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CHAPTER 1 

Introduction 

A distributed database encompasses coherent data, disseminated over the sites of a 

computer network [CP84]. A Distributed Database Management System (DDBMS) 

deals with managing such distributed databases. It presents a simple and unified 

interface to the users so that they can access the databases as if the data is not 

distributed [OV91]. A DDBMS is illustrated in Figure 1.1 showing data distributed 

over databases connected by a network.  

 

 

 

 

 

 

  Figure 1.1: An example DDBMS 
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1.1 Distributed Query Processing 

In query processing, the aim is to formulate algorithms that analyze queries and convert 

the queries into a set of data manipulation operations [OV91] as shown in figure 1.2 

 

 

 

 

 

  

 

 

The query processing problem is much more complicated in distributed environments, 

as there are various parameters affecting the performance [AHH09].  In distributed 

environment, it is possible that the relations required in a query may be fragmented or 

replicated thereby leading to additional communication costs [OV91]. Furthermore, the 

query response time may become very high due to processing of distributed query at 

multiple sites. The performance of a DDBMS is determined by its ability to process 

queries in an effective and efficient manner [RM97]. Distributed query processing 

involves CPU, I/O and communication cost. However, it is the communication cost that 

constitutes the major cost of query processing [KYY82]. In order to answer the 

distributed queries, data is transmitted among the participating database sites, which 

incurs communication cost [YC84]. Hence, in order to reduce the communication cost, 

various strategies for executing a distributed query over the network are devised in 

distributed query optimization. 

Processing distributed join queries typically involves three phases i.e. copy 

identification, reduction, and assembly [YC84]. In copy identification phase, files 

required by the query are selected for processing [YC84] [MLR90] [YC83]. In the 

reduction phase, local selection, projection and semijoins are used to reduce the size of 

Figure 1.2: Query Processing 

Query Processor 

High level user query 

Low level data manipulation commands 
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data that needs to be transmitted in order to perform join operations [RM97]. In the 

assembly phase, files are processed to get the final output. In this phase reduced files 

may have to be transmitted to join sites every so often to accomplish join operations. 

Additionally the final output may have to be transmitted to the result site. Join sites and 

join order must be determined for this phase [RM97].  

1.1.1 Related Work 

Earlier research in distributed query processing has typically focused on only one of the 

three phases of query processing discussed above. The reduction phase has received the 

most attention. The objective in the reduction phase is to find a minimum cost semi join 

sequence that fully reduces the relations required by a query [RM97]. A relation 

required by a query is said to be fully reduced if all its rows, not satisfying the 

qualification of the query, have been removed prior to transmitting it to the join site 

[YC84] [YC83]. In the reduction phase it is assumed that the local processing cost is 

trivial likewise it is assumed that all join operations are performed at the result site 

[AHY83] [BC81] [BG+81] [HY79] [LW86] [PV88] [S86] [SW91] [YL89]. Using semi 

joins can reduce the amount of data that need to be transmitted; then again it can also 

drastically increase local processing costs. Semi joins effectively perform the join twice 

– once to reduce one of the relations and again to join the reduced relation with the 

other relation [RM97] as shown in Figure 1.3. 

 

 

 

 

 

 

The use of semi joins must be considered more carefully as the local processing cost 

may become more significant compared to data communication costs  

[CY93][CY94][CY88][LM+85][LC85][ML86] [ME92].  

Figure 1.3: Examples of semijoin and join operations. 
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Several approaches exist in literature that focuses on copy identification and assembly 

ignoring reduction. In these approaches, local processing costs are considered 

imperative, and joins are used as query processing technique [MR95] [MLR90].  These 

algorithms determine the optimum join order, join methods and join sites in order to 

minimize the sum of communication cost and local processing cost. According to 

[RM97] the sites at which joins are performed and the join-order have a crucial effect 

on the overall query processing cost. These needs to be included in query optimization 

to globally optimize distributed query processing. The fundamental assumption in these 

approaches is that data is stored non-redundantly. Some approaches use both semi joins 

and joins. These approaches identify beneficial semi joins, join order and join sites to 

reduce the local processing costs as well as communication costs [LW86]. In these 

approaches it is assumed that relations are pre-selected. These algorithms have a high 

computational complexity, which limits its applicability [YL89]. 

In distributed query processing, copy identification is an important issue as the cost of 

processing a query varies significantly with respect to the file copies used [RM97]. The 

number of possible solutions grows exponentially with respect to the number of files 

[RM97]. Thus optimal copy identification and the determination of an optimal query 

processing strategy are interdependent. The use of criteria such as minimization of sites 

containing required files is not likely to result in globally optimal solutions [YC84] 

[YC83]. 

1.2 The Problem 

A large number of queries are posed against distributed databases spread across the 

globe. These queries need to be processed efficiently. For this purpose, optimal query 

processing strategies generating efficient query processing plans are devised. In 

distributed database systems, due to replication of relations at multiple sites, the 

relations required to answer a query may require access of data from many sites. This 

leads to exponential increase in the number of possible alternative query plans to 

process a query [IK90]. However, it is not computationally feasible to explore all 

possible query plans in such a large search space [IK90]. This problem in literature is 

referred to as a combinatorial optimization problem in distributed databases [JK84]. 

The query plan that gives rise to cost-effective query processing is considered 
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necessary and should be generated for a given query [VSV11]. The problem, discussed 

in [VSV11], has been addressed in this dissertation. This problem can be illustrated 

with the help of following example:  

Consider a query that accesses four relations R1, R2, R3 and R4, which are distributed 

across multiple sites. The relation-site matrix is shown in Figure 1.4. 

 

 

 

 

 

The valid query plans are given in Figure 1.5. 

 

 

 

 

 

 

As the number of sites containing the relations accessed by the query increases, the 

number of possible valid query plans also increases. One way to generate query plans 

that lead to efficient query processing is by reducing the number of sites involved in 

query processing [VSV11]. As the number of distinct sites involved in processing the 

query decreases, the site-to-site communication cost decreases. Thus, the query plan 

should involve less number of sites. For the query plans, given in Figure 1.5, the first 

query plan involves 3 sites, the second query plan involves 4 sites, the third query plan 

involves 2 sites and the fourth query plan involves only 1 site. Accordingly, the fourth 

query plan is preferred over others, as it involves the least number of sites i.e. 1.   

Relations Sites 

R1 S2  S4 S6 S8 

R2 S2  S3 S5 S7 

R3 S2  S1 S9 S9 

R4 S2  S3 S4 S2 

Figure 1.4: Relation-site matrix 

8 5 2 2 R1 in site S8, R2 in site S5, R3 in site S2 and R4 in site S2 

 

4 5 9 2 R1 in site S4, R2 in site S5, R3 in site S9 and R4 in site S2 

 

2 2 2 3 R1 in site S2, R2 in site S2, R3 in site S2 and R4 in site S3 

 

2 2 2 2 R1 in site S2, R2 in site S2, R3 in site S2 and R4 in site S2 

 

5 5 2 2 R1 in site S5, R2 in site S5, R3 in site S2 and R4 in site S2 

 

Figure 1.5: Query Plans 
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In case the numbers of sites involved in the query plans are equal, the query plan 

having sites with higher concentration of relations is more desirable [VSV11]. Since in 

this case the join operations between relations are performed at a single site.  For the 

query plans in Figure 1.5, the third and the fifth query plans involve the same number 

of sites, i.e. 2. The third query plan has three relations R1, R2 and R3 in site S2 and 

relation R4 at site S3 whereas the fifth query plan has two relations each in site S5 and in 

site S2. So, the third query plan has a higher concentration of relations at an individual 

site i.e. 3 and therefore should be preferred over the fifth query plan. 

The above two aspects are used to define a ‘close’ query plan in [VSV11]. The query 

plan involving fewer sites, and having higher concentration of relations, is considered 

more ‘close’ and is preferred over the others. For the query plans in Figure 1.5, the 

ordering of query plans, based on descending order of closeness, is given in Figure 1.6.  

 

 

 

 

 

 

The query plans higher in the order involve fewer sites and higher concentration and 

therefore should be generated before query plans that are lower in the order involving 

larger number of sites.   

Based on the two aspects discussed above, a cost function, that computes the cost of 

proximity of data relevant for answering a user query, is defined in [VSV11]. This cost, 

referred to as Query Processing Cost (QPC), is given below: 

     
  

 

 

   

   
  

 
  

Where M is the number of sites accessed by the query plan     is the number of times 

the     site is used in query plan, N is the number of relations accessed by the query. 

2 2 2 2 R1 in site S2, R2 in site S2, R3 in site S2 and R4 in site S2 

 

2 2 2 3 R1 in site S2, R2 in site S2, R3 in site S2 and R4 in site S3 

 

5 5 2 2 R1 in site S5, R2 in site S5, R3 in site S2 and R4 in site S2 

 

8 5 2 2 R1 in site S8, R2 in site S5, R3 in site S2 and R4 in site S2 

 

4 5 9 2 R1 in site S4, R2 in site S5, R3 in site S9 and R4 in site S2 

 
 

 

 
Figure 1.6: Query Plans ordered based on “close” Query Plans 
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The QPC varies between zero and (N-1)/N.  Zero indicates that all the relations 

accessed by the queries, reside at the same site. (N-1)/N indicates that each of the 

relations, accessed by the query, is in different sites. The query plans having less QPC 

are considered “close” and therefore are generated before the ones having higher QPC.  

1.3 Aim 

The query plan generation problem, based on the above heuristic, has been solved using 

Genetic Algorithms in [VSV11]. In this dissertation, an attempt has been made to solve 

this query plan generation problem using particle swarm optimization. The dissertation 

aims to address this problem in the following manner: 

(i) A query plan generation problem is formulated as a single objective 

optimization problem where the objective is to minimize the Query 

Processing Cost, as defined above. This problem is solved using Set based 

Comprehensive Learning Particle Swarm Optimization (S-CLPSO). The 

performance of the S-CLPSO based approach is compared with the query 

plan generation approach based on Genetic algorithms.  

(ii) The query processing cost (QPC), as discussed above, defines “close” query 

plans as those that involve fewer sites and higher concentration of relations 

in sites. The former can be formulated as the site communication cost (SCC) 

and the latter can be formulated as the relation concentration gain (RCG). 

These formulations, which are motivated by [PV02(c)], are given below: 

Objective 1: The first objective considered is the minimization of total 

communication cost. It is based on the number of sites required to process a 

user query, lesser the number of sites involved in query processing, lesser 

will be the communication between the sites. As a result, query processing 

will be efficient. So if s is the number of sites being used and m is the 

number of communications then this objective can be calculated by the 

following expression: 

             

                  Where s is the number of sites being used and m is the number of 

communications 
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Objective 2: Another objective considered is that if there are more than one 

query plans having the minimum number of required sites, the query plan 

having sites with greater concentration of relations provides efficient results 

and shall accordingly be preferred over the others. So if n is the number of 

relations in the query and    is the count of sites and arranged in decreasing 

order then this objective can be calculated by the following expression: 

                  

 

   

 

Where n is the number of relations in the query,    is the count of sites 

arranged in decreasing order and s is the number of sites involved. 

Thus, minimizing QPC comprises of minimizing SCC and maximizing 

RCG. So, the single objective query plan generation problem is formulated 

as a bi-objective query plan generation problem with the two objectives 

namely minimizing SCC and maximizing RCG. This bi-objective problem 

is solved using Set based Comprehensive Learning Parallel Particle Swarm 

Optimization (S-CLPPSO). The performance of the S-CLPPSO based 

approach is compared with the single-objective query plan generation 

approach based on S-CLPSO.  

