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CHAPTER - T

A FOURTH=-ORDER FINITE DIFFERENCE
METHOD FOR A CLASS OF SINGULAR
TWO-POINT BOUNDARY VALUE PROBLEMS

Abstract

We discuss the construction of finite difference
approximations for the class of singular non linear two

point boundary value problem :
1) = £ (x,y), y(©) =4&, y(1) =B,
0<x<1,

We obtain a method of order four (—for all
o € (0,1) ) involving three evaluations of f, For (=0
this method reduces to the Noumerov's method., Convergence
of this method is established and illustrated by numerical

examples,

1. Introduction

We consider the class of singular two point boundary

value problem :

(1) =y o= £ (x,y), 0<x <1,

: Y(O) A,

Y(1) = .B’



N

where o is a constant satisfying 0 <&'<1, and

A, B are finite constants, Ve assume that for
(x,y) €{[0,17 X R |,

(i) £ (x,y) is continuous,

@) (ii) Jf exists and is continous and,
‘ oy
| (i11) £ > O.

oY

Certain clésses of singular boundary value
problems have been considered by Jamet Z?, 37 and
Parter /717 in the linear case only., Jamet studied
the application of a standard three point finite
difference scheme with a uniform mesh of size h and has
shown that the error in the maxihum norm is O( h1'°().
Ciarlet et al /4 7 used a suitable Rayleigh - Ritz -
Galerkin method and improved Jamet's result by showing
that the error in the uniform norm for their Gelerkin
approximation is 0 h2'°<). Gusttafsson /[ 5_7 gave a
numerical method for solving singular boundary value
problems by representing the solutions as a series
expansion on a sub-interval near the singularity and by

using différence ééthods for a regular boundary value
problém derived for the remaining interval. Reddian_[iﬁ;7

and Reddian and Schumaker./ 7_7 have studied collection
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| for the solution of singular two point boundary value
problems, Their methods concern projection into finite-
dimensional linear 'spaces of singﬁlar non-polynomial
splines, these singular splines possess-convenient local
support ba;is which have a certain advantage in numerical
computations. Recently Chawla and Ka¥ti [ 8.7 have given

a second-order method for (1),‘based on uniform mush,

In this chapter we present a fourth order finite
difference method for the class of two voint singular

boundary value problem (1).

In section 2, using a certain identity based on
uniform mesh over [/~ 0, 1 7, we obtain method of order
four (for all C(éf(0,1)_) based on three-evaluations of f.
This method has the property that for o = 0 it
rediices to the well known Noumerov's method, O (hh) -
convergence of this method is established under Suitable
'conditions. Numerical illustrations are given in section

3, which establish |0 (hh) convergence of above method -
for various €& (0,1).

2o The Finite Difference Method : -

For a + ve integer N 22, éonsider the uniform

mesh over closed interval /[~ 0,17 : 0 = X { Xg L XpSee ol Xy = 1.
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with x = kh, Let y, = y(xk),~.fk = f(x, v,) etc.
Following Chawla and Katti / 9 7, with p(x) = x¥,
we obtain the 1dent1ty
(2) Yy =¥ Ve = Veq Lo I,
._]’{.'!'.1_____}5.. k k1=k+ k ,k=1(1)N"1
Ik - Igq

where we have set

¢ o o= 1 jxk-’ﬂ (x;':(1 St £t at

‘.and'

, 1 _ ..
W) 5 = (x4 = % )/ (=)

Using ideﬁtity (2) various methods Ean be obtained
for the singular two point bounda;y val@e problem (1).
We are interested in obtaining method of order four based
on three evaluations of f . 1In section‘2.1 we obtain a
method of order four based on uniform megh and prove its

convergence in section 2,3.
;

2.1 _Fourth Order Method

We assume that



(5) o IT

T Ik

T T +

o'k Tx * 1,k Tk

02’k T+ oty (h).

5 ’ .
where ¢; ;4 8. are certain function of x,  s.
: 9

By ‘Taylor expansion of f about X and comparing the

coefficients of f, f and £ we find that

- | 2 2
(6a) €y = (=Bp + h" By ) /h
= 2 .
(6b) c1’k_ = ( By x *.h By y ) / 2h |
- o 2
(6¢) Coyx = (132,k - hByy ) / 2h
where
m+1 0 ( i+j+2
: -1)
(7) B, = 2- 2
’ f=o i=-1 I
J
( m+2- o =j Mm+2= X =3 ; ] X m+1
. - Xy . :
xk+1+l k+l’ . ‘L (m)( .j )
Then
- X1 1 x ‘
- - Xk -



(o)}

‘where
\ = (i Y-
(9) C3 .y = (Bg, -h" 3By )6
. - . =X =§ 5= =]
A SCONE R S P )s
' 53, “3=0 . (53 .
(10) G(s)=" J

:ﬁ(§§ s.g‘xk+Hi

L.. o ) - -- - -.
1 5= (03 4y s )_<SS T eI,

k=1"3=0 g (O==13

X $ 8 < Xy

with the help of (5)and (2) we obtain

(1) 1 1 1 ! c |
T T Yk + ( 3 M 3 Wy - I k+17 "0,k f;: *
k=1 k k-1 k
Cok Tksr +Cox Tymq + t, (h) = 0, K= 1(1)N-1

A finite difference msthod can now be based on the
discretization (11) of the differential eqpation together
with the boundary qonditions;‘note that each discretization
in (11) is based on three evaluation of f, Our method
can now be based on (11) neglecting tk(h); the fourth

order convergence of this method is given in Sec, 2,3
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2.2 Matrix Formulation of our Finite Difference Method

It is convenient to describe the above method in

. ' N=1 ,
matrix form, Let D ( di,j ) 1,3= 1 denote the
‘tridiagonai matrix with
; 1 1
Kk ST Y TR ko= 10181,
1 | (1)
- - — x = 1(1)N-2
A, k+1 e 7’ ‘ ’
: 1
U ket = =TT k = 2(1)N-1,
let
N-1 :
P = (pij) 1, 3=1 denote the tridiagonal matrix
with
Pe,x+ik- = C1,x, k = 1(1)N=2
Pek-1 = Co,x,° x = 2(1)N-1,
and let

