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CHAPI'ER - I 

A FOURTH-ORDER FINITE DIFFERENCE 
METHOD FOR A CLASS OF SINGULAR 
TWO-POINT BOUNDARY VALUE PROBLEMS 

Abstract 

We discuss the construction of finite difference 

approximations for the class of singular non linear two 

point boundary value problem : 

(x~;), = f (x,y), y(O) = K, y(1) = B, 

We obtain a method of order four ( for all 

o( E ( 0,1 ) ) involving three evaluations of f. For o( = 0 

this method reduces to the Noumerov's method. Convergence 

of this method is established and illustrated by numerical 

examples. 

1. Introduction 

We consider the class of singular two point boundary 

value problem : 

( 1) ( xo< y ' ) ' = f ( x, y) , 

y(O) = A, 

y(1) = B, 



. . 2. : 

where c< is a constant satisfying 0 < 0( < 1, and 

A, B are finite constants. vie assume that for 

(x,y) E {£0,1! X R J , 

~) 
I (i) f (x,y) is continuous, 

I 
(ii) df exists and is .continous and, 

. -::JY 

(iii) '"df ~ o. 
'dY ~ 

Certain classes of singular boundary value 
' 

problems have been considered by Jamet L2, 27 and 

Parter fj:._7 in t_he linear case only. Jamet studied 

the application of a standard three point finite 

difference scheme with a uniform mesh of size h and has 

shovm that the error in the maximum norm is 0( h1-o(). 

Ciarlet et al £4_7 used a suitable Rayleigh - Ritz -

Galerkin method and improved Jamet 1 s result by showing 

that the error in the uniform norm for their Galerkin 

approximation is 0( h 2- o( ) • Gusttafsson f:5_7 gave a 

numerical method for solving singular boundary value 

problems by representing the solutions as a series 

expansion on a sub-interval near the singular! ty and by 

using diff~rence methods for a regular boundary value 
}" 

problem derived for the remaining interval. Reddian ~6_7 

and Reddian and Schumaker .£:7_7 have studied collection 
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for the solution of singular two point boundary value 

problems. Their methods concern projection into finite­

dimensional linear·spaces of singular non-polynomial 

splines, these singular splines possess convenient local 

support basis which have a certain advantage in nuJl!erical 
,_ 

computations. Recently Chawla and Katti ~8_7 have given 

a second-order method for ( 1), ·based on uniform mush. 

In this chapter we present a fourth order finite 

difference method for the class of two point singular 

boundary value problem .( 1). 

In section 2, using a certain identity based on 

uniform mesh·over ~ 0, 1 _7, we obtain method of order 

four (for all c<c (0,1) ) based on three-eva~uations of f. 

This method has the property that for c< = 0 it 

reduces to the well known Noumerov's method. 0 (h4) -

convergence of this ~ethod is established ~der suitable 

conditions. Numerical illustrations are given in section 

3, which establish Jo (h4) convergence of above method 

for various o< E (0,1 ). 

2. The Finite Difference Method : \ 

For a + ,ve integer N ~2, consider the uniform 
• 

mesh over closed interval ["' 0, 1_7 : 0 = x0 < ~ ~ x2 ~~. ·< xN = 1. 
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Following Chawla and Katti L 9 _7, with p(x) 

we obtain the identity 

(2) 
• k 

where we'have set 

(3) 1 = 
(1- 0( ) 

and-

1-0( 
(4) - .~ ) I (1-0() 

' 

= xo<.' 

= 1 (1) N-1 , 

1~0( 

t ) f'(t) dt 

Using identity (2) various methods can be obtained 

f'or the singular two point boundary value problem (1). 

V/e are interested in obtaining method of' order four based 

on three evaluations of' f • In sec~ion ·2.1 we obtain a 

method of order four based on uniform mesh and prove its 

convergence in section 2.3. 

2. 1 Fourth Order Method 

We assume that 



(5) 

5 . 
• 

~ ' where ci k·• s., are certain function of xk s. 
' 

By Taylor expansion of f about xk and comparing the 

' ' t coefficients of f, f and f we find that 

(6a) co,k = (- B2,k + h2 B o,k ) I h2 

(6b) c1 ,k = ( B2,k +.h B1,k ) I 2h2 ., 

(6c) c2,k = (B2,k - h B1,k) I 2h
2 

where 

(7) 

m+1 

[ 
0 ( -1 )1+j+2 

Bm,k = L: L. 
f=o i = -1 Jk+i 

j 
m+2- o< -j m+2- o< -j J xk 

(~+1+i - xk+i ) 
··~f(m+2- c<- j) ( 

Then 

(8) 

m+1 

j 
) 



-where 

1 

( 10) G(s)=--
4Jk 

6 

4 . 
Lf=;~-1 )J ( 4 

j 

4 

j 

. 
• 

gj 
5-o( -j 5-o< -j 

( ~+1 s ) ' 
) (5.: 0(-j) 

xk ~ s ~-xk+-1 

- sj 5- C>( -j - 5-o( -j 

) (5-o(- J) 
(s Xk-1 ) ' 

with the help of (5)and (g) we obtain 

( 11) 
,• 

1 
-- Yk-1 

. Jk-1 

--1 1 1 
+ (- + -- )Y.k- -¥k-~-~,,C .k fk + 

Jk Jk-1 Jk +.-.' o, ' 

+ tk{h) = O, K= 1(1)N-1 

A finite difference method can now be· based on the 

discretization (11) of the differential equation together 

with the boundary conditions; note that each discretization 

in (11) is based on three evaluation of f. Our method 

can now be based on (11) neglecting tk(h); the fourth 

order convergence of this method is given in Sec. 2.3 
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2.2 Matrix Formulation of our Finite Difference Method 

It is convenient to describe the above method in 

( ) N-1 matrix form. Let D = di,j i,j= 1 denote the 

-tridiagonal matrix with 

1 1 
dk k =* + 

Jk-1 
, , k 

k = 1(1)N-1, 

1 

dk,k+1 
=--

Jk 
, k = 1(1)N-2, 

1 
d k,k-1 = -

Jk-1 
, k = 2(1 )N-1, 

let 

N-1 
p = (pij) 1,j=1 denote the tridiagonal matrix 

with 

pk k = c k = 1 (1 )N-1 , o,k, 

p ,$ 

k,k+1·· ·. = c 1,k, k - 1(1)N-2 

Pk,k-1 = c ! 
2,k, k = 2(1 )N-1, 

and let 

Q = (qt o, •• •• •• • • •• qN-1)T , 



where 

q1 = 

qN-1 = 

: 8 

c2,1 :ro 

• • 

+ ...!__ 
Jo 

c fN + 
B 

JN-1 1 ,N-1 

, 

• 

Also, let 

y 

Then the finite difference discretization 

described by (11) can be expressed in the matrix.form as 

(12) DY + PF(Y) + T = Q 

Our method now consists of finding an approximation 

Y for Y by solving the (N-1) x (N-1) system : 

(13) 
'"'-J f'J 

, DY + PF(Y) = Q 

In case f(x,y) is linear, (13) leads to a tridiagonal 

linear system;. in the non-linear case the system (13) can 

be solved by Newton- ·Raphson method and an adaptation of 

Gauss elimination for tridiagonal linear system. 