1.4 Organization of the Dissertation 

The dissertation is organized as follows: Chapter 2 discusses query plan generation 

using single-objective particle swarm optimization (PSO). The bi-objective query plan 

generation problem is solved using multi-objective particle swarm optimization 

(MOPSO) technique in chapter 3. Chapter 4 is conclusion. 
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CHAPTER 2 

Distributed Query Plan 

Generation Using PSO 

 

In nature, a large number of insects and other small organisms are generally organized 

in hierarchies, e.g. ants, bees and fish etc. In these organisms although each individual 

agent has limited responses, the agents all together exhibit fascinating behavior and 

obvious traits of intelligence. For example, fish maintain a greater mutual distance 

when swimming carefree, while they come together in very dense groups in the 

presence of predators [U4]. In order to preserve the personal integrity of each member 

of the group, the members of the group respond collectively against the external threats. 

The swarm is able to change its current form rapidly by breaking into smaller parts and 

then reuniting again when there is no danger. This observed behavior of natural 

systems has stimulated scientific curiosity regarding the underlying rules that produce 

this behavior. Systems, where such collective phenomena occur, prepare the ground for 

the development of swarm intelligence [U7]. 
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2.1 Swarm Intelligence 

Swarm intelligence is a branch of artificial intelligence that studies the collective 

behavior and emergent properties of complex, self-organized, decentralized systems 

with social structure [U16]. Although each agent has a very limited action space with 

no central control, the aggregated behavior of the whole swarm exhibits traits of 

intelligence i.e. an ability to react to environmental changes and decision-making 

capacities [U5]. Notwithstanding their physical or structural differences, such systems 

share common properties based on five basic principles of swarm intelligence, which 

are discussed next. 

2.1.1 Basic Principles of Swarm Intelligence 

The five basic principles of swarm intelligence are: proximity, quality, diverse 

responses, stability and adaptability [M94]. Proximity is the ability to perform space 

and time computation. The group should be able to do elementary space and time 

computations. Since space and time translate into energy expenditure, the group should 

have some capability to calculate the benefit of a particular response to the environment 

in these terms [SK86]. Quality is the ability to respond to environmental quality 

factors. The group should be able to respond not only to time and space considerations, 

but also to the quality factors, e.g. quality of foodstuffs or safety of location. Diverse 

Responses are the ability to deliver a multiplicity of different responses. The group 

should not allocate all of its resource along extremely narrow lines. It should seek to 

allocate its resources along many modes as assurance against the abrupt change in 

anyone of them due to environmental fluctuations. Stability is the ability to preserve 

robust behaviors under mild environmental changes. The group should not change its 

behavior from one mode to another with every fluctuation of the environment. Such 

changes consume energy without producing a useful return for the investment. 

Adaptability is the ability to change behavior when it is dictated by external factors. 

When the rewards for changing a behavioral mode are expected to be worth the 

investment in energy, the group should be able to change its behavioral mode. 
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2.1.2 Swarm Intelligence Techniques 

 

Three main swarm intelligence optimization algorithms are: Stochastic Diffusion 

Search, Ant Colony optimization and Particle Swarm Optimization [B89] [D92] 

[EK95]. 

2.1.2.1 Stochastic Diffusion Search   (SDS) 

It is an agent-based probabilistic global search and optimization technique [B89]. It is 

particularly suitable to problems in which the objective function can be decomposed 

into multiple independent partial-functions [U6]. In this technique, each agent 

maintains a hypothesis that is iteratively tested by evaluating a randomly selected 

partial objective function parameterized by the agent's current hypothesis [U18]. 

Agents share hypotheses via a one-to-one communication approach. A positive 

feedback mechanism ensures that a population of agents eventually becomes stable 

around the global-best solution. 

2.1.2.2 Ant Colony Optimization (ACO) 

It is a novel metaheuristic, which is inspired by the foraging behavior of real ants, for 

solving combinatorial or other optimization problem [D92]. When real ants search for 

food, in the beginning they search the area surrounding their nest in an erratic manner. 

Once an ant finds food source, during the return trip, this ant lays down a chemical 

substance called pheromone on the ground. The deposited pheromone guides other ants 

to the food source.  This indirect communication between the ants, via the pheromone 

trail, is known as stigmergy [U15]. This stigmergy facilitates them to locate the shortest 

path between their nest and food source. Artificial ants, imitating the real ants, locate 

optimal solutions by exploring and exploiting search space representing all possible 

solutions and record their positions and the quality of their solutions in order to achieve 

better results in subsequent iterations [U2]. 

2.1.2.3 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population based stochastic optimization 

technique designed for continuous nonlinear optimization problem [U12]. It is based on 

the simulation of the social behavior of birds within a flock. In an experiment, given in 
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[EK95], an attempt to graphically simulate the elegant and erratic choreography of a 

bird flock was carried out [EK95]. The aim was to determine patterns that govern the 

ability of birds to fly synchronously and to abruptly change direction with a regrouping 

in an optimal formation [SM+08]. From the initial idea, the concept developed into a 

simple and efficient Optimization technique. 

This dissertation focuses on solving distributed query plan generation problem using 

particle swarm optimization, which is discussed in detail next. 

2.2 Particle Swarm Optimization 

In Particle Swarm Optimization (PSO), particles are simply the agents that fly through 

the search space and simultaneously record the best position that they have hitherto 

come across. This value is identified as personal best or pbest and is possibly 

communicated at times. Another best value that is recorded by the PSO is the best 

value attained up to now by any particle in the swarm. This value is called global best 

or gbest.   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 represents the basic concept of PSO which is to accelerate each particle 

toward its pbest and the gbest locations, with a random weighted acceleration at each 

time step in order to update its position [U11]. 

Figure 2.1: Basic Concept of PSO [U17] 
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The original version of PSO [EK95] is defined by the following equations (1) and (2) 

as: 

                         
                    

                                (1)      

                                                                                                                                                                                                                

i = 1, 2…, N,    d = 1, 2,…, n 

Where i is the particle, t denotes the iteration counter,    and    are random variables 

uniformly distributed within [0,1] ,    and    are weighting factors also called cognitive 

and social parameters respectively , g represents the index of the particle with the best 

fitness, and d is the d
th

 dimension.         denotes velocity of the particle at 

time’t’.        denotes personal best  position of the particle at time ‘t’.        is the 

position of the particle at time ‘t’.        denotes the global best position of the particle 

at time ‘t’.            denotes the position  of the particle at time ‘t+1’.           

denotes the velocity of the particle  at time’t+1’. The update of position          and 

velocity           of  th
 particle in the swarm [PV88]] is shown in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

In every iteration, after the update and evaluation of particle’s position and velocity is 

completed, the pbest and gbest positions (memory) are also updated. The flow chart 

describing the PSO algorithm is shown in Figure 2.3. 

Figure 2.2: Position and velocity update of  th
 particle in the swarm [U10] 
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2.3 Refinements in PSO 

Early PSO variants performed satisfactorily for simple optimization problems. 

However, their crucial deficiencies were revealed as soon as they were applied on 

harder problems with large search spaces and a multitude of local minima.  

2.3.1 The Concept of Inertia Weight 

The first significant issue was the swarm explosion effect. This deficiency was due to 

uncontrollable increase in the magnitude of velocities. For this purpose, a new 

parameter,   called inertia weight, was introduced in equation (1), resulting in a new 

PSO variant [ES98] defined by the following equations (3) and (4) as: 

                         
                    

                          (3)                                 

                                                                                                      (4)                                                                                               

i = 1, 2,…, N,    d = 1, 2,…, n 

Figure 2.3: Flow chart depicting the General PSO Algorithm [U19] 
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The inertia weight parameter can be varied as per the requirement for global and local 

search. A large inertia weight is more suitable for global search, and a small inertia 

weight ensures local search [SE98]. The inertia weight   is selected such that the effect 

of        fades away gradually over iterations. 

2.3.2 The Concept of Neighborhood  

The global information exchange scheme allows each particle to know instantly the 

overall best position after each iteration. This might lead to pre-mature convergence. 

For this purpose, the concept of neighborhood was introduced with the main idea to 

limit the information exchange amongst the neighbor and not amongst all particles in 

the swarm [K99] [MKN03]. Each particle assumes a set of particles to be in its 

neighborhood and in each iteration, it communicates its best position only to the 

neighboring particles, instead of the whole swarm. So (global best)      is changed to 

(local best)     in equation (1) resulting in a new PSO variant [K99] [MKN03] defined 

by the following equations (5) and (6) as: 

                         
                    

                             (5)                                  

                                                                                                        (6)                                                                                          

i = 1, 2,…, N,    d = 1, 2,…, n 

The  scheme  for  determining  the  neighbors  of  each  particle  is  called  

neighborhood  topology [K99][MKN03]. In case of complex problem, PSO considering 

small neighborhood performs better, while PSO considering a large neighborhood is 

more useful on simple problems [ZSD10]. Also, topology can change with time instead 

of remaining fixed throughout the execution. Such dynamic topologies have been used 

in multiobjective optimization problems [HE02]. Nevertheless, the vast majority of 

local best (lbest) models in literature are based on ring or star topology, as shown in 

Figure 2.4.  

 

 

 

 

 Figure 2.4: Common neighborhood topologies of PSO: ring (left) and star (right) [U13] 
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2.3.3 The Concept of Constriction Coefficient  

Another method for controlling the velocities of particles is to use another parameter 

called constriction coefficient or constriction factor (   [CK02]. This modified version 

is defined by the following equations (7) and (8) as: 

                           
                    

                       (7)                                              

                                                                  (8)                                                                                      

 i = 1, 2,…, N,    d = 1, 2,…, n 

 

Where χ is a parameter called constriction coefficient or constriction factor, while the 

rest of the parameters remain the same as in the case of previously described PSO 

models. 

                                     
 

               
 , Where φ =     , and φ > 4 

 2.3.4 Hybrid PSO Algorithms 

There are numerous variants of Hybrid PSO algorithms proposed in the literature that 

utilize basic mechanism of PSO and the natural selection mechanism, crossover, and 

mutation which is usually considered in Evolutionary Computing methods such as 

Genetic Algorithm [LRK01]. In [PPV07], a memetic algorithm based hybrid PSO 

approach that uses the random walk with directional exploitation local search method 

was proposed.  

2.4 Further Refinements in PSO 

Premature convergence in solving multimodal problems with large search spaces is the 

main drawback in most of the variants of PSO [RMN11]. In the original PSO [EK95], 

each particle learns from its pbest and gbest simultaneously [BH07]. The problem with 

this approach is that all particles in the swarm learn from the gbest even if the current 

gbest is far from the global optimum [PBP09]. In such circumstances, particles may 

simply be attracted and confined into a local optimum if the search environment is 

complex with various local solutions. To overcome this, three novel learning strategies 

were proposed in [LQ+04] to improve the performance of original PSO [EK95]. The 

three versions are: elite learning PSO (ELPSO), multi-exemplars learning PSO 

(MLPSO), and comprehensive learning PSO (CLPSO). The distributed query plan 

generation approach presented in this chapter is based on CLPSO discussed next.  
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2.4.1 Comprehensive Learning Particle Swarm Optimizer (CLPSO)  

In CLPSO [LS+06], for each particle, any one of the particle in the swarm can be used 

as an exemplar to be learned from i.e. any one of the particles’ pbest, including it, is 

used to update the velocity of a particular particle [LS+06]. Each dimension of a 

particle can also choose to learn from a different exemplar. With this novel learning 

strategy the particles have more choice in terms of exemplars to learn from. The 

particles can fly through a large search space. In this strategy, better quality solutions 

are generated effectively by using the information in the swarm. 