_ T
Q = (Q‘}r’o,oo ee oo .o o0 qN_1) .



o

where
_ A
Q4 = - CZ,1 £ +‘—3; ’
q = - ¢ £+ B .
Also, let
— 3 F ) ' ¥ T
Y = ( Y1’ Yz’.. oo oo ’yN"1)

. ) T
F(Y) = ( f1, fz’oo s0 ooy fN_dl)

'_ T
and T —‘('t." t2,“ se ooy tN'—1)

Then the finite difference discretization

described by (11) can be expressed in the matrix.form as

(12) | DY + ?F(Y) + T = Q

/ Our method now consists:of finding an approximation

I~

Y for Y by solving the (N=1) ¥ (N=1) system :
(13) DY + PF(Y) = Q

In case f(x,y) is linear, (13) leads to a tridiagonal
linear systemj in the non=-linear case the system (13) can
be solved by Newton- Raphson method and an adaptation of

Gauss elimination for tridiagonal linear system,
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2.3 Convergence of~the Method -

We next sHow that the method described by (13) is
o(n?)-»convergent for all <X € (0,1),

let

T
E = (ej.,‘ B 010 o9 eN_1)

~ .
Y =-Y
we may write

(14) £(x Vi ) = f(x, Vi) = ey U, k= 1(1)N=1

for suitable Uy 'S ; note that U, > O.

With the help of (14) from (12) and (13) we

[

obtain the error equation

(15) (D +PM)E = T

where

M = diag {U.‘, e o e e o o UN-1}

It is easy to see that, for sufficiently small h,
D + PM is irreducible and monstone and PM 2 O,

Therefore (D + PM)'1 exists,

O+~ > 0 and
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(16) @+ g p!
So from (15) and (16) we have
7 el < ot o

Using the usual arguments for inverting a

symmetric tridiagonal matrix, it can be shown that

(see Appendix [ 1_7).

. - -
if D = (di'j ) , then,
(18 af'. = X (1-xj1"°‘) / (-x), i< 3

1,d

T 0T (e, 13

We next obtain bounds for the local truncation
error t, . For sufficiently small h, we see that G (s)

has the same sign in (Xk-1 Xy 41 ). Hence (8)' can be
. 4

written as

- 11y (4) oy
where
L | A
Ca,k = (BLHk - C1’kvh - Cz,k h*)/24

gince for fixed X



(20)

and

(21)

(22)

and

(23)

+

(24)

lim o X -

3,k =< "k kK = 1(1)N=1
h—0 —5-'-—- = - ’ !
L R 2L (1=-o¢)?

c ‘ 56X
1im bk % . ko= 1(1)N-1
h=>0 'y 240 (1-)7

It follows that for sufficientiy small h,

5 X1 ;
Gl <3 (1= X )?
o
h?
\Cu,i| <

120(1=( )?

We assume that
X3 lfnt ‘ é N,] ,
O X+ ,f()lgNZ, 0 < x 1

for suitable positive constants N, and N Then

2‘

with the help of (22) and (23) from (19) we obtain



12 3

(@) ) < e’ -~ xk.20<-1

‘where -
1O<><N,l + N,

C = ———
120 (1= o )

Using (18) and (25), from (17) we obtain

(26) \ei\< ;1 di’j \tj | 1 =1(1) N-1
, i :
< Ch? [(1-3{11-0(-) Z_ xX & Xii'-qZNfJ___
T (1-X) . 3= 3= 1+1

(szof‘j T x5>< ) ]'

It is easy to establish the inequality:

1+

i X4 : X
(27) n 3= = N gx = —=x
=1 xj < §> 7 *oo (1+ X )
Again,

b %‘E (2% o Xy (2% 1 _x)ax
5< .3



(28) ) XNZO(_ x12°< x;lli]-'.a( - xi1 +
< — - —
2 1 +

With the help of (27) and (28) together with
X =1, from (26) we obtain.

4 | 1=
Ch’ _ xi (1_ % 29()
2X(1 +)

(29) | <

It can now be shown that for i = 1(1) N-1,

(30) "X (1= x2%) < 1

With the help of (30) from (28) we obtain for

sufficiently small h,

(31) | EH‘,E. = max | ey |
“ 151 N1
; c* hh o* - C
’ ‘ 2X (1+ ')

We have thus established the following result : -



Theorem : Y

Assume that f satisfies (A); further let
f(LF)é C {[O,.‘]_] X R} , xBo(‘/ff,,-"'-l/ ,
PW¥II§M/ETC{[mL]fo;-

Then for the method based on (11) with = kh,

X
. "k
we have for sufficiently small h, for all < &:.(0,1),

(32) Al El]: = o

3. Numerical Illustrations :

We next illustrate our method by considering the

following three examples.,

Example 1

We consider the noh linear differential equation
(xXyt)r = ﬁxq+p°2(pxp:ey-(d+ﬂ-1w
‘ (4 = xﬁa) c T

subject to boundary conditions

¥(0) = In(—=)ad V(1) = In (—4—)

With exact solution jg(x) = 1n (1/ (4+ xP ) )

For N = 2%, k = 3(1)8, the corresponding values of

J] E|| . are shown in table 1,
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TABLE - 1 »

N A e
K= 0.25, PB= 4,0

8 | 4,1 (-5)
16 2.5 (=6)
32 - 1.6 (=7)
64 9.9 (-8)
128 \ 6.2 (-10)
256 3.9 (-11)
o= 0.5 P= 3.0

8 7.6 (=5)
16 4,7 (=6)
32 2.9 (=7)
64 1.8 (-8)
128 1.4 (-9)
256 7.2 (-11)
o = 0.8 B= 1.8

8 . | 6.9 (=4)
16 4.6 (=5)
32 2.9 (-6)
64 1.9 (=7)
128 1.2 (-8)-'
256 7.3 (=10)




Example 2’

