
DISTRIBUTED QUERY PROCESSING USING

PARTICLE SWARM OPTIMIZATION

A dissertation submitted to the Jawaharlal Nehru University

in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

BY

AMIT KUMAR

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI – 110067

JULY 2012

Dedicated to my Parents

DECLARATION

This is to certify that the dissertation entitled “Distributed Query Processing using

Particle Swarm Optimization” is being submitted to the School of Computer and

Systems Sciences, Jawaharlal Nehru University, New Delhi, in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer

Science & Technology, is a record of bonafide work carried out by me under the

supervision of Dr. T.V. Vijay Kumar.

The matter embodied in the dissertation has not been submitted in part or full to any

University or Institution for the award of any degree or diploma.

Amit Kumar

 (Student)

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI – 110067

CERTIFICATE

This is to certify that this dissertation entitled “Distributed Query Processing using

Particle Swarm Optimization” submitted by Mr. Amit Kumar, to the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, for the

award of degree of Master of Technology in Computer Science & Technology, is a

research work carried out by him under the supervision of Dr. T. V. Vijay Kumar.

Dr. T. V. Vijay Kumar

(Supervisor)

Prof. Karmeshu

(Dean)

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI – 110067

Acknowledgement

I take this opportunity to express my gratuitous expressions of gratitude towards faculty, seniors and

friends who have helped me to complete this dissertation. Several individuals deserve a special

mention for their contribution to this work.

I would like to thank my supervisor, Dr. T.V. Vijay Kumar for providing excellent guidance,

indispensable ideas, incessant support and unflagging encouragement during the completion of this

work. He has always been munificent with his time and suggestions. He understood me through my

difficult times and always boosted my confidence. More importantly he demonstrated his faith in my

dormant abilities. He has always helped me immeasurably in my professional socialization; has always

kept me focused on imperative issues.

I owe a special debt to my friend Rahul Singh who has played a significant role in helping me to

complete this work. Without his support, I may never have finished this dissertation. He has been a

tremendous resource in erudite discussions about academic or social problems with his intelligent,

clear-headed perspectives and well-reasoned opinions. He rattles off brilliant ideas with alarming

frequency.

A special thank you note goes to Mr. Akshay Kumar, Mr. Mohammed Haider, Mr. Santosh

Kumar and Mr. Kumar Dilip for their astute counsel and stimulation at critical decision-making

points. They all have been great assets to me.

I would also like to thank all my classmates for their valuable suggestions and helpful comments.

I also gratefully acknowledge the support that I have received from the School while working on this

dissertation. In particular, I thank JNU for supporting me with generous fellowships.

Amit Kumar

CONTENTS

 CHAPTER 1: Introduction ………………………………………………………………… 1-8

 1.1 Distributed Query Processing ………………………………………………………... 2

 1.1.1 Related Work …………………………………………………………………. 3

 1.2 The Problem …………………………………………………………………………. 4

 1.3 Aim …………………………………………………………………………………. 7

 1.4 Organization of the Dissertation …………………………………………………….. 8

 CHAPTER 2: Distributed Query Plan Generation using PSO………………….………. 9-34

 2.1 Swarm Intelligence…………………………………………………………………… 10

 2.1.1 Basic Principles of Swarm Intelligence………………………………………. 10

 2.1.2 Swarm Intelligence Techniques……………………... 11

 2.1.2.1 Stochastic Diffusion Search…………………………………………… 11

 2.1.2.2 Ant Colony Optimization……………………………………………… 11

 2.1.2.3 Particle Swarm Optimization………………………………………….. 11

 2.2 Particle Swarm Optimization………………………………………………………… 12

 2.3 Refinements in PSO………………………………………………………………….. 14

 2.3.1 The Concept of Inertia Weight………………………………………………... 14

 2.3.2 The Concept of Neighborhood………………………………………………... 15

 2.3.3 The Concept of Constriction Coefficient…………………………………… 16

 2.3.4 Hybrid PSO Algorithms………………………………………………………. 16

 2.4 Further Refinements in PSO…………………………………………………………. 16

 2.4.1 Comprehensive Learning Particle Swarm Optimization (CLPSO)…………… 17

 2.4.2 CLPSO’s Search Behavior……………………………………………………. 17

 2.5 PSO method for Discrete Optimization Problems…………………………………… 19

 2.5.1 The Set-Based CLPSO………………………………………………………... 20

 2.6 Query Plan Generation……………………………………………………………….. 22

 2.7 An Example…………………………………………………………………………........ 24

 2.8 Experimental Results …………………………………………………………………… 29

 CHAPTER 3: Distributed Query Plan Generation using MOPSO……………………… 35-60

 3.1 Multi-Objective Optimization………………………………………………………... 35

 3.2 Particle Swarm Optimization for Multi-Objective Problems………………………… 38

 3.2.1 Non-Pareto Based Approaches………………………………………………... 39

 3.2.1.1 Aggregated Approaches……………………………………………….. 39

 3.2.1.2 Non-Aggregated Approaches………………………………………….. 40

 3.2.2 Pareto Based Approaches……………………………………………………... 41

 3.2.2.1 S-CLPPSO……………………………………………………………... 43

 3.3 Query Plan Generation……………………………………………………………….. 44

 3.4 An Example…………………………………………………………………………....... 46

 3.5 Experimental Results ………………………………………………………………… 55

 CHAPTER 4: Conclusion... 61-62

 References

1

CHAPTER 1

Introduction

A distributed database encompasses coherent data, disseminated over the sites of a

computer network [CP84]. A Distributed Database Management System (DDBMS)

deals with managing such distributed databases. It presents a simple and unified

interface to the users so that they can access the databases as if the data is not

distributed [OV91]. A DDBMS is illustrated in Figure 1.1 showing data distributed

over databases connected by a network.

 Figure 1.1: An example DDBMS

Node 2 Database 2

Node 1 Database 1

Node 4

Node 3 Database 3

2

1.1 Distributed Query Processing

In query processing, the aim is to formulate algorithms that analyze queries and convert

the queries into a set of data manipulation operations [OV91] as shown in figure 1.2

The query processing problem is much more complicated in distributed environments,

as there are various parameters affecting the performance [AHH09]. In distributed

environment, it is possible that the relations required in a query may be fragmented or

replicated thereby leading to additional communication costs [OV91]. Furthermore, the

query response time may become very high due to processing of distributed query at

multiple sites. The performance of a DDBMS is determined by its ability to process

queries in an effective and efficient manner [RM97]. Distributed query processing

involves CPU, I/O and communication cost. However, it is the communication cost that

constitutes the major cost of query processing [KYY82]. In order to answer the

distributed queries, data is transmitted among the participating database sites, which

incurs communication cost [YC84]. Hence, in order to reduce the communication cost,

various strategies for executing a distributed query over the network are devised in

distributed query optimization.

Processing distributed join queries typically involves three phases i.e. copy

identification, reduction, and assembly [YC84]. In copy identification phase, files

required by the query are selected for processing [YC84] [MLR90] [YC83]. In the

reduction phase, local selection, projection and semijoins are used to reduce the size of

Figure 1.2: Query Processing

Query Processor

High level user query

Low level data manipulation commands

3

data that needs to be transmitted in order to perform join operations [RM97]. In the

assembly phase, files are processed to get the final output. In this phase reduced files

may have to be transmitted to join sites every so often to accomplish join operations.

Additionally the final output may have to be transmitted to the result site. Join sites and

join order must be determined for this phase [RM97].

1.1.1 Related Work

Earlier research in distributed query processing has typically focused on only one of the

three phases of query processing discussed above. The reduction phase has received the

most attention. The objective in the reduction phase is to find a minimum cost semi join

sequence that fully reduces the relations required by a query [RM97]. A relation

required by a query is said to be fully reduced if all its rows, not satisfying the

qualification of the query, have been removed prior to transmitting it to the join site

[YC84] [YC83]. In the reduction phase it is assumed that the local processing cost is

trivial likewise it is assumed that all join operations are performed at the result site

[AHY83] [BC81] [BG+81] [HY79] [LW86] [PV88] [S86] [SW91] [YL89]. Using semi

joins can reduce the amount of data that need to be transmitted; then again it can also

drastically increase local processing costs. Semi joins effectively perform the join twice

– once to reduce one of the relations and again to join the reduced relation with the

other relation [RM97] as shown in Figure 1.3.

The use of semi joins must be considered more carefully as the local processing cost

may become more significant compared to data communication costs

[CY93][CY94][CY88][LM+85][LC85][ML86] [ME92].

Figure 1.3: Examples of semijoin and join operations.

R2 after semijoin R2 R1

on attribute B Resulting relation

From R1 R2

R1

A B

a1 b1

a2 b1

a2 b2

a2 b4

a3 b4

a4 b7

a4 b9

R2

B C

b1 c2

b2 c1

b2 c4

b5 c2

b6 c4

b7 c2

b8 c3

B C

b1 c2

b2 c1

b2 c4

b7 c2

A B C

a1 b1 c2

a2 b1 c2

a2 b2 c1

a2 b2 c4

a4 b7 c2

4

Several approaches exist in literature that focuses on copy identification and assembly

ignoring reduction. In these approaches, local processing costs are considered

imperative, and joins are used as query processing technique [MR95] [MLR90]. These

algorithms determine the optimum join order, join methods and join sites in order to

minimize the sum of communication cost and local processing cost. According to

[RM97] the sites at which joins are performed and the join-order have a crucial effect

on the overall query processing cost. These needs to be included in query optimization

to globally optimize distributed query processing. The fundamental assumption in these

approaches is that data is stored non-redundantly. Some approaches use both semi joins

and joins. These approaches identify beneficial semi joins, join order and join sites to

reduce the local processing costs as well as communication costs [LW86]. In these

approaches it is assumed that relations are pre-selected. These algorithms have a high

computational complexity, which limits its applicability [YL89].

In distributed query processing, copy identification is an important issue as the cost of

processing a query varies significantly with respect to the file copies used [RM97]. The

number of possible solutions grows exponentially with respect to the number of files

[RM97]. Thus optimal copy identification and the determination of an optimal query

processing strategy are interdependent. The use of criteria such as minimization of sites

containing required files is not likely to result in globally optimal solutions [YC84]

[YC83].

1.2 The Problem

A large number of queries are posed against distributed databases spread across the

globe. These queries need to be processed efficiently. For this purpose, optimal query

processing strategies generating efficient query processing plans are devised. In

distributed database systems, due to replication of relations at multiple sites, the

relations required to answer a query may require access of data from many sites. This

leads to exponential increase in the number of possible alternative query plans to

process a query [IK90]. However, it is not computationally feasible to explore all

possible query plans in such a large search space [IK90]. This problem in literature is

referred to as a combinatorial optimization problem in distributed databases [JK84].

The query plan that gives rise to cost-effective query processing is considered

5

necessary and should be generated for a given query [VSV11]. The problem, discussed

in [VSV11], has been addressed in this dissertation. This problem can be illustrated

with the help of following example:

Consider a query that accesses four relations R1, R2, R3 and R4, which are distributed

across multiple sites. The relation-site matrix is shown in Figure 1.4.

The valid query plans are given in Figure 1.5.

As the number of sites containing the relations accessed by the query increases, the

number of possible valid query plans also increases. One way to generate query plans

that lead to efficient query processing is by reducing the number of sites involved in

query processing [VSV11]. As the number of distinct sites involved in processing the

query decreases, the site-to-site communication cost decreases. Thus, the query plan

should involve less number of sites. For the query plans, given in Figure 1.5, the first

query plan involves 3 sites, the second query plan involves 4 sites, the third query plan

involves 2 sites and the fourth query plan involves only 1 site. Accordingly, the fourth

query plan is preferred over others, as it involves the least number of sites i.e. 1.

Relations Sites

R1 S2 S4 S6 S8

R2 S2 S3 S5 S7

R3 S2 S1 S9 S9

R4 S2 S3 S4 S2

Figure 1.4: Relation-site matrix

8 5 2 2 R1 in site S8, R2 in site S5, R3 in site S2 and R4 in site S2

4 5 9 2 R1 in site S4, R2 in site S5, R3 in site S9 and R4 in site S2

2 2 2 3 R1 in site S2, R2 in site S2, R3 in site S2 and R4 in site S3

2 2 2 2 R1 in site S2, R2 in site S2, R3 in site S2 and R4 in site S2

5 5 2 2 R1 in site S5, R2 in site S5, R3 in site S2 and R4 in site S2

Figure 1.5: Query Plans

6

In case the numbers of sites involved in the query plans are equal, the query plan

having sites with higher concentration of relations is more desirable [VSV11]. Since in

this case the join operations between relations are performed at a single site. For the

query plans in Figure 1.5, the third and the fifth query plans involve the same number

of sites, i.e. 2. The third query plan has three relations R1, R2 and R3 in site S2 and

relation R4 at site S3 whereas the fifth query plan has two relations each in site S5 and in

site S2. So, the third query plan has a higher concentration of relations at an individual

site i.e. 3 and therefore should be preferred over the fifth query plan.

The above two aspects are used to define a ‘close’ query plan in [VSV11]. The query

plan involving fewer sites, and having higher concentration of relations, is considered

more ‘close’ and is preferred over the others. For the query plans in Figure 1.5, the

ordering of query plans, based on descending order of closeness, is given in Figure 1.6.

The query plans higher in the order involve fewer sites and higher concentration and

therefore should be generated before query plans that are lower in the order involving

larger number of sites.

Based on the two aspects discussed above, a cost function, that computes the cost of

proximity of data relevant for answering a user query, is defined in [VSV11]. This cost,

referred to as Query Processing Cost (QPC), is given below:

Where M is the number of sites accessed by the query plan is the number of times

the site is used in query plan, N is the number of relations accessed by the query.

2 2 2 2 R1 in site S2, R2 in site S2, R3 in site S2 and R4 in site S2

2 2 2 3 R1 in site S2, R2 in site S2, R3 in site S2 and R4 in site S3

5 5 2 2 R1 in site S5, R2 in site S5, R3 in site S2 and R4 in site S2

8 5 2 2 R1 in site S8, R2 in site S5, R3 in site S2 and R4 in site S2

4 5 9 2 R1 in site S4, R2 in site S5, R3 in site S9 and R4 in site S2

Figure 1.6: Query Plans ordered based on “close” Query Plans

7

The QPC varies between zero and (N-1)/N. Zero indicates that all the relations

accessed by the queries, reside at the same site. (N-1)/N indicates that each of the

relations, accessed by the query, is in different sites. The query plans having less QPC

are considered “close” and therefore are generated before the ones having higher QPC.

1.3 Aim

The query plan generation problem, based on the above heuristic, has been solved using

Genetic Algorithms in [VSV11]. In this dissertation, an attempt has been made to solve

this query plan generation problem using particle swarm optimization. The dissertation

aims to address this problem in the following manner:

(i) A query plan generation problem is formulated as a single objective

optimization problem where the objective is to minimize the Query

Processing Cost, as defined above. This problem is solved using Set based

Comprehensive Learning Particle Swarm Optimization (S-CLPSO). The

performance of the S-CLPSO based approach is compared with the query

plan generation approach based on Genetic algorithms.