The velocity and position updating equation in CLPSO [LS+06], for a d-dimensional 

problem are defined by the following equations (9) and (10) as: 

  
      

         
             

    
       (9)                                                                    

  
    

    
 
                     (10)                                                                                                                       

Where   
    defines which particle’s pbest the     particle should follow on the 

   
dimension.           

   can be the corresponding dimension of any particle’s pbest 

including its own pbest, and the decision depends on the learning probability. Different 

initial learning probability values for different particles are set at the beginning of 

searching and are kept stable throughout the whole searching process. 

For each dimension of particle, a random number is generated. If this random number 

is larger than learning probability of the particle then the corresponding dimension will 

learn from its own pbest otherwise it randomly chooses two particles out of the 

population, excluding itself, This is followed by comparing the fitness values of their 

pbest of the chosen two particles’ and selecting the one with a better fitness values of 

pbest as an exemplar for the dimension. If a particle is an exemplar of itself on all 

dimensions then a dimension is chosen randomly to learn from the dimension of some 

other randomly chosen particle’s pbest.  New exemplars are chosen for a particle when 

it fails to improve itself over a pre-specified generation.  

2.4.2 CLPSO’s Search Behavior 

The differences between the search behavior of the original PSO [EK95] and the 

CLPSO [LS06] were discussed in [LS+06]. In CLPSO, instead of using particle’s own 

pbest and gbest as the exemplars, all particles’ pbest can be considered as exemplar to 
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guide particle’s flying direction. These  operations  increase  the  particles’  initial 

diversity  and  enable  the  swarm  to  overcome  premature convergence  problem. 

Further, in the original PSO, for a certain dimension, if the pbest and gbest are on 

opposite sides of the particle’s current position as shown in Figure 2.5, the pbest and 

gbest may make the particle oscillate. However, the gbest is more likely to provide a 

larger momentum, as           is likely to be larger than the          . Hence, 

the gbest may influence the particle to move in its direction even if it is in a local 

optimum region far from the global optimum [LS+06].  

 

 

 

 

 

If pbest and gbest are on the same side of the particle’s current position and points to 

the same local optima (as shown in Figure 2.6), the particle will move in that direction 

and it may be impossible to jump out of the local optimum area once its falls into the 

same local optimum region where the gbest is [LS+06]. However, in CLPSO, the 

particle can fly in other directions by learning from other particles’ pbest when the 

particle’s pbest and gbest fall into the same local optimum region. Hence, CLPSO 

strategy has the ability to jump out of local optimum via the cooperative behavior of the 

whole swarm. 

 

 

 

 

 

 

Figure 2.5: Oscillation of particle between gbest and pbest 

pbest and gbest on the 

opposite side of the 

particle’s current position 

Global optima Local optima 

gbest 

Current  

Position 

pbest 

Figure 2.6: Entrapment of particle in local optima 

pbest and gbest on the 

same side of the particle’s 

current position and 

points to local optimum 

Global optima Local optima 

Current  

Position 

pbest 

gbest 
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2.5 PSO method for Discrete Optimization Problems 

The original PSO is simple and efficient. It has been successful in solving a number of 

continuous optimization problems [EK95]. However it is not applicable for a discrete 

search i.e. if the position of each particle is bound to a discrete set of values. In order to 

extend PSO to solve discrete optimization problem, a number of discrete particle 

swarm optimization algorithms have been proposed in literature. The first discrete 

version was proposed in [KE97]. It was based on binary coding scheme. The bottleneck 

with this approach was that the binary coding scheme has applications in limited types 

of optimization problems in the discrete space. In [CZ+10], various discrete PSO 

(DPSO) algorithms were classified into four types. The first type is the swap-operator-

based DPSO algorithm proposed in [C04]. In this algorithm, the position of a particle is 

defined as a permutation of numbers. Velocity is any operator which, when applied to a 

position during an iteration, gives another position. Thus, it is a permutation of 

elements i.e. a list of transpositions. In [WH+03], a similar approach was applied for 

solving travelling salesman problem. The second type of DPSO algorithms are those 

which use space transformation techniques [SAA02] [SH06] [PW+04(a)]. In these 

algorithms, the position is defined as a real vector, and thus a space transformation 

technique is used to convert the position into its corresponding solution. The third types 

of DPSO algorithms define the position and velocity as a fuzzy matrix [PW+04(b)] 

[LTL07] [WW07]. These algorithms require a defuzzification method to decode the 

fuzzy matrix into a feasible solution to the problem. The fourth type comprises hybrid 

approaches. In these approaches, the pure PSO algorithm is integrated with some other 

meta-heuristics [WW+07] [AMR05]. In addition to the above approaches, there exist 

approaches that use some problem dependent local search techniques with standard 

PSO algorithms to solve specific problems. 

In [CZ+10], Set-based Particle Swarm Optimization (S-PSO) algorithm was proposed. 

It was based on the concept of set theory and probability theory. This algorithm 

provides a more generalized framework and is applicable to a varied class of discrete 

optimization problems. In S-PSO, the velocity and position updating rules are similar to 

that of original PSO [EK95] except that all the related arithmetic operators used in 

these equations are redefined on crisp sets and sets with probabilities. The parameters 

used in the earlier PSO, the acceleration coefficients and the inertia weight play a 
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similar role in S-PSO. In addition to the original PSO, different improved variants of 

the original PSO can be extended to their corresponding discrete versions following the 

representation scheme in S-PSO [CZ+10].  

In this dissertation, the discrete version of the CLPSO algorithm, i.e. the set-based 

CLPSO is used to solve distributed query plan generation problem, discussed in 

Chapter 1, the set-based CLPSO is discussed next.  

2.5.1 The Set-Based CLPSO 

The set-based CLPSO algorithm is based on a problem of finding a subset from a 

universal set, which satisfies some constraints and optimizes a problem specific 

objective function. It defines the problem as defined in [LK73]. The set-based CLPSO 

(S-CLPSO) algorithm uses a representation scheme similar to set based representation 

scheme in [CZ+10]. S-CLPSO, as in [LK73], represents each candidate solution as a 

crisp subset X out of the universal set E. The universal set E can be divided into n 

dimensions, i.e.             . A candidate solution to the problem X ⊆ E 

can also be divided into n dimensions, i.e.                 , where    ⊆  
. X 

satisfies the constraints Ω. The objective of the problem is to find a feasible solution   
 

that optimizes f.  

Velocity Updating: The velocity updating rule in S-CLPSO is the same as in [LS+06], 

i.e. 

                                            
 
     

 
    

              
 

     
 

    )       

However positions, velocities and all related arithmetic operators in the above 

equations are redefined in the discrete space according to [CZ+10]. 

Position: Position is defined, according to [CZ+10], as a feasible solution to the 

problem. The position of the i
th

 particle is Xi (Xi ⊆ E).The position is composed of n 

dimensions [CZ+10] as given under 

                                              and   ⊆   
(j=1, 2… n) 

Velocity: Velocity is defined as a set with possibilities. Given a crisp set E, a set with 

possibilities V defined on E is given by [CZ+10] 

 V = {e/p (e) |e ∈ E}, each element e ∈ E has a possibility p (e) ∈ [0, 1] in V. 

 In the j
th

 dimension, 

    
 
= {e/p (e) |e ∈ E

j
} is a set with possibilities defined on E

j
.  
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Coefficient  Velocity: The product of a coefficient c (c ≥ 0) and velocity i.e. a set with 

possibilities V = {e/p (e) |e ∈ E} is defined as [CZ+10] 

 cV = {e/p′ (e) |e ∈ E}, 

 p′(e)= 
 ,                >  

      ,                           
  

Position – Position: The difference between two positions is defined by using the 

traditional definition of the minus operator between two crisp sets [CZ+10]. Given two 

crisp sets A and B, the relative complement A–B of B in A is given by [CZ+10] 

 A − B = {e | e ∈ A and e ∉ B}  

Coefficient × (Position − Position): The multiplication operator between a coefficient 

c (c ≥ 0) and a crisp set E′ (Position−Position) is defined as [CZ+10] 

cE’= {e/p′(e)|e ∈ E},  

p′(e)= 

 ,                 ∈        >  

 ,          ∈            

 ,                                      ∉   

  

Velocity + Velocity:  The plus operator between two sets V1 = {e/p1 (e) |e ∈ E} and V2 

= {e/p2 (e) |e ∈ E} with possibilities is defined as [CZ+10] 

             V1 + V2 = {e/max (p1 (e), p2 (e)) |e ∈ E}  

When the velocity of the particle    is updated, the particle adjusts its current position 

   to build a new position   
 . 

Position Updating: A new method was defined in [CZ+10] to update the position of a 

particle after its velocity has been updated.  For this purpose, a particle learns from 

some elements of the updated velocity. First the set with probability Vi is converted 

into a crisp set. In each iteration, a random number α ∈ (0, 1) is generated for each 

particle. If the probability p (e) for each element e in the j
th

 dimension is not smaller 

than α, element e is retained in the crisp set, i.e. 

                                              (  
 
) = {e| e/p (e) ∈   

 
   and p (e) ≥ α}  

Now the particle i learns from the elements in      (  
 
) to build a new position. If the 

construction of new position   
 
is not finished and there is no available element in   

       (  
 
), particle i reuses the elements in the previous   

 
to build new  

 
. The 

constraints Ω must be taken into account during the construction. 
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2.6 Query Plan Generation 

S-CLPSO algorithm is used to solve the Distributed query plan generation problem. 

The algorithm considers a relation-site matrix that represents all the possible sites 

where a relation is available. For a given query, the relations accessed by the query are 

considered. Using the site-relation matrix, the sites where the relations accessed by the 

query reside are identified. Many possible query plans or combinations of site-relation 

may exist and each such combination represents a particle, which is represented as an 

ordered pair of relation-site combination. The universal set E consists of relations and 

all possible ordered pairs of each of them with the sites where they reside. Each query 

plan     is a subset of the universal set E, that is, X ⊆ E. X can also be divided into n 

dimensions, i.e.                   , where    ⊆  
. X is a feasible query plan 

only if it contains all the relations accessed by a query and each relation is selected 

from one of the sites from amongst all the sites where it resides in. The velocity of a 

particle (query plan) is the relation-site ordered pair and the randomly associated 

probability with it. The query plan generation algorithm based on S-CLPSO is given in 

Figure 2.7. 

For the given user query, the algorithm first generates a universal relation set E for the 

relations accessed by the query (Step1). Next, the initial population of particles along 

with their velocities is randomly generated using the site-relation matrix (Step2).  

The fitness of each particle (query plan) is computed using the (Query Processing Cost 

(QPC)) function given in [VSV11] (Step3). Initially the pbest value of any particle 

(query plan) is initialized to current position (Step4). Now, for each particle of the 

population ps, learning probability Pc   is computed (Step6). Next, the velocity of all the 

particles of the population is updated (Step7). In order to update the velocity of a 

particle, for each of dimension of the particle (query plan), a random number is 

generated. If the random number is larger than its learning probability   
 

 then its 

corresponding dimension will learn from its own pbest otherwise it will learn from 

another particle’s pbest. In the latter case, two particles are chosen randomly, excluding 

the particle whose velocity is being updated. The QPC values of their pbest are 

compared and the one with lower pbest value is considered as exemplar for the given 

particle.  These steps are repeated for all dimensions of the given particle. After the 
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velocity has been updated, the position of the particle is accordingly updated. Next, 

QPC of the updated particle (query plan) is computed (step 8).The pbest value and 

topKQueryPlan are accordingly updated (step 9, Step10).These steps are repeated until 

a pre-specified number of generations are completed or no improvement is observed 

over a pre-specified number of generations (Step11). At the end, the top-K query plans 

are produced as output (Step12). 