We consider the linear differential equation

(x‘xyv)?' = /gxo("' B -2 ( (ec+ B 1)+ ﬂ%ﬁ)y
subject to boundary conditions

v(0) = 1 and (1) = e

Py

with the exact . solution ¥(x) = exp (x

For N = 2k, k = 3(1)8, the'corresponding value

~ of "|] E ||~ are shown in table 2,
TABLE = 2
N . B

[

X =0.25, [B= 4.0

8 9.3 (=3)
16 - 6.4 (-4) ,
32 . ho1 (=5)
64 2.6 (=6)
128 1.6 (=7)

256 . 1.0 (-8)
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-C><=005 ’ ﬂ= 300

8 1.4 (=2)
16 - © 1,0 (=3)
32 ‘ 6.6 (=5)
64 4,2 (=6)

128 2.6 (=7)
256 | 1.6 (-8)

O( = 0,8 * ﬂ'—" 108

8 | 3.7 (-2)
16 3,6 (~3)
32 ‘ 2.6 (=4)
64 1.7 (=5)

128 1.1 (=6)

256 , 6.6 (=8)

Example 3
We consider the linear differential equation
(x¥y1)" = = (x Cos (x) + (2=o¢) Sin(x) )
subject to the bouﬁdary conditions

y(0) =0 , ¥(1) = Cos 1

with the exact solution y(x) = %1~ % Cos Xe
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This example has been considered by Gusttafsson/ 5 7.

For N = 2k, k = 3(1)8, the corresponding value of

”}\E H. are shown‘in.table 3.

TABLE « 3
N - - HE ]
X = 0,25

8 4,7 (~6)

16 | 2.9 (=7)

32 . 5.8-(-8)

644 _ , ﬁ.'l (=9)
128 7. (=11)
256 4,2 (-12)

o =.0.5

8 | 2.7 (-5) ’
T 1.7 (=6) |
2. 1.1 (=7)

64 6.6 (=9)
128 _ 4e1 (-10)

256 2.5 (-11)
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e s (wb)
; | 6.1 (=5)
o | R (=6)
. a5 (=7)
) - 1.5 (-8)
128 :

i 906 (’10)
256 .




CHAPTER = II

-~

A NEW FINITE DIFFERENCE METHOD AND ITS
CONVERGENCE FOR A CLASS OF SINGULAR
TWO__POINT BOUNDARY VALUE __PROBLEMS

PART -T
Abstracf |

A new finite difference method based on uniform
mesh is given for the (weakly) singlilar two point

boundary value problems:

XXyt = 2(x,y), y(0) = A, y(1) =B, 6<x<1.

Under quite geheral conditions on f' and f'', we show that
our method based on uniform mesh provides O(h2) convergent
apprc;ximations for all o( £{(0,1). Our method is based on
one evaluation of f and for, o = 0 it reduces to the

classical second order method for y'* = f (x,v).

1 Introduction

Consider the (weakly) singular two point boundary

-value problem :

(1) xXyrr = f£(x,y), ' O<xg1

A, y(1) = B.

y(0)

Here &« €(0,1) and A, B are finite constants. We

assume that for (x,¥) €. {([0,1_7 X Rj»
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b (i) f (x,y) is continuous
(A) (ii) 2f éxists and is continuous
oy
111) 2
(iii) 9f >0

¢ Y

The abo&e problem occurs in various branches of
enginéering, méchanies etc, Such a problem has extensivély
been dealt with by Mayers /£ 10_7. The purpose here is to
give a simple finite difference method based on uniform
mesh for the singular two point boundary value problem
 (1), The method'is based on one -.evalugtion of f,
Under quite general conditions on f' and f'! we show that
our present method provides O(hz) - convergent
approximations for all « €(0,1). The present method,
its second order convergence for various 0(6(0,1) and
the conditions guarapteering convergence‘are illustrated

by an example.

2 The Finite Difference Method ’

For a + ve integer N 22, consider the uniform
mesh over closed interval /0,17 : x = kh, k = 0(1)N,
h = —11\,— Let Y, = )y(xk),' £, = ,(xk, Vi) ete.
We write (1) in the form
@)y =X Y2Gy) T

TN -2eXg




we set
Z(X) = y! :
Integrating (2) from X, to x, we obtain
_ _ x - '
(3) z(x) =z, + S t~ 7 £(t) dt
Xk
where .

£(t)

£(t, Y(t))ﬂ

Integrating (3) from x, to x,, and j.nterchanging

the order of integrétiory we obtain

v N |
(B Vgaq =V = meh K4 (3, q -0~ ¥E(t) dt,
Xk : .
Similarly
(5) ¥y = Vyeq = Zgeh - 5 (t -x,_)t" " £(t) dt.
=1

Eliminating z;,, from (4) and (5) we obtain the

identity :

Xk +1 o
(6) Vge1 "k * Vgaq T S C(xq =)t £(t)dt
| *k
X
+J (e )T E(E) at
X1

k = 1(1) N-1
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Identity (6) is our basic result from which
methods of various orders can be obtaiied for the
two point bbundary value problem (1). HoWever, we
shall be interested here in bbtaining a method of order

two which will be based on 1 ewaluation of f.

By Taylor's expansion,of f about X 9 We

_ obtain.

(1) 2(8) = £+ (b= ) 8+ —pi—( tx )7 £10( 8 .
where e € (x}{/_.] , xk+1)

e with the help of (7) from (6), we obtain

(8)  <¥yoq * 2V = Vi *Bo Tyt te =0,

k = 1(1) N=1
where |
1 ( 2= & 2= 2=
B = ‘ - 2X +
0,k (1_0() (2_0() xk-1 k ) xk+1
and
_ 1
(9) % = Byt +-3 By (&),



where
m+1 . .
. (=1)9*1 ¢ XkJ-1
Bpx = .
- So (W= X = §)(m#2= X =)
M+3= X =3 m+3- X =3 M+3= X =3
C %y 4 - 2% * Xenq )s

