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Abstract 

 
 

 

Traditional statistical analysis of Internet traffic data is often employed to 

determine traffic distribution, to summarize user’s behavior patterns, or 

to predict future network traffic.  Mining of Internet traffic data may be 

used to discover hidden user groups, to detect payment fraud, or to 

identify network abnormalities like flow control and congestion control. 

The work carried out in this dissertation utilizes computational 

intelligence techniques like fuzzy logic to predict Internet traffic data 

pattern. A fuzzy inference system (FIS) is constructed. The FIS is first 

trained and then tested on numerically generated data by Mackey-Glass 

delay differential equation. Data collected over JNU LAN for twenty four 

hours is preprocessed. The cleaned data is subsequently given as input 

to the FIS for prediction. As a result, it is found that the predicted traffic 

agree with actual Internet traffic pattern. In addition, Hurst parameter 

estimate shows degree of self-similarity in JNU LAN traffic data  to be 

about 0.92 that is much closer to Perfect self-similarity (H=1). 
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Chapter 1 
 

INTRODUCTION                                      
 

 
Mining Internet traffic data is a daunting task because of Massive data 

size, time varying patterns and topology. There are both spatial as well as 

temporal issues. Taking temporal dimension, one can have millions of IP 

packets (which are actually in GBs and TBs) by capturing at routers for 

an hour [1]. Regarding spatial issues, there could be thousands of 

routers, switches and end nodes even in small local area networks. To 

effectively mine the network traffic data, there should be well established 

infrastructure. The recent development of high performance hardware for 

IP packets can capture 10 Gb/s [2]. However, it is not feasible to use 

such vast amount of data for research and operation tasks. Filtering and 

preprocessing methods need to be applied. This has lead to the evolution 

of what researchers call Internet Science.  

In fact, there are three major aspects that should be taken into 

account while modeling the Internet. 

 Traffic 

 Topology 

 Effect of protocols on traffic and topology.  

Analysis and data mining of topology related measurements are often 

executed offline with the help of network operators. The objective of these 

studies is to identify invariants that give insights into how topologies 

evolve. For instance, it has been found that any two randomly chosen 

documents on the web are 19 clicks away and any two nodes are 6 hopes 

away [3]. Major advances in Internet modeling have revealed 

identification of self-similarity, long range dependences (LRD) and use of 

power law to describe the global topology of the Internet. 
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Because of inherent nonlinear dynamics, many statistical models have 

failed to characterize the traffic invariants

Therefore, there is the need of developing models that are nonlinear and 

can capture above mentioned behavior. In this direction, fuzzy theory 

has proved vital. The fuzzy  logic  technique  is  also  important  for 

approximation  of  function  and  modeling  static  and dynamic  

systems.  As a result of  the  research,  fuzzy systems now in  addition  to  

taking  the  linguistic  information (linguistic rules) from human experts, 

can adapt itself using numerical data  (input/output  pairs)  to  have  a  

good performance.  The fuzzy  modeling  of  dynamic  systems is  

addressed,  as  well  as  the  methods  to  construct  fuzzy models  from  

knowledge  and  data.  Furthermore, the fuzzy inference system is 

mapped onto a neural network-like architecture. This has lead to the 

development of Neuro-fuzzy systems. 

 

1.1 Motivation 

  

Today, the Internet has evolved enormously and in an unleashed way 

because of TCP/IP protocol. Millions of TCP/IP packets move in a single 

day across the campus local area network (LAN). Several studies have 

shown that Internet traffic exhibit complex nonlinear behavior. Many 

classes of dynamical behavior have been described, including regular 

predictable and unpredictable behavior, transient and intermittent 

chaos, narrow-band and broad-band chaos, pseudo-randomness and 

superposition of several basic patterns [4]. In some cases, however, 

studies have ascertained that network traffic shows pattern that can be 

properly classified within regular predictable phenomena. In this aspect, 

we can view analysis of network traffic data as analysis of time series 

data. In these cases, the theory of nonlinear dynamics provides a proper 

framework for the analysis, identification and prediction of network 

traffic time series. 
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Network traffic prediction finds application in variety of domains like 

congestion and admission control, network management and anomaly 

detection as well as quality of service (QoS) provisioning. The idea behind 

network traffic prediction is to predict network traffic for the next control 

or action period based upon active or passive measurement. 

There are services like network weather service (http://nws.cs.ucsb.edu) 

that has become important for adaptive applications in recent years. 

Similarly, Grid computing depends on the availability of measurement 

and predictions of network conditions in order to optimize performance. 

This has resulted in the development of grid-based services for predicting 

TCP/IP end-to-end throughput and latency [5].  

 

1.2 The Problem Definition 
 

Time series prediction and analysis in general is a recurrent problem 

virtually in all areas of natural and social sciences as well as in 

engineering. In the field of time series prediction, prediction accuracy is 

not the only major goal. Understanding the behavior of time series and 

gaining insights into their underlying dynamics is a highly desired 

capability of time series prediction methods [6].  

In the past, conventional statistical techniques such as AR and 

ARMA models have been extensively used for forecasting [7]. An accurate 

traffic prediction model should have the ability to capture prominent 

traffic characteristics, such as long-range dependence (LRD) and self-

similarity in the large time scale, multifractal in small time scale. 