 

           4  
     

       
        

           
 

Input:         rsm: relation-site matrix 

                    ps : Population Size 

                    max_iter: Maximum number of iterations 

                    ω: Inertia weight // linearly decreasing from 0.9 to 0.4 

                    c: Cognitive acceleration constant (2.0) 

Output:       TopkQueryPlan - Top K query plan 

Method: 

Step1:     Obtain the universal set E based on the available relation site matrix rsm. 

Step2:  Generate initial particles (query plans) and their associated velocities randomly    

from the available relation site matrix equal to the Population size, ps. 

Step3:    Calculate the fitness (query plan cost) of each particle. 

f=     
  

 
 
      

  

 
  

                Where M is the number of sites accessed by the query plan, 

                               is the number of times the     site is used in query plan, 

                            N is the number of relations accessed by the query. 

Step4:    Set           for all                    

Step5:    For each particle of the swarm do steps 6, 7, 8, 9 and 10. 

Step6:    Calculate learning probability (    for the i
th
 particle as:  

                Where, ps is the total number of particles in the swarm. 

Step7:    For each dimension of the particle do steps a and b 

     (a) Generate a random number (        

     (b) IF        >     

             Update position and velocity using        ; 

          ELSE 

    Choose two particles (p and q) randomly; 

               Compare the fitness values of their pbest and find the winner particle (say p); 

  Use the winner’s pbest (      ) as exemplar for the chosen dimension    

               Update position and velocity using        ; 

Step8:      IF a particle is an exemplar of itself on all dimensions  

Randomly choose one dimension to learn from the dimension of some other 

randomly chosen particle’s pbest.      

  Step9:    Calculate the query plan cost of the updated particle 

Step10:    Update the pbest of the particle 

Step11:  Update Top K query plan 

Step12:  IF (iteration < max_iter and not stagnated) GOTO Step 6. 

Step13:  Return Top K query plan as TopkQueryPlan 

Figure 2.7: Query Plan Generation Algorithm using S-CLPSO 
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2.7 An Example 

Input: 

A relation-site matrix (rsm) that represents eight relations R1, R2, R3, R4, R5, R6, R7, R8 

distributed among eight sites S1, S2, S3, S4, S5, S6, S7, S8 is shown in Figure 2.8. 

 

 

 

 

 

 

 

 

Consider a query that accesses the relations R3, R4, R7 and R8 

Let 

Population Size (ps) =5, 

 Maximum number of iteration (max_iter) =20, 

Inertial Weight ω=linearly decreasing from 0.9 to 0.4, 

 Cognitive acceleration constant c=2.0  

Step 1: Using rsm, the universal set E is given by: 

     

 

   

 

Where 

 

 

 

 

 

 

 

 

      ,  ,   ,  ,   ,4 ,   ,  ,   ,  ,   ,    

      ,  ,   ,  ,   ,  ,   ,    

      ,  ,   ,  ,   ,  ,   ,  ,   ,  ,   ,    

 4    4,  ,  4,  ,  4,  ,  4,  ,  4,    

      ,  ,   ,  ,   ,4 ,   ,  ,   ,  ,   ,  ,   ,    

      ,  ,   ,4 ,   ,  ,   ,  ,   ,  ,   ,    

      ,  ,   ,  ,   ,4 ,   ,  ,   ,  ,   ,  ,   ,    

      ,  ,   ,  ,   ,  ,   ,4 ,   ,  ,   ,    

 

Relations\Sites S1 S2 S3 S4 S5 S6 S7 S8 

R1 1 0 1 1 1 0 1 1 

R2 1 1 0 0 1 1 0 0 

R3 0 1 1 0 1 1 1 1 

R4 1 1 1 0 1 0 1 0 

R5 1 1 0 1 1 1 1 1 

R6 0 0 1 1 1 1 1 1 

R7 0 1 1 1 1 1 1 0 

R8 1 1 1 1 1 1 0 0 
 

Figure 2.8: Relation-Site Matrix 
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Step 2: The randomly generated initial particles (query plans) along with their 

associated velocities are given in Figure 2.9. 

 

 

 

 

 

 

 

 

Step 3: The fitness defined as the query processing cost of each particle is computed, 

using the formula of QPC [50] given below, is shown in Figure 2.10 

 

 

 

 

 

 

Step 4: Initially for each of the five particles (query plans) X1, X2, X3, X4 and X5 

          , where i=1 to 5 

Step 5: Velocity update for the first particle (query plan) X1 is computed as: 

              Learning Probability (    for the particle X1 is computed using the equation: 

           4  
     

       
         

           
 

                                  Pc1 = 0.0500 

For each dimension j     4  a random number is generated and compared with the 

learning probability    to choose the particles amongst X1, X2, X3, X4 and X5from 

whose pbest X1 has to learn from. 

Suppose for j=1, random number generated is 0.3900, which is greater than Pc1. Thus, 

the first dimension would learn from pbest of particle X1 and thus X1 will learn from its 

own pbest i.e.   
   = 1 

          
 

=      
 
 

       
    

  = {(3, 2)-(3, 2} = [ } 

Figure 2.9: Initial particles and their velocities 

 

Particle 

(i) 

Position 

Xi 

Velocity 

Vi 

1 {(3,2),(4,3),(7,2),(8,3)} 

 

 

 

{(3,2) /.2176,(4,1) /.0815,(7,4) /.0519,(8,1) 

/.0587} 

 

2 {(3,5),(4,2),(7,2),(8,2)} 

 

{(3,5) /.3906,(4,2) /.0086,(7,7) /.1176,(8,4) 

/.3859} 

 

3 {(3,3),(4,7),(7,6),(8,6)} 

 

{(3,5) /.6670,(4,3) /.0498,(7,5) /.4397,(8,2) 

/.5494} 

 

4 {(3,2),(4,7),(7,4),(8,3)} 

 

{(3,3) /.9206,(4,5) /.3756,(7,5) /.6369,(8,6) 

/.5832} 

 

5 {(3,6),(4,7),(7,6),(8,4)} 

 

{(3,2) /.0878,(4,2) /.9573,(7,4) /.3035,(8,2) 

/.5162} 

 

 

 

 

Particles (i) fi=      
  

 
 
      

  

 
  

1 0.5000 

2 0.3750 

3 0.6250 

4 0.7500 

5 0.6250 

 
Figure 2.10: Initial QPC of particles 
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Suppose for j=2, random number generated is 0.0342, which is less than Pc1. Thus two 

particles X5 and X2 are randomly generated. Since the fitness of X2 i.e. QPC2 is 0.3750 

is less than QPC5 0.6250 of X5, particle X2 is selected i.e.   
   = 2 

          
        

 
 

       
    

   = {(4, 2)-(4, 3)} = { 4,  } 

Suppose for j=3, random number generated is 0.4941, which is greater than Pc1. Thus, 

the third dimension would learn from pbest of particle X1and thus X1will learn from its 

own pbest i.e.  
   = 1 

      
 
=      

 
 

       
    

   = {(7, 2)-(7, 2)} = { } 

Suppose for j=4, random number generated is 0.2602, which is greater than Pc1. Thus, 

the fourth dimension would learn from pbest of particle X1and thus X1will learn from 

its own pbest i.e.   
 4 = 1 

      
4
=      

4
 

       
4    

4   = {(8, 3)-(8, 3)} = { } 

Next, the velocity of the particle X1is updated using the velocity update equation: 

  
     

                
    

 
  

For this, the inertia component value of particle X1 for each dimension is computed 

using the following rule: 

The product of a coefficient c (c ≥ 0) and velocity i.e. a set with possibilities V = {e/p 

(e) |e ∈ E} is defined as: 

cV = {e/p′(e) |e ∈ E}, 

p′(e)= 
 ,               >

      ,                   
  

The inertia component value for each dimension is shown in Figure 2.11 

 

 

 

 

 

ω   
 
    

 
 

0.9   
     ,          

 

   
     ,            

0.9   
    4,        }    

    4,        4   

0.9   
     ,4       }    

     ,4     4    

0.9   
4   {(8,1) /.0587} 

 

   
     ,            

 Figure 2.10: Updated inertia component 
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Thus the inertia of the particle X1 is 

       ,         ,  4,        4,   ,4     4  ,   ,           

Next, cognitive component values of particle X1for each dimension are computed using 

the following rule: 

The multiplication operator between a coefficient c (c ≥ 0) and a crisp set E′ 

(Position−Position) is defined as: 

cE’= {e/p’(e)|e ∈ E}, 

p’(e)= 

 ,                ∈       >  

 ,         ∈            

 ,                                     ∉   

  

The cognitive component computation for each dimension of particle X1 is shown in 

Figure 2.12. 

 

 

 

 

 

 

Thus the cognitive component of the particle is  

               
     {(4, 2) /.9331} 

Now, new updated velocity is computed using the following rule: 

The plus operator between two sets V1 = {e/p1 (e) |e ∈ E} and V2 = {e/p2 (e) |e ∈ E} 

with possibilities is defined as: 

V1 + V2 = {e/max (p1 (e), p2 (e)) |e ∈ E} 

  
  V1 +                

     

                 =    ,         ,  4,        4,   ,4     4  ,   ,           + {(4, 2) /.9331} 

                 = {(3, 2) /0.1958, (4, 2) /0.9331, (7, 4) /0.0467, (8, 1) /0.0528} 

Next, the position of the particle is updated using the updated velocity. The current 

position X1= {(3, 2), (4, 3), (7, 2), (8, 3)} is updated to a new position  
 
 in the 

following manner 

            Xi′ ← position updating (Xi, Vi) 

c               
    

 
                  

 
   

 
  

 2.0 0.3245 { } 

 

{ } 

 2.0 0.4665 { 4,  } 

 
  4,          

 2.0 0.0564 { } { } 

 2.0 0.9323 { } 

 

{ } 

  
Figure 2.11: Updated cognitive component 
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First, the set with possibilities Vi is converted into a crisp set. For each dimension, a 

random number α ∈ (0, 1) is generated for each particle. For each element e in the j
th

 

dimension, if it’s corresponding possibility p (e) in    is not smaller than α, element e 

is reserved in a crisp set, that is: 

    (  
 
) = {e| e/p (e) ∈  

 
   and p (e) ≥ α}. 

The crisp set for V1 is shown in Figure 2.13 

 

 

 

 

 

Elements e reserved in a crisp set:     (V1) = {(4, 2)}. So, element {(4, 2)} would be 

used for updating the current position {(3, 2), (4, 3), (7, 2), (8, 3)} of particle X1. 

The new updated Position would have the relation R4 accessed from site S2 i.e. 

  
   {(3, 2), (4, 2), (7, 2), (8, 3)} 

The fitness value (QPC) of X1′ is   
         

Similarly, the velocity and position for other three particles are updated. The updated 

position and velocity of particles X1, X2, X3, X4 and X5 are given in Figure 2.14. 