., mo= 1,2 e

and

{1 . for allm& j
C =

2 for m=2, j=2

A finite difference method can now be based on
the discretization (8) of differéﬁtial equation involving
one evaluation of f. In section 4, we show that, under
suitable conditions, our.méthod based‘on (8) is O(hZ)‘

convergent,

3. Matrix Formulation of our Finite Difference Method

It is convenient to express the above discretization

. . . . — N-1 3
in matrlx form, Let D = (di,j)i,j=1 denote the
tridiagonal matrix with
Ay xaq = =1 k = 2(1) N-1
(10)  dp x = 2 x = 1(1) .N-1
d -1, k = 1(1) N=-2,

k,k+1 =



- and
P = (pij) denote the diagonal matrix with
Py,x = Bo,k , k = 1(1) N=-1
Let . T
Q = (q1’000 *e e4e 4. O!Q.N_1)
where . .2
qq = = A
qN"'" = B,
Also;letf":? L
: , ' T
F(Y) - (f1’o e o o o'o' fN-1) 1}
T
Y = (y1’ oo oo oo o yN_1) )

3T
andT =‘ (t,], ee o6 oo g tN~1)

Thus the discretization (8) together with the

boundary conditions can be expressed as :

(11) DY + PF(Y) + T = Q

and a method based on (8) consists of finding

an approximation Y . for Y by solving the (=1)x(N=1)

system :
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.0
[ 2]

Q

(12) DY + PF (Y)

In case the differenfial equation is linear in
v, (12) is tridiagonal linear system; in the case of
non linear differential Qquation, the non-linear system
can be solved by Newton - Raphson method and an
adaptation of Gauss -~ elimination for tridiagonal linear

systems,

4, Convergence of the Method

We next establish .convergence of our finite
difference method showing that under suitable conditions
the above method provides d(hz) - convergent approximations

for all X € (0,1).,

let

&)
|

T
(e1,oo eeo o9 eN_1)
7~
= Y =Y
we may write

(13)  f(x, V) - £lx, v) = Uk =1(1) N-1

for suitable Uk%- Now
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(1) F¥ ) =FF¥) = ME

where
N-1 .
M = (mi.) is the diagonal matrix with
J i,5 =1 '

(note that U, > 0)

With the help of (14), from (11) and (12) we

obtain the error equation:

(16) (D+PM)E = T | i

*

To show that our method is O(h2) - convergent

we first establish the following lemmas.
Lemma 1 := B, 4, >0 for k = 1(1) N=1
0, : \

Proof :

let

-

(17)  £(x) = x2=%o (x -1)TX

(18) £ = (e=e) [£17%- ()]

-> 0 for x > 1
So, f(x) is strictly increasing function of x

which gives,
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fx 1) > £(x)
f(x +1) - f(x)>0

Om X

(k + 1)2"% - 2k*= s (=1)2""S 0.

This completes the proof of lemma 1,

Lemma 2 = The inverse of the matrix D is given as
(19) -1 N \
4. . — im=3) 1< 3
= 3N-1) , i 2]
Proof :
The proof is as given in Jain £ 11_7

Before doing the convergence analysis we mention

the following results

let W={1,2,oooo00,nj

Definition 1 :

A matrix A = (ai j) of order n 2 2 is
s
irreducible if for any two integer i and j, i€ w,
J € w, there exist a sequence of non-zero elements

of A of the form

I(au_%"aiiz SRR I }
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Theorem 1 :

A tridiégqnal matrix A = (-aij) is_irfeducible
if and only if
=% 0 (i= 2,3,; « o, n) and

ai i+1 4= 0 (i = 1,2,oo’o¢,n-1)

" Definition 2 :

A matrix A with real elements is called monotone

if AZ 20 implies - Z Z 0
Theorem 2 :

A matrix A is monotone if and only if the elements

of inverse matrix A'1 are non-negetive,

\

Theérem 3 2

Let the matrix A = (a:.L j) be irreducible and
9

satisfy the conditions,
(i) a&a; <O i # 33 1,3 = 1, eeen

(ii) <=2 233 { 2 0 i=1,250e000
) 0 for at least one i
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The proofs of theorem 1,2 and 3 are given in
Henriei [12 7.

Since for all h, D and D + PM are irredacible
and monotone and (D + PM)2 D
._we have
| -l T
(D+PM) < D

From (16)we obtain

(0) "l EIf 0Ty .

We next obtain a bound on the local truncation

error., Since for fixed xk
’

lim B - =1=X
h>o ko - X X
Bt
and _
‘ . B ' :
lim e 1 -
hso0 T "¢ %

it follows that for sufficiently small h,

(21) By ] < = e 1T, k= (1) N



: 31

22 B 1T, k=1 (1) N-1
(22) Iz,k’<—3—xk (1)

A

Now let o be fixed in (0,1) and let 3 be chosen
such that o +8 < 1 |

we assume that

; |
(23)  x" ] L W,

1+ .
(24) x P l f") < N2,' 0<xg 1.
N1 and"N2 are suitable positivé.constants. With

the help of (21), (22) and (23), (24) from (9) we obtain

for sufficiently small h,

-

(25) |t | < cnt x (x+ B

where
20(N1 + N,
6

Now with the help of (25) from (20) we obtain
lei}<§'z o dij . ]tj I ,
j =

| _ i =1 -(o¢+B)
< ot (1+o<+,6)[§ a5

N-1 -1 “1-(o¢ +/3)
LT )

J= i+1
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< ChB-( 0(+ﬂ) [( N-i) ' i Je
) ' dJ

N-1 ‘s =1=(x +)3)
(N-J ) J | J
EE:;1+

N
1

‘i
o R [ ey [ gD
N N 0 dut

j&
Y :
i .
cn- (X +P) [N 1=x=f _yn1=%~- ?2 i=1(1) N-1
BN - (e +p) (1= X - B )

Let us now consider the following f(x) as a

continuous function of x € [1, N-‘l]

£(x) = nl e X =B _ 1= %=

For maximum of f(x)

£(x) = N(1= ' =p) x ~ X=P == _ 4

gi.'s'res 1
i = x = (1=x=p) x+F . N
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(1)

| max :
HEN = 1gignm (ei)
b= o =3 1= - (3)
= ch N, (1 -~ @) oc+f5

T (x+B) (1= =p)

e xep
y1= X =P ~(1=x-B) &+ N.N -7

o¢ -6 2-0( B . 1
O("‘ﬁ) (=t ~[5) (1= i /3‘) o+ pH

1 van
S

1
D et
(1-o(-p)( X+ )

5_. Numerical Illustration

To illustrate our method and its O(h2) -

convergence we consider the following example.
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Example