However, these techniques have limited capabilities for modeling time 

series data, and more advanced nonlinear methods including artificial 

neural networks have been frequently applied with success [8]. Some 

authors have also applied fuzzy techniques for the prediction of network 

traffic series with considerable success. Because of the novelty of the 

http://nws.cs.ucsb.edu/
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technique, FIS is developed and used for prediction purpose. In this 

dissertation, it is assumed that network traffic data  

 

 
Objective:  
 

To develop a Fuzzy inference system that can predict Internet traffic load 

pattern so as to optimize the network resources and handle flow and 

congestion control dynamically. 

 

1.3  Organization of Thesis 
 

The thesis is organized as follows: Chapter 2 talk about the related work 

done in the area of network traffic prediction. Chapter 3 discusses 

various steps taken to prepare data for prediction purpose. Methodology 

for time series prediction is given in chapter 4. Chapter 5 talks about the 

implementation details and simulation results and conclusion is 

discussed in chapter 6. 
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Chapter 2 
 

RELATED WORK 
 

 

There exist statistical techniques for modeling and predicting network 

traffic but they could not capture complex nonlinear behavior exhibited 

by network traffic data. Earlier models used for network traffic prediction 

includes Markov model, Auto Regressive (AR) and Auto Regressive 

Integrated Moving Average (ARIMA). The exponential decay of the 

autocorrelation function of these models gives them the ability to capture 

the short-range dependence (SRD) characteristics only. Such kinds of 

models are also known as Short-Memory Stochastic models. However, it 

has been shown that the traffic data exhibited a high degree of long-

range dependence (LRD) characteristics besides SRD. Thus, such models 

cannot characterize the network traffic well, and unsuitable for traffic 

prediction.  

More recent models known as the Fractional Auto Regressive 

Integrated Moving Average (FARIMA) model, Fractional Brownian 

Motion(fBm), Fractional Gaussian Noise and Generalized ARMA(GARMA) 

capture both SRD and LRD and has been used to model and predict 

traffic data [9][10]. Since these models can predict LRD phenomena, they 

are called Long-Memory Stochastic Models. Nonetheless, these models 

fail to capture multifractal which has been observed in network traffic at 

small time scale. For this reason, another Multifractal Wavelet model 

(MWM) has been introduced to solve this problem. MWM model can 

capture multifractal but cannot predict traffic [11]. On the other hand, it 

is found that traffic exhibited non-stationary and non-linear properties 

and threshold autoregressive (TAR) model [12] has been proposed to 

model such properties. In [12], the authors have developed the first 

network measurement system which integrated prediction and they have 
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also proposed running multiple predictors simultaneously and 

forecasting one which exhibiting the smallest prediction error produced 

on its measurements.  

Apart from the above mentioned model-based prediction schemes, 

[13] has reported that non-model-based prediction provides better 

prediction than model-based prediction as long as the traffic is LRD or 

self-similar. However, the authors only compared their non-model-based 

prediction model with the FARIMA and FBM models. Both these two 

models cannot capture bursty traffic very well and this bursty 

characteristic affects traffic prediction accuracy.  Another significant 

prediction research work is introduced in [6], which analyzed the 

prospects for multi-step prediction of network traffic using ARMA and 

MMPP models. Their analysis is based on continuous time ARMA and 

MMPP models driven by Gaussian noise sources. Some authors as in [14] 

have used combined approach of ARIMA/GARCH to model and forecast 

network traffic.  However, its predication methodology is quite complex 

and unstable and does not scale well. The  Volterra models[15]  and  the  

Higher  Order  Cumulant  (HOC) techniques[16]  are  used  also  

respectively  for  analyzing IP network and modeling time series of 

internet traffic. 

On the other hand, in [17] the author has proposed seasonal 

autoregressive-generalized autoregressive conditional heteroscedasticity 

(AR-GARCH) models in order to capture seasonal pattern manifested by 

Internet traffic. However, it works only for hourly and higher resolution 

and does not scale well for low time resolution like minutes and seconds. 

In addition, [17] uses RMSE criterion for error measurement in 

prediction; for network traffic, it has been pointed out [18] that a 

generalized-cost function approach that penalizes under-forecasting is an 

important consideration in predicting network traffic. 
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 Because of massive data size, varying topology and protocols governing 

traffic and topology, there is the need of methodology that can scale for 

dataset of any size and can capture self-similarity, multifractal behavior 

prominently found in network traffic data. Hence, research community is 

now using computational intelligence based methods and models for 

network traffic measurement and prediction purpose. Among these are: 

Fuzzy logic based techniques, support vector machines, neural network 

and their combined approach as discussed in [20][19].  

Techniques of fuzzy logic are widely used because of their rule 

interpretability, ability to solve system identification and predication 

problems. Indeed,  the  theory  of  fuzzy  logic  provides  a mathematical  

framework  to  capture  the  uncertainties associated  with  human  

cognitive  processes,  such  as thinking  and  reasoning[22,21].  

Furthermore, the application of this theory has increased in recent years 

and has multi-disciplinary in nature, includes automatic control, signal 

processing and time series prediction. 
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Chapter 3 
 

Preprocessing of Network Traffic Data 
 

Raw data is highly susceptible to noise, missing values, and 

inconsistency. The quality of data affects the data mining results. In 

order to help improve the quality of the data and, consequently, of the 

mining results raw data is pre-processed. Data preprocessing is one of 

the most critical steps in a data mining process which deals with the 

preparation and transformation of the initial dataset. Data preprocessing 

methods are divided into following three categories [23].  