(ii) The query processing cost (QPC), as discussed above, defines “close” query

plans as those that involve fewer sites and higher concentration of relations

in sites. The former can be formulated as the site communication cost (SCC)

and the latter can be formulated as the relation concentration gain (RCG).

These formulations, which are motivated by [PV02(c)], are given below:

Objective 1: The first objective considered is the minimization of total

communication cost. It is based on the number of sites required to process a

user query, lesser the number of sites involved in query processing, lesser

will be the communication between the sites. As a result, query processing

will be efficient. So if s is the number of sites being used and m is the

number of communications then this objective can be calculated by the

following expression:

 Where s is the number of sites being used and m is the number of

communications

8

Objective 2: Another objective considered is that if there are more than one

query plans having the minimum number of required sites, the query plan

having sites with greater concentration of relations provides efficient results

and shall accordingly be preferred over the others. So if n is the number of

relations in the query and is the count of sites and arranged in decreasing

order then this objective can be calculated by the following expression:

Where n is the number of relations in the query, is the count of sites

arranged in decreasing order and s is the number of sites involved.

Thus, minimizing QPC comprises of minimizing SCC and maximizing

RCG. So, the single objective query plan generation problem is formulated

as a bi-objective query plan generation problem with the two objectives

namely minimizing SCC and maximizing RCG. This bi-objective problem

is solved using Set based Comprehensive Learning Parallel Particle Swarm

Optimization (S-CLPPSO). The performance of the S-CLPPSO based

approach is compared with the single-objective query plan generation

approach based on S-CLPSO.

1.4 Organization of the Dissertation

The dissertation is organized as follows: Chapter 2 discusses query plan generation

using single-objective particle swarm optimization (PSO). The bi-objective query plan

generation problem is solved using multi-objective particle swarm optimization

(MOPSO) technique in chapter 3. Chapter 4 is conclusion.

9

CHAPTER 2

Distributed Query Plan

Generation Using PSO

In nature, a large number of insects and other small organisms are generally organized

in hierarchies, e.g. ants, bees and fish etc. In these organisms although each individual

agent has limited responses, the agents all together exhibit fascinating behavior and

obvious traits of intelligence. For example, fish maintain a greater mutual distance

when swimming carefree, while they come together in very dense groups in the

presence of predators [U4]. In order to preserve the personal integrity of each member

of the group, the members of the group respond collectively against the external threats.

The swarm is able to change its current form rapidly by breaking into smaller parts and

then reuniting again when there is no danger. This observed behavior of natural

systems has stimulated scientific curiosity regarding the underlying rules that produce

this behavior. Systems, where such collective phenomena occur, prepare the ground for

the development of swarm intelligence [U7].

10

2.1 Swarm Intelligence

Swarm intelligence is a branch of artificial intelligence that studies the collective

behavior and emergent properties of complex, self-organized, decentralized systems

with social structure [U16]. Although each agent has a very limited action space with

no central control, the aggregated behavior of the whole swarm exhibits traits of

intelligence i.e. an ability to react to environmental changes and decision-making

capacities [U5]. Notwithstanding their physical or structural differences, such systems

share common properties based on five basic principles of swarm intelligence, which

are discussed next.

2.1.1 Basic Principles of Swarm Intelligence

The five basic principles of swarm intelligence are: proximity, quality, diverse

responses, stability and adaptability [M94]. Proximity is the ability to perform space

and time computation. The group should be able to do elementary space and time

computations. Since space and time translate into energy expenditure, the group should

have some capability to calculate the benefit of a particular response to the environment

in these terms [SK86]. Quality is the ability to respond to environmental quality

factors. The group should be able to respond not only to time and space considerations,

but also to the quality factors, e.g. quality of foodstuffs or safety of location. Diverse

Responses are the ability to deliver a multiplicity of different responses. The group

should not allocate all of its resource along extremely narrow lines. It should seek to

allocate its resources along many modes as assurance against the abrupt change in

anyone of them due to environmental fluctuations. Stability is the ability to preserve

robust behaviors under mild environmental changes. The group should not change its

behavior from one mode to another with every fluctuation of the environment. Such

changes consume energy without producing a useful return for the investment.

Adaptability is the ability to change behavior when it is dictated by external factors.

When the rewards for changing a behavioral mode are expected to be worth the

investment in energy, the group should be able to change its behavioral mode.

11

2.1.2 Swarm Intelligence Techniques

Three main swarm intelligence optimization algorithms are: Stochastic Diffusion

Search, Ant Colony optimization and Particle Swarm Optimization [B89] [D92]

[EK95].

2.1.2.1 Stochastic Diffusion Search (SDS)

It is an agent-based probabilistic global search and optimization technique [B89]. It is

particularly suitable to problems in which the objective function can be decomposed

into multiple independent partial-functions [U6]. In this technique, each agent

maintains a hypothesis that is iteratively tested by evaluating a randomly selected

partial objective function parameterized by the agent's current hypothesis [U18].

Agents share hypotheses via a one-to-one communication approach. A positive

feedback mechanism ensures that a population of agents eventually becomes stable

around the global-best solution.

2.1.2.2 Ant Colony Optimization (ACO)

It is a novel metaheuristic, which is inspired by the foraging behavior of real ants, for

solving combinatorial or other optimization problem [D92]. When real ants search for

food, in the beginning they search the area surrounding their nest in an erratic manner.

Once an ant finds food source, during the return trip, this ant lays down a chemical

substance called pheromone on the ground. The deposited pheromone guides other ants

to the food source. This indirect communication between the ants, via the pheromone

trail, is known as stigmergy [U15]. This stigmergy facilitates them to locate the shortest

path between their nest and food source. Artificial ants, imitating the real ants, locate

optimal solutions by exploring and exploiting search space representing all possible

solutions and record their positions and the quality of their solutions in order to achieve

better results in subsequent iterations [U2].

2.1.2.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population based stochastic optimization

technique designed for continuous nonlinear optimization problem [U12]. It is based on

the simulation of the social behavior of birds within a flock. In an experiment, given in

12

[EK95], an attempt to graphically simulate the elegant and erratic choreography of a

bird flock was carried out [EK95]. The aim was to determine patterns that govern the

ability of birds to fly synchronously and to abruptly change direction with a regrouping

in an optimal formation [SM+08]. From the initial idea, the concept developed into a

simple and efficient Optimization technique.

This dissertation focuses on solving distributed query plan generation problem using

particle swarm optimization, which is discussed in detail next.

2.2 Particle Swarm Optimization

In Particle Swarm Optimization (PSO), particles are simply the agents that fly through

the search space and simultaneously record the best position that they have hitherto

come across. This value is identified as personal best or pbest and is possibly

communicated at times. Another best value that is recorded by the PSO is the best

value attained up to now by any particle in the swarm. This value is called global best

or gbest.

Figure 2.1 represents the basic concept of PSO which is to accelerate each particle

toward its pbest and the gbest locations, with a random weighted acceleration at each

time step in order to update its position [U11].

Figure 2.1: Basic Concept of PSO [U17]

egoistic

(Best position of particle neighbors)

xi

updated position vi

gbest

pbesti

new xi

(Particle best position so far) companionable

current position

13

The original version of PSO [EK95] is defined by the following equations (1) and (2)

as:

 (1)

i = 1, 2…, N, d = 1, 2,…, n

Where i is the particle, t denotes the iteration counter, and are random variables

uniformly distributed within [0,1] , and are weighting factors also called cognitive

and social parameters respectively , g represents the index of the particle with the best

fitness, and d is the d
th

 dimension. denotes velocity of the particle at

time’t’. denotes personal best position of the particle at time ‘t’. is the

position of the particle at time ‘t’. denotes the global best position of the particle

at time ‘t’. denotes the position of the particle at time ‘t+1’.

denotes the velocity of the particle at time’t+1’. The update of position and

velocity of th
 particle in the swarm [PV88]] is shown in Figure 2.2.

In every iteration, after the update and evaluation of particle’s position and velocity is

completed, the pbest and gbest positions (memory) are also updated. The flow chart

describing the PSO algorithm is shown in Figure 2.3.

Figure 2.2: Position and velocity update of th
 particle in the swarm [U10]

xid(t+1)

xid(t)

gd(t)

Vid(t) Vid(t+1)

Y

X

Pid(t)

14

2.3 Refinements in PSO

Early PSO variants performed satisfactorily for simple optimization problems.

However, their crucial deficiencies were revealed as soon as they were applied on

harder problems with large search spaces and a multitude of local minima.

2.3.1 The Concept of Inertia Weight

The first significant issue was the swarm explosion effect. This deficiency was due to

uncontrollable increase in the magnitude of velocities. For this purpose, a new

parameter, called inertia weight, was introduced in equation (1), resulting in a new

PSO variant [ES98] defined by the following equations (3) and (4) as:

 (3)

 (4)

i = 1, 2,…, N, d = 1, 2,…, n

Figure 2.3: Flow chart depicting the General PSO Algorithm [U19]

Start

Initialize particles with random position and velocity vectors

 and velocity vectors.

Set best of pbests as gbest

Update particle’s velocity (eq.1) and position (eq.2)

Stop: giving gbest optimal solution

L
o
o
p

 u
n

ti
l

m
a
x
 i

te
ra

ti
o

n

For each particle’s position (p) evaluate fitness

If fitness (p) better than fitness (pbest) then pbest=p

L
o

o
p

 u
n

ti
l

a
ll

p
a
rt

ic
le

s
ex

h
a
u

st

15

The inertia weight parameter can be varied as per the requirement for global and local

search. A large inertia weight is more suitable for global search, and a small inertia

weight ensures local search [SE98]. The inertia weight is selected such that the effect

of fades away gradually over iterations.

2.3.2 The Concept of Neighborhood

The global information exchange scheme allows each particle to know instantly the

overall best position after each iteration. This might lead to pre-mature convergence.

For this purpose, the concept of neighborhood was introduced with the main idea to

limit the information exchange amongst the neighbor and not amongst all particles in

the swarm [K99] [MKN03]. Each particle assumes a set of particles to be in its

neighborhood and in each iteration, it communicates its best position only to the

neighboring particles, instead of the whole swarm. So (global best) is changed to

(local best) in equation (1) resulting in a new PSO variant [K99] [MKN03] defined

by the following equations (5) and (6) as:

 (5)

 (6)

i = 1, 2,…, N, d = 1, 2,…, n

The scheme for determining the neighbors of each particle is called

neighborhood topology [K99][MKN03]. In case of complex problem, PSO considering

small neighborhood performs better, while PSO considering a large neighborhood is

more useful on simple problems [ZSD10]. Also, topology can change with time instead

of remaining fixed throughout the execution. Such dynamic topologies have been used

in multiobjective optimization problems [HE02]. Nevertheless, the vast majority of

local best (lbest) models in literature are based on ring or star topology, as shown in

Figure 2.4.

 Figure 2.4: Common neighborhood topologies of PSO: ring (left) and star (right) [U13]

16

2.3.3 The Concept of Constriction Coefficient

Another method for controlling the velocities of particles is to use another parameter

called constriction coefficient or constriction factor ([CK02]. This modified version

is defined by the following equations (7) and (8) as:

 (7)

 (8)

 i = 1, 2,…, N, d = 1, 2,…, n

Where χ is a parameter called constriction coefficient or constriction factor, while the

rest of the parameters remain the same as in the case of previously described PSO

models.

 , Where φ = , and φ > 4

 2.3.4 Hybrid PSO Algorithms

There are numerous variants of Hybrid PSO algorithms proposed in the literature that

utilize basic mechanism of PSO and the natural selection mechanism, crossover, and

mutation which is usually considered in Evolutionary Computing methods such as

Genetic Algorithm [LRK01]. In [PPV07], a memetic algorithm based hybrid PSO

approach that uses the random walk with directional exploitation local search method

was proposed.

2.4 Further Refinements in PSO

Premature convergence in solving multimodal problems with large search spaces is the

main drawback in most of the variants of PSO [RMN11]. In the original PSO [EK95],

each particle learns from its pbest and gbest simultaneously [BH07]. The problem with

this approach is that all particles in the swarm learn from the gbest even if the current

gbest is far from the global optimum [PBP09]. In such circumstances, particles may

simply be attracted and confined into a local optimum if the search environment is

complex with various local solutions. To overcome this, three novel learning strategies

were proposed in [LQ+04] to improve the performance of original PSO [EK95]. The

three versions are: elite learning PSO (ELPSO), multi-exemplars learning PSO

(MLPSO), and comprehensive learning PSO (CLPSO). The distributed query plan

generation approach presented in this chapter is based on CLPSO discussed next.

17

2.4.1 Comprehensive Learning Particle Swarm Optimizer (CLPSO)

In CLPSO [LS+06], for each particle, any one of the particle in the swarm can be used

as an exemplar to be learned from i.e. any one of the particles’ pbest, including it, is

used to update the velocity of a particular particle [LS+06]. Each dimension of a

particle can also choose to learn from a different exemplar. With this novel learning

strategy the particles have more choice in terms of exemplars to learn from. The

particles can fly through a large search space. In this strategy, better quality solutions

are generated effectively by using the information in the swarm.

The velocity and position updating equation in CLPSO [LS+06], for a d-dimensional

problem are defined by the following equations (9) and (10) as:

 (9)

 (10)

Where
 defines which particle’s pbest the particle should follow on the

dimension.

 can be the corresponding dimension of any particle’s pbest

including its own pbest, and the decision depends on the learning probability. Different

initial learning probability values for different particles are set at the beginning of

searching and are kept stable throughout the whole searching process.

For each dimension of particle, a random number is generated. If this random number

is larger than learning probability of the particle then the corresponding dimension will

learn from its own pbest otherwise it randomly chooses two particles out of the

population, excluding itself, This is followed by comparing the fitness values of their

pbest of the chosen two particles’ and selecting the one with a better fitness values of

pbest as an exemplar for the dimension. If a particle is an exemplar of itself on all

dimensions then a dimension is chosen randomly to learn from the dimension of some

other randomly chosen particle’s pbest. New exemplars are chosen for a particle when

it fails to improve itself over a pre-specified generation.

2.4.2 CLPSO’s Search Behavior

The differences between the search behavior of the original PSO [EK95] and the

CLPSO [LS06] were discussed in [LS+06]. In CLPSO, instead of using particle’s own

pbest and gbest as the exemplars, all particles’ pbest can be considered as exemplar to

18

guide particle’s flying direction. These operations increase the particles’ initial

diversity and enable the swarm to overcome premature convergence problem.

Further, in the original PSO, for a certain dimension, if the pbest and gbest are on

opposite sides of the particle’s current position as shown in Figure 2.5, the pbest and

gbest may make the particle oscillate. However, the gbest is more likely to provide a

larger momentum, as is likely to be larger than the . Hence,

the gbest may influence the particle to move in its direction even if it is in a local

optimum region far from the global optimum [LS+06].

