requires routing. Also these

protocols are designed to be used for heterogeneous systems. So they do not

provide the facility to access the local files. It means that the running

applications in these system can not open and close local files and also we can

not run local files on the remote machine without transferring it to the remote

machine with the help of some other file transferring protocols. Also the

TC P /I P carries more overhead than the protocols designed for smaller area

networks.

1.2. Objective :

The objective of this project is to develop a system by which

programs can be executed on remote· machines. These programs may be

interactive as well as non interactive. By saying interactive it means that

running remote programs take the input and output from the user who

launched the program. The input and output required by the program IS

redirected to the launching terminal.

The platform for which the system has been developed uses

MS DOS as the operating system on both the machines (versions 4.0 and

above), NetBIOS for the communication purposes, and Ethernet as the

underlying network.

As the underlying opera~ing system will be DOS on both the

machines, the system also provides an option to make the local hard disk

available for the running programs. So the running programs will be able to

. open the local files and use them as they are present on the remote system

itself. This mechanism also provides the flexibility to run the local programs

i.e .. programs present on the local drive on the remote machines. In this

manner one can take the advantage of faster processors and better resources on

the remote site for running his local programs. For this purpose the system on

being invoked provides one more drive letter to represent the local drive from

which the programs are being launched in the system.

1.3. Theoretical Background :·

Many network systems provide computer with the ability to run

programs on the remote machines. Also various methods for accessing files on

remote machines has been devised. We take a look at the relevant virtual

terminal protocols and file accessing protocols for distinguishing their main

features.

1.3.1. TELNET:

2

TELNET is the ARPANET virtual terminal protocol. It allows a user at

one site to establish a TCP connection to a login server at another and then it

passes the keystrokes from the user's terminal directly to the remote machine

as if they were typed at a terminal on the remote machine. TELNET also

carries the output from the remok machine back to the user's terminal. The

service is called transparent because it gives the appearance that the user's

terminal is directly attached to the remote machine.

TELNET offers three basic services. First it defines a network

virtual terminal that provides a standard interface to the remote systems. Client

programs do not have to understand the. details of all possible remote systems,

they are built to use the standard interface.

Second, it has a mechanism that allows the client and server to

negotiate options and it provides a set of standard options. One of these

control the character set used for data communication.

Finally, TEL NET treats both ends of the connection

symmetrically. So instead of forcing the client side to connect to a user's

terminal, TELNET allows an arbitrary program to become a client.

Furthermore, either end can negotiate options.

When a user invokes TBLNET, an application program on the

user machine becomes the client. The client establishes a TCP connection to

the server over which they will communicate. Once the connection has been

established, the client accepts keystrokes from the users terminal and sends

them to the server, while concurrently accepts characters that the server sends

back and displays them on the user's terminal. The server must accept a TCP

connection from the client and then relay data between the TCP connection

and the local operating system.

TELNET allows control functions to be passed along with the

normal data. But it does not guarantee the desired results. For example, a

process running at the remote machine may start ill behaving without reading

the input passed to it, by going into an infinite loop. So. the control function

3

wi II be waiting the buffer without being interpreted. Also the buffer may

become full in the local buffer of the server. and the TCP/IP will stop

receiving the data from the client machine. So TELNET can not rely on the

convention data stream alone to carry the control sequences between the client

and the server, because a misbehaving application may block the data stream

making the controls to wait infinitely in the buffer. So TELNET uses an out of

band data signal by sending the SYNCH command. TCP sends the server a

segment with urgent data bit set and this bypasses the data stream and reaches

the server which act by rejecting all the data stream before the control signal

and acts on it.

1.3.2. RLOGIN:

4 BSD UNIX system includes a remote login .service rlogin

which supports the trusted hosts to run program on the system. The system

works as described. The terminal line discipline on the client ·machine is

placed into the raw mode with echoing disabled, so that all keystrokes an~

passed to the remote system. The raw mode is required to run programs such

as vi editor on the remote system. Characters that are entered on the local

system are echoed by the remote system. If the remote system is in a cooked

mode then echoing is done by the terminal line discipline on the remote

machine. If the remote system is in a raw mode then echoing is done by the

remote process itself.

So it is similar to the TELNET in working. But it provides

some other facilities. It allows system administrator to choose a set of

machines over which login names and file access protections are shared. It

means that the user having account on two machines can access the other

machine from the first one by giving only the login name only.

One variation of rio gin is rsh which invokes a remote command

interpreter and passes the command line argument to the command interpreter.

skipping the login step completely.

4

The standard input and the standard output are connected across

the network to the user's terminal. rlogin protocol understands bo'th t~e local

and the remote computing environments, it communicate better than the

general purpose remote login protocols like TELNET. So output from a

remote command can be redirected to a file by giving a command a like :

rsh command_ name> output_filename

where command name is the name of the program being

invokes on the remote system and the output_ filename is the name of the file

to which the output is redirected. ('>' is used redirect the output to a file in the

UNIX system).

These protocol also understand the terminal control functions

like flow control characters like CTRL+S and CTRL+Q and arranges to

handle it immediately without waiting for the delay required to send them

across the network to the remote host. It also exports part of user's

environment to the remote machine, including information like user's terminal

type. As a result, rlogin sessions appear to behave almost exactly like the local

login sessions.

1.3.3. NFS:

It was developed by sun Microsystems, it provides on line

shared file access that is transparent and integrated. Many TCP/IP sites use

NFS to interconnect their computer file system. From a user's perspective,

NFS is almost invisible. The user can execute an arbitrary application program

and use arbitrary files for input and output.

NFS acts as part of operating system. When an application

programs execute and call the operating system to open a file, store a file, read

a file and other services, the file access mechanism accepts the request and

after determining the location of file passes the request to the local file system

or remote n;achine. After getting the result from the remote machine it returns

the result to the application program.

5

NFS protocol itself does not provides that a program can call.

Once it has been col).figured, program access remote file using exactly same

operations as they use for local files.

1.4. Remote Program Execution and it's relevance :

In this project, a virtual terminal system has been developed

which provides access to remote machine on a local area network. It is

different from the TELNET and other· protocols in the respect that they all

provide remo:e execution on a non DOS platform, whereas this system

provides remote execution on a DOS platform.

1.4.1. Main Advantages OfThe System

1. It is a DOS based remote program execution system and can be

extended to the multi tasking system windows.

2. It is suited for smaller local area network as the overhead in

NetBIOS the protocol it uses is smaller. TCPIIP bases programs are better

suited in wide area network needing routing information etc.

3. This program is faster than other system as the NetBIOS is faster

protocol than TCP/IP.

4. By embedding itself in the operating system the system makes itself

transparent to the user and make the user feel that the terminal (keyboard and

display) is directly attached to the remote machine.

5. It allows a user to take advantage of another machine with more

processing power and more memory.

6. This system has the advantage that the user can access his local disks

in the same manner in which he can the remote drives.

7. The system also allows the user to run the local programs on his

local drive on the remote machine.

1.4.2. Main Limitations OfThe System :

1. This system is not suitable for larger networks where the problem of

routing comes in.

6

2. Ill behaving DOS programs. which directly to the screen memory

bypassing the operating system services and the BIOS services can not be

handled by this system.

3. It can not handle windows(operating system) based input and output

in its present form.

4. It can not handle the illegal file input and output operations using

FILE CONTROL BLOCKS.

5. Direct sector level input output is not possible to be redirected by

this system.

6. Terminate and stay resident programs can not be handled by the

system.

1.5. Organization of the dissertation

The dissertation is divided into seven chapters:

I. chapter I is Introduction which gives the idea about the project and

describes the problem. Also it tells about the related works and the relevance

of this project.

2. Chapter II is the organization of RPE system which tells about the

model being used in this system.

3. Chapter III gives the introduction to the NetBIOS system which has

been used by the RPE for communication between the computers.

4. Chapter IV tells about the Advanced MS DOS system calls which

are important in the execution of RPE.

5. Chapter V describes the different layers designed for communication

over NetBIOS for implementing RPE.

6. Chapter VI describes the design and implementation of the main

programs.

7. Chapter VII contains the result obtained, conclusion and scope of

further work.

There ill are two appendices which contain the important

functions and definitions related to th~.: project.

7

Chapter Two

ORGANIZATION OF RPE

• The Organization

• The User Interface Provided

2.1. Organization of The System :

RPE system allows to run programs on remote machines. The system

act as the terminal (keyboard and screen) is attached to the remote machine

itself. The system basically consists of two modules:

1. Remote program executioner and

2. The launcher.

It is based upon the client server model. The executioner acts as the

server at the time of execution of the programs. All the programs runs in the

memory of the executioner's machine and the launcher acts as the client at that

time displaying the input and output of the running program. But at the time,

when the executioner has to access file on the disk at the launcher's machine it

becomes the client and the launcher acts as a file server processing all the

requests made by the executioner.

In the system, the executioner runs on the workstation which we want

to act as the system where programs can be run from other machines i.e.,

where the programs can be executed remotely. The launcher resides on the

machine from which the programs can be submitted to the executioner for

execution. The launcher can call any of the executioner running on the

network by calling the name which the executioner assigns to itself.

Both modules i.e., the executioner as well as the client uses the

NetBIOS protocol to communicate with each other. As critical data pass

through the network. for reducing the compkxity two more layers are

designed above NetBIOS. These layers are necessary as the application

8

modules have to pass information and data to each other and the layering

hides the complexity how the data is communicated so that the main system

becomes easier to design and implement. Also this layering makes the system

more reliable and robust. The layers designed are presentation layer and error

detecting layer. Both use their own pa<;:ket formats for conversation with the

corresponding layer on the other side.

APPLICATION

FILE I I 1/0
REL. REQ. RED.FILE
REQ. REQ.

~XECUTIONER RED 1/0 REQ. LAUNCHER

UN RED.
RED1

RED.
FILE FILE 1/0
REQ. REQ. REQ.

DOS DOS 4--t FILE SYSTEM

I UNRED. I RED.
FILE 1/0

REQ. Rl=()

FILE SYSTEM USER 110

REMOTE MACHINE LOCAL MACHINE

Figure 2.1 shows the model ofthe RPE system

The other aspects of layers and t)leir design has been described in detail

in the chapter V, the design of the layers above NetBIOS.