 Data Cleaning 

 Data Integration and Transformation 

 Data Reduction 

Data cleaning removes observation with noise and missing values.  Data 

integration merges data from multiple sources into coherent form 

whereas transformation operation changes data into form appropriate for 

mining. Reduced data is split into two sets, the “training set” and the 

“test set”. The training set is used to “to train” the data mining algorithm, 

while the test set is used to verify the accuracy of any pattern found. The 

section 3.1 discusses Network traffic data whereas section 3.2 talks 

about the publicly available measurement systems and infrastructure. 

 

3.1   Network Traffic Data 

 

The traffic data contains event log tables recording activities occurred in 

the network. They are aggregated from the distributed database of the 

network management system. 
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Measurement Systems and Infrastructure  

 

Network performance depends on and can be measured in terms of a 

number of parameters such as capacity, available bandwidth, delay, 

jitter, and packet loss and packet disorder. These and other network 

parameters are related in a complex manner and to a varying extent. 

Measuring the network is crucial to understanding the Internet behavior 

and designing control mechanisms for improving performance. 

Current measurement systems [24] can be classified into two main 

types: active and passive. The former are of a distributed nature and are 

usually accessible to end users and applications. The latter are 

centralized and often restricted to network operators and engineers. The 

current challenges in this area are to increase the maturity of these 

systems, to deploy measurement infrastructures and to enable 

generalized macroscopic analysis of the Internet. 

Active Systems 

Active measurement systems work by sending probe traffic from an end 

node in order to measure parameters such as round-trip time and packet 

loss percentage [25]. Active measurement tools inject probe packets into 

the network and analyze the response. Some active systems are variable 

packet size (VPS), packet pairs, packet trains, packet tailgating, ALBP 

(Asymmetric Link Bandwidth Probing), self-loading streams, to name a 

few. 

Passive Systems 

Passive measurement systems are based on recording data at a network 

node, i.e., no probe packets are sent. While passive systems do not 

require cooperation or coordination among end nodes, the quality and 

relevance of data decisively depends on the location of the measurement 
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point. Thus, cooperation between network operators [25] is a prerequisite 

of passive measurement infrastructures. 

  

3.2 Publicly Available Measurements 

  

Traces are one of the main outcomes of measurement infrastructures. 

The use of common traces recorded by both active and passive 

measurement infrastructures are key reproducible research and 

comparison of results in general. Traces may comprise data about 

topology, traffic, specific applications and a variety of heterogeneous 

measurements. In this sense, the recent availability traffic traces of high-

speed networks, especially at OC48 and OC192 speeds, require a great 

deal of effort and cooperation among different agents. Cooperative 

measurement projects and infrastructures also allows for wide scale 

analysis of networks. 

In most of the experiment, the researchers have used a wide set of 

publicly available network traffic traces obtained through passive 

monitoring. These traces are usually made of a sequence of packet 

headers (possibly including part or the entire payload as well). Some 

other traces only provide a restricted set of data about each received 

packet, in particular the arrival time and size, as well as some other 

especially relevant data such as TCP flags. Some traces have an 

historical relevance such as the Bellcore traces and the traces taken at 

the Lawrence Berkeley National Laboratory. The first were the empirical 

basis to find self-similarity and long-range dependence in Ethernet traffic 

[26] whereas the second were instrumental in showing that the Poisson 

model fails to capture the general behavior of traffic in wide area 

networks. 
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On-line monitoring and analysis      Off-line analysis 

 

       Disk 

Fig 3.1 Packet capturing infrastructure 

 

3.3 JNU LAN traffic data 

For the purpose of internet traffic analysis, TCP/IP packets were 

captured using SmartSniff (http://www.SmartSniff.com). One million 

packets were captured from 2PM to 3PM on April 12, 2012 over JNU 

LAN. About 0.01% of these packets were dropped. One snapshot of this 

is shown in the figure 3.1. Next, of the twelve fields, only the most 

relevant field were taken into account 

For network traffic load prediction, we have chosen number of 

packets per second, data size (in KB/Sec) and timing of the packet 

capture. The reason behind selecting these features only is that some of 

the fields were either non numeric (for example protocols like TCP/UDP 

or service name like domain/llmnr) or addresses (for example source and 

destination address of the form 172.16.0.1). The problem with these 

fields is that they cannot be fuzzified unless some modification is done in 

their representation. In addition, there contribution to network load is 

less significant as compared to selected fields. Thereafter, we collected 

the data with some missing values for data size and number of packets  

Online 

Processing 
Capture 

Networking 

interface card 

Dump 

results 
Off-line 

processing 
Dump results 

 

http://www.smartsniff.com/
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Fig 3.2 Packet sniffing using Smartsniff 

 

      Table 3.1: Number of packets per second and their capture timing 

Capture time No. of packets/sec 

3:48:43 

 3:48:44  
 3:48:44  

 3:48:45  
 3:48:45  
 3:48:48  
 3:48:48  
 3:48:49  

       … 

1548 

42 
1 

14 
5 

11 
5 

30 
        … 

       

Table 3.2 Data size in KB/sec carried by packets with their timing  

Capture time  Data size in KB/sec 

3:48:43  
 3:48:44  
 3:48:44  
 3:48:45  
 3:48:45  

 3:48:48  
 3:48:48  
 3:48:49  

       … 

1520866 
2702 

98 
5 

595 

4 
1 

13551 
        … 

 

per second. After removing the missing values for data speed, we 

obtained around 1347 tuples. As shown in table 3.1and table 3.2. Since 

there is no advantage of having date, it is also removed from the dataset. 