If pbest and gbest are on the same side of the particle’s current position and points to

the same local optima (as shown in Figure 2.6), the particle will move in that direction

and it may be impossible to jump out of the local optimum area once its falls into the

same local optimum region where the gbest is [LS+06]. However, in CLPSO, the

particle can fly in other directions by learning from other particles’ pbest when the

particle’s pbest and gbest fall into the same local optimum region. Hence, CLPSO

strategy has the ability to jump out of local optimum via the cooperative behavior of the

whole swarm.

Figure 2.5: Oscillation of particle between gbest and pbest

pbest and gbest on the

opposite side of the

particle’s current position

Global optima Local optima

gbest

Current

Position

pbest

Figure 2.6: Entrapment of particle in local optima

pbest and gbest on the

same side of the particle’s

current position and

points to local optimum

Global optima Local optima

Current

Position

pbest

gbest

19

2.5 PSO method for Discrete Optimization Problems

The original PSO is simple and efficient. It has been successful in solving a number of

continuous optimization problems [EK95]. However it is not applicable for a discrete

search i.e. if the position of each particle is bound to a discrete set of values. In order to

extend PSO to solve discrete optimization problem, a number of discrete particle

swarm optimization algorithms have been proposed in literature. The first discrete

version was proposed in [KE97]. It was based on binary coding scheme. The bottleneck

with this approach was that the binary coding scheme has applications in limited types

of optimization problems in the discrete space. In [CZ+10], various discrete PSO

(DPSO) algorithms were classified into four types. The first type is the swap-operator-

based DPSO algorithm proposed in [C04]. In this algorithm, the position of a particle is

defined as a permutation of numbers. Velocity is any operator which, when applied to a

position during an iteration, gives another position. Thus, it is a permutation of

elements i.e. a list of transpositions. In [WH+03], a similar approach was applied for

solving travelling salesman problem. The second type of DPSO algorithms are those

which use space transformation techniques [SAA02] [SH06] [PW+04(a)]. In these

algorithms, the position is defined as a real vector, and thus a space transformation

technique is used to convert the position into its corresponding solution. The third types

of DPSO algorithms define the position and velocity as a fuzzy matrix [PW+04(b)]

[LTL07] [WW07]. These algorithms require a defuzzification method to decode the

fuzzy matrix into a feasible solution to the problem. The fourth type comprises hybrid

approaches. In these approaches, the pure PSO algorithm is integrated with some other

meta-heuristics [WW+07] [AMR05]. In addition to the above approaches, there exist

approaches that use some problem dependent local search techniques with standard

PSO algorithms to solve specific problems.

In [CZ+10], Set-based Particle Swarm Optimization (S-PSO) algorithm was proposed.

It was based on the concept of set theory and probability theory. This algorithm

provides a more generalized framework and is applicable to a varied class of discrete

optimization problems. In S-PSO, the velocity and position updating rules are similar to

that of original PSO [EK95] except that all the related arithmetic operators used in

these equations are redefined on crisp sets and sets with probabilities. The parameters

used in the earlier PSO, the acceleration coefficients and the inertia weight play a

20

similar role in S-PSO. In addition to the original PSO, different improved variants of

the original PSO can be extended to their corresponding discrete versions following the

representation scheme in S-PSO [CZ+10].

In this dissertation, the discrete version of the CLPSO algorithm, i.e. the set-based

CLPSO is used to solve distributed query plan generation problem, discussed in

Chapter 1, the set-based CLPSO is discussed next.

2.5.1 The Set-Based CLPSO

The set-based CLPSO algorithm is based on a problem of finding a subset from a

universal set, which satisfies some constraints and optimizes a problem specific

objective function. It defines the problem as defined in [LK73]. The set-based CLPSO

(S-CLPSO) algorithm uses a representation scheme similar to set based representation

scheme in [CZ+10]. S-CLPSO, as in [LK73], represents each candidate solution as a

crisp subset X out of the universal set E. The universal set E can be divided into n

dimensions, i.e. . A candidate solution to the problem X ⊆ E

can also be divided into n dimensions, i.e. , where ⊆
. X

satisfies the constraints Ω. The objective of the problem is to find a feasible solution

that optimizes f.

Velocity Updating: The velocity updating rule in S-CLPSO is the same as in [LS+06],

i.e.

)

However positions, velocities and all related arithmetic operators in the above

equations are redefined in the discrete space according to [CZ+10].

Position: Position is defined, according to [CZ+10], as a feasible solution to the

problem. The position of the i
th

 particle is Xi (Xi ⊆ E).The position is composed of n

dimensions [CZ+10] as given under

 and ⊆
(j=1, 2… n)

Velocity: Velocity is defined as a set with possibilities. Given a crisp set E, a set with

possibilities V defined on E is given by [CZ+10]

 V = {e/p (e) |e ∈ E}, each element e ∈ E has a possibility p (e) ∈ [0, 1] in V.

 In the j
th

 dimension,

= {e/p (e) |e ∈ E

j
} is a set with possibilities defined on E

j
.

21

Coefficient Velocity: The product of a coefficient c (c ≥ 0) and velocity i.e. a set with

possibilities V = {e/p (e) |e ∈ E} is defined as [CZ+10]

 cV = {e/p′ (e) |e ∈ E},

 p′(e)=
 , >

 ,

Position – Position: The difference between two positions is defined by using the

traditional definition of the minus operator between two crisp sets [CZ+10]. Given two

crisp sets A and B, the relative complement A–B of B in A is given by [CZ+10]

 A − B = {e | e ∈ A and e ∉ B}

Coefficient × (Position − Position): The multiplication operator between a coefficient

c (c ≥ 0) and a crisp set E′ (Position−Position) is defined as [CZ+10]

cE’= {e/p′(e)|e ∈ E},

p′(e)=

 , ∈ >

 , ∈

 , ∉

Velocity + Velocity: The plus operator between two sets V1 = {e/p1 (e) |e ∈ E} and V2

= {e/p2 (e) |e ∈ E} with possibilities is defined as [CZ+10]

 V1 + V2 = {e/max (p1 (e), p2 (e)) |e ∈ E}

When the velocity of the particle is updated, the particle adjusts its current position

 to build a new position
 .

Position Updating: A new method was defined in [CZ+10] to update the position of a

particle after its velocity has been updated. For this purpose, a particle learns from

some elements of the updated velocity. First the set with probability Vi is converted

into a crisp set. In each iteration, a random number α ∈ (0, 1) is generated for each

particle. If the probability p (e) for each element e in the j
th

 dimension is not smaller

than α, element e is retained in the crisp set, i.e.

 (

) = {e| e/p (e) ∈

 and p (e) ≥ α}

Now the particle i learns from the elements in (

) to build a new position. If the

construction of new position

is not finished and there is no available element in

 (

), particle i reuses the elements in the previous

to build new

. The

constraints Ω must be taken into account during the construction.

22

2.6 Query Plan Generation

S-CLPSO algorithm is used to solve the Distributed query plan generation problem.

The algorithm considers a relation-site matrix that represents all the possible sites

where a relation is available. For a given query, the relations accessed by the query are

considered. Using the site-relation matrix, the sites where the relations accessed by the

query reside are identified. Many possible query plans or combinations of site-relation

may exist and each such combination represents a particle, which is represented as an

ordered pair of relation-site combination. The universal set E consists of relations and

all possible ordered pairs of each of them with the sites where they reside. Each query

plan is a subset of the universal set E, that is, X ⊆ E. X can also be divided into n

dimensions, i.e. , where ⊆
. X is a feasible query plan

only if it contains all the relations accessed by a query and each relation is selected

from one of the sites from amongst all the sites where it resides in. The velocity of a

particle (query plan) is the relation-site ordered pair and the randomly associated

probability with it. The query plan generation algorithm based on S-CLPSO is given in

Figure 2.7.

For the given user query, the algorithm first generates a universal relation set E for the

relations accessed by the query (Step1). Next, the initial population of particles along

with their velocities is randomly generated using the site-relation matrix (Step2).

The fitness of each particle (query plan) is computed using the (Query Processing Cost

(QPC)) function given in [VSV11] (Step3). Initially the pbest value of any particle

(query plan) is initialized to current position (Step4). Now, for each particle of the

population ps, learning probability Pc is computed (Step6). Next, the velocity of all the

particles of the population is updated (Step7). In order to update the velocity of a

particle, for each of dimension of the particle (query plan), a random number is

generated. If the random number is larger than its learning probability

 then its

corresponding dimension will learn from its own pbest otherwise it will learn from

another particle’s pbest. In the latter case, two particles are chosen randomly, excluding

the particle whose velocity is being updated. The QPC values of their pbest are

compared and the one with lower pbest value is considered as exemplar for the given

particle. These steps are repeated for all dimensions of the given particle. After the

23

velocity has been updated, the position of the particle is accordingly updated. Next,

QPC of the updated particle (query plan) is computed (step 8).The pbest value and

topKQueryPlan are accordingly updated (step 9, Step10).These steps are repeated until

a pre-specified number of generations are completed or no improvement is observed

over a pre-specified number of generations (Step11). At the end, the top-K query plans

are produced as output (Step12).

 4

Input: rsm: relation-site matrix

 ps : Population Size

 max_iter: Maximum number of iterations

 ω: Inertia weight // linearly decreasing from 0.9 to 0.4

 c: Cognitive acceleration constant (2.0)

Output: TopkQueryPlan - Top K query plan

Method:

Step1: Obtain the universal set E based on the available relation site matrix rsm.

Step2: Generate initial particles (query plans) and their associated velocities randomly

from the available relation site matrix equal to the Population size, ps.

Step3: Calculate the fitness (query plan cost) of each particle.

f=

 Where M is the number of sites accessed by the query plan,

 is the number of times the site is used in query plan,

 N is the number of relations accessed by the query.

Step4: Set for all

Step5: For each particle of the swarm do steps 6, 7, 8, 9 and 10.

Step6: Calculate learning probability (for the i
th
 particle as:

 Where, ps is the total number of particles in the swarm.

Step7: For each dimension of the particle do steps a and b

 (a) Generate a random number (

 (b) IF >

 Update position and velocity using ;

 ELSE

 Choose two particles (p and q) randomly;

 Compare the fitness values of their pbest and find the winner particle (say p);

 Use the winner’s pbest () as exemplar for the chosen dimension

 Update position and velocity using ;

Step8: IF a particle is an exemplar of itself on all dimensions

Randomly choose one dimension to learn from the dimension of some other

randomly chosen particle’s pbest.

 Step9: Calculate the query plan cost of the updated particle

Step10: Update the pbest of the particle

Step11: Update Top K query plan

Step12: IF (iteration < max_iter and not stagnated) GOTO Step 6.

Step13: Return Top K query plan as TopkQueryPlan

Figure 2.7: Query Plan Generation Algorithm using S-CLPSO

24

2.7 An Example

Input:

A relation-site matrix (rsm) that represents eight relations R1, R2, R3, R4, R5, R6, R7, R8

distributed among eight sites S1, S2, S3, S4, S5, S6, S7, S8 is shown in Figure 2.8.

Consider a query that accesses the relations R3, R4, R7 and R8

Let

Population Size (ps) =5,

 Maximum number of iteration (max_iter) =20,

Inertial Weight ω=linearly decreasing from 0.9 to 0.4,

 Cognitive acceleration constant c=2.0

Step 1: Using rsm, the universal set E is given by:

Where

 , , , , ,4 , , , , , ,

 , , , , , , ,

 , , , , , , , , , , ,

 4 4, , 4, , 4, , 4, , 4,

 , , , , ,4 , , , , , , , ,

 , , ,4 , , , , , , , ,

 , , , , ,4 , , , , , , , ,

 , , , , , , ,4 , , , ,

Relations\Sites S1 S2 S3 S4 S5 S6 S7 S8

R1 1 0 1 1 1 0 1 1

R2 1 1 0 0 1 1 0 0

R3 0 1 1 0 1 1 1 1

R4 1 1 1 0 1 0 1 0

R5 1 1 0 1 1 1 1 1

R6 0 0 1 1 1 1 1 1

R7 0 1 1 1 1 1 1 0

R8 1 1 1 1 1 1 0 0

Figure 2.8: Relation-Site Matrix

25

Step 2: The randomly generated initial particles (query plans) along with their

associated velocities are given in Figure 2.9.

Step 3: The fitness defined as the query processing cost of each particle is computed,

using the formula of QPC [50] given below, is shown in Figure 2.10

Step 4: Initially for each of the five particles (query plans) X1, X2, X3, X4 and X5

 , where i=1 to 5

Step 5: Velocity update for the first particle (query plan) X1 is computed as:

 Learning Probability (for the particle X1 is computed using the equation:

 4

 Pc1 = 0.0500

For each dimension j 4 a random number is generated and compared with the

learning probability to choose the particles amongst X1, X2, X3, X4 and X5from

whose pbest X1 has to learn from.

Suppose for j=1, random number generated is 0.3900, which is greater than Pc1. Thus,

the first dimension would learn from pbest of particle X1 and thus X1 will learn from its

own pbest i.e.
 = 1

=

 = {(3, 2)-(3, 2} = [}

Figure 2.9: Initial particles and their velocities

Particle

(i)

Position

Xi

Velocity

Vi

1 {(3,2),(4,3),(7,2),(8,3)}

{(3,2) /.2176,(4,1) /.0815,(7,4) /.0519,(8,1)

/.0587}

2 {(3,5),(4,2),(7,2),(8,2)}

{(3,5) /.3906,(4,2) /.0086,(7,7) /.1176,(8,4)

/.3859}

3 {(3,3),(4,7),(7,6),(8,6)}

{(3,5) /.6670,(4,3) /.0498,(7,5) /.4397,(8,2)

/.5494}

4 {(3,2),(4,7),(7,4),(8,3)}

{(3,3) /.9206,(4,5) /.3756,(7,5) /.6369,(8,6)

/.5832}

5 {(3,6),(4,7),(7,6),(8,4)}

{(3,2) /.0878,(4,2) /.9573,(7,4) /.3035,(8,2)

/.5162}

Particles (i) fi=

1 0.5000

2 0.3750

3 0.6250

4 0.7500

5 0.6250

Figure 2.10: Initial QPC of particles

26

Suppose for j=2, random number generated is 0.0342, which is less than Pc1. Thus two

particles X5 and X2 are randomly generated. Since the fitness of X2 i.e. QPC2 is 0.3750

is less than QPC5 0.6250 of X5, particle X2 is selected i.e.
 = 2

 = {(4, 2)-(4, 3)} = { 4, }

Suppose for j=3, random number generated is 0.4941, which is greater than Pc1. Thus,

the third dimension would learn from pbest of particle X1and thus X1will learn from its

own pbest i.e.
 = 1

=

 = {(7, 2)-(7, 2)} = { }

Suppose for j=4, random number generated is 0.2602, which is greater than Pc1. Thus,

the fourth dimension would learn from pbest of particle X1and thus X1will learn from

its own pbest i.e.
 4 = 1

4
=

4

4

4 = {(8, 3)-(8, 3)} = { }

Next, the velocity of the particle X1is updated using the velocity update equation:

For this, the inertia component value of particle X1 for each dimension is computed

using the following rule:

The product of a coefficient c (c ≥ 0) and velocity i.e. a set with possibilities V = {e/p

(e) |e ∈ E} is defined as:

cV = {e/p′(e) |e ∈ E},

p′(e)=
 , >

 ,

The inertia component value for each dimension is shown in Figure 2.11

ω

0.9
 ,

 ,

0.9
 4, }

 4, 4

0.9
 ,4 }

 ,4 4

0.9
4 {(8,1) /.0587}

 ,

 Figure 2.10: Updated inertia component

27

Thus the inertia of the particle X1 is

 , , 4, 4, ,4 4 , ,

Next, cognitive component values of particle X1for each dimension are computed using

the following rule:

The multiplication operator between a coefficient c (c ≥ 0) and a crisp set E′

(Position−Position) is defined as:

cE’= {e/p’(e)|e ∈ E},

p’(e)=

 , ∈ >

 , ∈

 , ∉

The cognitive component computation for each dimension of particle X1 is shown in

Figure 2.12.