. . 9 • • 

2.3 Convergence of the Method 

We next show tha.t the method described by ( 13) is 

o-(h~) - convergent for all 0( E ( 0,1 ) • 

let 

--.J 

= y - y 

we may write 

(14) k = 1 (1 )N-1 

I 

for suitable uk s • , note that Uk :p o. 

With the ?elp of (14) from (12) and (13) we 

obtain the error equation 

( 15) (D + PM) E = T 

where 

M = diag 

It is easy to see that, for sufficiently small h, 

D +PM is irreducible and monstone and PM ~ o. 
Therefore (D + PM)-1 exists. 

(D + PM)-1 ~ 0 and 



10 . . 

So from (15) and (16) we have 

( 17) . !./ E I!· ~ .. \\ D-1 T n :. 
Using the usual arguments for inverting a 

symmetric tridiagonal matr.ix, it can be shown that 

(see Appendix £'1_7J. 

if n-1 = (d71 . 
1. ,·J ) . J then, 

(1B') -1 1-o< ( 1-x .1-o<) I (1-o(), i ~ d .. = xi l.,J J 

1- o( (1-x~-o< )/ (1-o(), i ?:-= xj 1. 

j 

j 

We next obtain bounds for the local truncation 

error tk • For sufficiently small h, we see that ¥ G (s) 

has the same sign in (~_1 , ~+1 ). Hence (8)' can be 

written as 

(19) C f t'' = 3,k k 

where 

Since for fixed ~ 



(20) 

and 

(21) . 

(22) 

and 

(23) 

(24) 

: 11 

lim c3 k 
h-70 ~· = 

lim 
c4 k , . 

• • 

o( xk 
5o< -1 

24(1-o<)5 

~o< 

, k = 1 ( 1 )N-1, 

k = 1 ( 1 )N-1 
h~O h5 = 240 ( 1 - 0( ) 5 , 

It follows that for sufficiently small h, 

o(Xk 
50( -1 

l c3,k \ < 12 (1- o( )5 

~o( 

\C4,k \ < 
120(1- o( ) 5 

We assume that 

, 
·"' -, •• -. ?" ;. ' 

., 

for suitable positive constants N1 and N2• Then 

with the helP of (22) and (23) from (19) we obtain 



(25) 

(26) 

(27) 

·where 

c = 

: 12 : 

2 o<: -1 
1c 

10 o( N1 + N2 

120 (1- o( )5 

Using (18) and (25), from (17) we obtain 

Ch5 
< 
' (1- o() 

( 2 o( -1 ' . 
X -j ~ 

-1 
di . ,J 

i 

=-j= 1 

, i =1(1) N-1 

X~ + X i.- o( N-1 
i x=... 

j j=.i+1 

It 'is easy to establish the inequality: 

i 
hl::: 

j=1 

Again, 

N-1 
h L: 

j= i+1 

)~ xo< dx = 
0 

1 +o( 
xi 

·,( 1+o() 



(28) 

< 

: 13 . ' • 

1+o<' 
X:N 

1 +o( 

- x. 
~ 

1+c:< 

With the help of (27) and (28) together with 

~ = 1, from (26) we obtain. 

(29) 

It can now be shown that for i = 1(1) N-1, 

With the help of (30) from (28) we obtain for 

sufficiently small h, 

(31) .. ·\ \ E \ ~~ •. .· .: ·. :. = max 

1 ~ i -.__< N-1 

= c* h4 , , c* = __ c ___ _ 
2o( (1+o() 

We have thus established the following result : 



Theorem : 
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Assume that f $atisfies (A); further let 
. -

f( 4 )E 'c i co,1_7 X R} .. x"3o( I i'J -.-.I , 

yJ>o<+1 -/f'(4) IE c { £:0,1] X R l 
Then for t~e method based_ on ( 11.) with xk = kh, 

we have for sufficiently small, h, for all o( E.:JO, 1), 

(32) -··-t/ E j/ .: = O(h
4) 

3. Numerical Illustrations : 

We next illustrate our method by considering the 

following three examples. 

We consider the non linear differential equation 

( xO< y t ) t ' = f3 X 0( + '/3 - 2 ( -(!; X (3 . - eY - ( o( + j3 - 1 ))/ 

( 4 ?+:' X _J3 ) 

subject to boundary conditions 

-y-(o) = ln ( +) and Y(1) = ln ( +) 
vfith exact solution if(x) = ln (1/ (4+ x f3 ) ) 

For N = 2k, k = 3(1)8, the corresponding values of 

J1 E II are sho-wn in table 1. 
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TABLE - 1 

N J I E II .: 
o(= 0.25, J3= 4.0 

8 4.1 (-5) 

16 2.5. (-6) 

32 1.6 (-7) 

64 9.9 (-8) 

128 6.2 (-10) 

256 3. 9 ( -11) 

o<= 0.5 fo= 3.0 

8 7.6 (-5) 

16 . 4.7 (-6) 

32 2.9 (-7) 

64 1.8 (-8) 

128 1.4 (-9) 

256 7. 2 ( -11) 

o(= o:8 f3= 1.8 

8· 6.9 _(-4) 

16 4.6 (-5) 

32 2.9 (-6) 

64 1.9 (-7) 

128 1.2 (-8). 

256 7.3 (-10) 
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Example 2 

We consider the linear differential equation 

o( 
., 

(x Y') t· = pxo(+ j3 -2 ( ( o(+ (3 

subject to boundary conditions 

"'y( 0 ) = 1 and ·y( 1 ) = e 

with the exact. solution Y(x) = exp (x f3) 

[3 
-1) + p;t. )y 

For N = 2k, k = 3(1)8, the·correspo~ding value 

of ··11 E \ \- are shown in :table 2. 