2.2. USER INTERFACE PROVIDED BY THE SYSTEM:

2.2.1. The Executioner :

The executioner can be run by the following command line:

c:\>rpe

9

After this the executioner loads itself in the memory and waits for the

launcher to communicate to it. The executioner when called by the launcher to

execute a program, it executes the requested program and shows on its local

screen that it is busy in running an application. At other times it shows on its

screen that it is free. In case the executioner is free it can be unloaded from

memory by pressing the Esc key.

2.2.2. The Launcher :

The launcher can be run alone on the terminal or with some command

line parameters. The command line for invoking it is:

c:\>launch [-t] [-name executioner_name] [-p program_ name]

The command line options are :

-t : it says the system to run in dumb terminal mode in which

the local file system is not available while running the program.

-executioner name is the name of the executioner to which the

program is to be submitted for executiol)..

-program_ name : It is the program name which will be

executed by the executioner. On giving no name, it defaults to the

command.com, the DOS command interpreter on the remote system.

If the launcher is executed without any parameters on the command

line it shows up a user interface which asks the user for the mode first. After

this it finds all the executioners running on the network. Then it shows the user

names of the executioners running and asks the user to select any of them. At

the end it asks for the name of program to be executed on the executioner. The

name may contain any other command line parameters as well as the pipes for

redirecting standard input I output. The files used for redirection may be on the

launcher's machine but they have to bear the path name indicating the same

using the drive letter $:.

10

If the mode of execution is normal mode then before launching the

program on the machine the executioner tells the user the drive letter assigned

to the drive on the machine of the launcher. The user can access the drive

using the drive letter assigned to it.

For launching local programs from the launcher the name of the

program file to be launched must start with $:. This tells the executioner that

the program is to be launched from the drive on the launcher's machine. If the

command line parameters first tell the mode of execution to be dumb terminal

type and gives the program name to be local then the mode of execution is set

to normal mode as with out this the execution of local program will not be

possible on the executioner.

After executing the program the current directory of the system is set to

be the directory of the executioner. All. the input and output of the executing

program is redirected the launcher. If the mode of the execution is normal then

the request for accessing the files on the drive of the launcher is also redirected

to the launcher. In this manner the system makes the launchers computer to act

as a terminal attached to the executioner's machine.

After the completion of the executed program the system determines

the exit/completion code and shows it to the user. At this time the launcher

exits and the executioner again starts waiting for another launcher to connect

to it.

11

Chapter Three

INTRODUCTION TO NetBIOS

• History

• NetBIOS Services

•- Network Control Block

3.1. History :

In 1984, IBM released its first LAN, the IBM PC Network. The

interface card (adapter card) for the IBM PC was developed by Systek, Inc.

and contained on it the first implementation of NetBIOS. The name NetBIOS

is derived from the name BIOS for the 'Basic Input Output System' for the

IBM PC. NetBIOS provides an interface between a program and actual

interface on the network card like the BIOS provides an interface between a

program on the PC and the actual hardware and contained in read only

memory.

Iri 1985, IBM provided an implementation of NetBIOS for the

token ring, as soon as it introduced its token ring LAN. The token ring version

was a ·software module, while the previous implementation was in the read

only memory on the interface card.

The third implementation of NetBIOS by IBM occurred when

the IBM OS/2 system were introduced and the IBM LAN support program

was available. The software package consists of device drivers and interface

support for all of IBM's LAN interfaces .

NetBIOS is a software interface, not a protocol. Nevertheless

the interface provided by all IBM implementations of NetBIOS are equivalent

providing a consistent software interface that has become a de facto standard

for the personal computers.

12

In addition there exist implementations of NetBIOS that use

TCP and UDP as the underlying transport protocol and standards exist for this

on the Internet(RFC I 00 I and RFC I 002)

NetBIOS corresponds to the network layer, transport layer and

session layer of the OSI Reference model. In the PC environment the

application that NetBIOS is being used, is for file sharing. In this case another

protocol interface is called S~rver Message Block (SMB).

Application Layer

Presentation Layer

Session Layer -
············ NetBIOS

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Diagram showing relationship between NetBIOS and OSI Layers

3.2. NetBIOS Services :

NetBIOS was designed for a group of personal computers, all

sharing a common broadcast medium. It provides both connection oriented

(virtual circuits) and connectionless (datagram) services. It supports both

broadcast and multicast. Four types of services are provided by NetBIOS :

1. Name Services

2. Session Services

3. Datagram Services

4. General Commands

The general relationship among the different services of

NetBIOS is shown in the next page.

13

user process

name
14--------+1

services

3 .2.1. Name Services :

hardware
interface

OSI 5-7

OSI 3-4

--- OSI 1-2

Names are used to identify resources in NetBIOS. For example, for

two processes to participate in a conversation each must have a name. The

client process identifies the specific server by the server name, and server can

determine the name of the client. The name space is flat(that is not

hierarchical) and each name consists of from 1 to 16 alphanumeric characters.

There are two types of names : Unique Names and Group Names. A Unique

Name must be unique across the network. A group name does not have to be

unique and all processes that have a given group name, belongs to the same

group. We can use the name and the group names as the source and destination

address, when we establish a session. NetBIOS assigns a name number to each

name, we add. This name number is used to send datagrams. The NetBIOS

commands relating to name management are :

ADD _NAME : Add unique name

ADD_ GROUP _NAME : Add a group name

DELETE NAME : Delete a name

FIND NAME : Determine if name is registered (token ring

implementation)

14

A table of unique names is kept inside NetBIOS. In addition to this

table of names, a permanent name table is ·always present. The Permanent

name is formed by taking the six bytes of network address from the network

adapter card and prefixing them with 10 bytes of binary O's . The permanent

name is always unique in the network.

3 .2.2. Session Services :

We can create a session between any two names on the network.

Multiple sessions are possible between two names, and we can even create a

session between two names at the same workstation. The NetBIOS session

provides a connection oriented, reliable, full duplex message services to a user

process. The data is organized into mes~age and each message can be between

0 and 131,071 bytes. NetBIOS does not provide any form of out of band data.

The following commands provide session services :

CALL : Call active open

LISTEN: Listen Passive Open

SEND : Send Session Data

SEND_NO_ACK :Send Session DATA, No Acknowledgement

RECEIVE : RECEIVE Session Data

RECEIVE_ANY: Receive any session data

HANG UP: Terminate Session

SESSION_STATUS :Retrieve Session Status

15

NetBIOS requires one process to be the client and another to be the

server. The Server first issues a passive open with the LISTEN Command. The

Client then connects with the server when the client execute CALL command.

AT the end of the dialog both workstations issue a HANG_ UP

Command to close the session.

3.2.3. Dat~gram Services:

NetBIOS supports datagram up to 512 bytes in the LAN.

Datagram can be send to a specific name (either a unique name or a group

name) or can be broadcast to the entire local area network. As with other

datagram services, such as UDPIIP, the NetBIOS Datagrams are

connectionless and unreliable.

There are four datagram commands :

SEND_ DATA GRAM : Send Datagram

SEND _BROADCAST_ DA T AqRAM : Broadcast a datagram

RECEIVE_ DATA GRAM : Receive the send Datagram

RECEIVE BROADCAST DATA GRAM : Receive broadcast - -

datagram

3.2.4. General Commands :

There are four general commands :

RESET : Reset NetBIOS

CANCEL :Cancel an asynchronous command

ADAPTER_STATUS: Fetch adapter status

16

UNLINK: unlink from bootstrap server

The RESET command clears the NetBIOS name and session

tables and also aborts any existing sessi<?ns.

The CANCEL command assumes that NetBIOS commands

can be issued asynchronously by a user process, i.e. the user process starts a

command but does not wait for it to complete.

The ADAPTER_ STATUS command returns interface specific

status associated with either a local name or remote name. Additionally it

returns the NetBIOS name table for that-NetBIOS node.

The UNLINK command was used with the original PC LAN

interface when a diskless workstation was bootstrapped from a remote disk

drive.

Most of the NetBIOS command come in both wait and no wait

flavors. When we use the wait version of a command, NetBIOS completes the

operation before returning to your program. If we specify no wait option we

then have the option of polling (looping until an operation is complete) or

giving NetBIOS the address of one our routines that NetBIOS will invoke

when the command is completed. Such routine is called a POST routine.

When the no wait option is used, our program must inspect two different

return codes to determine whether the command has completed successfully:

the first is the immediate return code (available as soon as NetBIOS return to

our application) and the other is the fina~ return code (which holds a value of

OxFF until the operation finishes, at which time NetBIOS sets the appropriate

value).

3.3. Network Control Blocks :

To invoke a particular NetBIOS command. application builds a

Network Control Block (NCB) and then executes an interrupt 5C(hex).The

17

figure on the next page shows the format ofNCB and following is the

description of each field.

We set the l- byte command field to tell NetBIOS which

command we want to execute. If the high order bit is set, the command is

executed in no wait mode. The 1 byte return code field contains the

immediate error code (set by NetBIOS when it begins executing the

command).

Command ID

Immediate Return Code

Local Session Number

Network Name Number

Address Of Data/Message

Length Of Data/Message

Remote Computer Name

Our Computer Name

Receive Timeout·

Send Time Out

Address Of Post Routine

Adapter Name

Final Return Value

Reserved Area

Network Control Block Format

length in bytes

1 -

4

2

16

16

1

4

1

14

After a listen or call command is executed. the 1 byte local

session number field contains the LSN assigned to that session. For send or

Receive commands, we put the session's LSN in this field.

18

NetBIOS returns the 1 byte name number field after an Add

Name or Add Group Name command we use this name number not the name

when doing any datagram related commands or Receive any command.

We put a far pointer to the data buffer associated with send or

receive operation in this 4 byte (segmeni:offset) data buffer address field.

We set the 2 byte data buffer length field to indicate the length

of the data buffer.

We set the 16 byte call name field to indicate the name of the

workstation with which we want to communicate.

We set the 16 byte local name field to indicate by which of the

names in the local name table we want our application to be known.

When we issue a call or listen command we set the 1 byte

receive timeout field to a value that indicates how many half second intervals

NetBIOS should use when waiting for a subsequent send command to be

completed. A value ofO indicates no time out.

We put into the 4 byte POST routine address a far pointer

(segment : offset) to a routine that NetBIOS invokes when the command is

completed. This field is meaningful only when the no wait option is in effect.