We .consider the linear differential equation

. - -2
b AL (Zp- 1) X 0("'@ 2 +]3( ﬂ-1)Xo<+ﬁ~ log X

subject to the boundary conditions
y(0) = 0 and y(1) = ©
.exact solution is

y =X p log x

For N = 2¥ s k=2(1)¢, fhe corresponding value
of {1 E]| are shown in table. |
TABLE
N WE Y
~=0.25 , [3=3,50
L" 107 ("‘2)
16 1.0 (-3)
32 | 2.6 (=4)

6L | 6.5 (=5)
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| ~ ET
N

= 3.00
=0.50, [B= 3

- 1.3 (=2)
: 3.9 (~3)
. 1.1 (-3)
e 2.7 (-4)
. 6.9 (-5)
64
= 0,50, = 1.50
A 2.5 (=2)
; o 1.1 (=2)
‘ ‘ 4,5 (=3)
y 1.8 (=~3)
. 6.8 (~4).
6L

= 2,75
o = 0.75, = 2.7

1.2 (=2)
) ' 4,9 (-3)
. 1.6 (=3)
iy Lob (=4)
32

- 1.2 (=4)
64 .
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N
[HE )
« = 0.80, > = 3.00
4 .
) 1.7 (=2)
: 5.6 (~3)
o 1.5 (-3)
8 3.9 (=4)
‘ 9.7 (-5)
= 0,99, [=3.00
4 - bt
) 2,2 (=2)
: 7.3 (=3)
* 2.0 (=3)
” 4,9 (-4)
| 1.2 (=4)




PART =IT

1 Introduction

In Part I of this. chapter we have dealt thé

| pfoblem (1) for O <o¢< 1. Here we are extending

the same problém'for <>{= 1, with the same boundary
conditioﬁs. So our (weakly) singular two point boundary

value problem becomes

1y, =y

vf(XQY)’ 0 X<1

y(©) = 4,  y(1) = B

t

Our method is based on one evaluation of £,
under quite general conditions on - f' and f'!', We

show that this method provides 0( h log h)2 - convergent.

2. The Finite Difference Method

For a + ve integer N > 2, consider the uniform
mesh over closed interval /70,17 : 0 = X, < X4 ¢ Xpees
ees < XN’= 1, with X = kh,

Let

Yk = Y(xk), L o= f(xk,'yk)_etc,



We write (1) in the form

(2) y'r = x £(x,y)
we set | |

z(x) = ¥y

Integrating (2) from X to X, we obtain

(3)  2(x) = z + f Y s(1) at

where_
£(t) = £(t, y(t) )

Intégrating (3) from %, to x ., and interchanging

the order of integration, we obtain

« ,
v = . k+1 iy =1
‘ (4) Yeer =T = zk.;ﬁ; + S | ¥k+1 t) €7 £(t)dt
*x
In an analogus manner, we obtain
- | *k -1
- (5) Vg =V = Ll - j (t- x _,)t7"  f£(t)dt
X_k"1
' Eliminating z,,}, from (4) and (5). We obtain the

identity :



(6)  Viyq = Wy * Vyeq

Xl -1 % : ' - -
- 5 (%,,4-t)t""  £(t)at + § (t-x,_,)t7 £(t)dt,
Xy | Xyem
k= 1(1)N=~1

Tdentity (6) is our basic result from which methods
of various orders can be obtained for the two point boundary
value probleni (1); Hpwever, we shall be interested here in

obtaining a method, which will be based on 1 evaluation of

f.
By Tayloi’"é expansion of f gbout %, e obtain
‘.(7) £(t) = £y + (£'- X)) ff o+ E%T'“(t -xk)2 £ (& )
_where' ,ak' & (Xk;1, Xk-!-']) \
V;Ji'th the help of (7) from (6), we obtain
(8) = Vpeq * W = Vg FBy It h = O

kK = 2(1) N-1°



where

Xk+1
Xk

By,k = Xg4q 108 = Xyoq log

g1

= Xpyq 108 Xpyq 2%, 108 XX 4 log X g
and . » \

’ t : 1 ’ 1]
(9) % =By f + 3By £UE,

&y € (e, Feq )

where
m+1 m *x ' Xk +1
m=1_ 3 C m+l=j m+1=j m+1=3 -
. ) (-2g)% (xeyq -2 v 3y ),y
9=0 ' (@ =37
m = 1,2

Ve note that the discretization (8) for differential
equation (1) holds for k = 2(1) N=1. For obtaining the

d4scretization corresponding to k = 1 we proceed as follows:

putting k = 1 in (6) we obtain



. 'Xé X : . &
(10) Y, = 2yq = ¢( ( ¥§__ - 1) £(t) 4t + S £(t) dt
* | ko
Since Yo = A
and X5 =

From (10) we obtain

(11) -yo * 2y4 +‘B ’;f1 + t1’ = A
v X5
where Bo,1 é X5 log E;"
(12) and

i 1
g =By + By f (&), x<E<x

and
- 7 2
Bjjq9 =——3—~h
o 2 3
Bo,y = T3 b

A finite difference method can now be based oﬁ
the discretizations (8) and (11) of differential equagtion
involving one evaluation of f, In section 4 we show that,
under suitable cbnditions, our method based on (8) and (11)

is O (h logk1)2 convergent,



3. Matrix Formulation of Our Finite Difference Method

It is convenient to expressvthe above

. . . . . . yN=1
discret t € f o t = (d. .). .
iscretization in matrix form, Let D ( 1,3)1,3= 1

denote the fridiagonal_matrix with

(13)  dyg yq = =1 k= 2(1) N-1
dk,k = 2 k= 1(1) N=-1
dk,k+1 -1 k = 1(1) N=2
let
N-1 v
P = (pPs)s o denote the diagonal matrix with
1J7°1,3=
Piqg = Bo,1
P,k = Bo,k ? k = 2(1) N-1

let
Q = | q T
t— (q1 O’ * L L] * * O’ N-1 )
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Also, 1let