Thus the cognitive component of the particle is

 {(4, 2) /.9331}

Now, new updated velocity is computed using the following rule:

The plus operator between two sets V1 = {e/p1 (e) |e ∈ E} and V2 = {e/p2 (e) |e ∈ E}

with possibilities is defined as:

V1 + V2 = {e/max (p1 (e), p2 (e)) |e ∈ E}

 V1 +

 = , , 4, 4, ,4 4 , , + {(4, 2) /.9331}

 = {(3, 2) /0.1958, (4, 2) /0.9331, (7, 4) /0.0467, (8, 1) /0.0528}

Next, the position of the particle is updated using the updated velocity. The current

position X1= {(3, 2), (4, 3), (7, 2), (8, 3)} is updated to a new position

 in the

following manner

 Xi′ ← position updating (Xi, Vi)

c

 2.0 0.3245 { }

{ }

 2.0 0.4665 { 4, }

 4,

 2.0 0.0564 { } { }

 2.0 0.9323 { }

{ }

Figure 2.11: Updated cognitive component

28

First, the set with possibilities Vi is converted into a crisp set. For each dimension, a

random number α ∈ (0, 1) is generated for each particle. For each element e in the j
th

dimension, if it’s corresponding possibility p (e) in is not smaller than α, element e

is reserved in a crisp set, that is:

 (

) = {e| e/p (e) ∈

 and p (e) ≥ α}.

The crisp set for V1 is shown in Figure 2.13

Elements e reserved in a crisp set: (V1) = {(4, 2)}. So, element {(4, 2)} would be

used for updating the current position {(3, 2), (4, 3), (7, 2), (8, 3)} of particle X1.

The new updated Position would have the relation R4 accessed from site S2 i.e.

 {(3, 2), (4, 2), (7, 2), (8, 3)}

The fitness value (QPC) of X1′ is

Similarly, the velocity and position for other three particles are updated. The updated

position and velocity of particles X1, X2, X3, X4 and X5 are given in Figure 2.14.

The updated QPC of the particles X1, X2, X3, X4 and X5 are shown in Figure 2.15

i Updated Position (Xi′) Updated Velocity (Vi′)

1 {(3, 2), (4, 2), (7, 2), (8, 3)}

{(3, 2)/0.1958,(4,2)/0.9331,(7, 4)/0.0467,(8,1)/0.0528}

 2 {(3, 5), (4, 2), (7, 2), (8, 6)}

{(3, 5)/0.3515,(4,2)/0.0078,(7, 7)/0.1058,(8,6)/0.4737}

 3 {(3, 5), (4, 7), (7, 5), (8, 2)}

{(3, 5)/0.6003,(4,3)/0.0448,(7, 5)/0.3957,(8,2)/0.4945}

4 {(3, 3), (4, 5), (7, 5), (8, 3)}

{(3, 3)/0.8286,(4,5)/0.3380,(7, 5)/0.5732,(8,6)/0.5249}

 5 {(3, 6), (4, 7), (7, 6), (8, 4)}

{(3, 2)/0.0790,(4,2)/0.8615,(7, 4)/0.2732,(8,2)/0.4646}

Figure 2.13: Updated Position and Velocity

Figure 2.12: Crisp Set for V1

j α p(e) Comparison between α and p(e)

1 0.7356 0.1958 p(e) α

 2 0.0421 0.9331 p(e) α

3 0.1259 0.0467 p(e) α

 4 0.6421 0.0528 p(e) α

Figure 2.14: Updated QPC

i Updated QPC (fi′)

1 0.6250

2 0.3750

 3 0.6250

 4 0.5000

5 0.6250

29

In a similar manner, the position and velocities are updated of the particles X1, X2, X3,

X4 and X5 for a pre-specified number of iterations. The top-4 query plans generated

after 20 iterations is shown in Figure 2.16

2.8 Experimental Results

The GA based query plan generation algorithm and S-CLPSO based query plan

generation algorithm are implemented in MATLAB 7.4 in Windows XP environment.

The two algorithms were compared by conducting experiments on an Intel based 2

GHz PC having 1 GB RAM. The comparisons were carried out on parameters like

number of relations, average query processing cost (QPC), top-K query plans and

number of iterations.

First, line graphs were plotted to compare S-CLPSO and GA based algorithms on

Average QPC against the number of iterations for selecting top-10 query plans. These

graphs for the number of relations n=6, 8, 10, 12 and 14 are shown in figures 2.16,

2.17, 2.18, 2.19 and 2.20 respectively. Line graphs for different pairs of crossover and

mutation probabilities (GA(Pc, Pm)) were plotted.

It can be observed from the graphs that the GA based algorithm (crossover probability

0.6 and mutation probability 0.05), in case of 6 and 8 relations, is able to generate Top-

10 query plans having almost equal average QPC. Whereas, for higher number of

relations, i.e. for 10, 12, 14 relations the S-CLPSO based algorithm is able to generate

top-10 query plans with relatively lower average QPC. So, it can be said that, as the

number of relations in the query increases, the S-CLPSO based algorithm, in

comparison to GA based algorithm, is able to generate relatively better query plans

with respect to the cost of query processing.

Figure 2.15: Top-4 query plans

Query Plans QPC

{(3, 2), (4, 2), (7, 2), (8, 2)}

0.0000

{(3, 2), (4, 2), (7, 2), (8, 3)}

0.3750

{(3, 6), (4, 7), (7, 6), (8, 6)}

0.3750

{(3, 3), (4, 5), (7, 5), (8, 3)}

0.5000

30

Figure 2.16: S-CLPSO vs. GA – Average QPC vs. Iterations

 (Top-10 Query Plans, 6 Relations)

Figure 2.17: S-CLPSO vs. GA – Average QPC vs. Iterations

 (Top-10 Query Plans, 8 Relations)

S-CLPSO Vs. GA

(Top-10 Query Plans, 6 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401

Iterations

A
v

e
r
a

g
e
 Q

P
C

S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

S-CLPSO Vs. GA

(Top-10 Query Plans, 8 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401

Iterations

A
v

e
r
a

g
e
 Q

P
C S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

31

S-CLPSO Vs. GA

(Top-10 Query Plans, 10 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401

Iterations

A
v
e
r
a
g
e
 Q

P
C S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

Figure 2.18: S-CLPSO vs. GA – Average QPC vs. Iterations

 (Top-10 Query Plans, 10 Relations)

Figure 2.19: S-CLPSO vs. GA – Average QPC vs. Iterations

 (Top-10 Query Plans, 12 Relations)

S-CLPSO Vs. GA

(Top-10 Query Plans, 12 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401

Iterations

A
v
e
r
a
g
e
 Q

P
C S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

32

Next, graphs were plotted to compare S-CLPSO and GA based algorithms on Average

QPC value for selecting Top-K query plans(K=6, 8, 10, 12, 14) generated after 400

iterations. These graphs, plotted for relations 6, 8, 10, 12 and 14, are shown in figures

2.21, 2.22, 2.23, 2.24 and 2.25 respectively. These graphs show that S-CLPSO generate

Top-K query plans with almost equal average QPC for 6 and 8 relations but is able to

generate Top-K query plans with relatively lower average QPC for 10, 12 and 14

relations. Thus, it can be said that for higher number of relations, S-CLPSO is able to

generate good quality Top-K plans with relatively lower average QPC.

Figure 2.20: S-CLPSO vs. GA – Average QPC vs. Iterations

 (Top-10 Query Plans, 14 Relations)

S-CLPSO Vs. GA

(Top-10 Query Plans, 14 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401

Iterations

A
v
e
r
a
g
e
 Q

P
C S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

S-CLPSO Vs. GA

(6 Relations, 400 Iterations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

6 8 10 12 14

Top-K Query Plans

A
v
e
r
a
g

e
 Q

P
C

S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

Figure 2.21: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans

 (6 Relations, 400 iterations)

33

S-CLPSO Vs. GA

(8 Relations, 400 Iterations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

6 8 10 12 14

Top-K Query Plans

A
v
e
r
a
g

e
 Q

P
C

S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

S-CLPSO Vs. GA

(10 Relations, 400 Iterations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

6 8 10 12 14

Top-K Query Plans

A
v

e
r
a

g
e
 Q

P
C

S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

Figure 2.22: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans

 (8 Relations, 400 iterations)

Figure 2.23: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans

 (10 Relations, 400 iterations)

34

S-CLPSO Vs. GA

(12 Relations, 400 Iterations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

6 8 10 12 14

Top-K Query Plans

A
v
e
r
a
g

e
 Q

P
C

S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

S-CLPSO Vs. GA

(14 Relations, 400 Iterations)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

6 8 10 12 14

Top-K Query Plans

A
v
e
r
a
g
e
 Q

P
C

S-CLPSO

GA (0.6, 0.05)

GA (0.6, 0.1)

GA (0.8, 0.05)

GA (0.8, 0.1)

Figure 2.24: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans

 (12 Relations, 400 iterations)

Figure 2.25: S-CLPSO vs. GA – Average QPC vs. Top-K Query Plans

 (14 Relations, 400 iterations)

35

CHAPTER 3

Distributed Query Plan

Generation Using MOPSO

In this day and age, ubiquitously, it is observed that it is atypical for any problem to

involve only a single value or objective. In order to find any holistic solution to the

problem, there is a need to optimize various objectives or parameters [U8]. Maximizing

profit and minimizing the cost of a product, maximizing performance and minimizing

fuel consumption of a vehicle and minimizing weight while maximizing the strength of

a particular component are some of the few examples of multi-objective optimization

problems [U3]. In today’s world, Multi-objective optimization problems can be found

by and large in various fields, e.g. product and process design, automobile design,

aircraft design and finance etc [U3].

3.1 Multi-Objective Optimization

Multi-Objective optimization is defined in [U9] as “the process of simultaneously

optimizing two or more conflicting and /or incommensurable objectives subject to

certain constraints”. In these problems, optimal decisions need to be taken in the

36

presence of trade-offs between two or more conflicting objectives e.g. maximizing

profit and minimizing the cost of a product [U3].

If it is assumed that the objectives are to be minimized, the Multi-Objective

optimization problem can be expressed mathematically as [U3]:

 ,

 , ,

 s.t.

Where is the objective function, g and h are the inequality and equality

constraints, respectively, and x is the vector of optimization or decision variables.

The objective functions, may be conflicting with each other and thus the

detection of a single global minimum is impossible. So, instead of achieving a unique

solution to the problem, the solution would be a set of Pareto optimal points [U9].

Solutions are said to be Pareto optimal if no objective can be improved without

sacrificing at least another objective [SAA02]. Suppose , , ,

 and

 , , , are two k-dimensional vectors then the following are defined as

[PV10]:

Pareto Dominance: - The vector u is said to dominate vector v, if and only if the

following holds:

 , , , , , , ,

This property is known as Pareto dominance [PV10].

Pareto Optimality: - A solution, x ∈ A, of the multi-objective problem is said to be

Pareto optimal, if and only if there is no other solution, y ∈ A, such that f(y) dominates

f(x). Alternatively, it can be said that x is non-dominated with respect to A. Here

 is n-dimensional search space [PV10].

Pareto optimal set:-The set of all Pareto optimal solutions is called Pareto optimal set,

P*[PV10].

37

Pareto Front:-The set of vector function values of all Pareto optimal solutions is called

Pareto Front [PV10].

 ∈

Pareto optimal surface or the Pareto Front can be represented graphically as shown in

figure 3.1 [U14]. In this figure, Pareto optimality in the bi-objective case is illustrated.

Here, points A and B are non-dominated solutions residing on the Pareto front. Neither

is better than the other. Point A has a smaller value of f2 than point B, but a larger value

of f1. Likewise, point B has a smaller value of f1 than point A, but a larger value of f2.

Solution A and solution B are not dominated by any other solution on the Pareto front,

or Pareto-optimal surface. There exists no solution which has a better value with

respect to both the objective functions f1 and f2 [U14].

Multi-Objective optimization aims at “maximizing the number of elements of the

Pareto optimal set found, minimizing the distance of the Pareto front produced by the

algorithm with respect to the true (global) Pareto front and maximizing the spread of

solutions found, so as to have a distribution of vectors as smooth and uniform as

possible”[ZDT00]. Additionally, the goal is to achieve and monitor convergence

towards true Pareto-front in order to avoid local convergence. The Pareto optimal fronts

for bi-objective problems are illustrated in Figure 3.2.

Figure 3.1: Pareto-optimal surface for a bi-objective problem [U14]

Pareto- optimal surface or

Non-dominated solution set

f1 (min)

f2 (min)

A

B

f2A f2B

f1A

f1B

38

3.2 Particle Swarm Optimization for Multi-Objective Problems

It is generally observed that particle swarm optimization has a high speed of

convergence when applied to a single-objective problem. This particular feature has

been a motivation behind it being used for solving multi-objective problems [KE01].

Multi-objective particle swarm optimization (PSO) can be divided into two categories

[RC06 (a)] namely PSO Variants that exploit each objective function separately and

variants based on Pareto Dominance. The former is referred here as Non-Pareto based

approaches and the latter is referred to as Pareto based approaches. These are discussed

next.

Figure 3.2: Examples of Pareto Optimal sets with Two Objective Functions

f 1
 (

m
ax

im
iz

e)

f2 (maximize)

 dominated solution

 non-dominated solution

 unattainable solution

f 1
 (

m
in

im
iz

e)

f2 (minimize)

f2 (maximize)

f 1
 (

m
in

im
iz

e)

f2 (minimize)

f 1
 (

m
ax

im
iz

e)

39

3.2.1 Non-Pareto Based Approaches

This category consists of two types of approaches [PV10] namely approaches that

combine all objective functions in a single one, referred here as Aggregated

Approaches, and approaches that consider each objective function in turn for the

evaluation of particles, referred here as Non-Aggregated Approaches. These

approaches are discussed next:

3.2.1.1 Aggregated Approaches

These are the approaches that combine all the objectives of the problem into a single

objective. In other words, the multi-objective problem is converted into a single-

objective problem [RC06 (a)].