If we set this field to zero we should poll the final return code to determine

when the command is completed and whether it was completed successfully.

We set the 1 byte adapter number field to indicate which

network adapter we want to use for (0 for primary and 1 for alternate).

The 1 byte final return code field contains OxFF while a

command is being processed; after the command is completed the field is set

to show whether the command was successful.

The 14 byte Reserved area in the NCB is not used by our

program.

19

Chapter Four

ADVANCED DOS PROGRAMMING

• Intro4uction to the Interrupts
• MS DOS File System

4.1. Introduction to the Interrupts :

As the remote program executioner is about redirection of

input, output and redirection of accesses to files, before designing the actual
-

application, first the ways in which an MS DOS program produces output,

takes input and accesses file on the disk drive should be explored.

The MS DOS operating system uses interrupts for these tasks to

be completed. The events on a machine with DOS operating system is

typically driven by interrupts which can be generated by hardware as well as

software. There are various interrupts that are provided by the processor itself.

Others are provided by the ROM BIOS i.e., read only memory basic input and

output services. Also on being loaded the MS DOS operating system sets up

its own interrupts in the memory. Again we know that NetBIOS installs the

interrupt 5C (hex) which is used by the programmers to invoke NetBIOS

functions to communicate on the network.

The MS DOS program uses the interrupts to request the

operating system for various services. Interrupts are actually signals which

causes the computer's central processing unit to suspend what it is doing and

transfer to a program that is called interrupt handler; takes the appropriate

action and returns control to the original process that was suspended.

As mentioned above some of interrupts are generated by the

hardware ports, such as completion of an input output and detection of a

hardware failure etc. Some interrupts are generated by software by issuing the

int instruction in the assembly language.

20

The processor usually has a reserved location in the memory

called an interrupt vector that specifies where in the memory the interrupt

handler for that interrupt type is located. This usually speeds up the processing

of interrupt because the computer can transfer control directly to the

appropriate routine; it does not need a central routine that wastes precious

machine cycle determining the cause of interrupt.

The Kernel of MS DOS- is designed to take advantage of the

interrupts. It actually set the interrupts value ranging from 20 (hex) to 2F(hex)

to point to its own routines. When ever an application program has to do some

operation relating to the operating system like printing, giving output and

requesting input etc., it generates appropriate interrupt instruction after setting

the registers to the proper values. The interrupt handler then services the

interrupt, acts as requested and returns to the calling program which resumes

the execution.

The most important interrupt level that the MS DOS establishes

is interrupt number 21 (hex) which is also called the function dispatcher of the

MS DOS. This is a universal interrupt used by the programs to establish tasks.

The action requested from the operating system is determined by the value in

the AH register at the time when the interrupt is executed. The interrupt

handler then performs the specific task and returns the result to the program.

Nearly, every program uses this interrupt for various functions related to input, ~ . '' (..

output and file services ofMS DOS. r ~ ~·
Other interrupts, which are important, are interrupt 10 (hex) ~h 41 (

interrupt 16(hex) which are provided by the BIOS module. Interrupt I 0 (hex)

is used for screen related activities, and is a interface to the functions provided

by the video driver. Interrupt 16 (hex) is used to handle the keyboard driver.

The character can be read from the keyboard and different properties of the

keyboard driver can be set by this interrupt.

The various interrupt 21 functions which are related to the

outpttt produced on the screen are function 02 (hex). 06 (hex).and 09 (hex).

Other than these MS DOS functions the input can be taken by opening the

21 7}-!- 65 7??

device file CON in the reading mode when it represents the keyboard driver

and reading from it. Also stdin handle which is automatically opened by

operating system at the time of loading program can be used for input purpose.

4.2. MS DOS File System :

Our system also redirects the file related services to the

launcher. The various file related ~peration that will be redirected and so are of

importance are:

I. create and remove directories,

2. create, open and close files,

3. read from and write to the files,

4. rename and delete files,

5. search for files,

6. get or set the file attributes and

7. lock records.

MS DOS provides two distinct type of operating system calls

for each major file and record operations. This is due to the reason that MS

DOS is derived from CP/M as well as UNIXIXENIX.

The system compatible with CP/M IS File Control Block

functions. These rely on a data structure called file control block (FCB) to

maintain certain book keeping information about open files. This structure

resides in the application programs memory space. These allow the

programmers to create, open, close, and delete files and to read or write

records of any size at any record position within such files. But these do not

support the hierarchical tree like file structure. So these are restricted to open

file in the current subdirectory.

The structure of the FCB is shown on the next page.

The application program initializes an FCB with a drive code, a

filename and extension and then passes the address of FCB to MS DOS to

open or cre:lte file. If successful in opening file, DOS fills in FCB with certain

fields in FCB with information from files entry in the disk directory. Reserved

area is used by the operating system for its own purposes. Data is always read

22

to or written from the current disk transfer area whose address may be set by

the program. For calling any FCB related DOS call i.e., INT 21 (hex) the

address of the FCB is sent to it.

DRIVE IDENTIFICATION

FILE NAME (8 CHARS)

EXTENSION (3 CHARS)

CURRENT BLOCK NO.

F.ECORD SIZE

FILE SIZE (4 BYTES)

DATE CREA TEDIUPDA TED

TIME CREATED IUPDA TED

RESERVED

CURRENT RECORD NUMBER

RELATIVE RECORD NUMBER

Fig. An FCB Structure

The most commonly file related Int 21 (hex)operation used

with FCB are described in the appendix:

The other set of file and record functions are handle functions.

These allow the programmer to open files by passing MS DOS a null

terminated ASCIIZ string that describes the file location in the hierarchical file

structure (the drive and the path), the filename and it's extension. If the open or

create operation is successful, MS DOS returns a 16 bit token or handle that is

saved by the application program and used to specify the file in subsequent

operation.

The operating system maintains a data structure that contains

book keeping information about the file inside its own memory space, and

these are not accessible to the application program. They fuliy support the

hierarchical file structure, allowing the programmer to create, open. close and

delete files in any subdirectory on any disk drive and to read and write records

of any size at any byte offset within such files. These are so more powerful

than the FCB related calls.

MS DOS restricts the number of handles that can be active at

any time- i.e., the no of files and devices that can be opened concurrently when

using the handle family of function in two ways:

a) The maximum no of concurrently opened files in the system,

for all active processes in the memory combined is determined by the entry

FILES=nn

in the config.sys file in the root directory.

b) Any process can open at the maximum of 20 files after

fulfilling the above condition. However this maximum restriction can be

changed by calling a DOS function. But However in any case, the total no of

files opened concurrently by all processes in memory can not exceed the limit

given in a).

The vanous handle related functions calls (Int 21 (hex)

functions) are described in details in the appendix.

The other interrupt 21 (hex) functions which are important to us

are the exec function which is used by the programs load and execute other

programs and the get exit code used to get the return code from the terminated

program to notify it to the user.

Other important DOS interrupt are INT 23 which the DOS

generates when ever it finds that a ctrl+C or ctrl+break is pressed at the

keyboard while doing input or output and some disk operations when the

BREAK flag is on and INT 24 (hex)which the DOS generates whenever any

critical error is generated.

The interrupt provided by the BIOS when it get a ctrl+break is

1 B (hex).Also INT 10 can used to produce output on the screen with the help

video driver and the characters may be' read at tht> keyboard using INT 16 H

which is the interrupt provided by the keyboard handler.

24

Chapter Five

Design of Different Layers above N etBIOS

• The Design Of Error Correcting Layer
• The Design of.Presentation Layer

The design of the application required design of two more

protocol layers above the ·services provided by NetBIOS. The NetBIOS only

provides session and datagram services to the user for the transfer of data and

this is not sufficient for our purpose. Error free transmission is required by our

application. Also different types of data is transmitted by this system from the

executioner to the launcher and from the launcher to the executioner. So some

type of abstraction is needed to repre~ent the data being transferred. These

services are fulfilled by these layers. These layers also make the programming

more easy and less error prone. The application layer is actually used by our

system to send or receive data. And this layer uses the error detection layer to

transmit data. But these layers are only used for the transfer of data. The

establishment of session, adding and deleting names, and tearing of connection

is done directly by our application without interference of the layers.

Application ~ -~ Application

1
Presentat". laye -------------· Presentat". laye

I
Error Det. layer 1+-------------· Error Det.Layer

I
Net BIOS NetBIOS

fig. The schematic diagram showing the relation between different

network layers .

5 .1. Design Of Error Detection Layer:

As was stated, NetBIOS does not provide checksum for the

data it is carrying assuming that the underlying data links provide reliability.

But it is vital that this application does not rely upon underlying hardware

dependent system but develops its own method for error detection and

retransmission. This becomes necessary because it can't be made sure that
-
underlying data link will provide the adequate reliability. Also various vital

information is communicated through NetBIOS by our application, a small

error will prove dangerous as this may cause a different action to be taken

stalling the whole system, even damaging the files on the disk.

This layer provides the data to be sent and received correctly by

the applications. This layer is actually built over the session as well as

datagram services ofNetBIOS. The datagrams packets and the session packets

are handled differently by this layer. This is because of the reason that the

session packets are always delivered, and are in the same order in which they

are sent but the datagram packets may be lost in the transmission and the

ordering of received packets may be different from the order in which they are

sent. So different policies has been adopted by the layer for them. The time­

out and retransmit policy has been adopted for the datagram packets. And the

Negative acknowledgement and retransmission has been adopted for the

session packets.

5.1.1. Comparison of different methods of error detection :

Various methods for error detection was examined for this

purpose viz., parity checking, longitudinal redundancy check, cyclic

redundancy check and ISO checksum algorithm. In these CRC has the most

suitable properties for error detection but was found to be relatively inefficient

for the purpose of software implementation due to the number of calculation

involved. So the ISO checksum algorithm which also has several desirable

26

properties and the software implementation of this is relatively much efficient

than the cyclic redundancy check.

This checksum, it can be shown assuming all bits errors to be

equally likely:

- detects all the I bit error,

- detects all 2 bit errors,

- fails to detect only 0.000019% of all burst error of length not

exceeding 16.

- fails to detect only 0.0015 % of all larger burst error.

This method originally specified by Fletcher uses 16 bit

checksum which is included with the data which has to be transmitted as a

field. The checksum is first calculated by the sender and placed in the outgoing

data. The receiver then applies the same algorithm to the entire header

including the checksum data and should get 0 if there are no errors. This

method uses modulo 255 addition. The data is considered to be a sequence of

8 bit unsigned integers.