TABLE - 2 

N .• \I E ll-

o( = 0.25 , J3= 4.0 

8 9.3 (-3) 

16 6.4 (-4) 

32 4.1 (-5) 

64 2.6 (-6) 

128 1.6 (-7) 

256 1.0 (-8) 



o{ = 0.5 

8 

16 

32 

64 

128 

256 

o( = 0.8 , 

8 

16 

32 

64 

128 

256 

Example 3 

. 
• 

' 

17 

f3 

• • 

ft= 

= 3.0 

1.4 (-2) 

1.0 (-3) 

6.6 (-5) 

4.2 (-6) 

2.6 (-7) 

1.6 (-8) 

1.8 

3.7 (-2) 

3.6 (-3) 

2.6 (-4) 

1. 7 (-5) 

1 .1 (-6) 

. 6.6 (-8) 

We consider the linear differential equation 

(xa( y' )'t = - (x Cos (x) + (2- o() Sin(x) ) 

subject to the boundary conditions 

j(O) = 0 , Y(1) =Cos 1 

with the exact solution y(x) 1- 0( 
= x Cos x. 
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This example has been 'considered by Gusttafsson~5_7. 
' 

For N = 2k, k = 3(1)8, the corresponding value of 

·)\ E l). are shown 'in tabl~ 3. 

TABLE - 3 

N 

o( = 0.25 
8 4.7 (-6) 

16 2.9 (-7) 

32 1.8 (-8) 

64 1 .1 (-9) 

128 7.1 (-11) 

256 4.2 (:..12) 

o(=.0.5 

8 2.7 (-5) 

16 1. 7 (-6) 

32 1.1 (-7) 

64 6.6 (-9) 

128 4.1 (-10) 

256 2.5 ( -11) 
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o<= 0.8 

8 8.5 (-4) ' 

16 6.1 (-5) 

32 3.9 (-6) 

64 2.5 (-7) 
; 

128 1.5 (-8) 

256 9.6 (-10) 



CHAPTER - II 

A NEW FINITE DIFFERENCE METHOD AND ITS 
CONVERGENCE FOR A CLASS OF SINGULAR 
TWO POINT BOUNUARY · VALUE PROBLEMS 

PART -I 

Abstract 

A new finite difference method based on uniform 

mesh is given for the (weakly) singalar two point 

boundary value problems: 

:x,C'<ytt = f(x,y), y(O) = A, y(1) = B, 0 < o( < 1. 

Under quite general conditions on f' and f'', we show that 

our method based on uniform mesh provides O(h2) convergent 

approximations for all 0( e(O, 1). Our method is based on 

one evaluation of f a~d for c< = 0 it reduces to the 

classical second order method for Y'' = f (x,y). 

1. Introduction 

Consider the (weakly) singular two point boundary 

.value problem : 

( 1) X~ y 1 f = f (X 1 y) 1 

y(O) =A, y(1) - B. 

Here o< 6'(0, 1) and A, B are finite constants. We 

assume that for (x,y) f,{£"o,1J x R} 



(i) 
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f (x,y) is continuous 

(A) (ii) df exists and is continuous 
'dy 

~ 

'";)f 

' 
(iii) ?-0 

'JY 

The above problem occurs in various branches of 
# 

engineering, mechanies etc. Such a problem has extensively 

been dealt with by Mayers £10_7. The purpose here is to 

give a simple finite difference method based on un_iform 

mesh for the singular two point boundarY value problem 

(1 ). The method is based on one --evaluation of f. 

Under quite general conditions on f' and f'' we show that 

our present method provides O(h2 ) - convergent 

approxi;nations for all o( E (0, 1). The present method, 

its second order convergence for various o(f(0,1) and 

the conditions guaranteering convergence are illustrated 

by an example. 

2. The Finite Difference Method 

For a + ve integer N ~ 2, consider the uniform 

mesh over closed interval ~0,1_7 xk = kp, k = 0(1)N, 

1 
h = 1\J• Let 

We write (1) in the form 

(2) y". = x-0( f(x,y) 



we set 

(3) 

where 

z(x) = y' • 
' ' 

: 22 . • 

Integrating (2) from xk to x, we obtain 

(X 
z(x) = zk + J 

f(t) = f(t, y(t)) •. 

t-o( f(t) dt 

Integrating (3) from xk to Xk+1 and interchanging 

the order of integration, we obtain 

X 

(4) yk+t - yk = zk.h + S k+1 (xk+1 -tYt''"'a<f(t) dt. 

xk 
Similar-ly 

(5) 
Xk o( 

Yk- Yk_1 = zk.h- S. (t -Xk_1)t- f(t) dt. 

Xk-1 

Eliminating zk~h from (4) and (5) we obtain the 

identity : 

xk+1 
(6) yk+1 -2yk + Yk-1 = ) (~+1 -t)t_o( f(t)dt 

Xk 

k = 1(1) N-1 
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Identity (6) is our basic result from which 

methods of various orders can be obtaiied for the 

two point boundary value problem (1). However, we 

shall be interested here in obtaining a method of order 

two which will be based on 1 e~aluation of f. 

By Taylor's expansion.of f about Xk , we 

obtain 

(7) f(t) 

• with the help of (7) from (6), we obtain 

k = 1(1) N-1 

where 

= 
1 2- 0( 2-0( 2- 0( 

__ ..;....... ___ w_ ( X. - 2xk + X. ) 

( 1-o() (2- 0() K-1 K+1 

and 



v1here 

.B k . m, 

and 

m+1 

. • 24 . . 

=~ (m+3- o(- j) (m:+-2- o( -j) 

m+3- o< -j m+3- o< -j m+3- o< -j 
-( xk+1 - 2xk + xk-1 ), 

m = 1' 2 
,., ., 

!'" '--

~D 
for all m & j 

c 
for m = 2, j = 2' 

A finite difference method can now be based on 

the discretization (8) of differential equation involving 

one evaluation of f. In section 4, we show that, under 

suitable conditions, our.method based on (8) is O(h2)-

convergent. 

3. Matrix Formulation of our Finite Difference Method 

It is ~onvenierit to express the above discretization 

. t . f Let . D (d )N-1 ' t th 1n rna r1x orm. = i,j i,j=1 aeno e e 

tridiagonal matrix with 

d 
k,k-1 = -1, k = 2(1) N-1 

( 10) dk,k = 2, k = 1 ( 1). N-1 

dk,k+1 = -1' k = 1 ( 1) N-2, 



and 
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= (p .. ) 
l.J 

denote the diagonal matrix with 

pk k = Bo,k k = 1 ( 1) N-1 
' ' 

Let 

( q1 'o •. 
T Q = •• O,qN-1) • • • • 

where _ ::: 

= B, 

Also, let· ... 