Finally, to get the packets at an interval of seconds, millisecond 

timestamp was removed and what is left is the time of the format  
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Fig. 3.3 Plot of number of Bytes with respect to time in seconds 

 

Fig. 3.4 Plot of number of packets with respect to time in seconds 

 

HH:MM:SS and data size. A plot between time and number of bytes per 

second is shown below in figure 3.3. In figure 3.4, we have shown plot of 

number of packets per second against time. Note that removing 

millisecond from the timestamp will decrease accuracy of prediction. But, 

for the sake of simplicity of preprocessing, trade-off has been made 

between the accuracy and complexity. 
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Chapter 4 

Methodology for Time Series Prediction 

 

There are two methods for prediction: direct prediction and recursive 

prediction. In direct prediction, a prediction model is built for every 

prediction horizon. Thus, for maximum prediction horizon H, H direct 

models are built, one for each prediction horizon h. On the other hand, 

recursive prediction recommend using the same model recursively for 

predicting each successive future values. The former one suffers from 

high computational cost but giving an accurate model whereas the latter 

one does the opposite.   

4.1 Methodology 

Consider a discrete time series as a vector,   = x1, x2,...,xt−1, xt that 

represents an ordered set of values, where t is the number of values in 

the series. Packard et al., [27] have demonstrated that an attractor may 

be reconstructed from a time-series by using a set of time delayed 

samples of the series. If ∆ is the time delay, and m is an integer, then one 

may write for points on the attractor as 

 

                 y(t+p)=f( x(t), x(t-∆), x(t-2∆), …x(t-m∆))             (4.1) 

 

Where p is the prediction time in future and f( ) is a map. This may be 

viewed as m+1 dimensional surface. Thus, the “embedding dimension” 

dE, is defined to be m+1. Taken [28] has proved that a least upper bound 

exist for which f( ) will be a smooth map. If the dimension of the attractor 

is defined to be, dA, then one needs an embedding dimension less than or 

equal to 2dA+1 i.e.  

 

                                 dE<=2dA+1          (4.2) 
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A minimal requirement is that dE>=dA.  How to choose dE, p and ∆ is given 

in [29] and has also been discussed in chapter 5. 

For prediction in time-series domain, data is arranged in the following 

matrix form (initially our data is given as x(1), x(2),…x(T)): 

  [x(t), x(t+∆) x(t+2∆),…,x(t+ ∆); x(t+m∆)] 

  [x(t+1), x(t+1+∆), x(t+1+2∆),…,x(t+1+ ∆); x(t+1+m∆)] 

  … 

In particular, m=3 and ∆=6 is taken for experimental purposes.  This 

gives rise to four input variable and one output variable. Thereafter, data 

is split into training and testing sets. Training part is used to construct 

the model whereas testing part is used for verifying the accuracy of the 

model. 

 

4.2 Designing Fuzzy Inference System (FIS) 
 

Fuzzy inference system is directly developed from the data. Approach 

followed here is as given in [30]. It is basically two stage development 

method. In the first stage, the most relevant variables are selected. In the 

second stage, we apply system identification and tuning algorithm called 

Wang and Mendel [31]. A general framework for stepwise development of 

FIS is given in fig 4.1. 

 

Stage 1: Variable Selection 

There are number of variables accounting for influencing unknown 

future value in the time series prediction. However, employing all known 

values as input to the autoregressor (FIS) does not necessarily improve 

its accuracy. As the number of inputs increases, and the known data 

become sparser in a high-dimensional space, building a model gets more 

and more complex. This is the well known “curse of dimensionality” 

problem. From the implementation point of view, an embedding  
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Fig. 4.1 Fuzzy inference system framework for time series prediction 
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    Summarization with induced  

                                                        labels 

Sampling 

 

      Aggregation  

            Clustering 

       Aggregation 

 

 

    Summarization with a priori linguistic labels 

 

Fig. 4.2 Procedure of extracting linguistic summary 

 

Dimension dE equal to 4 is chosen. This gives from Eqn. (1) m=3. That is, 

there are four input variables x1, x2, x3, x4. 

Stage 2: System Identification and Tuning 

 

System identification is the core part of the FIS design process. It 

comprises of determining linguistic labels, choosing membership 

function and generating fuzzy rules. Linguistic summaries as proposed 

by Yager [32] are a data mining technique for summarizing data 

collections using linguistically quantified propositions [33], such as 

“Most traffic flows are short lived”. The present work considers the 

extended definition by Kacprzyk and Zadro˙zny [34] that leverages on the 

concept of protoform or prototypical form. 

 Diagram in the figure 4.2 represents two kinds of linguistics 

summarization of traffic flow:  

One uses the prior knowledge of linguistic labels deduced from the 

intuition and second one is derived from the clustering techniques. 

Sampled 

Packet level 

trace 

Packet 

level 

trace 

 

SmartSniff 

record 

Linguistic label 

Linguistic 

summary 

Linguistic 

summary 
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Linguistic summarization using priori labels 

Based upon our experience and intuition, we can assign some linguistics 

labels as follows: 

Table 4.1 Linguistic summary for network traffic data 

 

 

 

 

 

 

Below is the membership function diagram for above linguistic variables. 