5 .1.2. Generation Of Checksum:

The checksum is generating by producing two octets calculated

on the octets of data to be checked. The first is the sum modulo 255 of all the

octets of data in the message and the second is the sum modulo 255 of every

octet weighted reversely by its position in the message. For convenience the

checksum calculation is performed on the entire message including the fields

that will contain two checksum octets. These fields are set to zero in start. The

position of the checksum is 1 and 2 in our method and so the above calculation

is perfom1ed with taking value of first and second octet to be zero. Finally the

27

value of the first and second checksum is generated such that the result of

generating checksum again with the whole data produces zero .

c 1'=0=summation of all the octets + c 1 +c2 (1)

c2'=0=summation of all the oc!e_ts excluding the checksum

weighted reversely by it's position in the entire message

+c1*L+c2*(L-1) (2)

where c 1' and c2' are the result of checksum calculation at the

receiving station and should be zero , c 1 and c2 are the checksum data that has

to be sent and L is the total length of message including the checksum.

Solving equation (1) and"(2) the value of the checksum data can

be calculated and placed in the message.

5 .1.3. Checking Of Checksum :

Upon receipt of the message the receiver performs the

calculation for c 1' and c2' with the received message including the checksum

data and if the result is equal to zero the checksum calculations has succeeded

and no errors are assumed.

5.1.4. Method used for message transfer in session:

The packet is sent by the sender and then it waits for

acknowledgement from the receiving station. If it gets a Negative

acknowledgement or a corrupted acknowledgement packet, it retransmits the

packet again and waits for acknowledgement. If the packet is received

correctly by the receiver then it sends the acknowledgement. Otherwise it

sends negative acknowledgement which signifies that the sender has to send

the packet again. As packets are never lost i ·1 a session the strategy for time

out is not required. Again the problem of getting duplicate packets comes in.

28

For this the packet contains a sequence number that may be used for duplicate

detection. The sequence number ranges from 0 to 255 and then rounds back to

0. On getting a duplicate packet the receiver just sends the acknowledgement

of the packet and discards the packet.

5.1.5. Method used for message transfer in a datagram:

The application uses the datagram services to send small

messages that contain small no of bytes. So at times there is only one packet

that has to be sent by the sender. For this purpose the sender sends the

datagram packet, starts a timer and waits for the acknowledgement from the

receiver. If the acknowledgement does not come within stipulated time or the

acknowledgement packet is corrupted then it retransmits the packet again. The

receiver on receiving a datagram first c~ecks for the errors and then sends the

acknowledgement or the negative acknowledgement packet as necessary. If

the receiver receives a duplicate datagram packet then it simply sends a

acknowledgement and discards the message packet. For these purpose the

sequence no field of the message is used. Also the data sent by the datagram .

packets are not very much necessary so the sender retries the no retransmission

only for a limited no of times that is I 0 times and then assumes that the

packets has been received correctly.

5.1.6. The Format of The Packet:

The packet format used by this layer is as follows:

2 bytes I byte I byte I byte 1 - 535

~ checksu1 messtype Seq No More pkt Data being sent

Data Packets used by the error detection layer

2 bytes I byte 2 bytes I byte I byte

checksu checksum messtype seq no.

The Ack packet The NAK packet

29

Figure of packets used by the error detection layer.

The packet first contains the checksum data of two bytes length

that is used for error detection. After that it contains the message type of size

one byte that describes the packet type i.e., the packet contains the data or

acknowledgement or the negative acknowledgement. If the packet contains the

data then the there is a one byte field that tells the sequence number of the

packet that is sent. After this there is a byte which says that if there are more

packets to be received or not. This is useful in the case if the data that is being

sent is larger than the maximum size that can be accommodated by the

packets. And the rest of the packet is the data portion which is actually the

packet that is used by the presentation layer.

5.2. The Design Of The Presentation Layer:

As our application needs different types of data to be

transferred from one workstation to another, the design of this layer becomes

necessary. This layer is concerned with how data is being represented that is

being exchanged. The application sends requests and responses from one

workstation to other. Additionally, it presents the lower session layer services

to the application. So one task of ~he presentation layer is to convert

application data into some standard format that is passed through the network

to the receiving station.

The general format of a r~quest packet is as:

1 byte 1 byte 1 byte ? 2 bytes ?

messtypt Int. Nc . No of rei par Rei. pars Buffer size Buffer

The fields in the packet can be described as:

1. Message type determines the type of message the packet is

carrying i.e., here it represents request.

2. The Int no tells about the interrupt no that is requested by the

request packet.

30

3. The no of relevant parameters in the packet is after that and

this is mostly 4 representing the 4 registers AX, BX, ex and DX that is being

transferred.

4. The relevant parameters field which mostly contains the

value of AX, BX, ex and OX respectively.

5. The buffer length contains the length of the buffer area in

bytes.

6. The buffer area generally contains the data which is required

in the request operation such as data to be written to a file, the name of the file

to be opened etc. The buffer may contain zero or more structure. The first byte

of the structure determines the type of the structure and the next two bytes

gives the structure length. The rest of the structure contains the actual data.

So the open file request ~sing handle functions request will be

like:

1 byte 1 byte 1 byte 8 bytes 2 bytes ? 2 bytes

messtype Int. No. No of rei pars Rei. pars. Buffer size filenam(handle

Here message type will be request, INT NO will be the 21 and

the relevant parameters will contain the values of the four registers. The buffer

will contain the name of the file that has to be opened and the handle that the

executioner will assign to the opened file and which will be used by the

executioner to further reference the handle.

The close file request will be like :

I byte 1 byte 1 byte 8 bytes 2 bytes

messtype Int. No No of rei pars Rei. pars. Buffer size

Message type will be request, lnt no 21 and the relevant

parameters will again contain the four registers and the buffer length will be

zero as the handle no is already there in the registers.

31

The read file packet will be like :

1 byte 1 byte 1 byte 8 bytes 2 bytes

messtype Int. No No of rei pars Rei. pars. Buffer size

All the parameters here are similar to the parameters in the close file

request. The buffer again contains nothing as the relevant parameters are

present in the registers.

The write file request is like :

1 byte 1 byte 1 byte ? 2 bytes ?

mess type Int. No No of rel pars Rel. pars. Buffer size Write Data

The buffer contains the data to be written to the file or device.

The input and output redirection packet are similar to the above

packets.

There is a response packet corresponding to every request

packet. The response packet format is like :

1 byte 1 byte 2 bytes 1 bytes 1 bytes 1 byte ? 2 bytes ?

messtype Int. Return error Critical erro Return Par Pars Buff Buff

No. Class Class Code Cn length

Like for open file request packet if request successful the

response packet will be like :

1 byte 1 byte 2 bytes 1 byte 1 byte 1 byte ? 2 bytes

rnesstype Int. Return error 2ritical error Return Par Pars Buff

No. Class Class Code Cnt length

The message type field contains the value response. The

interrupt number field tells about the interrupt that invoked the request, the

relevant parameter's field is similar to that of request packet. The error classes

and the return code specifies the error that occurred while the request was

being serviced.

The buffer data field is similar to the request packet and is

similar in structure i.e.,

struct buffer_ data {

byte type_of_data;

byte length_of_data[2];

struct actual_ data;

}

Other type of packets that has been used are:

1. A broadcast datagram request which is used to find all the

executioners on the network which are not busy. It's format is like :

messtype I own_ nam1

the own name field contains the name of the launcher from

which this request originated.

2. The response for above datagram which is of the format:

messtype I own_name of executioner!

The own name field contains the name of the executioner sending the

response.

3. The start session packet which is used by the launcher to submit the

name of the program to be rur. on the executioner and other parameters.

33

4. The packet sent by the executioner before starting execution which

also contains the drive no assigned to the drive on the launcher. If the drive no

is greater than 26 it is assumed that no drive letter has been assigned to the

local drive on the launcher.

messtype Drive no. assigned

5. The packet sent by the executioner at the end of the execution of the

submitted program which contains the exit code of the program.

messtype I exit_cod9

5 .1. Message Type, Error Codes and the buffer d~ta type

1. Message Type field is an essential part of the packets send by the

presentation layer and tells about the message being carrie~ out by the packets.

The message type codes which are used by the system are:

1. RPE_REQUEST_PACKET 0

2. RPE RESPONSE PACKET - -

34

The packet contains a

request for execution of

some program

The packet contains a

response to the previous

request.

3. RPE START SESSION 2
- -

4. RPE END SESSION 3 - -

5. RPE STARTING EXECUTION 4 - -

6. RPE FINDING EXECUTIONER 5

7. RPE RESPONSE DGM 6
- -

sent by the launcher to

submit the name of the

program to be executed.

sent by the executioner at

the end of the execution.

sent by the executioner

at the time of starting

execution of the loaded

program.

sent by the launcher to

find the address of

executioner in the

network.

sent by the executioner

when it gets the packet

no 6.

2. The error codes which are returned in the response packet describes

the errors occurred while the previous request was being serviced. These are

used to set the extended error information or calling the critical error handler

on the executioner. The error codes are provided by the system running the

launcher and it provides some description of the error. The launcher must

choose the code that best describes the error.

The commonly used error codes are:

..,-

.))

RPE NOERROR 0 No error

RPE FNOTFOUND File not found

RPE EACCESS 2 File is accessed

incorrectly

RPE EMAXOPEN 3 Maximum limit of opened

file reached.

RPE EEOF 4 EOF of file reached

RPE EriLENOPEN 5 File not opened

RPE EFRDONL Y 6 Writing to read only file

RPE PA THNOTFOUND 7 Specified path not found

RPE REMCURDIR 8 Attempt to remove current

directory

RPE CTRLCPRESSED 9 Control break or Control c

pressed.

The critical error codes represent the critical errors that occurred while

performing the request on the launcher. This is usually caused by a hardware

error. The different error codes are :

RPE WRITEPRCT 0 Write protect error

RPE DRVNOTRDY drive not ready

RPE DA T AERROR 2 data error

RPE SEEK ERROR 3 seek error - -

RPE SECNF 4 sector not found

RPE RFAULT 5 read fault

RPE WFAULT 6 write fault

RPE GENFAIL 7 general fai I ure

36

The return code tells about the completion status of the command

requested. It is set to 0 if successful and set to I if the command could not be

completed due to some error, the erro.r may be determined using the error

codes described previously.