F(y) (f1 '. 
. T 

= • • • • • fN-1) , 
y = (y 1' •• • • • • . ' YN-1)T 

Thus the discretization (8) together with the 

boundary conditions can be expressed as : 

( 11) DY + PF(Y) + T = Q 

and a method based on (8) consists of finding 
,....._ 

an approximation Y .for Y by solving the ~-1)x(N-1) 

system : 



"'-' 
(12) DY + PF (Y) 

: 26 

= Q 

• • 

In case the differential equation is linear in 

y, (12) is tridiagonal linear system; in the case of 

non linear differential equation, the non-linear system 

can.be solved by Newton- Raphson method and an 

adaptation of Gauss - elimination for tridiagonal linear 

systems. 

4. Convergence of the Method 

We next establish.convergence of our finite 

difference method showing that under suitable conditions 

the above method provides O(h2 ) - convergent approximations 

for all o< f ( 0,1 ) • , 

let 

E· = . . . , 
,..... 

= y - y 

we may write 

( 13) k = 1(1) N-1 

for sui table uk's· Now 



(14) F (''! ) 

where 

- F(:{) = 

N-1 

27 

ME 

• • 

M = (mij). . is the diagonal matrix with 
~.J =1 

(15) mk,k = uk, k = '1(1) N-1 

(note that Uk? 0) 

With the help of (14), from (11) and (12) we 

obtain the error equation: 

( 16) (D + PM) E = T 

-To show that our method is O(h2) - convergent 

we first establish the following lemmas. 

Lemma 1 :- "Bo,k / 0 for k = 1 (1) N-1 

Proof : 

let 

(17) f(x) = x2-o( -. (x -1 ) 2- o< , 

~· ( 18) 

. / 0 for x ~ 1 

So, f(x) is strictly increasing functiqn of x 

which gives 1 
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f (x + 1) > f(x) 

~(x + 1) - f(x) ) 0 

• . 

This completes the proof of lemma 1. 

Lemma 2 :- The inverse of the matrix D is given as 

( 19) -1 
i{N-jJ. d. . i~ j 

~,J N ' 
j~N-i2 , i ~ j - N 

Proof : 

The proof is as given in Jain ~11_7 

Before doing the convergence analysis we mention 

the following results 

let W = t 1 , 2, • • • • • • , n } 

Definition 1 : 

A matrix A = (a. .) of order 
~,J 

n ~ 2 is 

irreducible if for any t\'IO integer i and j, i E w, 

j E w, there exist a sequence of non-zero elements 

of A of the fonn 
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Theorem 1 : 