T
F(Y) = (f1’ao oo oo oy fN_q)
T
Y = (y,],.. se so0 ..,YN_1_)
| T
and T = (t1 , ee oo o0 oo ’tN-fl )

Thus the discretizations (8) and (11) can be

expressed in matrix form

(14) DY + PR(Y) + T = Q

'

and a method based on (8) consists of finding
an approximation Y for Y by solving the (N-1)x(N~-1)

system

(15) DY + PF(Y) = Q

In case the differential equation is linear in
y, (12) is tridiagonal linear system; in the case of
non=-linear differential equation, the non-linear system
can be solved by Newton - Raphson method and an
adaptation of Gauss = elimination for tridiagonal linear

systems,



b .:

4, Convergence of the Method

We next establiSh convergence of our finite

difference method shbwing that under suitable conditions

the above method provides O( h ibgh)z ) - convergent

. approximation for o¢= %1 and the uniform mesh

[y

X = kh,
let
E = (e1, e ee ey eN_1)T
=Y -y

we may write

(16)

(17)

where

f(xk"§; 3 - f(xk, V) = e Uy ,' k = 1(1)N~1

for suitsble Uk now
s

F¥) -pR{Y) = ME
N1
M = (mi,j)i,j=1 is a diagonal matrix with

(note that U, 3> 0 )

with the help of (17), from (14) and €15) we

obtain the error equation :



.

(18) (D + PM) E = T _

]
To show that our method is O(h log h)Z

convergent'we first establish the following lemmas

Lemma 1 :
'Bo,‘l >0
Proof :
B o= X, log 2
0,1 2 X4
>0
" this complete the proof of lemma.
Lemma 2 :
'Bo,-k > 0 , | k = 2(1) N-1
Proof :

+

Bo,k = Xpy4q log Xy 41 -2x, . log X * Xpq log Xyeq

let
£(k) = knhlogkh - (k=1)h log (k=1)h
f(k) = kh log k= (k-1)h log(k-1) + h logh
f(x). = Xh 108 X ; (x=1)h log (x=1) + h1og h

f'(x) = h /[ logx - log (x-1) _7 ,' x > 1

> o '



So, f(x) is strictly increasing function of x
which gives

f(x+1) > £ (%)

f(x+1) - £(x) >0

Xeyq 108 Kyyq = 2% 1og X + x4 log x4 >0

This completes the proof of lemma 2,

Lemma 3 ¢

The inverse of the matrix D is given by :

-1
(19) 4 4

Proof :
The proof is as given in Jain /11_7

Since for sufficiently small h, D and D + PM

are irreducible and monotone

and D+PM > D
we have
' -1_ =1
Mb+mM) LD

From (18) we .obtain
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20) el € D77 T}

We next obtain a bound on the local truncation error.

Since for fixed X

. "B : -2
lim 1,k 1 - -
h>o TH T C T TE T % s k=200 N
and
: B
L 2,k : -1
1im oL 1 _ -
h>0o TE T — % , k = 2(1) N-1
It follows that for sufficiently small h,
(21) B 1 0 k = 2(1) N-1
1B < 5= 0 x% - -
B S | '
(22) - ]Bz’kl <3 B E k = 2(1) N-1
We assume that' - - .o -
ESNIRE
x £ N, N 0<xg 1.
whefe .

Ny and’N2 are suitable positive constants, With-

the help of (21), (22) from (9) we obtain for sufficiently
small h,



‘ltk] < ch* xk‘z

where

TN, + §N2
¢ = EES
From (20)we obtain
T N1 -1
lesl € > 43 %]
| =1
) i -1 =2 N-1 -1 -2
e [ 4y 3 v > 4y 3 T
- 3=1 . B YRR
: i -2 | -2
2 . .  N=t . ,-
< cn® L(N-i) 2Z J.3 .y = N-$)e 7
T 5= i+ N —~
S o[-0 [ Sdy o +1 [ 23 ) a7
1 ' il J
-1 -1 N
K ChB.[f(N-i) log i +'i<{N 0 ( -)l ). log “Ef:} 7
-1
ch® [ Nlogi-ilogN-i+N7 , i = 1(1) N-1

Let us consider the following f(x) as a continuous

function of x€ /71, N-1 7

f(x) = Nlogx-xlogN=-x+N
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(]

For nax f(x)

-jog N=1 = O

f'(x)v.-_- i
vgives
i = = N
1 =X = T iTog N
2 N : v
HE)/ = max ‘ei’ = Ch flog(m-s-é——ﬁ)_7

1<i < N1

0 ( h log h)?

5 Numerical Illustration

,To illustrate our method and its O (h log h)2

convergence, we consider the following example,

Example :

We consider the linear differential equation

te

Xy = 2p-1) xP1 . ﬁ(ﬁ--'l)xﬂ'_"l log x
subjected to boundary conditions

y() = o0, y(#) = 0

exact solution is y = x#slog p:
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For N = 2k, k = 2(1)6, the'corresponding

value of Il E{] are shown in table, -
TABLE
N | [ EIl
P = 3.00 | |
4 3 2.3 (=2)
8 - 74 (=3)
16 - - 2.0 (-3)
32 - 5.0 (<)
6L - 1.2 (-4)
B=14,00
b ' 5.3 (=2)
8 2.2 (-2)
1% | 8.8 (=3)
32 : 3.2 (=3)

64 1.1 - (=3)
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CHAPTER = TTT

A SECOND-ORDER FINITE DIFFERENCE
METHOD FOR A CLASS OF SINGULAR
TWO POINT BOUNDARY VALUE PROBLEMS

1. Introduction

We generalize the differential equation of

Chapter I (equation (1) ) %,

(1) %E_( p(X)v _aéﬁi) ) .- = f (%,v), 0<x g1

with boundéry conditions

y(0) = A

y(1) = B
where we assume that the function p(x) satisfies -
(2) (1) p(x)> 0 in (0,1)
(11) P €C' (0,1) and
1. ! -
(iii) TEL [0,1 __7
We also consider the conditions

p' (x) , prr (x) >0 -
and p'' (x) < 0 (see [ 3,4,;7 )_



It is easy to very thazt the particular choice

p(x) = x%X , 0ger< 1, does in fact satisfy all

the conditions (2),

Qur object in the present chgpter is to discuss
the construction of three point finite difference )
approximation and its convergence under appropriate
conditions for the class of singular non-linear, two point
boundary value problem (1). In Section 2, we discuss the

construction of our finite difference method and proved

its second order convergence in Section 4,

2. The Finite Difference Method

For a + ve integef N 2 2 consider uniform
mesh over closed interval / 0,1 7 : 0O = xo<'x1<(xz..
eoo e ,<XN = 1 With Xk = kho Let yk = y (Xk ) 9