The buffer data type is used to identify the data which the structure is

carrymg:

1. RPE HANDLE

2. RPE WRITEDA T A

3. RPE READDATA

4. RPE MDDESB

5. RPE FCB

6. RPE XFCB

7. RPE DIRNAME

8. RPE FILENAME

9. RPE DTA

1 O.RPE FCB ADD
- -

2

3

4·

5

7

8

9

10

37

the data is a handle

the data is to be written to

some device or file.

the data is the response to

the read request.

the data is the media

descriptor byte returned

by some function calls.

the data is a copy of FCB

the data is a copy of

extended FCB

the data contains the path

of a directory

the data contains the name

of a file

the data contains the

offset of the DT A Being

used.

the data contains the

address ofthe FCB

Chapter Six

DESIGN AND IMPLEMENTATION OF
THE MAIN PROGRAM

Both the executioner and launcher use the services provided by the

presentation layer, which has been discussed in the previous chapter, to

transfer request and other messages. But the connection and the termination of

a session is done directly using the NetBIOS services.

In this chapter the design and implementation of both executioner and

launcher is described. First we take a look at some design considerations that

is required before designing the executi~ner and the launcher.

6.1. Design Considerations:

6.1.1. Comparison of Session Services and Datagram services

NetBIOS provides two types of services for transmission of

data, session and datagram. The most important difference between datagrams

and the messages that are sent and received during the session is that

datagrams get lost sometimes in transmission and the program is not notified

of this. Messages sent within the framework of a session are guaranteed to be

delivered. If multiple packets are outstanding, session control also guarantees

that they are delivered in the same sequence in which they are sent. But these

services makes the delivery of the message in a session somewhat slower due

to the overhead required. The delivery of datagram may be ascertained using

some acknowledgement techniques.

So the session services are good for point to point

communication in which two workstations pass back and forth several related

data packets. Datagrams are good design choice in application whose dialogs

consist of unrelated messages, only a few messages or a series of messages

that do not always have to be a complete set.

38

For our purposes, when the system is operating, related

messages are passed between two workstations most of the time, except at the

time when the network is searched for executioners by the launcher. So it

becomes reasonable to use datagram services at the time of searching and

session services at the other times when point to point communication takes

place between the launcher and the executioner.

6.1.2. Redirection of Input Output and File related requests

The policy adopted to redirect the input, output and file related

requests to the launcher is based upon the methods that are used for placing the

requests. As has been mentioned, the MS DOS programs use interrupts for

these purpose. So the method used is to change the interrupt handler for the

relevant interrupts with our routines. These routines then check the cause of

the interrupt and redirect the request to the launcher if necessary or pass the

request to the original handler.

6.1.3. Assigning File Handles For files opened on the remote

Machine:

There can be two methods that can be used to assign handles

for the files opened on the launcher's drive.

The first one is to assign the handles (which are actually

integers) by its own. But this value must not conflict with the handles supplied

by original operating system. For this purpose, handles of value greater than

255 may be assigned (the maximum value assigned by the operating system to

a handle is 254).

Second one opens a local dummy file and returns the handle to

the program and remembers it, so that when ever the program uses this handle

the request is transferred to the launcher.

39

The first method has lesser overhead at start but it has some

complications. First one is that if a local handle is redirected to a remote

handle then the local handle must be remembered by the executioner that it

should redirect all the requests with this handle to the remote machine. Also if

a remote handle is redirected to a local handle then the executioner has to

remember this to redirect all the requests to the local system. Again if the

remote files are opened and closed several tim~s. the executioner must

maintain the list of unassigned and assigned handles.

The second method has more overhead but the management of

the handles becomes easy. Only one array structure may serve the purpose if

the handle that has been assigned is remote or not. Also there is no problem in

redirecting the handles etc. So this method has been used in our application.

Now after this discussion we consider the design and

implementation of the launcher which is invoked by the user to submit and

execute a program on this system.

6.2. The Design Of Launcher:

The design of launcher is less complex than the executioner as

most of the processing is done by the executioner. The launcher first connects

to the executioner and submit the program for execution. After that it waits for

any output or input request and also the file related request for the launcher's

local drive made by the executioner, executes the particular request made and

then sends the result back to the executioner. Also it maintains different tables

that are necessary to map the file related calls to the local file related functions.

6.2.1. The Different Data Structures Used By The Launcher :

I. The file handle table: It contains the local file handles that is

used by the launcher and the corresponding file handles that is assigned by the

executioner to the running program. This is used by the launcher at the time

40

when some file handle related request comes from the executioner that has to

be handled.

2. The current DT A address on the executioner's machine that

is used by the FCB related file function calls. This is used by the launcher to

determine some type of errors that may result due to file read and write

operations.

3. Different FCB structures that is used for FCB related file

operations on the launcher.

4. A FCB address table which is used by the launcher to

correlate the requested FCB with the FCB that is used on the launcher.

6.2.2. Broad Algorithm Used By The Launcher:

1. It first checks the version of the operating system (MS DOS). Then

it checks whether share.exe is installed or not. Then it checks the presence of

NetBIOS.

2. It adds its name to the network name table ofNetBIOS.

3. It checks the command line parameters and tries to contact the

appropriate executioner on the network. Also it gets other specifications from

the user.

4. Connects to the executioner and establishes a session with it and

submits the program that is to be run by the executioner.

5. Gets the drive letter for the local drive on the launcher workstation

and informs it to the user.

6. After that it waits for any request made by the executioner and

services the request and updates the tables as necessary.

7. Then it sends back the result to the executioner. It also indicates the

critical errors that occurred while servicing the request on the launcher's

machine.

41

8. It loops till. a final exit call is not received from the executioner and

after that it notifies to the user the exit code of the running application.

9. It then tears down the session, deletes its own name from the

NetBIOS name table and finally exits.

6.2.3. Detailed Description Of Algorithm Of The Launcher:

6.2.3 .1. Initial preparation by the launcher:

On being called first the launcher determines the version of the

operating system that is running ~nd confirms that it is not less than the

minimum requirement (4.0).

if(os_major < 4)
{

printf("\n Early version (<4) of DOS not supported");
exit(O);

}

Then it checks whether share.exe is installed using the DOS

interrupt 2F that is the multiplex interrupt. After that it finds whether NetBIOS

is installed on the computer or not. It is done in two steps. First it is tested

whether Int 5C entry in the vector table contains a valid pointer (Non NULL

pointer). After that a call to NetBIOS is performed using an invalid command

and the return code is checked. If it corresponds to invalid command then it

may be safely assumed that the NetBIOS is active.

6.2.3.2. Adding it's name to the NetBIOS name table:

For this purpose it opens the file launch.dat m the default

directory of the launcher and reads the name from it that it will use to identify

itself for communication with the executioner. The file launch.dat may be used

by the administrator to provide each of the launcher a unique name. After that

it calls the ADD _NAME command of NetBIOS to add its name to the

NetBIOS name table. Unique name must be provided to the launcher on each

workstation so that a conflict of name does not arise. If any error occurs then

the launcher is terminated after displaying the cause of error.

42

memset(&add_ name_ ncb,O,sizeof(NCB));
add_name_ncb.NCB_COMMAND=ADD_NAME; /*command is

ADD NAME*/
strcpy(add_ name_ ncb,localname);/* local name of the launcher* I
NetBIOS(&add_name_ncb); /*transfer to NetBIOS function*/

6.2.3.3. Contacting the appropriate Executioner:

The launcher then retrieves the command line parameters to

find the name of the executioner that has to be contacted and the name of the

program file that it has to submit to the exe~utioner and the mode of the

execution.

If the command line does not contain any of the parameters, it

asks the user for the same. For example if no command line parameter has

been given, it asks the user to give the mode of execution. Then the launcher

finds out all the executioner present on the network. This is done by sending

broadcast datagram with the help of presentation layer (which issues a

RPE_FINDINDING_EXECUTIONER packet). The launcher then waits for

the response from different executioners. After that it shows all the names of

· the executioner that have responded to the request and asks from the user to

select one of them. Then the launcher takes from the user the name of the

program to be launched with any redirection parameter such as filters that

redirects the input and output.

6.2.3.4.Connecting to the particular executioner:

Then the launcher issues a NetBIOS CALL command for the

executioner selected and connection is established between the executioner

and the launcher. If the connection is not established, it is assumed that the

executioner is busy or is not present on the network and user is informed of the

situation.

memset(&call_ncb,O.sizeof(NCB));
call_ncb.NCB_COMMAND=CALL;
memcpy(call_ ncb.NCB _ NAME1localname, 16);
memcpy(call_ ncb. NCB_ CALLNAME,remotename, 16);

43

call_ncb.NCB _ STO=sto;
call_ncb.NCB_RTO=O;
NetBIOS(&call_ ncb);
local_session_number=call ncb.NCB_LSN;

After that it saves the session number returned by CALL and

uses it to further send or receive data. The launcher then submits the program

and other specification to the executioner using the start session packet of the

presentation layer. After that it receives the executing packet from the

executioner which also contains the name of the drive assigned to the local

drive. It saves this value in a variable for further use and also shows it to the

user. The drive number represents 0= A, 1 =B etc.

Now the launcher set the int 23 and int 24 that are the ctrl+c

handler and the critical error handler to point to its own routine that on being

called set the particular flag that represents the particular error or the state of

ctrl+c.

6.2.3.5. Waiting for the requests made by the executioner

The launcher then issues a receive request command and waits

for any request sent by the executioner. On getting the request it first examines

the interrupt no requested and the function that has to be executed. If the

interrupt no is either 10 or 16 it is serviced and appropriate response is sent to

the executioner. Also various data that is needed by the interrupt 10 and

interrupt 16 request is sent back to the executioner.

If the request is for the interrupt 21, the function is determined

using AH, the upper part of AX register. If it is a request for input or output,

the interrupt 21 is executed with the same parameters and the result is sent

back to the executioner. If the requested function is related to file functions

related with handles then these actions are taken :

1. If the request is to open the file, the file is opened using the

same function. The handle returned is saved with the handle sent by the

exect.:tioner in the handle table. The handle table is actually a linked iist that is

44

used for determining which local handles corresponds to the handle on the

executioner's machine.