 

 

 

 

 

 

 

The updated QPC of the particles X1, X2, X3, X4 and X5 are shown in Figure 2.15 

 

 

 

 

 

 

i Updated Position (Xi′) Updated Velocity (Vi′) 

1 {(3, 2), (4, 2), (7, 2), (8, 3)} 

 

{(3, 2)/0.1958,(4,2)/0.9331,(7, 4)/0.0467,(8,1)/0.0528} 

 2 {(3, 5), (4, 2), (7, 2), (8, 6)} 

 

{(3, 5)/0.3515,(4,2)/0.0078,(7, 7)/0.1058,(8,6)/0.4737} 

 3 {(3, 5), (4, 7), (7, 5), (8, 2)} 

 

{(3, 5)/0.6003,(4,3)/0.0448,(7, 5)/0.3957,(8,2)/0.4945} 

4 {(3, 3), (4, 5), (7, 5), (8, 3)} 

 

{(3, 3)/0.8286,(4,5)/0.3380,(7, 5)/0.5732,(8,6)/0.5249} 

 5 {(3, 6), (4, 7), (7, 6), (8, 4)} 

 

{(3, 2)/0.0790,(4,2)/0.8615,(7, 4)/0.2732,(8,2)/0.4646} 

  
Figure 2.13: Updated Position and Velocity 

Figure 2.12: Crisp Set for V1 

j α p(e) Comparison between α  and  p(e) 

1 0.7356 0.1958 p(e)   α 

 2 0.0421 0.9331 p(e)   α 

 
3 0.1259 0.0467 p(e)   α 

 4 0.6421 0.0528 p(e)   α 

  

Figure 2.14: Updated QPC 

i Updated QPC (fi′) 

1 0.6250 

 
2 0.3750 

 3 0.6250 

 4 0.5000 

 
5 0.6250 
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In a similar manner, the position and velocities are updated of the particles X1, X2, X3, 

X4 and X5 for a pre-specified number of iterations.  The top-4 query plans generated 

after 20 iterations is shown in Figure 2.16 

 

 

 

 

 

 

 

 

2.8 Experimental Results 

The GA based query plan generation algorithm and S-CLPSO based query plan 

generation algorithm are implemented in MATLAB 7.4 in Windows XP environment. 

The two algorithms were compared by conducting experiments on an Intel based 2 

GHz PC having 1 GB RAM.  The comparisons were carried out on parameters like 

number of relations, average query processing cost (QPC), top-K query plans and 

number of iterations.  

First, line graphs were plotted to compare S-CLPSO and GA based algorithms on 

Average QPC against the number of iterations for selecting top-10 query plans. These 

graphs for the number of relations n=6, 8, 10, 12 and 14 are shown in figures 2.16, 

2.17, 2.18, 2.19 and 2.20 respectively. Line graphs for different pairs of crossover and 

mutation probabilities (GA(Pc, Pm)) were plotted. 

It can be observed from the graphs that the GA based algorithm (crossover probability 

0.6 and mutation probability 0.05), in case of 6 and 8 relations, is able to generate Top-

10 query plans having almost equal average QPC. Whereas, for higher number of 

relations, i.e. for 10, 12, 14 relations the S-CLPSO based algorithm is able to generate 

top-10 query plans with relatively lower average QPC. So, it can be said that, as the 

number of relations in the query increases, the S-CLPSO based algorithm, in 

comparison to GA based algorithm, is able to generate relatively better query plans 

with respect to the cost of query processing. 

Figure 2.15: Top-4 query plans 

Query Plans QPC 

{(3, 2), (4, 2), (7, 2), (8, 2)} 
 

0.0000 

{(3, 2), (4, 2), (7, 2), (8, 3)} 
 

0.3750 

{(3, 6), (4, 7), (7, 6), (8, 6)} 
 

0.3750 
 

{(3, 3), (4, 5), (7, 5), (8, 3)} 
 

0.5000 
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Figure 2.16: S-CLPSO vs. GA – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 6 Relations) 

Figure 2.17: S-CLPSO vs. GA – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 8 Relations) 
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S-CLPSO Vs. GA

(Top-10 Query Plans, 10 Relations)
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Figure 2.18: S-CLPSO vs. GA – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 10 Relations) 

Figure 2.19: S-CLPSO vs. GA – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 12 Relations) 
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Next, graphs were plotted to compare S-CLPSO and GA based algorithms on Average 

QPC value for selecting Top-K query plans(K=6, 8, 10, 12, 14) generated after 400 

iterations. These graphs, plotted for relations 6, 8, 10, 12 and 14, are shown in figures 

2.21, 2.22, 2.23, 2.24 and 2.25 respectively. These graphs show that S-CLPSO generate 

Top-K query plans with almost equal average QPC for 6 and 8 relations but is able to 

generate Top-K query plans with relatively lower average QPC for 10, 12 and 14 

relations. Thus, it can be said that for higher number of relations, S-CLPSO is able to 

generate good quality Top-K plans with relatively lower average QPC. 

 

 

 

 

 

 

 

 

 

 

Figure 2.20: S-CLPSO vs. GA – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 14 Relations) 
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S-CLPSO Vs. GA

(6 Relations, 400 Iterations)
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Figure 2.21: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans 

                      (6 Relations, 400 iterations) 
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S-CLPSO Vs. GA

(8 Relations, 400 Iterations)
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S-CLPSO Vs. GA

(10 Relations, 400 Iterations)
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Figure 2.22: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans 

                      (8 Relations, 400 iterations) 

Figure 2.23: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans 

                      (10 Relations, 400 iterations) 
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S-CLPSO Vs. GA

(12 Relations, 400 Iterations)
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S-CLPSO Vs. GA

(14 Relations, 400 Iterations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

6 8 10 12 14

Top-K Query Plans

A
v
e
r
a
g
e
 Q

P
C

S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

Figure 2.24: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans 

                      (12 Relations, 400 iterations) 

Figure 2.25: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans 

                      (14 Relations, 400 iterations) 
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CHAPTER 3 

Distributed Query Plan 

Generation Using MOPSO 

In this day and age, ubiquitously, it is observed that it is atypical for any problem to 

involve only a single value or objective. In order to find any holistic solution to the 

problem, there is a need to optimize various objectives or parameters [U8]. Maximizing 

profit and minimizing the cost of a product, maximizing performance and minimizing 

fuel consumption of a vehicle and minimizing weight while maximizing the strength of 

a particular component are some of the few examples of multi-objective optimization 

problems [U3]. In today’s world, Multi-objective optimization problems can be found 

by and large in various fields, e.g. product and process design, automobile design, 

aircraft design and finance etc [U3]. 

3.1 Multi-Objective Optimization  

Multi-Objective optimization is defined in [U9] as “the process of simultaneously 

optimizing two or more conflicting and /or incommensurable objectives subject to 

certain constraints”. In these problems, optimal decisions need to be taken in the 
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presence of trade-offs between two or more conflicting objectives e.g. maximizing 

profit and minimizing the cost of a product [U3]. 

If it is assumed that the objectives are to be minimized, the Multi-Objective 

optimization problem can be expressed mathematically as [U3]: 

   
   ,   

   ,  ,   
    

 

 

   
 

                                                      s.t. 

       

       

        

Where    is the     objective function, g and h are the inequality and equality 

constraints, respectively, and x is the vector of optimization or decision variables.  

The objective functions,        may be conflicting with each other and thus the 

detection of a single global minimum is impossible. So, instead of achieving a unique 

solution to the problem, the solution would be a set of Pareto optimal points [U9]. 

Solutions are said to be Pareto optimal if no objective can be improved without 

sacrificing at least another objective [SAA02]. Suppose       ,    ,  ,    
 

 and 

     ,   ,  ,      are two k-dimensional vectors then the following are defined as 

[PV10]: 

Pareto Dominance: - The vector u is said to dominate vector v, if and only if the 

following holds: 

     ,            , , ,  ,    ,      ,                               

This property is known as Pareto dominance [PV10]. 

Pareto Optimality: - A solution, x ∈ A, of the multi-objective problem is said to be 

Pareto optimal, if and only if there is no other solution, y ∈ A, such that f(y) dominates 

f(x). Alternatively, it can be said that x is non-dominated with respect to A. Here 

      is n-dimensional search space [PV10]. 

Pareto optimal set:-The set of all Pareto optimal solutions is called Pareto optimal set, 

P*[PV10]. 
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Pareto Front:-The set of vector function values of all Pareto optimal solutions is called 

Pareto Front [PV10]. 

            ∈   
  

Pareto optimal surface or the Pareto Front can be represented graphically as shown in 

figure 3.1 [U14]. In this figure, Pareto optimality in the bi-objective case is illustrated. 

Here, points A and B are non-dominated solutions residing on the Pareto front. Neither 

is better than the other. Point A has a smaller value of f2 than point B, but a larger value 

of f1. Likewise, point B has a smaller value of f1 than point A, but a larger value of f2. 

Solution A and solution B are not dominated by any other solution on the Pareto front, 

or Pareto-optimal surface. There exists no solution which has a better value with 

respect to both the objective functions f1 and f2 [U14]. 

 

 

 

 

 

 

 

 

Multi-Objective optimization aims at “maximizing the number of elements of the 

Pareto optimal set found, minimizing the distance of the Pareto front produced by the 

algorithm with respect to the true (global) Pareto front and maximizing the spread of 

solutions found, so as to have a distribution of vectors as smooth and uniform as 

possible”[ZDT00]. Additionally, the goal is to achieve and monitor convergence 

towards true Pareto-front in order to avoid local convergence. The Pareto optimal fronts 

for bi-objective problems are illustrated in Figure 3.2. 

 

Figure 3.1: Pareto-optimal surface for a bi-objective problem [U14] 
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3.2 Particle Swarm Optimization for Multi-Objective Problems 

It is generally observed that particle swarm optimization has a high speed of 

convergence when applied to a single-objective problem. This particular feature has 

been a motivation behind it being used for solving multi-objective problems [KE01]. 

Multi-objective particle swarm optimization (PSO) can be divided into two categories 

[RC06 (a)] namely PSO Variants that exploit each objective function separately and 

variants based on Pareto Dominance. The former is referred here as Non-Pareto based 

approaches and the latter is referred to as Pareto based approaches. These are discussed 

next. 

Figure 3.2: Examples of Pareto Optimal sets with Two Objective Functions 
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3.2.1 Non-Pareto Based Approaches 

This category consists of two types of approaches [PV10] namely approaches that 

combine all objective functions in a single one, referred here as Aggregated 

Approaches,  and approaches that consider each objective function in turn for the 

evaluation of particles, referred here  as Non-Aggregated Approaches. These 

approaches are discussed next: 

3.2.1.1 Aggregated Approaches 

These are the approaches that combine all the objectives of the problem into a single 

objective. In other words, the multi-objective problem is converted into a single-

objective problem [RC06 (a)]. 

             ,

 

   

 

Where    are non-negative weights, such that: 

      

 

   

 

If weights are fixed during a run then it is called conventional weighted aggregation 

(CWA). This algorithm has to be applied repeatedly with different weight settings to 

detect a desirable number of non-dominated solutions with only a single solution 

attained per run. Moreover, CWA is unable to detect solutions in concave regions of 

the Pareto front. In order to resolve these limitations dynamically adjusted weights, 

such as bang-bang weighted aggregation (BWA) were suggested in [JOS01]. For bi-

objective problems, the weights in BWA are adapted as follows: 

                      ,                                , 

Where a is user-defined adaptation frequency, and t stands for the iteration number. 

The sign function used in BWA causes the weights to change abruptly so that the 

algorithm continues to move towards the Pareto front. Another approach proposed in 

[JOS01] is the dynamic weighted aggregation (DWA), the weights in DWA are adapted 

as follows: 

                  ,                           

DWA performs better in comparison to BWA in problems involving convex Pareto 

fronts. However, in case of problems involving concave Pareto fronts, the performance 
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of both the techniques is more or less the same. Another multi-objective particle swarm 

optimization algorithm based on weighted aggregation approach was proposed in 

[PV02 (b)] [PV02 (a)] to solve bi-objective problems. This algorithm uses all three 

types of aggregating functions: CWA, BWA, and DWA. In [BMR04] a similar 

approach that uses linear aggregation functions was proposed. In this approach the 

whole swarm in divided into various sub-swarms, each of the sub-swarm uses a 

different set of weights. The best particle of each sub-swarm is used as a leader to guide 

other members of the sub-swarm. In [MCL04], another aggregating approach based on 

dynamically modified weights was proposed. 