£, = f(xk’ Vi ) etc.
we set

z(x) = p(x)y* =

e

Integrating (1) from X, to x, we obtain



(3) z(x) = z, + '5 £(t) dt
k

where

£(8) = £ (¢, y(¥) )

Dividing (3) by p(x) and integrating from X, to
Xy 41 and interchanging the order of integration, we

obtain
§Xk+1 Xk +1

( J 5%§7dx ) £(t) dt‘.

(4) S’k+1 "S’k = Jk. Zk +

where we have set
_ Xy 41 ] |
(5) Jk = J m ax
*x
Let \
. x | |
6 P = [ gyt Mx e[ 017
0]

So (5) becomes

(D) 5 = Bl - Pl

In an analogus manner, we obtain



5k

Ak t
L 1
(8) W =Yy = Ty, Iy T j ( f _;?;; )
- k=1 Xk-1

£(t) dt.

Eliminating Z, from (4) and (8) we obtain the

identity.
Yee1 "V Ve = ¥k-
(9) k+1 k _ 1
Ik o Ik
o+ ’ -
= I Tk
- # — , k =1(1) N-1
Ik . Ig-1
where we have set .
s % 41 . |
I, = g (PO, 4) = P(B)) £(¢) at
Xk - ' '

We assume that P(x) & L! A O,’.l 7

Identity (9) is our basic result from which’
methods of various orders can be obtained for the two
point boundary value problem (1). However, we shall be
interested here in obtaining a method of order two which

will be based on 1 evaluation of £,



By Taylor's expansion of f about Xy from .(9)
L] s

"we obtain

1 1 1 - 1 ;
J(10) - Yy + Wy = —— ¥,
Jynq ~K-1 Jk_1 Jyp Tk Jy T k+1
+ Bo,k £, + %, = 0,
k = 1(1) N=1
‘where
( t 1 ty ,
(11) t = B1,k Iy +-—3 Bz,k £ ( gk )
| by € (g, Xeaq )
“and o L
+ -
(12) B = "k . M,k » m = 0,1,2
m,k J 7
k k-1

f+
X
-
+
-

(P(x, , 1) = P(t)waty

0,k

=
" .
N
I



s Xk 41 - | x
.K13) A1,k o J’ - (P (in1) - P(t) )gﬁt—xk)dt-
Xy ' '
= k41 N \ 2 .
A2,k = (P (Xk + 1) - P(t)> (t-Xk) dt

’

A finite diffefence method can now bé based
on the discretization (10) of differential equation
invélﬁing one evaluation of f , In section 4 we show
that, under suitable conditions, our method based on

(10) is © (hz) convergent,

3. Matrix Formulation of Our Finite Difference Method

It is convenient to describe'the above method in

matrix form. Let D = (d, ., )N

. denote the
A YR I

tridiagonal matrix with



k=1 . = T Tor  ?
k = 2(1) N-1
s Tk ) }k-1 ' J; ’
k = 1(1)‘N-1_
o
de w1 e
k =1(1) ﬁ-z
let "
P (pla)fjl Py denote the diagonal matrix with
P,k = Bo, k k = 1(1) N-1
lef



where
' A
e = A
_ B
ANy-1 = T
Also let
F(Y) = (£, e £ )T |
1’0. LI N ) O_OV N-/' -
o AT
Y - (y/"oo L YN-1)
) ' T
.and T = (-t1,... :oao tN""1)

Thus the discretization (10) can be expressed

in matrix form:

1
\

o

(15) DY + PF(Y) +T = Q

The method now consists of finding an

approximation '?' for Y by solving the

(N-1)bx (N=1) system

Q

(16) DY + PF (Y)

We note that our coefficient matrix D is

symmetric, In case the differential equation is



/

linear (16) is tridiagonal linear system; in case

of non-linear differential equation, the non=linear
~ system can be solved by Newton - Raphson méthod ané
an adaption of Gauss - elimination for tri-diagonal

linear systems.

L, Convergence of the Method

We next discuss.the convergéncevof our method
showing that, under suitable conditions, our method

is O(hz) convergent,

let
T
E = (e1,oo ecosee eN-1)
= ? -Y
we may write
(17) f(Xk, yk) - f(Xk-’ yk) = ek Uk ,

vk o= 1(1) N-1

for suitable Uk now
’



(18) FE) - PRY)

= ME
where
N=1
M = (mi;.) is diagonal matrix with
1J7 1, =1
(19) xmk,k = U, , k =1(1) N-1

we also note that Uk ;; 0

With the help of (18), from (15) and (16) we

~ obtain the error equation :

(20) (D+PM)E = -T

]

To show that our method is 0(hZ) convergent

we first establish the following lemmsas,

Box > O for k = 1(1) N-1
Proof + -
Ao,k Ao,k
B 2 e——
’ Ik Tgan



: X
(21) B, = K K —
L

P(x.) - P(x._4)

Making the transformation t = x_ + hU and

expanding the expression of R,H.S. of (21) by Taylor's
expansion about the point X, we obtain fdr sufficiently
s -

small h,
Bo,x —~— b
Hence,
B0 k > .0 for sufficient small h,
, _

This completes the'proof the lemmé.‘

Lemma 2 :

For sufficiently small h,

t

@ Jaa < AP Ao




| 1 3 _ .
(23)  |Bpy| < —5— K, k=1(1) N
" Proof :
For fixed % = kh
+ -
B = A,k o+ Mk
1,k ey 2
k k-1
x,  (Plaeq) - P(t)) (t-x,) dt
(24) B, = .
1.k . P(Xk+1) - P(xk)
' Xy ‘
- { (P(t) = P(x,_q))(t-x) dt
Xyt _

P(xk) - P(Xk_1 )‘ !