 ,

Where are non-negative weights, such that:

If weights are fixed during a run then it is called conventional weighted aggregation

(CWA). This algorithm has to be applied repeatedly with different weight settings to

detect a desirable number of non-dominated solutions with only a single solution

attained per run. Moreover, CWA is unable to detect solutions in concave regions of

the Pareto front. In order to resolve these limitations dynamically adjusted weights,

such as bang-bang weighted aggregation (BWA) were suggested in [JOS01]. For bi-

objective problems, the weights in BWA are adapted as follows:

 , ,

Where a is user-defined adaptation frequency, and t stands for the iteration number.

The sign function used in BWA causes the weights to change abruptly so that the

algorithm continues to move towards the Pareto front. Another approach proposed in

[JOS01] is the dynamic weighted aggregation (DWA), the weights in DWA are adapted

as follows:

 ,

DWA performs better in comparison to BWA in problems involving convex Pareto

fronts. However, in case of problems involving concave Pareto fronts, the performance

40

of both the techniques is more or less the same. Another multi-objective particle swarm

optimization algorithm based on weighted aggregation approach was proposed in

[PV02 (b)] [PV02 (a)] to solve bi-objective problems. This algorithm uses all three

types of aggregating functions: CWA, BWA, and DWA. In [BMR04] a similar

approach that uses linear aggregation functions was proposed. In this approach the

whole swarm in divided into various sub-swarms, each of the sub-swarm uses a

different set of weights. The best particle of each sub-swarm is used as a leader to guide

other members of the sub-swarm. In [MCL04], another aggregating approach based on

dynamically modified weights was proposed.

3.2.1.2 Non-Aggregated Approaches

In these approaches, each particle is evaluated only with one objective function at a

time, and the best positions are determined following the standard single-objective PSO

rules, using the corresponding objective function. These can be further categorized as

lexicographic ordering approaches and sub-population based approaches.

Lexicographic Ordering Approaches: These approaches are based on ranking

schemes that determine the importance of each objective function and rank the

objectives accordingly. In order to obtain the optimum solution, the objective functions

are minimized one by one. The most important objective function is minimized at the

outset and then minimization procedure continues according to the assigned order of

importance of the objectives [M99]. However, this approach is sensitive to the ordering

of the objectives and is useful only when there are few objective functions [C99]. In

[HE02] another similar ordering scheme was proposed where each objective function is

optimized separately. The best positions of the particles are stored as non-dominated

solutions. In this scheme external archive is not used. However, in a later version of this

approach [HES03], an external archive was incorporated.

Sub-Population Based Approaches: These approaches use various sub-populations,

which exchange information among themselves. In [PTV04], a vector evaluated PSO

(VEPSO) scheme was proposed. This scheme employs one swarm per objective

function and evaluation is carried out with this objective function while best positions

of one swarm are used to update velocities of another swarm with a different objective

function. In [CT04], a scheme similar to VEPSO was proposed called multi-species

PSO. This scheme uses various sub-swarms, where each such sub-swarm is evaluated

41

with one objective function. Information of best particles in a swarm is communicated

to neighboring sub-swarms.

3.2.2 Pareto Based Approaches

In these approaches the concept of Pareto dominance plays an important role. In order

to guide the particles, some elite particles that are non-dominated solutions with respect

to the swarm are used. Furthermore some other decisive factors such as swarm

diversity and Pareto front spread are also taken into account. In [MC99], an algorithm

based on Pareto dominance was presented in an unpublished document. In this

approach, both an individual and a group search are performed simultaneously. The

major drawback of this algorithm was that it did not adopt any scheme to maintain

diversity [MC99]. In [RL02] a new algorithm was proposed that uses Pareto dominance

and combines concepts of evolutionary techniques with the particle swarm optimization

technique. This approach uses crowding distance to maintain diversity and a multilevel

sieve to handle constraints. In [FS02], another approach was presented that made use of

an unconstrained elite archive to store the non-dominated individuals found along the

search process. This archive interacts with the primary population in order to define

local guides. Similar schemes were put forward in [CL02] [CPL04]. In [CPL04], the

proposed MOPSO stored the non-dominated solutions in an archive also referred to as

repository. In addition, the search space is divided in hypercubes where each hypercube

is assigned a fitness value, inversely proportional to the number of particles in it.

Roulette wheel selection is then used to select a hypercube and a leader from it. In

[MT03], a sigma method was recommended in which the best local guides for each

particle are adopted to improve the convergence and diversity of a MOPSO approach.

The use of the sigma values increases the selection pressure of the algorithm. A hybrid

approach called non-dominated sorting particle swarm optimizer was given in [L03].

This approach incorporates the main mechanisms of the NSGA-II [DP+02] in a PSO

algorithm. In [PC04], a new approach was presented that uses the concept of Pareto

dominance to decide the flight direction of a particle. This algorithm divides the

population of particles into several sub-swarms by using clustering techniques so as to

provide a better distribution of solutions in decision variable space. In each sub-swarm,

a PSO algorithm is executed by using own set of leaders. These different sub-swarms

42

exchange information. In this approach, no external archive is used since the migration

of leaders among the sub-swarms ensures elitism. In [RC05], another approach based

on Pareto dominance that uses nearest neighbor density estimator in order to select

leaders for the particles was proposed. As opposed to other typical approaches, this

algorithm makes use of two external archives. One external archive is used to store the

leaders currently used for performing the flight and another for storing the final

solutions. The concept of dominance is used to select the particles that will remain in

the archive of final solutions. In order to retain a fixed number of non-dominated

solutions (leaders) in the archive, the density estimator factor is used. In [RN05], multi-

objective particle swarm optimization based on Crowding Distance (MOPSO-CD) was

proposed. This approach uses crowding distance to facilitate the selection of global best

particle. It is also used to delete non-dominated solutions from the external archive.

Mutation is utilized in order to maintain diversity of non-dominated solutions in the

archive. Several other approaches of multi-objective particle swarm optimization have

been reported in [RC06 (a)] [RC06 (b)] [PV08] [ZZ10]. In [ZZ10], a parallel particle

swarm optimization (PPSO) algorithm was presented to solve the multi-objective

optimization problems.

Parallel Particle Swarm Optimization (PPSO) algorithm exploits the intrinsic parallel

characteristics of the PSO algorithm to solve multi-objective problems. The basic idea

is to exploit as many swarms as the number of objectives in the multi-objective

problem. Each of these swarms use the same evolutionary mechanism and

simultaneously optimizes objectives assigned to them [ZZ10]. These different swarms

communicate and share information among them through an external archive, which

stores the non-dominated solutions found by different swarms. The velocity is updated

using the following equation [ZZ10]:

Where d is the dimension, and the position update is as:

In the velocity update equation, the term

 represents the sharing

information from the archive that influences the particle to fly along the Pareto front.

The term

 is a non-dominated solution selected by the particle in the swarm

randomly picked from the archive.

43

The achieve A is initially empty and is updated in every generation. There is a limit on

the number of non-dominated solutions the archive can store i.e. the archive has a

maximum size (Max_Arch). At any particular iteration, the pbest of each particle in

each swarm and the solutions of the archive from the previous iteration are used to

select Max_Arch number of non-dominated solutions. In order to select this fixed

number of non-dominated solutions, non-dominated sorting algorithm [DP+02] is used.

PPSO algorithm achieves the goal of multi-objective optimizations by ensuring

population diversity, so that a good number of non-dominated solutions can be

obtained. It avoids the difficulty associated with fitness assignment [DP+02]. Due to

sharing of search information through the external archive, the swarms are not attracted

to the margin of Pareto front [ZZ10]. According to [ZZ10], since PPSO uses each

swarm to optimize a single objective, any standard or improved PSO [ZZ+09] [ZZ+10]

can be used to solve a single objective problem. In this dissertation, Set Based

Comprehensive Learning PSO (S-CLPPSO) algorithm has been used to solve the multi-

objective distributed query plan generation problem given in Chapter 1. This algorithm

is discussed next.

3.2.2.1 S-CLPPSO

S-CLPPSO algorithm uses as many swarms as the number of objectives in the multi-

objective problem. Each swarm optimizes only one of the objectives using S-CLPSO.

These swarms work in parallel. An external archive is used to store the non-dominated

solutions found by different swarms in each iteration. The swarms share search

information and communicate with each other through the external archive. The

evolutionary mechanisms in each swarm are similar, just like a standard S-CLPSO.

In every generation, for the swarm, the velocity of each particle i is updated as:

Where d is the dimension and the term

 represents the share

information from the archive.

 is a non-dominated solution, which is randomly

selected by the particle in the swarm, stored in the archive. The representation

scheme and the interpretation of all other operators are same as in S-CLPSO discussed

in chapter 2. Subsequently, the updated velocity is used to update the position of the

particle. The archive A, which is initially empty, is updated after each iteration in order

44

to keep a fixed number of non-dominated solutions (Max_Arch). The archive is

updated in the following manner. First, a set S is initialized as empty. Then the pbest of

each particle in each swarm is added into the set S. Then all the solutions in the old

archive A are added into the set S. Later, non-dominated sorting strategy [DP+02] is

performed on solutions in the set S to find Max_Arch solutions, which are then stored

in the archive. The query plan generation algorithm, presented in this dissertation, is

based on S-CLPPSO. This algorithm is discussed next.

3.3 Query Plan Generation

The multi-objective problem comprises of optimizing the two objectives namely

Minimizing Site Communication Cost (SCC) and Maximizing the Relation

Concentration Gain (RCG) as discussed in chapter 1. In this case, two objectives have

to be optimized, so two swarms S1 and S2 are used. Each swarm optimizes only one of

the objectives using S-CLPSO. These swarms work in parallel. An external archive is

used to store the non-dominated solutions found by both the swarms in each iteration.

The two swarms share search information and communicate with each other through

the external archive.

The algorithm considers a relation-site matrix that comprises of relations and their

respective sites. For a given query, the relations accessed by the query are considered.

Using the relation-site matrix, sites where the relations accessed by the query reside are

identified. Many possible query plans or combinations of site-relation may exist and

each such combination represents a particle, which is represented as an ordered pair of

relation-site combination. The universal set E consists of relations and all possible

ordered pairs of each of them with the sites where they reside. Each query plan Xi is a

subset of the universal set E, that is, X ⊆ E. X can also be divided into n dimensions,

i.e. , where ⊆
. X is a feasible query plan only if it

contains all the relations accessed by a query and each relation is selected from one of

the sites from amongst all the sites where it resides in. The velocity of a particle (query

plan) is the relation-site ordered pair and the randomly associated probability associated

with it. The query plan generation algorithm based on S-CLPPSO is given in Figure 3.3

45

 4

Input:

rsm: relation-site matrix

ps : Population size in each of the two swarms

max_iter: Maximum number of iterations

ω: Inertia weight // linearly decreasing from 0.9 to 0.4

c1: Cognitive acceleration constant (2.0)

c3: Inter swarm communication constant (2.0)

Output:
 TopkQueryPlan - Top K query plan

Method:

Step1: Obtain the universal set E based on the available relation site matrix rsm.

Step2: For each swarm generate initial particles (query plans) and their associated velocities randomly

from the available relation site matrix equal to the Population size, ps.

Step3: For the two swarms, compute the objective function values:

 Swarm 1

 Where s is the number of sites being used and m is the number of communications

 Swarm 2

 Where n is the number of relations in the query and is the count of sites arranged in

decreasing order.

Step4: For each swarm, set for all

Step5: Set external archive size (EXA_size) =k;

 Initialize EXA= { };

Step6: For each swarm do step 7

Step7: For each particle of the swarm do steps 8, 9, 10, 11 and 12.

Step8: Compute learning probability (for the i
th

 particle as:

 Where, ps is the total number of particles in the swarm.

Step9: For each dimension of the particle do steps a and b

 (a) Generate a random number (

 (b) IF >

 Update position and velocity using ;

 ELSE

 Choose two particles (p and q) randomly;

 Compare the fitness values of their pbest and find the winner particle (say p);

 Use the winner’s pbest () as exemplar for the chosen dimension

 Update position and velocity using ;

Step10: If a particle is an exemplar of itself on all dimensions

 Randomly choose one dimension to learn from the dimension of some other randomly

chosen particle’s pbest.

Step11: Compute the respective cost of the updated particle

Step12: Update the pbest of the particle

Step13: Update the external archive (EXA)

Step14: IF (iteration < max_iter AND not stagnated)

 GOTO Step 6.

Step15: Return Top K query plan as TopkQueryPlan

Figure 3.3: Query Plan Generation Algorithm using S-CLPPSO

46

For the given user query, the algorithm first generates a universal relation set E for the

relations accessed by the query (Step1). Next, the initial population of particles along

with their velocities is randomly generated using the site-relation matrix in both the

swarms. (Step2).

The cost of each particle (query plan), with respect to the objective of the swarm, is

computed using the respective objective functions (SCC or RCG) given in chapter

1(Step3). Initially the pbest value of any particle (query plan) is initialized to current

position in both the swarm (Step4). The size of the external archive is set to be k (where

k denotes the number of top query plans to be generated) and the archive is initialized

as empty set (Step 5). Now, in both the swarms, for each particle of the population ps,

learning probability Pc is computed, Thereafter the velocity and position of all the

particles of the population are updated (Step 6, 7, 8, 9 and 10). Next, the respective cost

value of the updated particle (query plan) is computed in both the swarms (step 11).

The pbest values of the particles in both the swarms are also updated (Step12). The

external archive is also updated using non-dominated sorting (Step 13). These steps are

repeated until a pre-specified number of iterations are completed or no improvement is

observed over a pre-specified number of iterations (Step14). At the end, the top-K

query plans are produced as output from the external archive (Step15).

3.4 An Example

Input:

A relation-site matrix (rsm) that represents eight relations R1, R2, R3, R4, R5, R6, R7, R8

distributed among eight sites S1, S2, S3, S4, S5, S6, S7, S8 is shown in Figure 3.4.

Relations\Sites S1 S2 S3 S4 S5 S6 S7 S8

R1 1 0 1 1 1 0 1 1

R2 1 1 0 0 1 1 0 0

R3 0 1 1 0 1 1 1 1

R4 1 1 1 0 1 0 1 0

R5 1 1 0 1 1 1 1 1

R6 0 0 1 1 1 1 1 1

R7 0 1 1 1 1 1 1 0

R8 1 1 1 1 1 1 0 0

Figure 3.4: Relation-Site Matrix

47

Consider a query that accesses relations R3, R4, R7 and R8. The objective is to generate

top-4 query plans.

Let

Population Size in each of the two swarms (ps) =5,

Maximum number of iteration (max_iter) =20,

Inertial Weight ω=linearly decreasing from 0.9 to 0.4,

Cognitive acceleration constant c1=2.0

Inter swarm communication constant c2 =2.0

Step 1: Using matrix rsm, the universal set E is given by:

 Where

Step 2: The randomly generated initial particles (query plans) along with their

associated velocities for swarm1 and swarm2 are given in Figure 3.5 and in

Figure 3.6 respectively.