2. If the request is for closing a file then the appropriate local

handle is determined from the local handle table and the file is closed using the

close file function and the entry for the handle is deleted from the handle table.

3. If any other handle related read or wr~te operation is required

by the request then the corresponding local handk is used for the required

operation and the required data is placed in the buffer.

4. If there is a duplicate handle call then the same command is

executed on the local machine and the entry is added in the local handle table

with the duplicate handle on the executioner's machine (that w~ll be assigned

to the running application) which is also sent with the request.

5. If the call is for redirection of handle then the handles are

examined for taking the appropriate action. If both handles belong to the

machine on the launcher (it is found out by looking into the file handle table)

then the directly forced redirection is applied for the handles. If the handle

which has to be redirected is on the executioner's machine and the other handle

is on the launcher's handle table, then one dummy file is opened and it's handle

is associated with the handle to be redirected and placed in the file handle

table. After that the handle is redirected to the original handle. In the other

case when the handle to be redirected is on the local machine and the other is

on the executioner's machine, in that case the entry in the local handle table is

deleted and the second handle is redirected to a null device.

For FCB related function the process is somewhat complicated.

The launcher maintains a variable which always has the offset value of the

current DT A on the executioner. It is necessary to find out an error that is

called segment wraparound error \vhich occurs if the length ofthe data to

written to the DT A or to be read from the DT A exceeds the boundary of the

segment of the DT A and then corruption of memory may occur.

45

Whenever there is an open file call using FCB the launcher

copies the FCB into its own memory space, then calls the open file function in

the current directory. Also before pe_rforming the operation the launcher

changes the disk letter in the FCB to represent its own disk letter (not the

redirected letter). The addre~s of the original FCB is saved in a table of FCB

addresses with the local FCB address to later identify the local FCB related to

the remote FCB on the executioner's machine in subsequent FCB related calls.

The appropriate result is sent to the executioner in the response packet.

If the call is for file close function then the file is closed and the

result is sent to the executioner. The entry in the FCB address table

corresponding to this FCB is deleted.

If any file read or write command is requested, the launcher

determines the address of correspondin·g local FCB using the FCB table and

copies required data into the local FCB from the FCB data in the packet and

performs the call. The response is then sent to the executioner. The segment

wrap is also determined using the length of data to be read or written and the

offset address of the DT A and on any conflict the particular error is set in the

particular register.

Any other directory and disk related requests are serviced in the

normal fashion. And the result is sent to the executioner in the response

packet.

If any error occurs at cal_! of any of these functions or ctrl+c is

pressed at any time then the particular flag is set. Before sending each and

every response the launcher sees if the critical error or ctrl+c flag is set. If this

is the case then the error codes in the response packet is set to represent the

condition. After sending the response that the particular error flag is reset.

6.2.3. 7. Getting the exit call from the executioner

If the launcher gets an exit call by the executioner then it

checks the exit code and if it is a normal exit. it closes all the open files. Then

it notifies to the user the exit status of the program. After that it tears down the

46

session using the hangup command and deletes it's name using the delete name

command of the NetBIOS. Then it restores the address of original interrupt 23

and interrupt 24 and then exits.

//setting the interrupt 23 and interrupt 24 to its own handlers
old 23=getvect(Ox23); //getting the address of
old _24=getvect(Ox24); //original int handlers
setvect(Ox24,own _critical_ error_ handler);//setting our own handler
setvect(Ox23 ,own_ ctrlc _handler); I /for the interrupts

setvect(Ox23,old_23); //setting the original interrupt handlers
setvect(Ox24,old_24); //for interrupt 23 and interrupt 24
exit(O); //exiting

6.3. Design Of The Executioner:

The design of the executioner is more complicated than the

launcher. This is because the launcher has only to process the redirected

requests and send the result back to the executioner. But the executioner has

the burden to execute the program, determine which of the requests are for

input and, output and for files on the launcher's drive and then transfer the

request to the launcher. And then after getting the result from the launcher, it

sets the registers to appropriate values and copies any data requested to the

buffer of the requesting program. This process is complex because it should

not corrupt any register's content. Also the executioner should use very less

memory to load itself. For this purpose, only those parts are loaded into

memory that are necessary at a time. This makes the design of the executioner

more complicated.

6.3 .1. The data structures used by the executioner :

l. It uses a table of the FCB pointer's that are on the disk of the

launcher. A linked list is used for the creation of this table.

47

2. It also uses an array is_remote[MAX_HAND] that is used to

determine the drive is remote or on the disk of the executioner. If the value

is_remote[i] is equal to 1 then it signi~es that the handle i is located on the

launcher's dictionary. The MAX_HAND is the maximum no of handle that

can be opened on the machine.

3. It also uses an internal stack that IS necessary to prevent

overflow of stack. The stack is defined like

byte stack [1 000]
our_ stack_ seg= _ ds and stack pointer= 998;

6.3 .2. The algorithm used by the executioner :

1. On being invoked it first checks the minimum requirements which is

the version of the operating system and the presence of share and NetBIOS.

2. Then it adds its own name to the NetBIOS name table.

3. It then waits for setting up of a connection by a launcher for a

request to run programs.

4. On getting a request to execute a program it prepares the

executioner's machine to redirect the requests. Also different tables are

initialized.

5. Then it loads and executes the program requested by the launcher

from the local disk or from the disk of the launcher's site.

6. It redirects all the input and qutput requests to the launcher. Also it

determines all the requests for the drive at the launcher and redirects the

request to the launcher's machine.

7. It then gets the response from the launcher and passes it to the

application program. On completion of the application it sends the final exit

code to the launcher.

8. Then it restores the machines state to the normal and waits for any

launcher for another request to execute an application.

6.3.3. description of the algorithm:

48

6.3 .3 .1. initial preparation:

The algorithm for checking out the NetBIOS presence and

other operating system constraints is similar to the launcher.

After that the executioner uses the file exec.dat to get the name

it has to use to describe itself. The method for adding name to the NetBIOS

name table is similar to that of launcher's. After this step the executioner

determines the drive letter that can be ·assigned to the launcher's drive when

the normal mode of execution is required.

for(drive letter=3; drive _letter<=26;drive _letter++)
{

}

regs.h.ah=Ox36;
regs.h.dl=(unsigned char)drive _letter;
int86(0x21 ,®s,®s);
if((regs.x.dx & OxFFFF)==OxFFFF)
{

}

assigned_ drive _letter=drive _letter;
break;

The determination of the name of the drive is done only at this

time, and the letter is saved in a variable for further use.

6.3.3.2. Listening for any Launcher that may contact the executioner

The executioner then executes an listen command and a receive

broadcast datagram command in nowait mode. After that it waits for any

request that may come. If the user presses Esc key at this time then the

executioner exits.

write on the executioner's screen that it is not processing any request.
Loop while no call from any launcher

if user on the executioner terminal presses Esc key
delete it's name from the NetBIOS name table and exit;

49

The executioner then finds out if it received a broadcast

datagram or a call has been issued by any launcher.

If the a broadcast datagram has been received, it looks into the

request packet. If it is the RPE _FINDING_ EXECUTIONER. it sends back the

response_for_search packet which tells the launcher it's own name by which it

can be contacted. After this the executioner again issues a receive broadcast

datagram request.

If the listen command returns, the executioner cancels the

outstanding receive broadcast datagram command and cancels any other

activity that it is doing like sending response datagram packet. The executioner

then issues a receive command and waits for any packet from the launcher. If

it gets a start_of_session packet it carr~es on. Otherwise it simply closes the

connection and goes back to the waiting mode.

6.3.3.3. Making the connection and execution of submitted program:

On getting a start of session command packet the executioner

finds out the mode of execution. If the mode of execution is normal then the

executioner sends the drive letter determined earlier to the launcher in the

starting execution packet. If the mode of execution is dumb terminal mode

then the launcher simply sends a value 27 in the starting execution packet

which signifies that no drive letter has been assigned to the launcher's drive.

Now the executioner examines the name of the program that

has to be loaded and determines the location of the program that has to be run.

Then the launcher prepares the machine so that the output, input and file

requests can be redirected to the launcher's machine. First the executioner

loads the required routines into the memory that are required to handle the

redirection requests. The alternate interrupt 21 handler is not loaded if the

mode of execution is dumb terminal. Then it first replaces the interrupt 1 0

handler and interrupt 16 handler with it's own handlers and saves the old

handler's addresses. If the mocie of execution is normal then the interrupt 21

handler is also replaced by its own handler and the old address is saved in a

50

variable. The executioner shrinks it's allocated memory to the mm1mum, it

reqUires for the proper execution. Clearly the dumb terminal mode of

execution requires lesser memory for the executioner to be loaded in memory.

Then the executioner prepares for executing the required

program. It first sees if the required program to be run is on the executioner's

machine or is on the launcher's machine. The executioner first creates two

FCBs from the command line parameter of the program to be run. Also it

looks for any redirection of standard input or output, which is determined by

the presence of character '<' and '>' input in the command line parameter. If the

command line parameter contains any redirection then the redirection is

effected by first opening the file on the required machine and redirecting the

handle for standard input or output using the redirect handle function of

interrupt 21. The redirection of handle is described below.

After that the actual loading of program is done. If the program

is on the executioner's disk then the program is loaded using the interrupt 21

function 4B. If the program is on the launcher's machine the executioner loads

the program through the network. It first creates a PSP in the memory using

the interrupt 21 function. If the program has an extension of com then the

image of the program is directly loaded into the memory at the PSP:01 00

offset and then the control is transferred to the address. Before transferring the

control to the program the executioner loads the different registers with

appropriate values. If the program has an extension .EXE then it is loaded after

the relocation factors has been calculated using the header of the exe file and

then the program is loaded into the memory at appropriate address. After that

the control is transferred to the program after setting the registers to

appropriate values.

Then the required program starts running on the executioner's

machine. Now all the input and output requests which are made by the running

program calls our routine instead of the usual routine. If there is a call to

interrup(16 for input purposes it is simply redirected to the launcher's machine

and the launcher's machine uses the same interrupt to get the input from the

51

user and sends the result to the executioner's machine. Similarly the interrupt

1 0 is redirected to the launcher. A particular handler for interrupt 16 or

interrupt 10 looks like:

void interrupt new _1 O(void)
{

}

store the current stack segment and stack pointer
set the stack segment and stack pointer to our own internal
stack
find out the function and subfunction and make a request packet
send the request packet to the launcher's machine
wait for the result and then on getting response packet set the
registers to appropriate values and place any data required in
the requested buffer address
restore the current stack segment to the previous value
return

If the mode of execution is normal then the interrupt 21 request

is also processed by our routine. The interrupt 21 has many functions. The

handler first determines the function requested by the value of AH register and

branches to the appropriate routine to handle the request. This handler is

particularly a complex one as this has many functions involved and this also is

used for input, output as well as file and directory request.