A tridiagonal matrix A = ( aij) is irreducible 

if and only if 

a. . 1 =I= 
~~~-

0 (i = 2,3,. . . ' n) and 

a. . +1 =I= 0 ( i = 1 , 2, •• ~ •• , n-1 ) . ~.~ 

Definition 2 : 

A matrix A with real elements is called monotone 

if AZ ~0 implies z ~ 0 

Theorem 2 : 

A matrix A is monotone if and only if the elements 

of inverse matrix A-1 are non-negetive. 

Theorem 3 : 

Let the matrix A = 
satisfy the conditions, 

(i) ai, j ~o i 

(ii) n a .. { /./ 0 

~ ~J > 0 

=I= 

-
(a. . ) be irreducible and 
~,J 

jj i, j = 1' ••• n 

i = 1,2, ••••• n 

for at least one i 
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The proofs of theorem 1.,2 and 3 are given in 

Henriei .£:12_7. 

Since for all h, D and D + PM are irredmcible 

and monotone and ( D + PM} ~ D 

we have 

( ) -1 
D + PM :$"" 

From (16 )we obtain 

(20) - .t I E I}-:~ :~-l-1 n-1 T ll 

We next obtain a bound on the local truncation 

error. Since for fixed xk 
' 

and 

(21) 

lim 
h-70 

lim 
h~ 0 = 

1 

6 

it follows that for .sufficiently small h, 

k = 1 (1) N-1 



31 

(22) 

. 
• 

, k = 1 (1) N-1 

Now let o( be fixed in ( 0,1 ) and let j3 be chosen 

such that 0( + f3 < 1 

we assume that 

(24) 0 <x~ 1. 

N1 and N2 are suitable positive.constants. With 

the help of (21), (22) a..'1d :(23), (24) from (9) we.obtain 

for sufficiently small h, 

where 

c = 

Now with the help of (25) from (20) we obtain 

d":"~ 
1J 

Ch4-( 1+ o< + fo) L~:: d:~ j -1-( o( + p) 

N-1 

+> 
j= i+1 

j -1- ( o( + f3 ) ] 
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N-1 

+ i=-
j = i+1 

i x= 
j=1 

. i 

f:·. 
0 

.-1-( o( +ft) 
j. J 
1\! 

Ch4-( o( + ~) {Ni1-c<-f3 -iN1- o(-~ i = 1 (1) N-1 
~ . ( 0(+{3~ ( 1-0(- J3) 

Let us now consider the following f(x) as a 

continuous function of x E ,0 , N-1 J 
f(x) = Nx1 ... o( -(3 - xN1-0(-,t3 

For maximum of f(x) 

, .. , ) ( ) - C( -# 1- 0( - (3 f . x = N 1- c( - f3 X -N = 0 

gives 
1 

i = X = (1- C(~J3) q:-+08 . N 
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= max (e{) 
II E II 1 ~ i ~ N-1 

Ch 4- a< - (3 . ( 1 - o( - {3) 
r~N. < 1-~- ~ ) (0(. +f-1) • = ..,..( C(-+~j3=-)~(~1::---o(--=-_...,{3rr) 

1 
1- o( _o. N .J-J. 

Ch 4- a(-{!> N2- o( -[.!J ,. 1 

= ( o( +(3) ( 1- o( - f3 ,. ( 1- 0(- (3) . o( + (!J 

1 r .:.1_7 1- o(-p 

where c* c 
= 

5. Numerical Illustration 

To illustrate our method and its O(h2) -

convergence we consider the following example. 



Example 
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We.consider the linear differential equation 

XC>( Y'' 
0(+{3 -2 

= (2{3-1) X 
o< + (3 -2 

+ f3 ( {3 -1 ) X . log X . 

subject to the boundary conditions 

y(O) = 0 and y(1) = 0 

.exa0t solution is 

y = X (3 log X 

For N = 2k , k = 2(1)6, the corresponding value 
-

of I\ E II are shown in table. 

N 

4 

8 

16 

32 

64 

o(= 

TABLE 

0.25 
' 

\1 E \l 

P= 3.50 

1.7 (-2) 

4.2 (-3) 

1.0 (-3) 

2.6 (-4) 

6.5 (-5) 
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N J}E t/ 

o(= 0.50, . (3= .3.00 

4 1.3 (-2) 

8 3.9 (-3) 

·16 1 .1 (-3) 

32 2.7 (-4) 

64 6.9 (-5) 

0(= 0.50, ~= 1.50 

4 2.5 (-2) 

8 1.1 (-2) 

16 4.5 (-3·) 

32 1.8 (-3) 

64 6.8 (-4). 

o( = 0.75, f3= 2.75 

4 1.2 (-2) 

8 4.9 (-3) 

16 1.6 (-3) 

32 4.4 (-4) 

64 1.2 (-4) 
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N 'IE II 
o( = 0.80, (3 = 3.00 

4 1.7 (-2) 

8 5.6 (-3) 

16 1.5 (-3) 

32 3.9 (-4) 

64 9.7 (-5) 

o( ::i: 0.99, f3 = 3.00 

4 2.2 (-2) 

8 7.3 (-3) 

16 2.0 ('-3) 

32 4.9 (-4) 

64 1.2 (-4) 
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PART -II 

1. Introduction 

In Part I of this.chapter we have dealt the 

problem ( 1 ) for 0 < o( < 1 • Here we are extending . 
the same problem for o( = 1, with the same boundary 

conditions. So our (weakly) singular two point boundary 

value problem becomes 

( 1 )' xy" = f(x,y), 

y(O) = A, y( 1) = B 

Our method is based on one evaluation of f, 

under quite general' conditions_ on· f' and f''• We 

0• ( h log h) 2 -show that this method provides convergent. 

2. The Finite Difference Method 

For a + ve integer N ~ 2, consider the uniform 

mesh over closed interval ~0,1_7 : 0 = x
0 

( ~ < x2 ••• 

•• , < ~ = 1, with xk = kh. 

Let 

= = 
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\'le write ( 1) in the form 

(2) Y'' = x-1. f(x,y) 

we set 

z(x) = Y' 

Integrating (2) from ~ to x, we obtain 

(3) f(t) dt 

where.· 

f(t) = f(t, y(t) ) 

Integrating (3) from xk to xk+1 and interchanging 

the order of integration, we obtain 

(4) 

(5) 

= zk.J .. + 
~~· 

( xk+1 ·-t) t-1 f(t)dt 

In an analogus manner, we obtain 

f(t)dt 

Eliminating zk~h from (4) and (5). vre obtain the 

identity : 
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(~ 
.f(t)dt + J 

k= 1 (1 )N-1 

Identity (6) is our basic result from which methods 

of various orders can be obtained .for the two point boundary 
\ 

value_problem (1). Hpwever, we shall be interested here in 

obtaining a method, which will be based on 1 evaluation of 

f. 

By Taylor's expansion of f about Xk, we obtain 

where t:k E (xk_1 xk+1 ) 
I f 

with the help of (7) .from (6), we obtain 

k = 2(1) N-1 ' 



(9) 
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where 

. . 

xk+1 1 ~ 
Bo,k = xk+1 log - xk-1 og x 

xk · k-1 

= ~+1 log Xk+1 -2~ log Xk+xk_1 log ~-1 

and \ 

t . 1 . 
:r' ~ ~k), tk = B1,k fk + 2 B2,k 

t.k E <Xk-1, Xk+1 ) 

where 

Bm,k = ( _1 )m+1 xm 
k ( xk-1 

~ . 

log--- xk 1 Xk-1 ' + 