3.2.1.2 Non-Aggregated Approaches 

In these approaches, each particle is evaluated only with one objective function at a 

time, and the best positions are determined following the standard single-objective PSO 

rules, using the corresponding objective function. These can be further categorized as 

lexicographic ordering approaches and sub-population based approaches.  

Lexicographic Ordering Approaches: These approaches are based on ranking 

schemes that determine the importance of each objective function and rank the 

objectives accordingly. In order to obtain the optimum solution, the objective functions 

are minimized one by one. The most important objective function is minimized at the 

outset and then minimization procedure continues according to the assigned order of 

importance of the objectives [M99]. However, this approach is sensitive to the ordering 

of the objectives and is useful only when there are few objective functions [C99]. In 

[HE02] another similar ordering scheme was proposed where each objective function is 

optimized separately. The best positions of the particles are stored as non-dominated 

solutions. In this scheme external archive is not used. However, in a later version of this 

approach [HES03], an external archive was incorporated. 

Sub-Population Based Approaches: These approaches use various sub-populations, 

which exchange information among themselves. In [PTV04], a vector evaluated PSO 

(VEPSO) scheme was proposed. This scheme employs one swarm per objective 

function and evaluation is carried out with this objective function while best positions 

of one swarm are used to update velocities of another swarm with a different objective 

function.  In [CT04], a scheme similar to VEPSO was proposed called multi-species 

PSO. This scheme uses various sub-swarms, where each such sub-swarm is evaluated 
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with one objective function. Information of best particles in a swarm is communicated 

to neighboring sub-swarms. 

3.2.2   Pareto Based Approaches 

In these approaches the concept of Pareto dominance plays an important role. In order 

to guide the particles, some elite particles that are non-dominated solutions with respect 

to the swarm are used. Furthermore some other decisive factors such as swarm 

diversity and Pareto front spread are also taken into account. In [MC99], an algorithm 

based on Pareto dominance was presented in an unpublished document. In this 

approach, both an individual and a group search are performed simultaneously. The 

major drawback of this algorithm was that it did not adopt any scheme to maintain 

diversity [MC99]. In [RL02] a new algorithm was proposed that uses Pareto dominance 

and combines concepts of evolutionary techniques with the particle swarm optimization 

technique. This approach uses crowding distance to maintain diversity and a multilevel 

sieve to handle constraints. In [FS02], another approach was presented that made use of 

an unconstrained elite archive to store the non-dominated individuals found along the 

search process. This archive interacts with the primary population in order to define 

local guides. Similar schemes were put forward in [CL02] [CPL04]. In [CPL04], the 

proposed MOPSO stored the non-dominated solutions in an archive also referred to as 

repository. In addition, the search space is divided in hypercubes where each hypercube 

is assigned a fitness value, inversely proportional to the number of particles in it. 

Roulette wheel selection is then used to select a hypercube and a leader from it. In 

[MT03], a sigma method was recommended in which the best local guides for each 

particle are adopted to improve the convergence and diversity of a MOPSO approach. 

The use of the sigma values increases the selection pressure of the algorithm. A hybrid 

approach called non-dominated sorting particle swarm optimizer was given in [L03]. 

This approach incorporates the main mechanisms of the NSGA-II [DP+02] in a PSO 

algorithm. In [PC04], a new approach was presented that uses the concept of Pareto 

dominance to decide the flight direction of a particle. This algorithm divides the 

population of particles into several sub-swarms by using clustering techniques so as to 

provide a better distribution of solutions in decision variable space. In each sub-swarm, 

a PSO algorithm is executed by using own set of leaders. These different sub-swarms 
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exchange information. In this approach, no external archive is used since the migration 

of leaders among the sub-swarms ensures elitism. In [RC05], another approach based 

on Pareto dominance that uses nearest neighbor density estimator in order to select 

leaders for the particles was proposed. As opposed to other typical approaches, this 

algorithm makes use of two external archives. One external archive is used to store the 

leaders currently used for performing the flight and another for storing the final 

solutions. The concept of dominance is used to select the particles that will remain in 

the archive of final solutions. In order to retain a fixed number of non-dominated 

solutions (leaders) in the archive, the density estimator factor is used. In [RN05], multi-

objective particle swarm optimization based on Crowding Distance (MOPSO-CD) was 

proposed. This approach uses crowding distance to facilitate the selection of global best 

particle. It is also used to delete non-dominated solutions from the external archive. 

Mutation is utilized in order to maintain diversity of non-dominated solutions in the 

archive. Several other approaches of multi-objective particle swarm optimization have 

been reported in [RC06 (a)] [RC06 (b)] [PV08] [ZZ10]. In [ZZ10], a parallel particle 

swarm optimization (PPSO) algorithm was presented to solve the multi-objective 

optimization problems.  

Parallel Particle Swarm Optimization (PPSO) algorithm exploits the intrinsic parallel 

characteristics of the PSO algorithm to solve multi-objective problems. The basic idea 

is to exploit as many swarms as the number of objectives in the multi-objective 

problem. Each of these swarms use the same evolutionary mechanism and 

simultaneously optimizes objectives assigned to them [ZZ10]. These different swarms 

communicate and share information among them through an external archive, which 

stores the non-dominated solutions found by different swarms. The velocity is updated 

using the following equation [ZZ10]: 

   
      

            
     

  
          

      
 

           
     

 
  

Where d is the dimension, and the position update is as: 

   
     

     
 

 

In the velocity update equation, the term          
     

 
   represents the sharing 

information from the archive that influences the particle to fly along the Pareto front. 

The term    
 

 is a non-dominated solution selected by the     particle in the    swarm 

randomly picked from the archive. 
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The achieve A is initially empty and is updated in every generation. There is a limit on 

the number of non-dominated solutions the archive can store i.e. the archive has a 

maximum size (Max_Arch). At any particular iteration, the pbest of each particle in 

each swarm and the solutions of the archive from the previous iteration are used to 

select Max_Arch number of non-dominated solutions. In order to select this fixed 

number of non-dominated solutions, non-dominated sorting algorithm [DP+02] is used. 

PPSO algorithm achieves the goal of multi-objective optimizations by ensuring 

population diversity, so that a good number of non-dominated solutions can be 

obtained. It avoids the difficulty associated with fitness assignment [DP+02]. Due to 

sharing of search information through the external archive, the swarms are not attracted 

to the margin of Pareto front [ZZ10]. According to [ZZ10], since PPSO uses each 

swarm to optimize a single objective, any standard or improved PSO [ZZ+09] [ZZ+10] 

can be used to solve a single objective problem. In this dissertation, Set Based 

Comprehensive Learning PSO (S-CLPPSO) algorithm has been used to solve the multi-

objective distributed query plan generation problem given in Chapter 1. This algorithm 

is discussed next. 

3.2.2.1   S-CLPPSO  

S-CLPPSO algorithm uses as many swarms as the number of objectives in the multi-

objective problem.  Each swarm optimizes only one of the objectives using S-CLPSO. 

These swarms work in parallel. An external archive is used to store the non-dominated 

solutions found by different swarms in each iteration. The swarms share search 

information and communicate with each other through the external archive. The 

evolutionary mechanisms in each swarm are similar, just like a standard S-CLPSO.  

In every generation, for the    swarm, the velocity of each particle i is updated as: 

   
       

       
            

      
            

     
 

  

Where d is the dimension and the term          
     

 
  represents the share 

information from the archive.   
 

 is a non-dominated solution, which is randomly 

selected by the     particle in the    swarm, stored in the archive. The representation 

scheme and the interpretation of all other operators are same as in S-CLPSO discussed 

in chapter 2. Subsequently, the updated velocity is used to update the position of the 

particle. The archive A, which is initially empty, is updated after each iteration in order 
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to keep a fixed number of non-dominated solutions (Max_Arch). The archive is 

updated in the following manner. First, a set S is initialized as empty. Then the pbest of 

each particle in each swarm is added into the set S. Then all the solutions in the old 

archive A are added into the set S. Later, non-dominated sorting strategy [DP+02] is 

performed on solutions in the set S to find Max_Arch solutions, which are then stored 

in the archive. The query plan generation algorithm, presented in this dissertation, is 

based on S-CLPPSO. This algorithm is discussed next. 

3.3 Query Plan Generation 

The multi-objective problem comprises of optimizing the two objectives namely 

Minimizing Site Communication Cost (SCC) and Maximizing the Relation 

Concentration Gain (RCG) as discussed in chapter 1. In this case, two objectives have 

to be optimized, so two swarms S1 and S2 are used. Each swarm optimizes only one of 

the objectives using S-CLPSO. These swarms work in parallel. An external archive is 

used to store the non-dominated solutions found by both the swarms in each iteration. 

The two swarms share search information and communicate with each other through 

the external archive.  

The algorithm considers a relation-site matrix that comprises of relations and their 

respective sites. For a given query, the relations accessed by the query are considered. 

Using the relation-site matrix, sites where the relations accessed by the query reside are 

identified. Many possible query plans or combinations of site-relation may exist and 

each such combination represents a particle, which is represented as an ordered pair of 

relation-site combination. The universal set E consists of relations and all possible 

ordered pairs of each of them with the sites where they reside. Each query plan Xi is a 

subset of the universal set E, that is, X ⊆ E. X can also be divided into n dimensions, 

i.e.                , where    ⊆  
. X is a feasible query plan only if it 

contains all the relations accessed by a query and each relation is selected from one of 

the sites from amongst all the sites where it resides in. The velocity of a particle (query 

plan) is the relation-site ordered pair and the randomly associated probability associated 

with it. The query plan generation algorithm based on S-CLPPSO is given in Figure 3.3 
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Input: 

rsm: relation-site matrix 

ps : Population size in each of the two swarms 

max_iter: Maximum number of iterations 

ω: Inertia weight // linearly decreasing from 0.9 to 0.4 

c1: Cognitive acceleration constant (2.0) 

c3: Inter swarm communication constant (2.0) 

Output:    
              TopkQueryPlan - Top K query plan 

Method: 

Step1:   Obtain the universal set E based on the available relation site matrix rsm. 

Step2:   For each swarm generate initial particles (query plans) and their associated velocities randomly 

from the available relation site matrix equal to the Population size, ps. 

Step3:   For the two swarms, compute the objective function values: 

              Swarm 1   

                        

                    Where s is the number of sites being used and m is the number of communications 

               Swarm 2 

                             
 
     

                       Where n is the number of relations in the query and    is the count of sites arranged in 

decreasing order. 

Step4:   For each swarm, set           for all                    

Step5:   Set external archive size (EXA_size) =k; 

 Initialize EXA= { }; 

Step6:   For each swarm do step 7 

Step7:   For each particle of the swarm do steps 8, 9, 10, 11 and 12. 

Step8:   Compute learning probability (     for the i
th

 particle as:  

                Where, ps is the total number of particles in the swarm. 

Step9:    For each dimension of the particle do steps a and b 

     (a) Generate a random number (        

     (b) IF        >     

             Update position and velocity using         ; 

          ELSE 

    Choose two particles (p and q) randomly; 

                              Compare the fitness values of their pbest and find the winner particle (say p); 

  Use the winner’s pbest (      ) as exemplar for the chosen dimension    

                              Update position and velocity using         ; 

Step10:    If a particle is an exemplar of itself on all dimensions  

                      Randomly choose one dimension to learn from the dimension of some other randomly 

chosen particle’s pbest.      