If the function call relates to the input and output to the

standard input or output, first it is found if the input or output has been

redirected to a local file or not using the is_remote array values. (The value for

is_remote[O] is checked for standard input and is_remote[1] is checked for

standard output.) If the value are found to be 1 for the corresponding stdin or

stdout then the call is redirected to the launcher. All this is done by sending the

proper request packet to the launcher. On the other hand if these are found to

be not redirected then the control is passed to the original interrupt handler

which handles the request. If at the time of loading the standard input or output

has not been redirected, the executioner automatically set the value of

is_remote[O],is_remote(l] and is_remote[2] to 1 to redirect all the input or

output request to the launcher's drive.

52

If the function relates to creating or opening file using handle

then the function finds out if the file to be opened is on the launcher's drive by

looking the first two letters in the name or if the drive has not been mentioned

then by the current disk drive in effect. Also the file name con which is name

for console device is always supposed to be on the launcher's machine. If

these point to the launcher's drive then first a dummy file is opened on the

executioner by using the open file call to the original interrupt handler. If the

dummy file is not opened due to some reason, the same result is reflected to

the executing program. On successful opening of the local file, the request is

transferred to the launcher with its handle. Then the response for the request is

checked and if it is a success then the is _remote[handle]is set to I and the local

handle value is returned to the requesting program. If there is a failure in

opening file, then the local dummy file is closed and the particular flags are set

by the executioner for reflecting the failure to the requesting program. In case

of the file being on the local drive the request is passed to the original interrupt

handling function.

If a close file request with usmg handle comes then the

executioner then it first checks if the handle is remote and if it is, sends the

request to the launcher. On getting a success the local handle is also closed

and is _remote array is modified to reflect the status.

If the request is for any read or write file then it is checked if

the handle is on the l.auncher's drive then the request is simply transferred to

the launcher. In other cases the request is transferred to original int 21 handler.

If the request is for redirect handle then four case may arise :

1. both handles are local on the machine, and then the request is

transferred to the original interrupt handler which services the request.

2. If both are on the _remote machine then the request IS

transferred to the launcher which services it and makes appropriate changes.

3. If the handle to be redirected on the local machine and other

handle refers to the file on the launcher's driYe then the is remote for the local

53

handle is changed to 1 to make it reflect that it represents the file on the

launcher's drive.

4. If the handle to be redirected refers to a file on the launcher's

drive and the other handle is local in that case the request is sent to the

launcher as well as to the local interrupt handler and the is _remote for the

remote handle is changed to represent local. This makes the handle to be

redirected to the true file.

If the request is for duplicating remote handle then the local

handle is duplicated first with the help of original int 21 handler and then the

request is transferred to the launcher with the new handle received by

duplication.

If the function call is an open call then the drive byte of the

FCB is checked to find if the request for the launcher's drive. If it is not then

the request is passed to the original handler other wise redirected to the

launcher. The address of the FCB is saved in the FCB table maintained by the

executioner. The request packet contains in its buffer the FCB structure and

also the address of the FCB. The response packet contains the information to

be filled in the FCB structure and the executioner fills them into the FCB.

If their is an request for closing the FCB file then the FCB

address is compared with the addresses in the table and if it is found in the

table the request is transmitted to the launcher's machine and after getting the

result the address of FCB is deleted from the FCB address table.

If the request is to read or write in file on the launcher's

machine then the data (if the request is to write) and the FCB is sent to the

launcher. After getting the response the executioner fills the particular fields in

the FCB to represent the current state of the file and fills the data read in the

current DT A.

Similar action is taken when an extended FCB is used. Only the

bytes positions required to be read in the FCB are increased by 7 bytes.

54

Other critical functions to be serviced are find first and find

next matching files using FCB which are serviced by simply sending the

address of FCB and the content of the FCB at the time of find first matching

file function. Then on subsequent find next matching file function only the

address of FCB is sent to the launcher. The similar action is taken for find first

matching file and find next matching file function using the handles. In this

case the drive letter in the path of the file is found out or in absence of the

drive name the current drive is used to determine if the request has to be

transferred to the launcher. The executioner in this case sends the whole

structure to the launcher at each request of find first or next matching file to

the launcher. The response carries the modified structure that is copied back

into the same place. And the result is sent back in the registers.

One more function related to the FCB is set dta address

function which is saved by the executioner and also sent to the launcher at that

time and sent to the original handler . This address is set by default to

psp:0080 (hex) of the running program in start the address which represents

the default FCB used by the program.

The ·functions related to. the disk and directory ar~ simple to

handle. If the function is set disk and the demanded disk is the redirected_ disk,

the variable is_remote_disk_default is set to 1 and the success is returned in

the appropriate register. Otherwise the original function is called and if that is

a success then the variable is remote disk default is set to 0. If the function is - - -

get current disk and the is_ remote_ disk_ default is 1, the drive returned is that

of the redirected drive. Other functions are similarly detected to find the disk

on which it has to be operated and then either the call is redirected to the

launcher or to original handler. The response from the launcher is copied to the

appropriate buffer in every call.

55

6.3.3.4. Submitting the exi\. code of program and agam gomg into waiting

mode:

If the executing program.s exits then the launcher gets back the

control. It then determines the exit status of the running program and send it to

the launcher in the ending execution packet.

After this step the executioner tears down the session by issuing

a NetBIOS hangup command, restores the address of al.l the interrupt handlers

and again starts waiting for other request from any of the launchers.

56

Chapter Seven.

Results and Future Extensions

• Results

• Future Extensions

7 .1. Results:

After the implementation of the program it was tested for the following

situations:

1. The launcher was loaded and was submitted a program

which was on the executioner's drive. The program run correctly and the

output and the input of the program was redirected to the launcher.

2. The launcher submitted a program which was on the

launcher's drive and this also run in usual fashion.

3. The launched program tried to open files on the launcher's

disk and it was successful.

4. The command interpreter was loaded on the system and all

the copy delete operations were tried for both the drive on executioner as well

as the drive on the launcher's machine and this was a success.

5. A program was loaded on the system and the control+c was

used to terminate the program successfully.

6. A program with its output redirected to the file on the

launcher's drive was opened and it was a success.

7. A terminate and stay resident program was loaded and this

made the system on the executioner and-the launcher to hang.

57

7 .2. Future Scope

The future extension of this work may be done in the following direction.

1. The first obvious extension to the system will be to port the system

to windows.

2. Again the communication is done using different protocol layers the

presentation layer may be changed to make it compatible with the UNIX

system in which the layer mav be used to map system call of one platform to

other's. This may be used to run a DOS ·or windows session from UNIX

system (UNIX system also has the capability to support NetBIOS protocol)

3. The system may be modified to support sector level input output for

the remote drive.

4. Higher level memory may be used by the system to conserve the

conventional memory in which the DOS programs are run.

5. This system may be extended to run NetPC which connected to a

powerful server machine having a multitasking operating system like windows

or windows 95 and running programs on behalf of the NetPC.

6. The system may be modified to run a terminate and stay resident

program also.

58

APPENDIX-A

LISTING OF HEADER FILE NETBIOS.H

!* Netbios.h */

#ifndef NETBIOS H
#define NETBIOS H

typedef unsigned char byte;
typedef unsigned int word;

typedef struct
{

byte NCB_ COMMAND;
byte NCB_ RETCODE;
byte NCB_LSN;
byte NCB_NUM;
void far *NCB_BUFFER_PTR;
word NCB_LENGTH;
byte NCB_CALLNAME[16];
byte NCB_NAME[16];
byte NCB_RTO;
byte NCB_STO;

. void interrupt(*POST FUNC)(void);
byte NCB_LANA_NUM;
byte NCB_ CMD _ CPL T;
byte NCB_RESERVE[14];

}NCB;

char *net_ error_ message[]= {
"success", !* 00
"invalid buffer length", /* 01
"ret code 02", I* 02
"invalid command", I* 03
"ret code 04", /* 04
"timed out", /* 05
"buffer too small", /* 06
"ret code 07", /* 07
"invalid session no", I* 08
"no resource", /* 09
"session closed", /* OA
"command cancelled", /* OB
"ret code OC", /* oc
"dupl. local name", /* OD
"name table full ", I* OE

59

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*/
*I

"active session". I* OF *I
"ret code 1 0". I* 10 *I
"session table full", I*. 1 1 *I
"no one listening", I* 12 *I
"invalid name number". I* 13 *I
"no answer", I* 14 *I
"no local name", I* 15 *I
"nan1e in use", I* 16 *I
"name is deleted". I* 17 *I
"abnormal end". I* 18 *I
"name conflict", I* 19 *I
"ret code IA", I* IA *I
"ret code IB", I* IB *I
"ret code 1 C", I* IC *I
"ret code 1 D", I* ID *I
"ret code 1 E", I* IE *I
"ret code 1 F", I* IF *I
"ret code 20", I* 20 *I
"card busy", I* 21 *I
"too many cmds", I* 22 *I
"invalid card num", I* 23 *I
"cancel done", I* 24 *I
"ret code 25", I* 25 *I
"cannot cancel" I* 26 *I

}
#define RESET Ox32
#define CANCEL Ox35
#define STATUS Oxb3
#define STATUS WAIT Ox33
#define TRACE Oxf9
#define TRACE WAIT Ox79
#define UNLINK Ox70
#define ADD NAME OxbO
#define ADD NAME WAIT Ox30 - -

#define ADD GROUP NAME Oxb6 - -
#define ADD GROUP NAME WAIT Ox36 - - -
#define DELETE NAME Oxbl
#define DELETE NAME WAIT Ox31 - -
#define CALL Ox90
#define CALL WAIT OxlO
#define LISTEN Ox9l
#define LISTEN WAIT Oxll
#define HANG UP Ox92
#define HANG UP WAIT Oxl2
#define SEND Ox94
#define SEND WAIT Oxl4
#dctine SEND NOACK Oxfl
#define SEND NO ACK WAIT Ox71 - - -