 

Fig 4.3 Membership functions for attributes given in Table 4.1 

Linguistic summarization using clustering 

Two methods for linguistic summarization based on clustering 

techniques are: k-mean (or hard c-mean) and fuzzy c-mean. The number 

of clusters is the most often a determining input variable to the 

(a) duration (b) avg. packet size 

(d) Byte count (c) Throughput 
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s 
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Attribute   Linguistics Labels 

Duration    Short-lived, Long-lived 

Average Packet Size  Small, medium, large 

Bytes    Mice, Bulk, Elephants 

Throughput   Low, medium, high 

Packets   pk-mice, pk-bulk, pk-elephants 
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algorithm. Normal approach is to check a) whether the number of 

optimal clusters matches the number of domain specific terms (current 

assumptions) and b) how summaries built with clustering derived labels 

compare with the summaries above? 

The clustering processes could be run on the whole data sets. 

However, it has been found that it is not necessary to have a large 

number of flow samples in order to obtain consistent results that give a 

fairly good approximation to the clusters identified on the whole data 

sets. The approach followed here is as in [34] for fuzzy rule identification. 

It is basically five step procedure as outlined below. 

Suppose that following input output pairs are available:  

 

           (4.3) 

 

Where x1, x2, are inputs and y is the singleton output. Our objective is to 

find Mamdani’s type fuzzy rules of the form: 

 

 (4.4) 

 

Where Fi and Ci are fuzzy sets defined on input and output space 

partitioning and finally determine a mapping of the form: 

    f: (x1, x2)     y. 

An algorithmic procedure for such a mapping is described on the next 

page.      

 

 

   



20 

 

 

    Fig. 4.4 Triangular Fuzzy membership functions 

 

Development of FIS: 

Step 1: divide the input and output space into fuzzy regions  

Step 2: Generate fuzzy rules from given data pairs 

Step 3: Assign a degree of confidence to each rule 

Step 4: Create a combined fuzzy rule base 

Step 5: Determine a mapping based on combined fuzzy rule base 

 

Assume  that  the  domain  intervals  of  x1, x2  and  y are [ ] , 

[ ]  and  [ ], respectively,  where  “domain interval”  of  a variable  

means  that  most  probably  this  variable will  lie  in  this interval  (the 

values  of  a variable  are allowed  to lie  outside  its  domain  interval). 

Divide each domain into odd number of regions. Number and length of 

each region for each variable may be different. Assign a fuzzy 

membership function to each region as shown in the fig. 4.4. Note that 

any number and type of fuzzy membership function can be used, for the 

sake of simplicity, 5 to 7 triangular Membership function so as to avoid 

curse of dimensionality problem. 

To generate fuzzy rules for each data pair, first determine degree of 

membership of each variable  in different regions just created 

above. Second, assign a given  to the region with highest 

degree of membership. Finally, get one rule for each pair of input-output 

data of the form: 

1 

0 

1 

0 

Domain of the variable Domain of the variable 
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      [ ]

 Rule i 

The rules generated  in this way  are “and” rules,  i.e., rules in which the 

conditions of  the IF part must be met simultaneously in  order  for  the  

result  of  the  THEN  part  to  occur. Due to large number of rules, one 

may have rules with the same IF part. Such rules are called ‘conflicting 

rules’. One  way  to  resolve  this  conflict  is  to assign  a  degree  to  

each  rule  generated  from  data  pairs,  and accept  only  the  rule  from  

a  conflict group that  has  maximum degree.  In  this  way  not  only  is  

the  conflict problem  resolved, but  also  the  number  of  rules  is 

greatly  reduced. 

The degree of a rule is calculated as the product of the 

membership values of each variable (input and output) as follows: 

 

                       D(Rule)=MA(x1)MB(x2)MC(y)                     (4.5) 

 

The  form  of  a  fuzzy  rule  base  is  illustrated  in  Fig. 4.5. Boxes  of  

the  rulebase are filled  with  fuzzy  rules  according to  the  following  

strategy:  a  combined  fuzzy  rule  base  is assigned  rules  from  either  

those  generated  from  numerical data  or  linguistic  rules  (assumption 

made here is that  a  linguistic  rule also  has  a  degree  that  is  

assigned  by  the  human  expert  and reflects  the expert’s  belief  of  the  

importance  of  the  rule);  if there  is  more  than  one  rule  in  one  box  

of  the  fuzzy  rule base,  use  the  rule  that  has  maximum  degree. 

Defuzzification method used is centroid. First for given inputs  (X1,X2), 

combine  the  antecedents  of  the  ith  fuzzy rule  using  product 

operation  to determine  the degree,  , of the  output  control  

corresponding  to  (X1,X2),  i.e., 

 

                            (4.6) 
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where  Oi denotes  the  output  region  of  Rule  i, and  denotes the  

input  region  of  Rule  i  for  the  jth  component. Then use the formula   

given in Eqn.(6) for the defuzzification.   

 

 

       S2  

       S1 

      X1        CE 

       B1 

        B2 

          

                                                B3 B2 B1 CE S3 S2 S1 

        X2 

      Fig. 4.5 the form of a fuzzy rule base 

 

In this dissertation as a concrete implementation and for the sake of 

simplicity, direct prediction methodology has been used.  Minimum as T-

norm for conjunction operations and implications, triangular 

membership functions for inputs, singleton outputs and fuzzy mean as 

defuzzification method have been used. Therefore, in this particular case 

a fuzzy autoregressor for prediction horizon h can be formulated as 

follows: 

 

                                                             (4.7) 

 

Where Nh is the number of rules in the rulebase for horizon h, , is 

Triangular membership functions and  is singleton membership 

functions. A proof of Eqn.(4.7) is given in appendix. 
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The methodology described in the previous section builds a fuzzy 

regressor. But for prediction purposes, we need to take care of under 

fitting of test data. Therefore, Wang method is slightly modified to 

incorporate cross-validation of the data. The combined method is called 

Wang with cross-validation (WCV).  