log ~+1 ) 

Xk 

m-1 · 
(~2Xk)j. 

m+1-j m+1-j m+1-j · 
+ ·c ( xk+1 -2Xk + ~_:1 ) ' 

j=O --- ( m+1 -j) I . 
m = 1,2 

We note that the discretization (8) for differential 

equation (1) holds for k = 2(1) N-1. For obtaining the 

discretization corresponding to k = 1 we proceed as follows: 

putting k = 1 in (6) we obtain 



(10) 

(1 1) 
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. ~ . 
y2 - 2y1 = J"2< ~- 1) :r(t) dt +) :f(t) dt 

Since y
0 

= A 

and x
0 

= 0 

From (10) we obtain 

where B0 , 1 

A 

(12) and 

t1 

and 

B1,1 
7 h2 =- 12 

B 2 h3 = 3 . 2,1 

A finite differ·ence method can now be based on 

the discretizations (8) and (11) of differential equ~tion 

involving one evaluation of f. In section 4 we show that, 

under suitable conditions, our method based on (8) and (11) 

is 0 (h log h ) 2 convergent. 
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3. Matrix Formulation of Our Finite Difference Method 

It is convenient to express the above 

discretization in matrix form. Let D = (d. .)~-~ 
1 ~,J ~,J= 

denote the tridiagonal matrix with 

( 13) d k,k-1 = - 1 k = 2(1) N-1 

dk,k = 2 k = 1 ( 1) N-1 

dk,k+1 = - 1 k = 1(1) N-2 

let 
N-1 

p = (pij)i,j=1 denote the diagonal matrix with 

k = 2(1) N-1 

let 

Q = ( q1 , 0' • • • • • 0, qN-1 ) T 



Also, let 

F(y) = 

y = 

and T 
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(f1, •• • • 

(y 1 ' •• •• 

• • 

• • 

• • 

' . 

•' fN-1) 
T 

• • ,yN-1 )T 

Thus the discretizations (8) and (11) can be 

expressed in matrix form : 

(14) DY + PF(Y).+ T = Q 

and a method based on (8) consists of finding 
,-.... 

an approximation Y for Y by solving the (N-1)x(N-1) 

system : 

~ ,.... 
(15) DY + PF(Y) = Q 

In case the differential equation is linear in 

y, (12) is tridiagonal linear system; in the case of 

non-linear differential equation, the non-linear system 

can be solved by Newton - Raphson method and an 

adaptation of Gauss - elimination for tridiagonal linear 

systems. 



4. Convergence ·Of the Method 

. • 

We next establish convergence of our finite 

difference method showing that under suitable conditions 

the above method provides 0( h. iogh) 2 ) - convergent 

. approximation for 

xk = kh. 

o(. = ~ and the uniform mesh 

let 

~ 

= y - y 

we may write 

(16) 

where 

= k = 1 (1 )N-1 

for suitable Uk now 
' 

M = 
N-1 

(m. . ) . . 1 
~.J ~.J= 

is a diagonal matrix with 

k = 1(1) N-1 

(note that uk ~ 0 ) 

with the help of (17), from (14) and (15) we 

obtain the error equation : 



(18) (D + PM) E = T 
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To show that our method
1
is O(h log h) 2 

convergent we first establish the following lemmas 

Lemma 1 : 

"Bo,1 > 0 

Proof : 
x· 

2 

' this complete the proof of lemma• 

Lemma 2 . . 
· Bo,k > 0 ' 

k = 2(1) N-1 

Proof • . 

Bo,k = xk+1 

let 

f(k) = khlogkh - (k-1)h log (k-1)h 

f(k) = kh log k- (k-1)h log(k-1) + 

f(x) = Xh lOg X - (x-1)h log (x-1) 

f' (x) = h ~logx- log (x-1) _7 ' 
> 0 

h logh 

+ h 'lOg h 

X~ 1 
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So, f(x) is strictly increasing function of x 

which gives 

f(x + 1) > f (x) 

f(x + 1)·- f(x) )> 0 

This completes the proof of lemma 2. 

Lemma 3 : 

The inverse of the matrix D is given by 

-1 i (N-j) ( 19) di,j = .N ' 

= 
j_(N-i) 

N 
, i -?; j 

.Proof : 

The proof is as given in Jain ~11_7 

Since for sufficiently small h, D and D + PM 

are irreducible and monotone 

and D + PN > D 

we have 

(D +PM: )-1~ D-1 

From (18) we obtain 



(29) II E I J ~ II n-1 T II 
We next obtain a bound on the local truncation error. 

Since for fixed xk, 

lim B12k 1 -2 
h~O h4 = 6 xk , k = 2(1) N-1 

and 

lim B2,k 1 -1 
h-70 h4 = 6 ~ ' k = 2(1) N-1 

It follows that for sufficiently small h, 

(21) 
' k = 2(1) N-1 

(22) '· k = 2(1) N-1 

We assume that· ·- .. , 

, ' 
where 

~1 and ~2 are suitable positive constants. With· 

the help of< (21), (22) from (9) we obtain for sufficiently 

small h, 



where 
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l tk 1 < Ch4 X - 2 
k 

?N1 + 4N2 
c = 

( 

12 

From (26) we obtain 

N-1 -1 
L. dij 
j=1 

. 
• 

4-2 i 
~ ch r 2:: 

- j=1 

-1 -2 . 
d.. j + 

l.J. 

Ch2 i -2 
~ .L(N-i) X::. . ~ 

j=1 N 

N-1 r= 
j= i +1· 

N-1 z:::: 

-1 

d .. 
l.J 

+ i j = 1+1 

-2 
j 

_(N-~jl • 
N 

_7 

-2 
j / 

7 _, 

i N -2 -1 
Ch3 L (N-i) 15 1 .s ~ jdj + i (Nj ~ j ) d. 7 

1. 
J-

~ Ch3 r(N-i) log i +. i {N il'J-
1 

- i -
1

) - log . N
1
. } _7 

~ - (-1) 

Ch3 L N log i - i log N -i + N 7 , -, i = 1 (1) N-1 

Let us.consider the following f(x) as a continuous 

function of X e I 1, N-1 _7 

f(x) = · N log x - x log N - x + N 
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For max f(x) 

• . 

f' (x) = N - lOg N-1 = 0 i 

gives 

i = X 
N = ,____,,._.....,., 

1+ log N 

II E J J = mrax 

1 ~ i ~ N-1 

= 0 ( h log h) 2 

5. Numerical Illustration 

.To illustrate our method and its 0 (h log h) 2 

convergence, we consider the following example. 

Example : 

We consider the linear differential equation 

' ' xy = + p ( (3- 1 ) X (3 - 1 log X 

subjected to boundary conditions 

y(O) = O, y(1) = 

exact solution is y = 
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For N = 2k, k = 2(1)6, the corresponding 

value of II E [} are shown in table. . 

TABLE 

-
N /IE{/ 

p = 3.00 

4 2.3 (-2) 

8 7.4 (-3) 

16 2.0 (-3) 

32 5.0 (-4) 

64 1.2 (-4) 

[j = 4.00. 