Making the transformation t = X + hU and
expanding the expression on R.H.S. of (24) by Taylor's

expansion about the point Xy we obtain
9



B 1

(25) 1im Tok o 1 Py
. = 14

k = 1(1) N-1

It follows that for sufficiently small h,

p(?
h3 k

B4,k < 5

Py
Similarly it can be shown
(26) 1lim - B

2 _ _
h-0 "'l::13 = k = 1(1) N-1

. It follows that for sufficiently small h,

Bok] < —f— w3

Lemma 3

The inverse of the matrix D is given by

27y di. = P(),{i) PO =20 7 L i¢s
| t P( xy) |
P (Xj) [ P(XN) - P (Xi)—7

P(XN)

]

ESSY



Proof :
(see Appendix [~ 1.7 )

We assumé that
' -
|t < m

px) |£'') < N 0 < x < 1
X
p (x) N 2 =
where Nﬁ and N, are suitsble positive constants,
With the help of (25) and (26) from (11) we obtain for

sufficiently small h,

() | <

where 2N1 + N2

C = -
12

Now since D and D + PM are irreducible and monotone
for sufficiently small h, and since D + PM 3 D |
it follows that =
| -1 -1 |
(D + PM) < D

From (20) we obtain
(@) qlESIpT T

With the help of (28) and (27), from (29)
. we obtain for i = 1(1) N-1 .



' S o -1f .
oy lel€2— 4y Mt
| o= T
5 P(xy ) - P(x) i p' (x4)
31 <cen’ [ P(x.) ‘
(31 A - | P(xy ) sz "3 p(§3)
P(xi) N=-1 ' '
T e S PO - P(XJHT“T

It is easy to establish the inequality :

Xs
1

(32) '
h ji—' P(x ) p'(x. ) <:‘(' ?(X) p (%) s
' p(xa) o p(x)

X. 1 :
< P(x;) log p(x;) - j R p(%) dx

o p(x)

Again

(33) | |
E ( P<xN> - P(x, >) p'xy)

J=1+1 _Tf;_y-
AN
< f (P(xy) = P(x))

X
1

p'(x)
p(x)

dx
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< (P(x;) - P(x) ) log p(x;) +

ng log p(x) |
dx

x, p(x)

With the help of (32) and (33) from (31) we obtain

2

(36) Ch olx.) | e
\es) S~y £ (B 'P(XN))j Log (x)_ gy .
| *N
P(x;) S | i‘(’i) P ax )
SR

Lemma 4 :

(35) 1log p(x) gE; p(x)
for p(x) > | 0

and x & (0,1)

Proof
Casé I ‘
when 0 < p (x) < 1

(35) can be written as
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2
‘ [p(x) 7 |
p(x) < 1+ p(x) + 57 —t ...

which is true

Case IT when p(x) > 1

(36)

(37)

let

then - (x)
X
"p(x) L e

which is true

This completes the proof of lemma &4 :

So we can write (34) as

' 2
J81l€ Sy L (Plg) - PGap)xy + Rlxy).

£f(i) = P(ih) = 3h . P!
for Maximum

£f1(i) = n P' (ih) =~ npP =. 0



%8

N
p(ih)
-1 1
- PN
o 1 -1 1
i = - P )
h_ Py
£117(1) = w2  PI' (ih)
e px) = ()
., since P(x = 1
@
. _ 1 |
R O
Pri(x) = = -—F—=p'(x) < O
p=(x)
So f1* (i) < O ..
so i = —%——,p’1 (— ; ) gives max, error bound ‘

So (37) becomes

|| E||] = max | 5]

141 N

el g _T_.ycgsz £eoe’ = -



-

|  APPENDIX /1.7

The inverese of the matrix D, where

D = (div.;;)l\l"‘i denote the tridiagonal matrix with
)i, 5=
d . - x = 2(1) N-1
K, k=1 T T ’ =
(1) d = P K = 1(1) -1
k,k R S
4 = -] k = 1(1) N=2
k,k+1 Jyo ’ -
@2) With %
k+1 1
“k - S 5lx)
Xk
= P (xq) = P (x)
where %
(3) P(x) = J —5%-}-{7— dx
(o}
-1 LN
let D g (d, . )
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On multiplying the ith

coloumn of ik

row of D with the jth

we obtain the following difference -
equations, for k = 1(1) N-1
-1

dic1,5 -1 1 1
(4) - + d, . ( + ) -

Cq—

im i

]
o

’ i= j+1(1) N-1



-1
dN-2, 3 -1 1 1
(8) -~ s gy (—— =) =0
In-2 N2 -1
J # N

solving (4) subject to (5) we obtain

-1

(9) 4y 5 = B(I Ply) , i<

where B(j) is a parameter depending on J.

Again solving (7) subject to (8) we obtain

AY

(10) 4y 5 = D) L P(x) =Py 7,423
where D(Jj) is a parameter depending on j.
...1 .
Now in order that dj 3 is identical as given
?

by (9) and (10) , we must have

(1) B(3) Plxy) = D(9) [PGg) - POy 7

Also in order that dZ“d as given by (9) and
?

(10) satisfies (6), we obtain
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(12) - B(3) P(xj_1) e B() Pkﬁi)'

I3

Solving (11) and (12) we obtain

(3 B = [ Ry -P (x3) 7
| 'P(XN)
R R
. | P (xy)

Substituting for B(3) and D(J) from (13) and:
(14) in (9) and (10),we obtain
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(15) di,j = P(XN) | ’ i\< J

Plxy) [ Plry) = P(x)D T, 55 g

P(xy)
Example :
Let p(x) = xX
X‘I-O(
o 1=
N -1 N
. So Matrix D S o= (di,j )i,jz‘l s
together with XN = 1, becomes
-1 1= '
_ e 1= _ .

- -

X .
= xy (=%, )/ (1-x) , i»3
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