Step11:    Compute the respective cost of the updated particle 

Step12:    Update the pbest of the particle 

Step13:    Update the external archive (EXA) 

Step14:    IF (iteration < max_iter AND not stagnated) 

  GOTO Step 6. 

Step15:  Return Top K query plan as TopkQueryPlan 

Figure 3.3: Query Plan Generation Algorithm using S-CLPPSO 
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For the given user query, the algorithm first generates a universal relation set E for the 

relations accessed by the query (Step1). Next, the initial population of particles along 

with their velocities is randomly generated using the site-relation matrix in both the 

swarms. (Step2).  

The cost of each particle (query plan), with respect to the objective of the swarm, is 

computed using the respective objective functions (SCC or RCG) given in chapter 

1(Step3). Initially the pbest value of any particle (query plan) is initialized to current 

position in both the swarm (Step4). The size of the external archive is set to be k (where 

k denotes the number of top query plans to be generated) and the archive is initialized 

as empty set (Step 5). Now, in both the swarms, for each particle of the population ps, 

learning probability Pc  is computed, Thereafter the velocity and position of all the 

particles of the population are updated (Step 6, 7, 8, 9 and 10). Next, the respective cost 

value of the updated particle (query plan) is computed in both the swarms (step 11). 

The pbest values of the particles in both the swarms are also updated (Step12). The 

external archive is also updated using non-dominated sorting (Step 13). These steps are 

repeated until a pre-specified number of iterations are completed or no improvement is 

observed over a pre-specified number of iterations (Step14). At the end, the top-K 

query plans are produced as output from the external archive (Step15). 

3.4 An Example 

Input: 

A relation-site matrix (rsm) that represents eight relations R1, R2, R3, R4, R5, R6, R7, R8 

distributed among eight sites S1, S2, S3, S4, S5, S6, S7, S8 is shown in Figure 3.4. 

 

 

 

 

 

 

 

 

Relations\Sites S1 S2 S3 S4 S5 S6 S7 S8 

R1 1 0 1 1 1 0 1 1 

R2 1 1 0 0 1 1 0 0 

R3 0 1 1 0 1 1 1 1 

R4 1 1 1 0 1 0 1 0 

R5 1 1 0 1 1 1 1 1 

R6 0 0 1 1 1 1 1 1 

R7 0 1 1 1 1 1 1 0 

R8 1 1 1 1 1 1 0 0 
 

Figure 3.4: Relation-Site Matrix 
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Consider a query that accesses relations R3, R4, R7 and R8. The objective is to generate 

top-4 query plans. 

Let 

Population Size in each of the two swarms (ps) =5, 

Maximum number of iteration (max_iter) =20, 

Inertial Weight ω=linearly decreasing from 0.9 to 0.4, 

Cognitive acceleration constant c1=2.0 

Inter swarm communication constant c2 =2.0 

 

Step 1: Using matrix rsm, the universal set E is given by: 

     

 

   

 

              Where 

 

 

 

 

 

 

 

 

 

Step 2: The randomly generated initial particles (query plans) along with their 

associated velocities for swarm1 and swarm2 are given in Figure 3.5 and in 

Figure 3.6 respectively. 
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Figure 3.5: Initial particles and their velocities in Swarm 1  

 

Particle  

(i) 

Position 

Xi 

Velocity 

Vi 

1 {(3,5),(4,5),(7,4),(8,6)} 

 

 

 

{(3,6) /.5097,(4,1) /.7418,(7,3) /.4612,(8,6) /.4151} 

 2 {(3,7),(4,7),(7,5),(8,2)} 

 

{(3,6) /.6320,(4,5) /.7626,(7,2) /.8225,(8,3) /.9805} 

 3 {(3,2),(4,3),(7,4),(8,2)} 

 

{(3,5) /.3935,(4,7) /.0632,(7,6) /.8355,(8,6) /.5607} 

 4 {(3,7),(4,1),(7,3),(8,4)} 

 

{(3,2) /.4397,(4,3) /.7157,(7,7) /.5093,(8,6) /.5296} 

 5 {(3,5),(4,3),(7,5),(8,4)} 

 

{(3,2) /.8641,(4,5) /.4011,(7,6) /.6800,(8,5) /.3404} 
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Step 3: The objective function values for the two swarms are given in Figure 3.7 and 

Figure 3.8 respectively 

 

 

 

 

 

 

 

 

 

 

Step 4: For each particle in each of the two swarms 

          for all                    

Step5:  External archive size (EXA_size) =4 

 Initially the external archive is empty i.e.  EXA= { } 

Step 6: Next, the velocity and position of each particle in each of the two swarms is 

updated using the following rule: 

   
       

       
            

     
            

     
 

   

              Since the external archive is empty initially, the above equation is modified to: 

  
    

                
    

 
  

Figure 3.6: Initial particles and their velocities in Swarm 2  

 

Particle  

(i) 

Position 

Xi 

Velocity 

Vi 

1 {(3,7),(4,7),(7,6),(8,5)} 

 

 

 

{(3,7) /.9403,(4,5) /.0664,(7,6) /.0121,(8,6) /.1747} 

 2 {(3,2),(4,7),(7,4),(8,2)} 

 

{(3,3) /.3335,(4,3) /.2677,(7,2) /.5165,(8,2) /.6427} 

 3 {(3,6),(4,5),(7,5),(8,2)} 

 

{(3,6) /.6206,(4,5) /.0334,(7,5) /.9865,(8,2) /.3556} 

 4 {(3,3),(4,7),(7,4),(8,4)} 

 

{(3,3) /.9796,(4,7) /.2852,(7,3) /.6300,(8,2) /.6187} 

 5 {(3,2),(4,1),(7,3),(8,2)} 

 

{(3,7) /.1266,(4,3) /.4364,(7,6) /.3924,(8,2) /.7773} 

 

 

 

 

Particles (i)         

1 6 

2 6 

3 6 

4 12 

5 6 

 

Figure 3.7: fitness values of particles in Swarm1 

Particles (i) 
              

 

   

 

1 13 

2 13 

3 13 

4 13 

5 13 
 

Figure 3.8: fitness values of particles in Swarm2 
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First, a random number r ∈ [0, 1] is generated. If r is larger than parameter Pc 

then   
    = i. Otherwise, the algorithm applies the tournament selection to 

randomly select two particles. The particle with a better fitness value is 

selected as    
   .In this sense,      

     

 
can be the corresponding dimension 

of any particle’s pbest position. S-CLPSO algorithm is applied to particles in 

swarm1 and particles in swarm2 in the same manner as was applied in solving 

the single objective problem in Chapter 2. The updated position, updated 

velocity and the respective cost value of particles in swarm1 and swarm2 are 

given in Figure 3.9 and 3.10 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After first iteration the non-dominated particles in the External Archive are: 
 

EXA= {{(3,5),(4,5),(7, 6),(8,6)}, {(3,2),(4,3),(7,3),(8,2)},  

             {(3,5),(4,1),(7,5),(8,6)}, {(3,7),(4,7),(7,4),(8,3)}} 
 

Since after the first iteration the external archive contains four non-dominated 

solutions, the velocity and position of each particle in each of the two swarms is 

updated using the following rule: 

   
      

       
            

     
             

     
 

  

 

i Updated Position  

(Xi′) 

Updated Velocity  

(Vi′) 

Updated 

SCC 

1 {(3, 5), (4, 1), (7, 5), (8, 6)} 

 

{(3, 6)/0.8463,(4,1)/0.0598,(7, 5)/0.2379,(8,6)/0.1572} 

 

6 

2 {(3, 7), (4, 7), (7, 4), (8, 3)} 

 

{(3, 6)/0.3001,(4,5)/0.2409,(7, 4)/1.000,(8,3)/0.5785} 

 

6 

3 {(3, 2), (4, 3), (7, 6), (8, 4)} 

 

{(3, 5)/0.5585,(4,7)/0.0301,(7, 6)/0.8879,(8,4)/1.000} 12 

4 {(3, 2), (4, 1), (7, 4), (8, 4)} 

 

{(3, 2)/0.8816,(4,3)/0.2567,(7, 4)/1.000,(8,6)/0.5568} 

 

6 

5 {(3, 5), (4, 5), (7, 6), (8, 6)} 

 

{(3, 2)/0.1139,(4,2)/0.3927,(7, 4)/0.3532,(8,2)/0.6996} 

 

2 

 

Figure 3.9: Updated position and velocities after first iteration in Swarm 1 

i Updated Position  

(Xi′) 

Updated Velocity  

(Vi′) 

Updated 

RCG 

1 {(3, 7), (4, 7), (7, 6), (8, 5)} 

 

{(3, 7)/0.9403,(4,5)/0.0664,(7, 3)/0.0121,(8,6)/0.1747} 

 

13 

2 {(3, 2), (4, 7), (7, 4), (8, 2)} 

 

{(3, 3)/0.3335,(4,3)/0.2677,(7, 6)/0.5135,(8,2)/0.6427} 

 

13 

3 {(3, 6), (4, 5), (7, 5), (8, 2)} 

 

{(3, 6)/0.6206,(4,5)/0.0334,(7, 5)/0.9865,(8,2)/0.3556} 13 

4 {(3, 3), (4, 7), (7, 4), (8, 2)} 

 

{(3, 3)/0.9796,(4,7)/0.2852,(7, 5)/0.6300,(8,2)/0.6187} 

 

10 

5 {(3, 2), (4, 3), (7, 3), (8, 2)} 

 

{(3, 2)/0.1266,(4,2)/0.4364,(7, 4)/0.3924,(8,2)/0.7773} 

 

14 

 

Figure 3.10: Updated position and velocities after first iteration in Swarm 2 
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Iteration 2: Swarm1: First Particle  

Position after first iteration 

  X1  = {(3, 5), (4, 1), (7, 5), (8, 6)}  

Velocity after first iteration  

 V1 = {(3, 6)/0.8463, (4, 1)/0.0598, (7, 5)/0.2379, (8, 6)/0.1572}  

          ,  ,  4,  ,   ,4 ,   ,    

Next, the velocity of the first particle X1  is updated using the velocity update equation:  

   
     

       
            

     
 

           
     

 
  

 

 

Computation of Inertia component 

The inertia component value of particle X1  for each dimension is computed using the 

following rule: 

The product of a coefficient c (c ≥ 0) and velocity i.e. a set with possibilities V = {e/p 

(e) |e ∈ E} is defined as: 

cV = {e/p′(e) |e ∈ E}, 

p′ (e) = 
            ,                            >  

      ,                   
  

The value of the inertia weight   for the second iteration is calculated using the 

following rule: 

                  
                 

                 
  

             4    
 

  
        

The inertia component value for each dimension is shown in Figure 3.11 

 

 

 

 

 

 

Thus the inertia of the particle X1  is 

        ,         ,  4,         ,   ,         ,   ,           

 

    
 
    

 
 

0.85   
     ,     4    

 

   
     ,            

0.85   
    4,        }    

    4,           

0.85   
     ,        }    

     ,           

0.85   
4   {(8,6) /.1572} 

 

   
4     ,            

 Figure 3.11: Updated inertia component 

Cognitive 

Component 
External Archive 

Component 

Inertia 

Component 
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Computation of Cognitive component 

In order to compute the cognitive component values Learning Probability (     for the 

particle X1  is computed using the equation: 

           4  
     

       
        

           
 

         Pc1 = 0.0500 

For each dimension j     4 , a random number is generated and compared with the 

learning probability     to choose particles amongst X1′ X2′ X3′ X4′ and X5′ from 

whose pbest X1′ has to learn from. 