4 5.3 (-2) 

8 2.2-(-2) 

16 8.8 (-3) 

32 3.2 (-3) 

64 1.1 (-3) 

;.~ 



CHAPTER - III 

A SECOND-ORDER FINITE DIFFERENCE 
METHOD FOR A CLASS OF SINGULAR 
TWO POINT BOUND.ARY VALUE PROBLEMS 

1. Introduction 

We generalize the differential equ8 tion of 

Chapter I (equation (1) ) 1
0 

( 1) 

(2) 

d o.x-< p(x) 
~Y(x) 
ax ) ', 

with boundary conditions 

y(O) = A 

y(1) = B 

= f (x,y), 0 <X~ 1 

where we assume that the function p(x) satisfies · 

(i) p(x) > 0 in (0,1) 

(ii) p f 'c• (0,1) and 

(iii) ...L.,E L' 1 o 1 '7 p '- , -

We also consi~er the conditions 

•, 

p 1 (x) , p 1 ' 1 (x) > 0 

and p" (x) < 0 (see .L 3,4 _7 ) 
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It is easy to very that the particular choice 

p(x) = xc< , 0 ~c::<< 1, does in fact satisfy all 

the conditions (2). 

Our object in the present chapter is to discuss 

the construction of three point finite difference 

approximation· and its convergence under appropriate 

conditions for the class of singular non-linear.two point 

boundary value problem (1). In Section 2, we discuss the 

construction of our finite difference method and proved 

its second order convergence in Section 4. 

2. The Finite Difference Method 

For a + ve integer N ~ 2 consider uniform 

mesh over closed interval L 0,1 _7 : 0 = x
0 
< x1 < x2 •• 

•••• ,(~ = 1 with xk = kh. Let yk = y (xk ), 

fk = f(xk, yk ) etc. 

we set 

z(x) = ,.,.(x)y' '"" • }I '- . .1.. ' 

Integrating (1) from xk to x, we obtain 
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(3) z(x~ = zx + . J f(t) dt 

xk 

where 

f(t) = f (t, y(t) ) 

Dividing (3) by p(x) and integrating from xk to 

xk+1 and interchanging. the order of integration, we 

obtain 

(4) 

where we have set 

(5) 

Let 

(6) 

(7) 

. 5?Ck+1 
Jk = 

X k 

X 

P(x) =) 
So (5) becomes 

'1c+1 
(tJ ' p~x)dx ) f~t) dt 

1 d PtX) X 

1 
-p..,..( t~):--ld t ·v X t=- r 0, 1 _7 

In an ~alogus manner, we obtain 
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f(t) dt. 

. • 

( 1 -- dx) 
p(x) 

Eliminating Zk from (4) and (8) we obtain the 

identity; 

Yk+1· - Yk yk -- Yk-1 (9) 

Jk Jk-1 

Ik 
+ I --- k 

= + , k = 1 ( 1) N-1 
Jk .. Jk-1 

where we have set 

+ xk + 1 r - ( p ( xk .:!: 1 ) = P(t)) f(t) dt 

xk-

v:e assume that P(x) t L' .£: 0,1 _7 

Identity (9) is our basic result from which 

methods of various orders· can be obtained for the two 

point bounda~r value problem (1). However, we shall be 

interested here in obtaining a method of order two which 

will be based on 1 evaluation of f. 
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By ~aylor's expansion of f about xk, from .(9) 

we obtain 

- ( 10) 

where 

and 

(12) 

1 y +( 
Jk-1 k-1 

Bm,k 

+ 
A­

O,k 

= 

= 

+ 

~~k 
Jk 

1 + _1_ )'' 1 y' 
J J J_k - -::r- '"k+1 
k-1 k k 

= o, ' 

k = 1 (1) N-1 

+ Affi 2k , m = o, 1 ,2 

Jk-1 

(P(xk + 1) - P(t)~)!dt';j 
-
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'(13) 

+ 

= 

" ., :....· ..... ~ 

A finite difference method can now be based 

on the discretization (10) of differential equation 

involving one evaluation of f • In section 4 we show 

that, under suitable conditions, our method based on 

(10) is 0 (h2 ) convergent. 

3. Matrix Formulation of Our Finite Difference Method 

It is convenient to describe the above method in 

matrix form. Let D = (d. . )N-1 
1

, J i, j =1 
denote the 

tridiagonal matrix with 



(14) 

let 

let 

. . 

dk,k-1 . - -
1 

k = 2( 1) N-1 

= 1 + 

k = 1 ( 1) N-1 

1 
= -

k = 1(1) N-2 

, 

1 J'k, 

' 

p = (p .. )N-1 denote the diagonal matrix with 
~J i J. :1 

' ' 

Pk,k = Bo k k = 1 ( 1) N-1 , , 

Q = ( q1, 0 • • . .. . . . . . o, qN-1)T , 



where 

= 

= 

Also let 

F(Y). = 

y 
= 

and T = 

: 58 . . 

A 

B 
J N-1 

(f1, •• 

('~1 •• . , 

( t1, ••• 

• • • •• 

••••• 

• • • • 

T 
·fN-1) .. 

YN-1)T 

tN-1) 
T 

Thus the discretization (10) can be expressed 

in matrix form: 

(15) DY + PF(Y) + T Q 

The method now consists of finding an 

----approximation Y Tor Y by· solving the 

(N-1) x (N-1) system : 

"""' (16) DY + PF (Y) = Q 

We note that our coefficient matrix D is 

symmetric. In case the differential equation is 
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linear (16) is tridiagonal linear system; in case 

of non-linear differential equation, the non-linear 

system' can be solved by Newton·- Raphson method and 

an adaption of Gauss - elimination for tri-diagonal 

linear systems. 

4. Convergence of the·Method 

We next discuss the convergence of our method 

showing that, under suitable conditions, our method 

is O(h2) convergent. 

let 

E = ( e1 '• • • • • • • 

,.....__ 
= y- y 

we may v~Ti te 

(17) 
' 

~ k = 1 (1) N-1 

for suitable uk, now 
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"' 
( 18) F(Y) F(Y) = 

where 
N-1 

M = (m· ... ) is 
J.; J . '-1 J.,J-

( 19) Ih"k,k = uk k = 
' 

we also note that uk 

With the help of (18), 

obtain the error equation . . 

( 20) (D+PM)E = T 

• • 

ME 

diagonal matrix with 

1 ( 1) N-1 

?- 0 

from ( 15) and (16) we 

To show that our method is O(h2) convergent 

we first establish the following lemmas. 

Lemma 1 . . 
B o,k > 0 for k = 1 ( 1) N-1 

Proof • • + 
A Ao k o,k , 

Bo k = -- + 
' Jk Jk-1 



( 21) 

. . 
· xk+1 
P(xk+1) X j 

,,]{ 

xk+1 
dt _ j P(t) dt 

xk 
----------~--------- + 

P(xk+1) 

- P(xk-1) 

Making the transformation t = xk + hU and 