 , , , , ,4 , , , , , ,

 , , , , , , ,

 , , , , , , , , , , ,

 4 4, , 4, , 4, , 4, , 4,

 , , , , ,4 , , , , , , , ,

 , , ,4 , , , , , , , ,

 , , , , ,4 , , , , , , , ,

 , , , , , , ,4 , , , ,

Figure 3.5: Initial particles and their velocities in Swarm 1

Particle

(i)

Position

Xi

Velocity

Vi

1 {(3,5),(4,5),(7,4),(8,6)}

{(3,6) /.5097,(4,1) /.7418,(7,3) /.4612,(8,6) /.4151}

 2 {(3,7),(4,7),(7,5),(8,2)}

{(3,6) /.6320,(4,5) /.7626,(7,2) /.8225,(8,3) /.9805}

 3 {(3,2),(4,3),(7,4),(8,2)}

{(3,5) /.3935,(4,7) /.0632,(7,6) /.8355,(8,6) /.5607}

 4 {(3,7),(4,1),(7,3),(8,4)}

{(3,2) /.4397,(4,3) /.7157,(7,7) /.5093,(8,6) /.5296}

 5 {(3,5),(4,3),(7,5),(8,4)}

{(3,2) /.8641,(4,5) /.4011,(7,6) /.6800,(8,5) /.3404}

48

Step 3: The objective function values for the two swarms are given in Figure 3.7 and

Figure 3.8 respectively

Step 4: For each particle in each of the two swarms

 for all

Step5: External archive size (EXA_size) =4

 Initially the external archive is empty i.e. EXA= { }

Step 6: Next, the velocity and position of each particle in each of the two swarms is

updated using the following rule:

 Since the external archive is empty initially, the above equation is modified to:

 

Figure 3.6: Initial particles and their velocities in Swarm 2

Particle

(i)

Position

Xi

Velocity

Vi

1 {(3,7),(4,7),(7,6),(8,5)}

{(3,7) /.9403,(4,5) /.0664,(7,6) /.0121,(8,6) /.1747}

 2 {(3,2),(4,7),(7,4),(8,2)}

{(3,3) /.3335,(4,3) /.2677,(7,2) /.5165,(8,2) /.6427}

 3 {(3,6),(4,5),(7,5),(8,2)}

{(3,6) /.6206,(4,5) /.0334,(7,5) /.9865,(8,2) /.3556}

 4 {(3,3),(4,7),(7,4),(8,4)}

{(3,3) /.9796,(4,7) /.2852,(7,3) /.6300,(8,2) /.6187}

 5 {(3,2),(4,1),(7,3),(8,2)}

{(3,7) /.1266,(4,3) /.4364,(7,6) /.3924,(8,2) /.7773}

Particles (i)

1 6

2 6

3 6

4 12

5 6

Figure 3.7: fitness values of particles in Swarm1

Particles (i)

1 13

2 13

3 13

4 13

5 13

Figure 3.8: fitness values of particles in Swarm2

49

First, a random number r ∈ [0, 1] is generated. If r is larger than parameter Pc

then
 = i. Otherwise, the algorithm applies the tournament selection to

randomly select two particles. The particle with a better fitness value is

selected as
 .In this sense,

can be the corresponding dimension

of any particle’s pbest position. S-CLPSO algorithm is applied to particles in

swarm1 and particles in swarm2 in the same manner as was applied in solving

the single objective problem in Chapter 2. The updated position, updated

velocity and the respective cost value of particles in swarm1 and swarm2 are

given in Figure 3.9 and 3.10 respectively.

After first iteration the non-dominated particles in the External Archive are:

EXA= {{(3,5),(4,5),(7, 6),(8,6)}, {(3,2),(4,3),(7,3),(8,2)},

 {(3,5),(4,1),(7,5),(8,6)}, {(3,7),(4,7),(7,4),(8,3)}}

Since after the first iteration the external archive contains four non-dominated

solutions, the velocity and position of each particle in each of the two swarms is

updated using the following rule:

 

i Updated Position

(Xi′)

Updated Velocity

(Vi′)

Updated

SCC

1 {(3, 5), (4, 1), (7, 5), (8, 6)}

{(3, 6)/0.8463,(4,1)/0.0598,(7, 5)/0.2379,(8,6)/0.1572}

6

2 {(3, 7), (4, 7), (7, 4), (8, 3)}

{(3, 6)/0.3001,(4,5)/0.2409,(7, 4)/1.000,(8,3)/0.5785}

6

3 {(3, 2), (4, 3), (7, 6), (8, 4)}

{(3, 5)/0.5585,(4,7)/0.0301,(7, 6)/0.8879,(8,4)/1.000} 12

4 {(3, 2), (4, 1), (7, 4), (8, 4)}

{(3, 2)/0.8816,(4,3)/0.2567,(7, 4)/1.000,(8,6)/0.5568}

6

5 {(3, 5), (4, 5), (7, 6), (8, 6)}

{(3, 2)/0.1139,(4,2)/0.3927,(7, 4)/0.3532,(8,2)/0.6996}

2

Figure 3.9: Updated position and velocities after first iteration in Swarm 1

i Updated Position

(Xi′)

Updated Velocity

(Vi′)

Updated

RCG

1 {(3, 7), (4, 7), (7, 6), (8, 5)}

{(3, 7)/0.9403,(4,5)/0.0664,(7, 3)/0.0121,(8,6)/0.1747}

13

2 {(3, 2), (4, 7), (7, 4), (8, 2)}

{(3, 3)/0.3335,(4,3)/0.2677,(7, 6)/0.5135,(8,2)/0.6427}

13

3 {(3, 6), (4, 5), (7, 5), (8, 2)}

{(3, 6)/0.6206,(4,5)/0.0334,(7, 5)/0.9865,(8,2)/0.3556} 13

4 {(3, 3), (4, 7), (7, 4), (8, 2)}

{(3, 3)/0.9796,(4,7)/0.2852,(7, 5)/0.6300,(8,2)/0.6187}

10

5 {(3, 2), (4, 3), (7, 3), (8, 2)}

{(3, 2)/0.1266,(4,2)/0.4364,(7, 4)/0.3924,(8,2)/0.7773}

14

Figure 3.10: Updated position and velocities after first iteration in Swarm 2

50

Iteration 2: Swarm1: First Particle

Position after first iteration

 X1 = {(3, 5), (4, 1), (7, 5), (8, 6)}

Velocity after first iteration

 V1 = {(3, 6)/0.8463, (4, 1)/0.0598, (7, 5)/0.2379, (8, 6)/0.1572}

 , , 4, , ,4 , ,

Next, the velocity of the first particle X1 is updated using the velocity update equation:

 

Computation of Inertia component

The inertia component value of particle X1 for each dimension is computed using the

following rule:

The product of a coefficient c (c ≥ 0) and velocity i.e. a set with possibilities V = {e/p

(e) |e ∈ E} is defined as:

cV = {e/p′(e) |e ∈ E},

p′ (e) =
 , >

 ,

The value of the inertia weight  for the second iteration is calculated using the

following rule:

    

 4

The inertia component value for each dimension is shown in Figure 3.11

Thus the inertia of the particle X1 is

 , , 4, , , , ,



 

0.85
 , 4


 ,

0.85
 4, } 

 4,

0.85
 , } 

 ,

0.85
4 {(8,6) /.1572}


4 ,

 Figure 3.11: Updated inertia component

Cognitive

Component
External Archive

Component

Inertia

Component

51

Computation of Cognitive component

In order to compute the cognitive component values Learning Probability (for the

particle X1 is computed using the equation:

 4

 Pc1 = 0.0500

For each dimension j 4 , a random number is generated and compared with the

learning probability to choose particles amongst X1′ X2′ X3′ X4′ and X5′ from

whose pbest X1′ has to learn from.

Suppose for j=1, random number generated is 0.9542, which is greater than . Thus,

the first dimension would learn from pbest of particle X1′ and thus X1′ will learn from

its own pbest i.e.
 = 1

=

 = {(3, 5)-(3, 5} = { }

Suppose for j=2, random number generated is 0.6502, which is greater than . Thus,

the second dimension would learn from pbest of particle X1′ and thus X1′ will learn

from its own pbest i.e.
 = 1

=

 = {(4, 5)-(3, 1} = { 4, }

Suppose for j=3, random number generated is 0.0301, which is less than Pc1. Thus two

particles X2′ and X4′ are randomly chosen. The fitness values of pbest of both the

particles are shown in Figure 3.12

Since the fitness value of both the particles is same, any one of the two particles can be

selected as an exemplar. Suppose particle X2 is selected i.e.
 = 2

 = {(7, 5)-(7, 5)} = { }

Particles pbesti SCCi

X2

{(3,7),(4,7),(7,5),(8,2)} 6

X4

{(3,2),(4,3),(7,4),(8,2) 6

Figure 3.12: fitness values of pbest of particles

52

Suppose for j=4, random number generated is 0.2602, which is greater than . Thus,

the fourth dimension would learn from pbest of particle X1′and thus X1′ will learn from

its own pbest i.e.
 4 = 1

4
=

4

4

4 = {(8, 6)-(8, 6)} = { }

Next, cognitive component values of particle X1′ for each dimension are computed

using the following rule:

The multiplication operator between a coefficient c (c ≥ 0) and a crisp set E′

(Position−Position) is defined as:

cE’= {e/p’(e)|e ∈ E},

p’(e)=

 , ∈ >

 , ∈

 , ∉

The cognitive component computation for each dimension of particle X1′ is shown in

Figure 3.13.

Thus the cognitive component of the particle is

 {(4, 5) /1.0000}

Computation of External Archive component

In order to compute the External Archive component for each dimension j 4 ,

the particle chooses an exemplar m from the external archive and that particular

dimension learns from chosen element.

After the first iteration the external archive contains the following four non-dominated

solutions as shown in figure 3.14:

c1

 2.0 0.3235 { }

{ }

 2.0 0.6665 { 4, }

 4, }

 2.0 0.0264 { } { }

 2.0 0.2323 { }

{ }

Figure 3.13: Updated cognitive component

53

 Current position, X1′ = {(3, 5), (4, 1), (7, 5), (8, 6)}

The External archive component computation for each dimension of particle X1′ is

shown in Figure 3.15.

Thus, the External archive component of the particle is:

 {(3, 7)/0.6526, (4, 3)/0.5252}

Now, new updated velocity is computed using the following rule:

The plus operator between two sets V1 = {e/p1 (e) |e ∈ E} and V2 = {e/p2 (e) |e ∈ E}

with possibilities is defined as:

V1 + V2 = {e/max (p1 (e), p2 (e)) |e ∈ E}

Using the three components computed above, the updated velocity after the second

iteration is computed as:

 

+

 +

 , , 4, , , , ,

 {(4, 5) /1.0000}

 {(3, 7)/0.6526, (4, 3)/0.5252}

Thus, the updated velocity of the particle after the second iteration is:

 , , 4, , , , ,

Next, the position of the particle is updated using the updated velocity. The current

position, X1′ = {(3, 5), (4, 1), (7, 5), (8, 6)} is updated to a new position

 in the

following manner:

Particle (i) Positions

1 {(3,5),(4,5),(7, 6),(8,6)}

2 {(3,2),(4,3),(7,3),(8,2)}

3 {(3,5),(4,5),(7,4),(8,6)}

4 {(3,7),(4,7),(7,5),(8,2)}

Figure 3.14: external archive

j

1 2.0 0.3263 4 {(3,7),(4,7),(7,5),(8,2)} {(3,7)} {(3,5)}={(3,7)} {(3,7)/0.6526}
2 2.0 0.2626 2 {(3,2),(4,3),(7,3),(8,2)} {(4,3)} {(4,1)}={(4,3)} {(4,3)/0.5252}
3 2.0 0.2162 4 {(3,7),(4,7),(7,5),(8,2)} {(7,5)} {(7,5)}={ } { }
4 2.0 0.9749 1 {(3,5),(4,5),(7,6),(8,6)} {(8,6)} {(8,6)}= { } { }

Figure 3.15: updated External archive components

54

First, the set with possibilities

 is converted into a crisp set. For each dimension, a

random number α ∈ (0, 1) is generated for each particle. For each element e in the j
th

dimension, if it’s corresponding possibility p (e) in is not smaller than α, element e

is reserved in a crisp set, that is:

 (

) = {e| e/p (e) ∈

 and p (e) ≥ α}.

The crisp set for V1 is shown in Figure 3.16

Elements e reserved in a crisp set (V1) = {(3, 6), (4, 5)}. So, elements {(3, 6),

(4, 5)} would be used for updating the current position {(3, 5), (4, 1), (7, 5), (8, 6)} of

particle X1′. The new updated Position would have the relation R3 accessed from site S6

and R4 accessed from site S5 i.e.
 {(3, 6), (4, 5), (7, 5), (8, 6). Similarly, the

velocity and position for other particles are also updated in both the swarms. The above

procedure continues till a pre-specified twenty iterations. The non-dominated solutions

from the external archive are reported as the top-4 query plans.

Figure 3.16: Crisp Set for

j α p(e) Comparison between α and p(e)

1 0.1356 0.7193 p(e) α

 2 0.9421 1.000 p(e) α

 3 0.7259 0.2022 p(e) α

 4 0.4421 0.1336 p(e) α

Figure 3.17: Top-4 query plans

Query Plans

{(3, 5), (4, 5), (7, 5), (8, 5)}

{(3, 6), (4, 5), (7, 6), (8, 6)}

{(3, 5), (4, 3), (7, 5), (8, 5)}

{(3, 5), (4, 5), (7, 3), (8, 5)}

55

3.5 Experimental Results

The S-CLPSO based query plan generation algorithm and S-CLPPSO based query plan

generation algorithm are implemented in MATLAB 7.4 in Windows XP environment.

The two algorithms were compared by conducting experiments on an Intel based 2

GHz PC having 1 GB RAM. The comparisons were carried out on parameters like

number of relations, average query processing cost (QPC), top-K query plans and

number of iterations.

First, line graphs were plotted to compare S-CLPSO and S-CLPPSO based algorithms

on Average QPC against the number of iterations for selecting top-10 query plans.

These graphs for the number of relations n=6, 8, 10, 12 and 14 are shown in figures

3.18, 3.19, 3.20, 3.21 and 3.22 respectively.

It can be observed from the graphs that the S-CLPSO based algorithm, in case of 6, 8

and 10 relations, is able to generate Top-10 query plans having almost equal average

QPC. Whereas, for higher number of relations, i.e. for 12 and 14 relations, the S-

CLPPSO based algorithm is able to generate top-10 query plans with relatively lower

average QPC. So, it can be said that, as the number of relations in the query increases,

the S-CLPPSO based algorithm, in comparison to S-CLPSO based algorithm, is able to

generate relatively better query plans with respect to the cost of query processing.