Suppose for j=1, random number generated is 0.9542, which is greater than   . Thus, 

the first dimension would learn from pbest of particle X1′ and thus X1′ will learn from 

its own pbest i.e.   
   = 1 

          
 

=      
 
 

       
    

  = {(3, 5)-(3, 5} = { } 

Suppose for j=2, random number generated is 0.6502, which is greater than   . Thus, 

the second dimension would learn from pbest of particle X1′ and thus X1′ will learn 

from its own pbest i.e.   
   = 1 

          
 

=      
 
 

       
    

  = {(4, 5)-(3, 1} = { 4,  } 

Suppose for j=3, random number generated is 0.0301, which is less than Pc1. Thus two 

particles X2′ and X4′ are randomly chosen. The fitness values of pbest of both the 

particles are shown in Figure 3.12 

 

 

 

 

Since the fitness value of both the particles is same, any one of the two particles can be 

selected as an exemplar. Suppose particle X2  is selected i.e.   
   = 2 

          
        

 
 

       
    

   = {(7, 5)-(7, 5)} = { } 

Particles pbesti SCCi 

X2  

 

{(3,7),(4,7),(7,5),(8,2)} 6 

X4  

 

{(3,2),(4,3),(7,4),(8,2) 6 
 

Figure 3.12: fitness values of pbest of particles 
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Suppose for j=4, random number generated is 0.2602, which is greater than    . Thus, 

the fourth dimension would learn from pbest of particle X1′and thus X1′ will learn from 

its own pbest i.e.   
 4 = 1 

      
4
=      

4
 

       
4    

4   = {(8, 6)-(8, 6)} = { } 

Next, cognitive component values of particle X1′ for each dimension are computed 

using the following rule: 

The multiplication operator between a coefficient c (c ≥ 0) and a crisp set E′ 

(Position−Position) is defined as: 

cE’= {e/p’(e)|e ∈ E}, 

p’(e)= 

 ,                ∈       >  

 ,         ∈            

 ,                                     ∉   

   

The cognitive component computation for each dimension of particle X1′ is shown in 

Figure 3.13. 

 

 

 

 

 
 

Thus the cognitive component of the particle is 

            
     {(4, 5) /1.0000} 

Computation of External Archive component 

In order to compute the External Archive component for each dimension j      4 , 

the particle chooses an exemplar m from the external archive and that particular 

dimension learns from chosen element. 

After the first iteration the external archive contains the following four non-dominated 

solutions as shown in figure 3.14: 

 

 

 

c1               
 

   
 
                

 
   

 
  

 2.0 0.3235 { } 

 

{ } 

 2.0 0.6665 { 4,  } 

 

  4,        } 

 2.0 0.0264 { } { } 

 2.0 0.2323 { } 

 

{ } 

  
Figure 3.13: Updated cognitive component 
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  Current position, X1′ = {(3, 5), (4, 1), (7, 5), (8, 6)}  

The External archive component computation for each dimension of particle X1′ is 

shown in Figure 3.15. 

 

 

 

 

 

Thus, the External archive component of the particle is: 

                    
    

 
  {(3, 7)/0.6526, (4, 3)/0.5252} 

Now, new updated velocity is computed using the following rule: 

The plus operator between two sets V1 = {e/p1 (e) |e ∈ E} and V2 = {e/p2 (e) |e ∈ E} 

with possibilities is defined as: 

V1 + V2 = {e/max (p1 (e), p2 (e)) |e ∈ E} 

Using the three components computed above, the updated velocity after the second 

iteration is computed as: 

  
     

 
+             

     +       
    

 
  

       ,         ,  4,         ,   ,         ,   ,           

            
     {(4, 5) /1.0000} 

       
    

 
  {(3, 7)/0.6526, (4, 3)/0.5252} 

Thus, the updated velocity of the particle after the second iteration is: 

     
      ,         ,  4,         ,   ,         ,   ,           

Next, the position of the particle is updated using the updated velocity. The current 

position, X1′ = {(3, 5), (4, 1), (7, 5), (8, 6)} is updated to a new position   
  
 in the 

following manner: 

Particle (i) Positions 

1 {(3,5),(4,5),(7, 6),(8,6)} 

2 {(3,2),(4,3),(7,3),(8,2)} 

3 {(3,5),(4,5),(7,4),(8,6)} 

4 {(3,7),(4,7),(7,5),(8,2)} 
 

Figure 3.14: external archive 

 

j           
      

     
            

     
   

1 2.0 0.3263 4 {(3,7),(4,7),(7,5),(8,2)} {(3,7)}  {(3,5)}={(3,7)} {(3,7)/0.6526} 
2 2.0 0.2626 2 {(3,2),(4,3),(7,3),(8,2)} {(4,3)}  {(4,1)}={(4,3)} {(4,3)/0.5252} 
3 2.0 0.2162 4 {(3,7),(4,7),(7,5),(8,2)} {(7,5)}  {(7,5)}={ } { } 
4 2.0 0.9749 1 {(3,5),(4,5),(7,6),(8,6)} {(8,6)}  {(8,6)}= { } { } 

 

 

Figure 3.15: updated External archive components 
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First, the set with possibilities   
  
 is converted into a crisp set. For each dimension, a 

random number α ∈ (0, 1) is generated for each particle. For each element e in the j
th

 

dimension, if it’s corresponding possibility p (e) in     is not smaller than α, element e 

is reserved in a crisp set, that is: 

                                      (  
 
) = {e| e/p (e) ∈  

 
   and p (e) ≥ α}. 

The crisp set for V1 is shown in Figure 3.16 

 

 

 

 

 

 

 

 

Elements e reserved in a crisp set     (V1) = {(3, 6), (4, 5)}. So, elements {(3, 6),           

(4, 5)} would be used for updating the current position {(3, 5), (4, 1), (7, 5), (8, 6)} of 

particle X1′. The new updated Position would have the relation R3 accessed from site S6 

and R4 accessed from site S5 i.e.   
    {(3, 6), (4, 5), (7, 5), (8, 6). Similarly, the 

velocity and position for other particles are also updated in both the swarms. The above 

procedure continues till a pre-specified twenty iterations. The non-dominated solutions 

from the external archive are reported as the top-4 query plans. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Crisp Set for   
  

 

j α p(e) Comparison between α  and  p(e) 

1 0.1356 0.7193 p(e)   α 

 2 0.9421 1.000 p(e)   α 

 3 0.7259 0.2022 p(e)   α 

 4 0.4421 0.1336 p(e)   α 

  

Figure 3.17: Top-4 query plans 

Query Plans 

{(3, 5), (4, 5), (7, 5), (8, 5)} 

{(3, 6), (4, 5), (7, 6), (8, 6)} 

{(3, 5), (4, 3), (7, 5), (8, 5)} 

{(3, 5), (4, 5), (7, 3), (8, 5)} 
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3.5 Experimental Results 

The S-CLPSO based query plan generation algorithm and S-CLPPSO based query plan 

generation algorithm are implemented in MATLAB 7.4 in Windows XP environment. 

The two algorithms were compared by conducting experiments on an Intel based 2 

GHz PC having 1 GB RAM.  The comparisons were carried out on parameters like 

number of relations, average query processing cost (QPC), top-K query plans and 

number of iterations.  

First, line graphs were plotted to compare S-CLPSO and S-CLPPSO based algorithms 

on Average QPC against the number of iterations for selecting top-10 query plans. 

These graphs for the number of relations n=6, 8, 10, 12 and 14 are shown in figures 

3.18, 3.19, 3.20, 3.21 and 3.22 respectively. 

It can be observed from the graphs that the S-CLPSO based algorithm, in case of 6, 8 

and 10 relations, is able to generate Top-10 query plans having almost equal average 

QPC. Whereas, for higher number of relations, i.e. for 12 and 14 relations, the S-

CLPPSO based algorithm is able to generate top-10 query plans with relatively lower 

average QPC. So, it can be said that, as the number of relations in the query increases, 

the S-CLPPSO based algorithm, in comparison to S-CLPSO based algorithm, is able to 

generate relatively better query plans with respect to the cost of query processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 
S-CLPSO Vs. S-CLPPSO

(Top-10 Query Plans, 6 Relations)
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Figure 3.18: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 6 Relations) 
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S-CLPSO Vs. S-CLPPSO

(Top-10 Query Plans, 8 Relations)
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S-CLPSO Vs. S-CLPPSO

(Top-10 Query Plans, 10 Relations)
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Figure 3.19: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 8 Relations) 

Figure 3.20: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 10 Relations) 
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Next, graphs were plotted to compare S-CLPSO and S-CLPPSO based algorithms on 

Average QPC value for selecting Top-K query plans(K=6, 8, 10, 12, 14) generated after 

400 iterations. These graphs, plotted for relations 6, 8, 10, 12 and 14, are shown in 

figures 3.23, 3.24, 3.25, 3.26 and 3.27 respectively. 
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S-CLPSO Vs. S-CLPPSO

(Top-10 Query Plans, 14 Relations)
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Figure 3.21: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 12 Relations) 

Figure 3.22: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations 

                      (Top-10 Query Plans, 14 Relations) 
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These graphs show that S-CLPSO and S-CLPPSO generate Top-K query plans with 

almost equal average QPC for 6, 8 and 10 relations. Whereas, S-CLPPSO, in 

comparison S-CLPSO, is able to generate Top-K query plans with relatively lower 

average QPC for 12 and 14 relations. Thus, it can be said that for higher number of 

relations, S-CLPPSO is able to generate good quality Top-K plans with relatively lower 

average QPC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans 

                      (6 Relations, 400 iterations) 

Figure 3.24: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans 

                      (8 Relations, 400 iterations) 
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Figure 3.25: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans 

                      (10 Relations, 400 iterations) 
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Figure 3.26: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans 

                      (12 Relations, 400 iterations) 
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Figure 3.27: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans 

                      (14 Relations, 400 iterations) 
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CHAPTER 4 

Conclusion 

The aim of distributed query processing is to process distributed queries in an efficient 

manner. This would require devising an effective and efficient distributed query 

processing strategy that would minimize the total query processing cost. This is 

possible if the query plans constructed using the strategy involve fewer numbers of 

sites for processing thereby incurring less communication overhead. This dissertation 

addresses the distributed query plan generation problem, which has been solved using 

GA in [VSV11]. In this dissertation, particle swarm optimization is used to solve this 

problem.  

First, the distributed query plan generation problem is solved using single-objective 

particle swarm optimization with the objective to minimize the query processing cost 

(QPC), as defined in [VSV11].  Set-based Comprehensive Learning Particle Swarm 

optimization technique is used to generate Top-K query plans for a distributed query. 

Experiment based comparison of this algorithm with GA based distributed query plan 

generation algorithm [VSV11] is carried out. The experimental results show that for 

higher number of relations the S-CLPSO based algorithm is able to generate relatively 

better quality top-K query plans.  



62 
 

Next, the single-objective distributed query plan generation problem is formulated as a 

bi-objective distributed query plan generation problem. The two objectives being 

minimization of site communication cost (SCC) and maximization of relation 

concentration gain (RCG). These are motivated by the cost functions in [PV02]. This 

problem is solved using multi-objective particle swarm optimization technique                   

S-CLPPSO. The experiment based comparison of S-CLPPSO with the S-CLPSO based 

distributed query plan generation algorithm shows that the S-CLPPSO algorithm is able 

to generate comparatively better quality query plans for higher number of relations in 

the user query. 

It can therefore be concluded that the S-CLPPSO based algorithm performs relatively 

better amongst the three algorithms with S-CLPSO algorithm having a slight edge over 

the GA based algorithm. 
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