 The problem of building a regressor can be precisely stated 

as that of defining a proper number and configuration of membership 

functions and building a fuzzy rulebase from a data set of t sample data 

from a time series such that the fuzzy systems Fh(Ӯ) predict the hth next 

values of the time series. The error metric to be minimized is the root 

mean squared error (MSE).  

 

4.3 Self-Similarity  
 
 The self-similarity means that the statistical properties (all moments) of 

a stochastic process do not change for all aggregation levels. The main 

properties of self-similar processes include:   

 Slowly decaying variance – the variance of the sample is decreased 

more slowly than the reciprocal of the sample size.  

 Long-range dependence - the process is called a stationary process 

with long-range dependence if its autocorrelation function is non-

summable. The speed of decay of autocorrelations is more 

hyperbolic than exponential.  

 Hurst parameter (H) – it expresses the degree of self-similarity 

(0<=H<=1). The closer to 1 is H; the more similarity will be present 

in the series. And vice-versa. 

 

Hurst parameter can be calculated using variance-time plot. 
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Variance-time plot 

For a self-similar time-series: 

              {X}={X1, X2, …, Xk}                              (4.8) 

The m-aggregate { } with its kth term: 

 

                            Where k=1, 2, 3…    (4.9) 

The degree of self-similarity and long-range dependence increases as 

H→1. In the present work, self-similarity is estimated using variance-

time plot. In this process, variance of aggregate of a self-similar process 

is defined as: 

 

                                    Var( )=Var(X)/                                       (4.10) 

This can be rewritten as: 

 

  log{ VAR (X(m))}=log{ VAR(X) }- β log {m}      (4.11) 

 

If VAR(X) and m are plotted on a log-log graph then by fitting a least 

square line through the resulting points one can obtain a straight line 

with the slope of β and using which in Eqn. (5.6) yields Hurst parameter 

                       

H=1-                                                    (4.12) 

 

The Mackey-Glass series as well as JNU LAN traffic data exhibit self-

similarity. The above theory about self-similarity is verified in section 5.4 

of chapter 5. 
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Chapter 5 

Implementation, Experimental Results and Analysis 

 

5.1 Implementation  

5.1.1 System Specification 

Software requirements: 

For the concrete implementation, platform can be any Operating system 

running MATLAB. Software packages required is MATLAB/Octave and 

Packet capturing software like SmartSniff. Often, Microsoft office package 

is used in data preprocessing. 

 

Hardware requirements: 

The WCV and W&M methods are implemented on Intel Core I3 Processor 

running on 3GB RAM (512MB minimum). Hard disk space required is 

1GB minimum free space. 

 

5.1.2 Implementation Details 

 

Initially, prediction methodology as discussed in chapter 4 is 

implemented in the environment as specified in section 5.1.1 to develop a 

Fuzzy inference system (FIS). The prediction methodology WCV as 

represented in chapter 4 is compared with the Wang method [34, 35].  

However, there is difference in the way the Wang method make 

prediction and WCV implemented in this dissertation. Instead of 

implementing “extrapolation of rules”, the present work employs 

“Holdout” and “LeaveMout” sampling methods in order to see the 

performance of FIS prediction on the network traffic data.  

Fuzzy rule extrapolation is a technique to handle prediction of those test 

samples that fall outside the range of training samples. In Wang method 
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[35], two rules are neighbors to each other if they share the same IF part 

except in one variable and the fuzzy sets for this variable in the two rules 

are neighbor of each other. Finally, the rules that have already been 

generated from the data are called data-generated rules, and the rules to 

be extrapolated based on the data-generated rules are called 

extrapolating rules. Data mining Sampling methods like “Holdout” and 

“LeaveMout” are based on random sampling of the data and therefore 

add negligible complexity as compared to loosing accuracy due to “Fuzzy 

rule extrapolation” based on nearest neighbor fuzzy-sets.  

The FIS prediction method is first evaluated on the data numerically 

generated by Mackey-glass delay differential equation given by (5.1) 

followed by JNU LAN preprocessed traffic data as given in section 3.3.                         

5.2 Data Description 

In this work WCV is compared with WM using two time series data: a 

synthetic data generated numerically given Eq. (5.1) and JNU LAN traffic 

data as presented in section 3.3 of chapter 3. Although, the objective in 

the dissertation is to predict “data network” traffic, the reason behind 

choosing first dataset is that it is representative of “data network” traffic 

in the sense that for delay parameter >17, its exhibits chaotic behavior. 

In some way, we will have idea of whether the FIS developed is 

performing as expected (measured in terms of mean absolute error). 

 

 Synthetic data is generated using Mackey-Glass delay 

differential equation (5.1) as shown in figure 5.1. 

 

                                   (5.1) 

To obtain the time series value at Integer points, the fourth-order Runge-

Kutta method is applied to find the numerical solution to the previous 

Mackey-Glass eqn. (5.1). The series consists of 765 samples. This time  
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 Fig. 5.1 Mackey-Glass series at τ=30  
 

Series is chaotic for τ>17, and so there is no clearly defined period. The 

series does not converge or diverge, and the trajectory is highly sensitive 

to initial conditions. This benchmark problem is used in the neural 

network and fuzzy modeling research communities.  