S-CLPSO Vs. S-CLPPSO

(Top-10 Query Plans, 6 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 26 51 76 101 126 151 176 201 226 251

Iterations

A
v
e
r
a
g
e
 Q

P
C

S-CLPSO

S-CLPPSO

Figure 3.18: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations

 (Top-10 Query Plans, 6 Relations)

56

S-CLPSO Vs. S-CLPPSO

(Top-10 Query Plans, 8 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176 201 226 251

Iterations

A
v

e
r
a
g
e
 Q

P
C

S-CLPSO

S-CLPPSO

S-CLPSO Vs. S-CLPPSO

(Top-10 Query Plans, 10 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176 201 226 251

Iterations

A
v
e
r
a
g
e
 Q

P
C

S-CLPSO

S-CLPPSO

Figure 3.19: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations

 (Top-10 Query Plans, 8 Relations)

Figure 3.20: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations

 (Top-10 Query Plans, 10 Relations)

57

Next, graphs were plotted to compare S-CLPSO and S-CLPPSO based algorithms on

Average QPC value for selecting Top-K query plans(K=6, 8, 10, 12, 14) generated after

400 iterations. These graphs, plotted for relations 6, 8, 10, 12 and 14, are shown in

figures 3.23, 3.24, 3.25, 3.26 and 3.27 respectively.

S-CLPSO Vs. S-CLPPSO

(Top-10 Query Plans, 12 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176 201 226 251

Iterations

A
v

e
r
a

g
e
 Q

P
C

S-CLPSO

S-CLPPSO

S-CLPSO Vs. S-CLPPSO

(Top-10 Query Plans, 14 Relations)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176 201 226 251

Iterations

A
v
e
r
a
g

e
 Q

P
C

S-CLPSO

S-CLPPSO

Figure 3.21: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations

 (Top-10 Query Plans, 12 Relations)

Figure 3.22: S-CLPSO vs. S-CLPPSO – Average QPC vs. Iterations

 (Top-10 Query Plans, 14 Relations)

58

These graphs show that S-CLPSO and S-CLPPSO generate Top-K query plans with

almost equal average QPC for 6, 8 and 10 relations. Whereas, S-CLPPSO, in

comparison S-CLPSO, is able to generate Top-K query plans with relatively lower

average QPC for 12 and 14 relations. Thus, it can be said that for higher number of

relations, S-CLPPSO is able to generate good quality Top-K plans with relatively lower

average QPC.

Figure 3.23: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans

 (6 Relations, 400 iterations)

Figure 3.24: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans

 (8 Relations, 400 iterations)

S-CLPSO Vs. S-CLPPSO

(8 Relations, 400 Iterations)

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

6 8 10 12 14

TOP-K Query Plans

A
v

e
r
a

g
e
 Q

P
C

S-CLPSO

S-CLPPSO

S-CLPSO Vs. S-CLPPSO

(6 Relations, 400 Iterations)

0

0.05

0.1

0.15

0.2

0.25

6 8 10 12 14

TOP-K Query Plans

A
v

e
r
a
g

e
 Q

P
C

S-CLPSO

S-CLPPSO

59

S-CLPSO Vs. S-CLPPSO

(12 Relations, 400 Iterations)

0.115

0.12

0.125

0.13

0.135

0.14

0.145

6 8 10 12 14

TOP-K Query Plans

A
v
e
r
a
g
e
 Q

P
C

S-CLPSO

S-CLPPSO

Figure 3.25: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans

 (10 Relations, 400 iterations)

S-CLPSO Vs. S-CLPPSO

(10 Relations, 400 Iterations)

0.14

0.145

0.15

0.155

0.16

0.165

0.17

6 8 10 12 14

TOP-K Query Plans

A
v
e
r
a
g
e
 Q

P
C

S-CLPSO

S-CLPPSO

Figure 3.26: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans

 (12 Relations, 400 iterations)

60

S-CLPSO Vs. S-CLPPSO

(14 Relations, 400 Iterations)

0

0.05

0.1

0.15

0.2

0.25

6 8 10 12 14

TOP-K Query Plans

A
v
e
r
a
g
e
 Q

P
C

S-CLPSO

S-CLPPSO

Figure 3.27: S-CLPSO vs. S-CLPPSO – Average QPC vs. Top-K Query Plans

 (14 Relations, 400 iterations)

61

CHAPTER 4

Conclusion

The aim of distributed query processing is to process distributed queries in an efficient

manner. This would require devising an effective and efficient distributed query

processing strategy that would minimize the total query processing cost. This is

possible if the query plans constructed using the strategy involve fewer numbers of

sites for processing thereby incurring less communication overhead. This dissertation

addresses the distributed query plan generation problem, which has been solved using

GA in [VSV11]. In this dissertation, particle swarm optimization is used to solve this

problem.

First, the distributed query plan generation problem is solved using single-objective

particle swarm optimization with the objective to minimize the query processing cost

(QPC), as defined in [VSV11]. Set-based Comprehensive Learning Particle Swarm

optimization technique is used to generate Top-K query plans for a distributed query.

Experiment based comparison of this algorithm with GA based distributed query plan

generation algorithm [VSV11] is carried out. The experimental results show that for

higher number of relations the S-CLPSO based algorithm is able to generate relatively

better quality top-K query plans.

62

Next, the single-objective distributed query plan generation problem is formulated as a

bi-objective distributed query plan generation problem. The two objectives being

minimization of site communication cost (SCC) and maximization of relation

concentration gain (RCG). These are motivated by the cost functions in [PV02]. This

problem is solved using multi-objective particle swarm optimization technique

S-CLPPSO. The experiment based comparison of S-CLPPSO with the S-CLPSO based

distributed query plan generation algorithm shows that the S-CLPPSO algorithm is able

to generate comparatively better quality query plans for higher number of relations in

the user query.

It can therefore be concluded that the S-CLPPSO based algorithm performs relatively

better amongst the three algorithms with S-CLPSO algorithm having a slight edge over

the GA based algorithm.

63

References

[AMR05] Afshinmanesh F., Marandi A., Rahimi-Kian A.: A novel binary particle

swarm optimization method using artificial immune system. In Proc. IEEE Int. Conf.

Comput. Tool (EUROCON), 2005.

[AHH09] Alom B.M., Henskens F., Hannaford M.: Query Processing and

Optimization in Distributed Database Systems. IJCSNS International Journal of

Computer Science and Network Security, VOL.9 No.9, September 2009.

[AHY83] Apers P.M., Hevner A.R., Yao S.B.: Optimization algorithms for distributed

queries, IEEE Transactions on Software Engineering SE-9(1983)57–68, 1983.

[BMR04] Baumgartner U., Magele C., Renhart W.: Pareto optimality and particle

swarm optimization. IEEE Transactions on Magnetics, 40(2), 1172–1175, 2004.

[BC81] Bernstein P.A., Chiu D.W.: Using semi-joins to solve relational queries,

Journal of the ACM 28(1981)25–40, 1981.

[BG+81] Bernstein P.A., Goodman N., Wong E., Reeve C.L., Rothnie J.B.: Query

processing in a system for distributed databases (SDD-1), ACM Transactions on

Database Systems 6, 1981.

[B89] Bishop, J. M.: Stochastic searching network. In Proceedings of the 1
st
 IEE

Conference on Artificial Neural Networks, London, UK (pp. 329-331), 1989.

[BH07] Borji A., Hamid M.: Evolving a Fuzzy Rule-Base for Image Segmentation.

International Journal of Electrical and Computer Engineering 2:7 2007.

[CP84] Ceri S., Pelagati G. Distributed Database: Principles and Systems. McGraw

Hill, 1984.

[CY94] Chen M.S., Yu P.S.: A graph theoretical approach to determine a join reducer

sequence in distributed query processing, IEEE Transactions on Knowledge and Data

Engineering 6, 1994.

[CY93] Chen M.S., Yu P.S.: Combining join and semijoin operations for distributed

query processing. IEEE Transactions on Knowledge and Data Engineering 5, 1993.

64

[CZ+10] Chen W., Zhang J., Chung H., Zhong W., Wu W., Shi Y.: A Novel Set-

Based Particle Swarm Optimization Method for Discrete Optimization Problems. IEEE

Trans. Evolutionary Computation, vol. 14, no. 2, pp. 278-300 , Apr 2010.

[CT04] Chow C.K., Tsui H.T.: Autonomous agent response learning by a multi-species

particle swarm optimization. In Proceedings of the 2004 IEEE Congress on

Evolutionary Computation (CEC’04), Portland (OR), USA (pp. 778-785), 2004.

[CK02] Clerc M., Kennedy J.: The particle swarm - explosion, stability, and

convergence in a multidimensional complex space. IEEE Transactions on

Evolutionary Computation, 6(1), 2002.

[C04] Clerc M.: Discrete particle swarm optimization. In New Optimization

Techniques in Engineering. New York: Springer-Verlag, 2004.

[CPL04] Coello Coello C. A., Pulido T. G., Lechuga S. M.: Handling multiple

objectives with particle swarm optimization. IEEE Transactions on Evolutionary

Computation, 8(3), 256–279, 2004.

[CL02] Coello Coello C.A., Lechuga M.S.: MOPSO: A proposal for multiple

objective particle swarm optimization. In Congress on Evolutionary Computation

(CEC’2002), volume 2, pages 1051-1056, Piscataway, New Jersey, May 2002.

[C99] Coello Coello C.A.: A comprehensive survey of evolutionary-based

multiobjective optimization techniques. Knowledge and Information Systems. An

International Journal, 1(3):269–308, August 1999.

[CY88] Cornell D.W., Yu P.S.: Site assignment for relations and join operations in the

distributed transaction processing environment, Proceedings of the 4th International

Conference on Data Engineering, 1988.

[DP+02] Deb K., Pratap A., Agarwal S., Meyarivan T.: A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2):182–197, 2002.

[D92] Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis,

Politecnico di Milano, Italy, 1992.

[ES98] Eberhart R. C., Shi Y.: Comparison between genetic algorithms and particle

swarm optimization. In: W. Porto, N. Saravanan, D. Waagen, & A.E. Eiben (Eds.),

Evolutionary Programming VII (pp. 611-616). Berlin: Springer, 1998.

[EK95] Eberhart R.C., Kennedy J.:A New Optimizer Using Particle Swarm Theory, 6
th

International Symposium on Micro Machine and Human Science, Nagoya, Japan, p.

39-43, 1995.

[FS02] Fieldsend J. E., Singh S.: A multi-objective algorithm based upon particle

swarm optimization, an efficient data structure and turbulence. In Proceedings of the

2002 UK Workshop on Computational Intelligence (UKCI-02), Birmingham, UK (pp.

34-44), 2002.

[HY79] Hevner A.R., Yao S.B.: Query processing in distributed database systems,

IEEE Transactions on Software Engineering SE-5, 1979.

65

[HES03] Hu X., Eberhart R. C., Shi Y.: Particle swarm with extended memory for

multiobjective optimization. In Proceedings of the 2003 IEEE Swarm Intelligence

Symposium (SIS’03), Indianapolis (IN), USA (pp. 193-197), 2003.

[HE02] Hu X., Eberhart, R. C.: Multiobjective optimization using dynamic

neighborhood particle swarm optimization. In Proceedings of the 2002 IEEE Congress

on Evolutionary Computation, Honolulu (HI), USA (pp. 1677-1681), 2002.

[IK90] Ioannidis Y.E., Kang Y.C.: Randomized algorithms for optimizing large join

queries, ACM 1990.

[JK84] Jarke M., Koch J.: Query optimization in database systems. ACM Computing

Surveys, volume 16, no. 2, pp. 111-152, June 1984.

[JOS01] Jin Y., Olhofer M., Sendhoff B.: Evolutionary dynamic weighted aggregation

for multiobjective optimization: Why does it work and how? In Proceedings of the

2001 Genetic and Evolutionary Computation Conference (GECCO’01), San Francisco

(CA), USA, pp. 1042-1049, 2001.

[KYY82] Kambayashi Y., Yoshikawa M., Yajima S.: Query Processing for Distributed

databases using Generalized Semi-Joins, ACM, 1982.

[KE97] Kennedy J., Eberhart R.: A discrete binary version of the particle swarm

optimization. A. Proceeding of the conference on System, Man, and Cybernetics [C],

NJ,USA: IEEE Service Center, 1997.

[KE01] Kennedy J., Eberhart R.C.: Swarm Intelligence. Morgan Kaufmann Publishers,

San Francisco, California, 2001.

[K99] Kennedy J.: Small worlds and mega minds: effects of neighborhood topology on

particle swarm performance. In Proceedings of 1999 IEEE Congress on Evolutionary

Computation, Washington (DC), USA (pp. 1931-1938), 1999.

[K00] Kosmann D.: The State of the Art in Distributed Query Processing. ACM

Computing Surveys, Vol. 32, No. 4, pp. 422-469, December 2000.

[LW86] Lafortune S., Wong E.: A state transition model for distributed query

processing. ACM Transactions on Database Systems 11, 1986.

[L03] Li X.: A non-dominated sorting particle swarm optimizer for multi-objective

optimization. Lecture Notes in Computer Science, 2723, 37–48, 2003.

[LQ+04] Liang J.J., Qin A.K., Suganthan P.N., Baskar S.: Particle swarm optimization

algorithms with novel learning strategies, In Proc. Int. Conf. Systems, Man,

Cybernetics, The Netherlands, Oct. 2004.

[LS+06] Liang J.J., Suganthan P.N., Qin A.K., Baskar S.: Comprehensive Learning

Particle Swarm Optimizer for Global Optimization of Multimodal Functions.Accepted

by IEEE Transactions on Evolutionary Computation, to appear in June 2006.

[LS06] Liang J.J., Suganthan P.N.: Adaptive Comprehensive Learning Particle Swarm

Optimizer with History Learning. In Proceedings of the 6th International Conference

on Simulated Evolution and Learning, vol. 4247, pp. 213-220, 2006.

66

[LTL07] Liao C.J., Tseng C.T., Luarn P.: A discrete version of particle swarm

optimization flowshop scheduling problems. Comput. Operations Res., vol. 34, no. 10,

pp. 3099–3111, Oct. 2007.

[LK73] Lin S., Kernighan B.W.: An effective heuristic algorithm for the traveling-

salesman problem. Operations Res., vol. 21, no. 2, pp. 498–516, Mar.–Apr. 1973.

[LM+85] Lohman G.M., Mohan C., Haas L.M., Daniels D., Lindsay B.G., Selinger

P.G., Wilms P.F.: Query Processing in R*. ;Query Processing in Database Systems,

1985.

[LRK01] Lovbjerg M., Rasmussen T.K., Krink T.: Hybrid particle swarm optimizer

with breeding and subpopulations. In: Proceedings of the Third Genetic and Evolution

Composition Conference (GECCO-2001), vol. 1. Morgan Kaufman, pp. 469–476,

2001.

[LC85] Lu H., Carey M.J.: Some experimental results on distributed join algorithms in

a local network, Proceedings of the 10th International Conference on VLDB,

Stockholm, 1985.

[ML86] Mackert L.F., Lohman G.M.: R* optimizer validation and performance

evaluation for distributed queries, Proceedings of the 12th International Conference on

VLDB, Kyoto, 1986.