expanding the expression of R.H.S. of (21) by Taylor's 

expansion about the point xk we obtain for sufficiently , 
small h, 

,...._., h 
' 

Hence, 

B
0

,k > . 0 for sufficient small h. 

This completes the proof the lemma. 

Lemma 2 : 

For sufficiently small h, 
I 

(22) I B1 ,k I < 1 h3 pk 
, k 1 (1) N-1 = t) pk 
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(23) ---:~,.___- h3 , k r 1 ( 1 ) N-1 

Proof : 

For fixed xk = kh 

= + 

(24) B1 ,k = ------------------------------- + 

Making the transformation t = Xk + hU and 

expanding the expression on R.H.S. of (24) by Taylor's 

expansion about the point xk, we obtain 



(25) 

(26) 

lim 
h~O 

: 63 

= 

. . 

1 

12 

k = 1 (1) N-1 

, 

It follows that for sufficiently small h, 

..; 
it 

1 .· h3 pk 

6 
pk 

Similarly it can be shown 

lim· B2,k 1 h-rO -h3 = 12 ' 
k = 1 ( 1) N-1 

It follov.rs that for sufficiently small h, 

\ B2, k J < 1 h3 
6 

Lemma 3 : 

(27) 

The inverse of the matrix D .is given by 

= 

= 

P(xi) .!:' P (xN)- P ('xj) _7 , i~ j 

P( XN) 
P (~) ~ P(xN) 

P(xN) 

- P (xi)_7 
, :i ~ j 
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Proof : 

(See Appendix ~ 1_7 ) 

We assume that 

. . 

. p(x) 

' p (x) 

where N1 and N2 a·re sui table positive constants. 

With the help of (25) and (26) from (11) we obtain for 

sufficiently small h 1 

(28) 

where 

c = 
12 

-· 'p' (xk ) 

p(~) 

Now since D and D + PM are irreducible and monotone 

for sufficiently ~mall h, and since D + PM ~ D 

it follows that 

From (20) we obtain 

(29)" T 11 

With the help of (28) and (27), from (29) 

. we obtain for i = 1 (1) N-1 



(30) 

(31) 

(32) 

Again 

(33) 
h 

r" N-1 

\eil~ L_ 
j = 1 

: E55 : 

-1 
d. . 
~,J 

p ( XN ) - p (xi ) j_- p t ( ~j ) 
------E P(xj) -----

P(xN ) j=1 p(~j) 

+ -~----

It is easy to establish the inequality : 

i xi 

h L P(xj) p' (x:j) <f P(x) p' (x) 

j~1 p{xj) 
0 

p(x) 

< P(xi) log p(xi) t log p(x) 
-

p(x) 
0 

N-1 

L_ ( P(xN) - P(xj)) P' (xj) 

J~i+1 p(x~ ) 

P' (x) 

p(x) 
dx 

.J 

dx 

dx 
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)"N log p(x) 
dx 

p(x) 
xi 

With the help of (32) and (33) from (31) we obtain 

(34) 

P(xi) l"N log p(x) 
) p(x) dx 

xi 

Lemma 4 : 

(35) log p(x) ~ p(x) 

for p(x) > 0 

and x E (0, 1) 

Proof . 
• 

Case I 

when 0< p (x) < 1 

(35) can be written as 



Case -

(36) 

(37) 

let 

p(x) ~ eP (_x) 

p(x) ~ 1 + 

which is true 

II when p(x) > 
then· 

• p(x) < p(x) 
e 

which is true 

67 : 

p(x) 

1 

2 
rp(x) _7 

+ ~"':·l . 

Thi~ completes the proof of lemma 4 

So we can write (34) as 

+ •••• 

. 2 
-\eij~ Ch . r(P(xi) - P(xN))x1 + P(xi), 

· P(x.Ji) 

(xN - xi) _7 

f(i) = P(ih) - ih . PN 

for Maximum 

f'(i) = h P' (ih) - hPN = 0 



: ·68 : 

1 = 
p( .ih) 

-1 ( 1 ) = p 
PN 

i , 1 -1 ( 1 ) = h 
p 

PN 

= h2 PP (ih) 

X 

= ) 1 dx p(x) 
0 

since P(x) 

1 
= p(x) . P' (x) 

1 ' p' (x) < = 
p2(x) 

0 P' '(x) 

So f I I (i) ·< 0 .. 

so i 1 -1 ( 1 ) gives max .. error bound =~P PN 

So (37) becomes 

II E II = max I ei I 
1 ~ i ~ N-1 

II E I { ~ Ch2 rp (p-1 ( 1 ) ) -P(~) PN 

- PN 
-1 ( 1 ) _7 p 

PN 

II E.\1 = O(h2) 



( 1) 

~2) 

(3) 

let 

APPENrirx r 1_7 

The inverese of the matrix D, where 

d k,k 

With 

Jk 

where 

P(x) 

n-1 

= 

= 

= 

= 

...:. .,. 

denote the tridiagonal matrix with 

, k = 2(1) N-1 

, k = 1 ( 1) N-1 

' k = 1(1) N-2 

rk+1 1 dx p(x) 

xk 

p (xk+1) - p (xk ) 

X 

f 1' dx p("x) 
0 

-1 
)N-1 ( d. l,j i,j = 1 
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On multiplying the ith row of D with the jth 

coloumn of n1 we obtain the following difference 
. 

equations, fork= 1(1) N-1 

-1 

(4) 
d. 1 . 

J.- ,J 
) -

-1 

----- + d .. l.,J 
1 1 

( +--
J. 1 J.-

-1 
di+1, j 

= 0 ,, i = 2(1) j-1 

(5) 

(6) 

(7) 

-1 
d. . l.,J 

-1 

( 

d. 1 j J- , 

J. 1 J-

-1 
dj+1,j 

+ d .. J,J 

-~--- = 1 
J. 

J 
-1 

d .. 1 .. 
J.- ,J 

J. 1 l.-

-1 
+ d .. l.,J 

= 0 , 

---- = o, 

( ...1....... + 
J. 1 J-

( _1-=--­
J. 1 J.-

1 

J, 
J 

i = j+1(1) N-1 

) 

) -

j ;&:: 1 



(8) 

(9) 

( 10) 

: 71 

-1 
dN-2,j -1 

+ dN 1 . - ,J 
JN-2 

j =f. N 

. 
• 

( 
J 

1 

N-2 

1 
+-

JN-1 

solving (4) subject to (5) we obtain 

, i ~ j 

) = 0 

where B( ') J is a parameter depending on j. 

Again solving (7) subject to (8) we obtain 

' 
-1 

d . . = D ( j ) L p (X; ) - p ( x.. .. ) _7 ' i :p j 
~' J ..... 1~ 

where D(j) is a parameter depending on j. 
-1 

Now in order that d. J' is identical as given J, 

by (9) and (10) , we must have 

(11). B(j) P(xj) = D(j) [P(xj) - P(~) _7 

Also in order that d71 . 
~,J 

(10) satisfies (6)
1 

we obtain 

as given by (9) and 

, 
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(12) B(j) P(x.J._1 ) . + B(j) P(xj.) 

J. 1 J-

( ___ 1_ 
+ 

__1 __ ) 

Jj J. 1 J-

D(j) ~ P( xj+1 ~)- P(xN) _7 

Jj. 

Solving (11) and (12) we obtain 

· (13) B(j) 

(!4) D(j) 

= ~ P(xN) - P (x:j.) _7 
P(~) 

= 

= 1 

Substituting for B(j) and D(j) from (13) and' 

(14) in (9) and (10),we obtain 



(15) 
-1 

d .. l.,J = 

= 

Example : 

Let p(x) 

P(x) 

So Matrix D-1 

: 73. . 
• 

P(x1 ) ~ P(~) ~ P(xj) _7 

P(~) 
, i ~ j 

P(xj) ~ . P(xr::I) - P(xi)_7, i ? j 

P(~) 

= xo< 

X 
1-o( 

= 
• 1-o( 

(d71 . 
N-1 

= ) . . t l.,J l., J =1 

together with· xN ""' 1, becomes 

-1 
d .. l.,J 

1-o( 
( 1-x .1- c() I ( 1- 0() , 

J 

1-0( 1-0( 

i ~ j 

= xj ( 1 -xi ) I ( 1- o( ) , i ~ j 
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