 

Another dataset representing network traffic that has been used in the 

present work consists of 770 samples as shown in the figures 5.2 (a) and 

(b). First one shows the internet traffic pattern in terms of Number of 

packets per second and second one number of bytes per second at JNU 

LAN Router. Packets captured at JNU LAN on May 11, 2012 for nearly 1 

hour. However, traffic shows data up to 800 seconds (14 minutes) 

because of sampling data over every second. 
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(a)  

 
(b) 

Fig 5.2 (a) Number of packets/second (b) Number of Bytes/second 

 

5.3 Experiment and Results  

 

The experiments are carried out to compare the performances of WM and 

WCV in terms of prediction and self-similarity modeled by WCV by 

varying the following parameters. 
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Fig. 5.3 Triangular membership functions for all inputs and 

outputs Three  fuzzy sets (b) five fuzzy sets  (c) seven fuzzy sets 

 

I. Number of fuzzy sets keeping number of predictor variables 

constant. 

II. The Number of predictor variables keeping number of fuzzy 

sets constant. 

The performance parameter to be measured is MSE (mean squared error) 

in the prediction. The experiment was carried out on two time series data 

namely (a) Mackey-Glass series (b) JNU LAN network traffic data as 

described in details in the beginning of this chapter. Comparison has 

been between the Wang method and the WCV method. 

5.3.1 Prediction of Mackey-Glass Series 
 

Varying Number of fuzzy sets keeping number of predictor variables 

constant 

For the experiment on Mackey-Glass series prediction, number of fuzzy 

sets was varied from five to seven while keeping the number of predictors 



30 

 

at four (as depicted in figure 5.3 (b) and (c)). The results are shown in 

figures 5.4 and 5.5 and table 5.1.   

  
 

(a)                                                                   (b) 

Fig. 5.4 True vs. predicted data plot  (a)  Wang method    (b)  WCV 

method. 
 

  
(a)                                                                              (b) 

Fig. 5.5 True Vs. predicted data plot (a)  Wang method    (b) WCV 
method 
 

 

Table 5.1 Comparision of WCV method with Wang method applied to 

Mackey-Glass series 

No. of predictors No. of fuzzy sets Method MSE in prediction 

 

 
        4 

           

         5 

Wang  0.0740 

WCV  0.1178 

         

         7 

Wang  0.0586 

WCV  0.0760 
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Varying number of predictor variable keeping number of fuzzy sets 
constant: 

 

Now the number of fuzzy sets is kept at 5 as depicted in figure 5.3 (b) 

and number of predictor is varied from 3 to 4. The plots in figure 5.6 and 

5.7 show the model prediction with different number of predictor 

variables used for prediction and corresponding MSE plot. The results 

are shown in table 5.2. 

 

  
 

(a)                                                       (b) 

Fig. 5.6 Prediction of Mackey-Glass series with two inputs and five fuzzy 

sets (a) True Vs. predicted (b) Absolute error plot.  

 
(a)                                                       (b) 

 

Fig. 5.7 Prediction of Mackey-Glass series with three inputs and five 

fuzzy sets (a) True Vs. predicted (b) Absolute error plot.  
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Table 5.2 Comparision of WCV method with Wang method applied to 
Mackey-Glass series. 

 

 
5.3.2 Prediction of JNU LAN Traffic Load 
 

 
Network traffic data captured at JNU LAN consists of number of packets 

per second and number of bytes per second. In order to ensure fast 

convergence of the algorithm, mean normalization is used. That is, for 

each sample X(t) in the series normalized X’(t) is calculated is as follows: 

                              

 X’(t)=(X(t)-µ)/σ,        (5.7)  

      

 Where µ is mean value of the series sample and σ is standard deviation 

of the series sample. 

 

Varying the Number of fuzzy sets keeping number of predictor variables 

constant 

 

For the experimental purpose, we used 520 samples for training and 250 

samples for testing. Number of fuzzy sets used is 2, 3, 4, and 5 as 

depicted in figure 5.3. Number of predictors is kept at 4. The various 

results are shown in table 5.3 and figures 5.8, 5.9, and 5.10. 

 

 

 

No. of fuzzy sets No. of predictors Method MSE in prediction 

 
5 
 

 

 

3 

Wang  0.0708 

WCV  0.1258 

4 
Wang  0.0740 

WCV  0.1178 
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(a) 

 

(b) 

Fig. 5.8(a) JNU network traffic load prediction plot (b) MSE with 3 fuzzy 
sets and 4 predictor  
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(a) 

 
(b) 

Fig 5.9(a) JNU network traffic load prediction plot (b) MSE with 5 fuzzy 
sets and 4 predictor  
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(a) 

 
(b) 

 
Fig 5.10 (a) JNU network traffic load prediction plot (b) MSE with 7 fuzzy 

sets and 4 predictor  
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Table 5.3 Comparision of WCV method with Wang method 

 
 
Varying the number of predictor variable keeping number of fuzzy 
set constant: 
 

Number of fuzzy sets used is 5 as depicted in figure 5.3 and number of 

predictors is varied from 3 to 4. The corresponding results are shown in 

table 5.4 and figure 5.11 show the performance of FIS prediction with 

different number of predictor variables as shown against them. 