[MCL04] Mahfouf M., Chen M.Y., Linkens D. A.: Adaptive weighted particle swarm

optimization for multi-objective optimal design of alloy steels. [Berlin: Springer.].

Lecture Notes in Computer Science, 3242, 762–771, 2004.

[MR95] March S.T., Rho S.: Allocating data and operations to nodes in distributed

database design, IEEE Transactions on Knowledge and Data Engineering 7, 1995.

[MLR90] Martin T.P., Lam K.H., Russell J.L.: Evaluation of site selection algorithms

for distributed query processing, Computer Journal 33(1990)61–70, 1990.

[MKN03] Mendes R., Kennedy J., Neves J.: Watch thy neighbor or how the swarm can

learn from its environment. In Proceedings of the 2003 IEEE Swarm Intelligence

Symposium, Indianapolis (IN), USA (pp. 88-94), 2003.

[M99] Miettinen K.: Nonlinear Multiobjective Optimization. Kluwer Academic

Publishers, Boston, Massachusetts, 1999.

[M94] Millonas M. M.: Swarms, phase transitions, and collective intelligence. In C.G.

Langton (Ed.), Artificial Life III (pp. 417-445), 1994.

[ME92] Mishra P., Eich M.H.: Join processing in relational databases, ACM

Computing Surveys 24 ,1992.

[MC99] Moore J., Chapman R.: Application of particle swarm to multi-objective

optimization, Department of Computer Science and Software Engineering, Auburn

University, 1999.

[MT03] Mostaghim S., Teich J.: The role of ε-dominance in multi-objective particle

swarm optimization methods. In Proceedings of the 2003 IEEE Congress on

Evolutionary Computation (CEC’03), Canberra, Australia (pp. 1764-1771), 2003.

67

[OV91] Ozsu M.T., Valduriez P.: Principles of Distributed Database Systems .2nd

edition, Prentice Hall, Englewood Cliffs, N.J., 1991.

[PW+04 (a)] Pang W., Wang K.P., Zhou C.G., Dong L.J., Liu M., Zhang H.Y., Wang

J.Y. : Modified particle swarm optimization based on space and transformation for

solving traveling salesman problem.In Proc. 3rd Int. Conf. Mach. Learning Cybern.,

2004.

[PW04 (b)] Pang W., Wang K.P., Zhou C.G., Dong L.J.: Fuzzy discrete particle swarm

optimization for solving traveling salesman problem. In Proc. 4th Int. Conf. Comput.

Information Technol. (CIT), 2004.

[PV02 (a)] Parsopoulos K. E., Vrahatis M. N.: Particle swarm optimization method in

multiobjective problems. In Proceedins of the 2002 ACM Symposium on Applied

Computing (SAC’02), Madrid, Spain (pp. 603-607), 2002.

[PV02(b)] Parsopoulos K. E., Vrahatis, M. N.: Recent approaches to global

optimization problems through particle swarm optimization. Natural Computing, 2002.

[PV02(c)] Parimala N and T.V. Vijay Kumar, Querying Multidatabase Systems Using

SIQL, In the proceedings of the 5th International conference on Flexible Query

Answering Systems, FQAS-2002, Copenhagen, Denmark, October 27-29, 2002,

Lecture Notes in Artificial Intelligence (LNAI-2522), Springer Verlag, pp. 301-313

[PTV04] Parsopoulos K.E., Tasoulis D.K., Vrahatis M.N.: Multiobjective Optimization

Using Parallel Vector Evaluated Particle Swarm Optimization, Proceedings of the

IASTED International Conference on Artificial Intelligence and Applications (AIA

2004), Innsbruck, Austria, pp. 823-828, 2004.

[PV08] Parsopoulos K.E., Vrahatis M.N.: Multiobjective Particle Swarm Optimization

Approaches, Multi-Objective Optimization in Computational Intelligence: Theory and

Practice, by Lam Thu Bui, Sameer Alam (Eds.), Chapter 2, pp. 20-42, IGI Global,

2008, (ISBN-10: 1599044986, ISBN-13: 978-1599044989), 2008.

[PV10] Parsopoulos K.E., Vrahatis M.N.: Particle Swarm Optimization and

Intelligence: Advances and Applications, Information science reference, 2010.

[PPV07] Petalas Y. G., Parsopoulos K. E., Vrahatis M. N.: Memetic particle swarm

optimization. Annals of Operations Research, 156(1), 99–127, 2007.

[PV88] Pramanik S., Vineyard D.: Optimizing join queries in distributed databases,

IEEE Transactions on Software Engineering 14, 1988.

[PC04] Pulido T.G., Coello Coello C. A.: Using clustering techniques to improve the

performance of a particle swarm optimizer. [Berlin: Springer.]. Lecture Notes in

Computer Science, 3102, 225–237, 2004.

[PBP09] Puranik P., Bajaj P.R., Palsodkar P.M.: Fuzzy based Color Image

Segmentation using Comprehensive Learning Particle Swarm Optimization (CLPSO) –

A Design Approach. In the Proceeding of the international MultiConference of

Engineers and Computer Scientists 2009 Vol I IMECS 2009, March 18-20, 2009.

[RN05] Raquel C. R., Naval P. C.: An effective use of crowding distance in

multiobjective particle swarm optimization. In Proceedings of the 2005 Genetic and

68

Evolutionary Computation Conference (GECCO’05), Washington (DC), USA (pp.

257-264), 2005.

[RL02] Ray T., Liew K.M.: A swarm metaphor for multiobjective design optimization.

Engineering Optimization, 34(2):141–153, March 2002.

[RC06 (a)] Reyes-Sierra M., Coello Coello C. A. : Multi-objective particle swarm

optimizers: a survey of the state-of-the-art. International Journal of Computational

Intelligence Research, 2(3), 287–308, 2006.

[RC05] Reyes-Sierra M., Coello Coello C. A.: Improving PSO-based multi-objective

optimization using crowding, mutation and ε-dominance. [Berlin: Springer.]. Lecture

Notes in Computer Science, 3410, 505–519, 2005.

[RC06 (b)] Reyes-Sierra M., Coello Coello C. A.: On-line adaptation in multi-

objective particle swarm optimization. In Proceedings of the 2006 IEEE Swarm

Intelligence Symposium (SIS’06), Indianapolis (IN), USA (pp. 61-68), 2006.

[RMN11] Rezazadeh I., Meybodi M.R., Naebi A.: Adaptive particle swarm

optimization algorithm for dynamic environments. Proceeding ICSI'11 Proceedings of

the Second international conference on Advances in swarm intelligence - Volume Part I

Pages 120-129 Springer-Verlag Berlin, Heidelberg,2011.

[RM97] Rho S., March S.T.: Optimizing distributed join queries: A genetic algorithmic

approach. Annals of Operations Research, 71, pp. 199-228, 1997.

[SAA02] Salman A., Ahmad I., Al-Madani S.: Particle swarm optimization for task

assignment problem. Microprocessors Microsyst., vol. 26, no. 8, pp. 363–371, Aug.

2002.

[SMK00] Sbalzarini I.F., Muller S., Koumoutsakos P.: Multiobjective optimization

using evolutionary algorithms. In Proceedings of the Summer Program 2000.

[S86] Segev A.: Optimization of join operations in horizontally partitioned database

systems, ACM Transactions on Database Systems 11, 1986.

[SH06] Sha D.Y., Hsu C.: A hybrid particle swarm optimization for job shop

scheduling problem. Comput. Ind. Eng., vol. 51, no. 4, pp. 791–808, Dec. 2006.

[SW91] Shasha D., Wang T.: Optimizing equijoin queries in distributed databases

where relations are hash partitioned, ACM Transactions on Database Systems 16, 1991.

[SYY06] Shen B., Yao M., Yi W.: Heuristic information based improved fuzzy discrete

PSO method for solving TSP. In Proc. 9th Pacific Rim Int. Conf. Artif. Intell.

(PRICAI), 2006.

[SE98] Shi Y., Eberhart R.C.: Parameter selection in particle swarm optimization. In

Proceedings of the Seventh Annual Conference on Evolutionary Programming, pages

591-600, 1998.

[SK86] Stephens D. W., Krebs, J. R.: Foraging Theory. Princeton: Princeton University

Press, 1986.

[SM+08] Sulaiman S., Mariyam S., Shamsuddin H., Forkan F.B., Abraham A.:

Intelligent Web Caching Using Neurocomputing and Particle Swarm Optimization

http://dl.acm.org/author_page.cfm?id=81484657603&coll=DL&dl=ACM&trk=0&cfid=90104494&cftoken=25667640
http://dl.acm.org/author_page.cfm?id=81100403717&coll=DL&dl=ACM&trk=0&cfid=90104494&cftoken=25667640
http://dl.acm.org/author_page.cfm?id=81487645339&coll=DL&dl=ACM&trk=0&cfid=90104494&cftoken=25667640
http://www.researchgate.net/researcher/14908274_Sarina_Sulaiman
http://www.researchgate.net/researcher/32607655_Siti_Mariyam_Hj_Shamsuddin
http://www.researchgate.net/researcher/29524985_Fadni_Bin_Forkan
http://www.researchgate.net/researcher/14499569_Ajith_Abraham

69

Algorithm, In proceeding of: Second Asia International Conference on Modelling and

Simulation (AMS 2008), Kuala Lumpur, Malaysia, 13-15 May, 2008.

[VSV11] Vijay Kumar, T.V., Singh, V., Verma, A. K.: Distributed Query Processing

Plans Generation using Genetic Algorithm, International Journal of Computer Theory

and Engineering, Vol.3, No.1, pp. 38-45, February 2011.

[WH+03] Wang K.P., Huang L., Zhou C.G., Pang W.: Particle swarm optimization for

traveling salesman problem. In Proc. 2nd Int. Conf. Mach. Learning Cybern., 2003.

[WW+07] Wang Y., Wanga Y., Fenga X.Y., Huanga Y.X., Pub D.B., Zhoua W.G.,

Lianga Y.C., Zhoua C.G.: A novel quantum swarm evolutionary algorithm and its

applications. Neurocomputing, vol. 70,nos. 4–6, pp. 633–640, Jan. 2007.

[WG+09] Wu H., Geng J., Jin R., Qiu J., Liu W., Chen J., Liu S.: An Improved

Comprehensive Learning Particle Swarm Optimization and Its Application to the

Semiautomatic Design of Antennas. IEEE Transactions on Antennas and Propagation.,

vol. 57, no. 10, pp. 3018-3028, Oct. 2009.

[YL89] Yoo H., Lafortune S.: An intelligent search method for query optimization by

semijoins, IEEE Transactions on Knowledge and Data Engineering 1, 1989.

[YC83] Yu C.T., Chang C.C.: On the design of a distributed query processing

algorithm, Proceedings of the ACM-SIGMOD International Conference on the

Management of Data, San Jose, 1983,pp. 30–39, 1983.

[YC84] Yu C.T., Chang C.C.: Distributed Query Processing. ACM Computing

Surveys, volume 16, no. 4, pp. 399-433, 1984.

[ZZ10] Zhan Z., Zhang J.: An parallel particle swarm optimization approach for

multiobjective optimization problems.In Proc. GECCO, 2010.

[ZZ+09] Zhan Z.H., Zhang J., Li Y., Chung H.S.: Adaptive particle swarm

optimization,” IEEE Trans. Syst., Man, and Cybern. B., vol. 39, no. 6. pp. 1362-1381,

Dec. 2009.

[ZZ+10] Zhan Z.H., Zhang J., Li Y., Shi Y.H.: Orthogonal learning particle swarm

optimization. IEEE Trans. Evol. Comput., 2010.

[ZSD10] Zhao S.Z., Suganthan P.N., Das S.: Dynamic Multi-Swarm Particle Swarm

Optimizer with Sub-regional Harmony Search. WCCI 2010 IEEE World Congress on

Computational Intelligence July, 18-23, 2010.

[ZDT00] Zitzler E., Deb K., Thiele L.: Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results Evolutionary Computation, 8(2):173–195, Summer

2000.

URLs

[U1] http://cims.nyu.edu/~gn387/glp/lec1.pdf

[U2] http://en.wikipedia.org/wiki/Artificial_Ants

[U3] http://en.wikipedia.org/wiki/Multi-objective_optimization

[U4] http://en.wikipedia.org/wiki/Shoaling_and_schooling

[U5] http://en.wikipedia.org/wiki/Swarm_behavior

http://en.wikipedia.org/wiki/Multi-objective_optimization

70

[U6] http://en.wikipedia.org/wiki/Swarm_techniques

[U7] http://worldwidescience.org/topicpages/c/collective+intelligence+temporal.html

[U8] http://www.calresco.org/lucas/pmo.htm

[U9] http://www.digplanet.com/wiki/Multi-objective_optimization

[U10] http://www.hindawi.com/journals/acisc/2012/897127/fig

[U11] http://www.powershow.com/view/14e8b7-ZDJjZ/Swarm_Intelligence

[U12] http://www.scholarpedia.org/article/Particle_swarm_optimization

[U13] http://www.sciencedirect.com/science/article/pii/S0010465512000136-gr001.gif

[U14] http://www.shef.ac.uk/acse/staff/peter_fleming/intromo

[U15] http://www.stigmergicsystems.com/stig_v1/stigrefs/article3.html

[U16] http://www.tutorgig.info/ed/Swarm

[U17] http://www.uni-leipzig.de/~vignesh/images/PSO-Scheme.jpg

[U18] http://www.wattpad.com/92392-swarm-intelligence

[U19] http://www23.homepage.villanova.edu/varadarajan.komanduri/PSO_meander-

line.ppt

http://en.wikipedia.org/wiki/Swarm_techniques
http://www.digplanet.com/wiki/Multi-objective_optimization
http://www.powershow.com/view/14e8b7-ZDJjZ/Swarm_Intelligence
http://www.scholarpedia.org/article/Particle_swarm_optimization
http://www.google.co.in/imgres?q=:+Common+neighborhood+topologies+of+PSO:+ring+%28left%29+and+star+%28right%29&hl=en&safe=active&biw=1024&bih=605&gbv=2&tbm=isch&tbnid=PyLa2bNuH_pIbM:&imgrefurl=http://www.sciencedirect.com/science/article/pii/S0010465512000136&docid=Z89PC27jTIkLrM&imgurl=http://ars.sciencedirect.com/content/image/1-s2.0-S0010465512000136-gr001.gif&w=384&h=168&ei=2AzfT-aGN83QrQep2cyxDQ&zoom=1&iact=hc&vpx=78&vpy=181&dur=1709&hovh=134&hovw=307&tx=286&ty=155&sig=118375166143493911136&page=1&tbnh=80&tbnw=182&start=0&ndsp=17&ved=1t:429,r:0,s:0,i:72
http://www.tutorgig.info/ed/Swarm
http://www23.homepage.villanova.edu/varadarajan.komanduri/PSO_meander-%20%20%20%20%20%20%20%20%20line.ppt
http://www23.homepage.villanova.edu/varadarajan.komanduri/PSO_meander-%20%20%20%20%20%20%20%20%20line.ppt