60

#define CHAIN SEND Ox97
#define CHAIN SEND WAIT Oxl7 - -
#define CHAIN SEND NO ACK Oxf2 - - -
#define CHAIN SEND NO ACK WAIT Ox72 - - - -
#define RECEIVE Ox95
#define RECEIVE WAIT Oxl5
#define RECEIVE ANY Ox96
#define RECEIVE ANY WAIT Oxl6 - -

#define SESSION STATUS Oxb4
#define SESSION STATUS WAIT Ox-34 - -
#define SEND DATA GRAM OxaO
#define SEND DATA GRAM WAIT Ox20 - -
#define SEND BCST DATA GRAM Oxa2 - -
#define SEND BCST DATA GRAM WAIT Ox22 - -
#define RECEIVE DATAGRAM Oxal
#define RECEIVE DATAGRAM WAIT Ox21 - -
#define RECEIVE BCST DATA GRAM Oxa3 - -
#define RECEIVE BCST DATA GRAM WAIT Ox23 - - -

#endif

61

•
•

•

APPENDIXB

MS DOS INTERRUPT 21 reference

Input Output related functions
FCB related Int21 functions
Handle related Int21 functions
Directory related calls

B.l. INPUT OUTPUT Related Functions:

The various interrupt 2I functions which are related to the

output produced on the screen are (the _function no is the number to be set in

the AH register while executing the interrupt):

I. function 02 (hex) : It is used to print a character at the current

cursor position on the screen. The cursor position is advanced after printing

the character.

2. function 06 (hex) : It is used to write all possible characters

and control cod.es without the interference from the operating system. The

character to be printed must be between 0 (hex) and OFE (hex).

3. function 09 (hex) : It is used to display string on the screen or

the standard output. The string must be terminated with the character '$'. It

means that this function prints all the characters in the buffer till the charact~r

'$' and so it can not print the character '$' itself. A control-C at the keyboard

while using this function calls control break handler which is actually int 23

(hex) set by the operating system.

The various INT 2I (hex) functions which are used for input by

a program are:

1 . function 0 I (hex) : It is used to input a character from the key

board. The function echoes the character to the display. When no character is

ready inthe keyboard buffer. it waits for one to be available.

62

2. function 06 (hex) : It is used for direct console input. The

function represent an input when the value in DL register is equal to OFF

(hex).

3. function 07 (hex) : It reads a character from standard input

device without echoing it to the standard output device. It waits if no character

is available at the keyboard.

4. function 08 (hex) : It is similar to the function 07.

5. function OA (hex) : It reads a string of bytes from the

standard input device up to and including an ASCU carriage return and places

the character read in a user designated buffer. The characters are echoed to the

standard output device.

6. function OB (hex) : It checks whether a character is available

from the standard input device.

7. function OC (hex) : It clears the standard input buffer and

then invokes one of the character input function which is specified. It is used

to flush the MS DOS type ahead buffer.·

In these functions, 01 (hex), 08(hex), OA (hex),OB (hex) and OC

(hex) are control-C sensitive. It means that if control+C is pressed at the time

these active, then the control+break handler of the DOS is invoked. The 07

(hex) and 08 (hex) although similar in other respect differ in this property

only.

B.2. FCB Related Int 21 Calls

The most commonly file related Int 21 (hex)operation used

with FCB are:

I. function OF (hex) : opens a file and makes it available for

subsequent read and write operations.

63

2. function I 0 (hex) : closes a file and flushes all the internal

MS DOS disk buffers associated with. the file to the disk and updates the

directory entry if the file has been modified.

3. function II (hex) : It searches the current directory on the

designated drive for a matching filename.

4. function I2 (hex) : Given that a previous call to INT 21

function 11 (hex) has been successful, returns the next matching filename (if

any). It should be used with the above call only.

5. function 13 (hex) : It delete all the matching files from the

current directory on the defau_lt or specified disk drive.

6. function I4 (hex) : It reads the next sequential block of data

from a file and then increments the file pointer appropriately.

7. function I5 (hex) : It is used for writing next sequential block

of data into a file. It then increments the file pointer appropriately.

8. function 16 (hex) : It creates a new directory entry in the

current directory or truncates any existing file with the same name to zero

length and opens it for subsequent read/write operations.

9. function 17 (hex) : It is used to rename file in the current

directory on the disk in the specified drive.

10. function 1A (hex):. sets the address of the DTA (disk

transfer area) for subsequent FCB related function calls.

11. function 21 (hex): used for reading a selected record in a

file into memory.

12. function 22 (hex): writes data from memory into a selected

record in the disk.

13. function 23 (hex): It is used for getting the file size.

14. function 24 (hex): Sets the relative record number field of a

FCB to conespond to the current file position as recorded in the opened FCB.

64

15. function 27 (hex): reads one or more sequential records

from a file into memory, starting at a designated file location.

16. function 28 (hex): writes one or more sequential records

from memory to a file, starting at a designated file location.

17. function 29 (hex): parses a text string into various fields of

an FCB to be used afterwards.

18. function 2F (hex): It is used to get the current DTA address.

B.3. Handle related Int 21 calls

The various handle related functions calls (Int 21 (hex)

functions) are:

1. function 3C (hex) : Creates a new file in the designated or

default directory in the designated or default drive. If the specified file exists

then it is truncated to zero length. In any case the file is opened and a handle is

returned.

2. function 30 (hex) : It opens the specified file and returns a

handle to it.

3. function 3E (hex) : It closes the file associated with the

handle. All the data in the MS DOS disk buffer related to the file are flushed to

the disk and the directory entry is updated.

4. function 3F (hex) : Given a valid file handle from a previous

open or create operation, this transfers specified bytes of data from the file at

the current file pointer position to the designated buffer whose address IS

passed to the function. It also updates th.e file pointer position.

5. function 40 (hex) : It is used to transfer data from the

specified buffer into the file. It also updates the file pointer position.

6 function 41 (hex) : It is used to delete a file.

65

7. function 42 (hex) : set file pointer relative to start of file, end

of file or the current file pointer position.

8. function 43 (hex) : get or alters the attributes of a file or

directory.

9. function 44 (hex) : provides input/output control (IOCTL)

for devices from the application program.

10. function 45 (hex): duplicates handle for a currently open

file or device.

11. function 46 (hex): Given two handles, it redirects a handle

to point to the same device or file at the same position as the second handle.

12. function 4E (hex): Used for searching a matching file in a

specified or default directory in the spec"ified or default disk.

13. function 4F (hex): Used with the above function to find

next matching file.

14. function 56 (hex): used for renaming file.

15. function 57 (hex): used for getting or setting file data and

time.

16. function SA (hex): used for creating a new file with a

unique name in the specified or default directory on the specified or default

disk.

17. function 5B(hex): creates a new file. fails if file exists.

18. function 5C (hex): locks or unlocks the specified region of a

file.

19. function 67 (hex): used to set the maximum handle count

for the application.

20. function 68 (hex): commits fik i.e., forces all the internal

butfer of the operating system to be physically written to the file or device.

66

21. function 6C (hex): opens, creates or replaces file and returns

a handle that can be used. It combines the capabilities of function 3CH, 3DH

and 5BH.

B.4. Directory And Disk Related Calls

The ft!nctions related to the directory tree are :

1. function OE (hex) : used to select the current drive.

2. function 19 (hex) : get current drive.

3. function 39 (hex) : create a directory.

4. function 3A (hex) :remove directory.

5. function 3B (hex) : select current directory.

6. function 47 (hex) : get current directory.

7. function 00 (hex) : used to reset disk by flushing all the file

buffers.

8. function 1B (hex) : obtains selected information about the

current disk drive.

9. function 1 C (hex) : similar to 1 BH but can be used for other

disk than default.

I 0. function 36 (hex): obtains selected information about a disk

drive, from which drive capacities and the remaining free space can be

calculated.

67

BIBLIOGRAPHY

BOOKS AND JOURNALS

1. Tanenbaum, Andrew S., Computer Networks , Prentice Hall Of
India, New Del~i, 1993.

2. Stevens, W. Richard., UNIX NETWORK PROGRAMMING,
Prentice Hall Of India, New Delhi, 1996.

3. Comer, Douglas E., Interne/working with TCP/IP, Volume I,
Principles, Prc!ocols and Architecture, Prentice Hall Of India,
New Delhi, 1996.

4. Stallings, William., DATA AND COMPUTER
COMMUNICATIONS, Prentice Hall Oflndia, New Delhi, 1996.

5. Abel, Peter., IBM PC ASSEMBLY LANGUAGE AND
PROGRAMMING, Prentice Hall Oflndia, New Delhi, 1993.

6. Duncan, R., ADVANCED MS DOS PROGRAMMING, Microsoft
Press, 1994.

7. Nance, Barry., NETWORK PROGRAMMING INC, Prentice Hall
Of India, New Delhi, 1996.

8. Schildt, H., TURBO CIC++, A COMPLETE REFERENCE,
Osborne McGraw-Hill Publication, 1994.

68

	TH63780001
	TH63780002
	TH63780003
	TH63780004
	TH63780005
	TH63780006
	TH63780007
	TH63780008
	TH63780009
	TH63780010
	TH63780011
	TH63780012
	TH63780013
	TH63780014
	TH63780015
	TH63780016
	TH63780017
	TH63780018
	TH63780019
	TH63780020
	TH63780021
	TH63780022
	TH63780023
	TH63780024
	TH63780025
	TH63780026
	TH63780027
	TH63780028
	TH63780029
	TH63780030
	TH63780031
	TH63780032
	TH63780033
	TH63780034
	TH63780035
	TH63780036
	TH63780037
	TH63780038
	TH63780039
	TH63780040
	TH63780041
	TH63780042
	TH63780043
	TH63780044
	TH63780045
	TH63780046
	TH63780047
	TH63780048
	TH63780049
	TH63780050
	TH63780051
	TH63780052
	TH63780053
	TH63780054
	TH63780055
	TH63780056
	TH63780057
	TH63780058
	TH63780059
	TH63780060
	TH63780061
	TH63780062
	TH63780063
	TH63780064
	TH63780065
	TH63780066
	TH63780067
	TH63780068
	TH63780069
	TH63780070
	TH63780071
	TH63780072