 

 
(a) 

No. of predictor No. of fuzzy sets Method MSE in prediction 

 
4 

 
 

 
2 

Wang  0.3190 

WCV  0.2031 

3 
Wang  0.3210 

WCV  0.1905 

4 
Wang  0.2900 

WCV  5.0309 

5 
Wang  0.3053 

WCV  2.6679 
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(b) 

Fig 5.11 (a) JNU network traffic load prediction plot (b) MSE with 5 fuzzy 

sets and 3 predictor  
  
 

 

Table 5.4 Comparison of WCV method with Wang method 

 

 

5.4   Self-Similarity in the Experimental Data 
 

 
Variance-time plot following the approach discussed in chapter 4 is 

drawn and Hurst parameter is calculated. It is found that H (Hurst 

parameter) is about 0.5273 that is greater than 0.5 and hence degree of 

similarity is present in the series. 

 

 
 

No. of fuzzy sets No. of predictors Method MSE in prediction 

 
5 

 
 

 
3 

Wang 0.3299 

WCV  2.0238 

4 
Wang  0.3053 

WCV  2.6679 
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Fig. 5.12 Variance–time plot for Mackey-Glass series and calculation of 

Hurst parameter 
 
 
Self-Similarity in Mackey-Glass series 

 

Figure 5.12 shows the variance-time plot for Mackey-Glass series and 

value of Hurst parameter.   

 

(a)  H=0.8688 
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(b)  H=0.9012 

Fig 5.13 Estimation of Hurst parameter for JNU LAN traffic data (a) 

Variance-time plot for number of packets per second (b) Variance-time 

plot for number of Bytes per second 

 

Self-Similarity in JNU LAN traffic data 

 

The plots in figure 5.13 (a) and (b) depict the self-similar nature found in 

the JNU LAN traffic series which is indeed in accordance with statistical 

proof give in [36]. 
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5.5 Analysis 

 

we observe from table 5.1 that keeping the number of fuzzy sets at 5 and 

increasing the number of predictors from 3 to 4  in the FIS developed for 

Mackey-Glass series prediction give rise to increase in prediction error 

(MSE) by 0.32% in W&M method whereas there is decrease in prediction 

error by 0.80% in the WCV method. On the other hand, an observation in 

table 5.2 indicates that keeping the number of predictors at 4 and 

increasing the number of fuzzy sets from 5 to 7 bring about decrease in 

MSE by 1.54% in W&M method as compared to 4.18% by the WCV 

method. 

The analysis of JNU LAN traffic prediction follows from tables 5.3 

and 5.4.  From table 5.3, we observe that with 4 predictors and 2 to 3 

fuzzy sets, MSE in the prediction of JNU LAN traffic series by the WCV 

method is about 10% less than that given by W&M method. However, 

with 4 to 5 fuzzy sets and 4 predictors, W&M outperform the WCV 

method. An observation from table 5.4 implies that there is no advantage 

of increasing the number of predictors while keeping the number of fuzzy 

sets constant. From the figure 5.9, we observe that there is sudden spike 

in the MSE (mean squared error) plot. This is due to the fact that at this 

particular instant, there is burst of traffic flowing through the network.  
  
 

In addition, as we increase number of fuzzy sets from 5 to 7, the MSE 

begins increasing instead of decreasing (fig. 5.10) which is against the 

fact Found in the prediction of Mackey-Glass series. This idiosyncratic 

behavior in the prediction can be explained on the grounds of the 

following point. LeaveMout sampling could not take care of test samples 

falling outside the rage of training sample and could not be properly 

fuzzified. Further, Self-similarity in JNU LAN agrees with the fact 

observed in the literature. 
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Chapter 6 

Conclusion and Future work 

 

 

6.1 Conclusion 

 

Understanding the nature of traffic in high-speed, high-bandwidth 

communications systems is essential for engineering, operations, and 

performance evaluation of these networks. As a first step toward this 

juncture, it is important to know the traffic behavior of some of the 

expected major contributors to future high-speed network traffic. The 

fuzzy inference system (FIS) developed in this dissertation following the 

Wang method employs cross-validation. The FIS is then used for 

prediction of Mackey-Glass series. Prediction results show that FIS 

performs well for prediction of JNU LAN with two to three fuzzy sets. 

Secondly better accuracy is achieved by increasing the number of fuzzy 

sets for Mackey-Glass but not for Network traffic data. Thirdly, the same 

performance can be achieved by increasing the number of input variables 

and keeping the number of fuzzy sets constant. Fourthly, Mackey-Glass 

series is self-similar (this has been demonstrated by variance-time plot in 

fig 5.12). The same is found for JNU LAN traffic (fig 5.13). And finally, 

Predicted traffic resembles actual traffic for small and medium time-scale 

(i.e. in seconds and minutes) (fig 5.11 a). 

6.2 Future Work 

There still remain many issues to be tackled as future research. For 

example, how to use rule extrapolation for incorporating samples whose 

fuzzification yield values that fall outside the range of predictor variable. 

In addition, researcher can employ interval type-2 fuzzy inference system 

for handling random noise in the data. Using FIS as a network traffic 

controller is another direction of future research. 
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Appendix  

We know that degree of rule is defined as  

                                  D(Rule)=MA(x1)MB(x2)                For 2 input case.  

M denotes membership value(sometimes denoted by µ). If there are n 

input-output pairs, then output control has membership value given  

                                                                           (1) 

Centroid method for defuzzification is given by: 

                                                                                    (2) 

Plugging the value of Mi from Eqn. (1) to Eqn. (2) we get the following 

required result. 

 

This is the same formula with little changes in notations.    Hence proved 

 

 


