
SEARCH ENGINE SELECTION AND RESULT

MERGING IN METASEARCH

A dissertation submitted to the Jawaharlal Nehru University
in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

BY

RAJESH KUMAR

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI -110067

JULY 2010

(])edicatetf

to

·:My £oving·(J}arents
.......

' · "'<~-~.;;·
'"__ J

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI -110067

DECLARATION

This is to ~certify that the dissertation entitled "Search Engine Selection and Result

Merging in Metasearch" is being submitted to the School of Computer and Systems

Sciences, Jawaharlal Nehru University, New Delhi, in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer

Science & Technology, is a record of bonafide work carried out by me under the

supervision of Dr. T.V. Vijay Kumar.

The matter embodied in the dissertation has not been submitted in part or full to any

University or Institution for the award of any degree or diploma.

IJJ ~
0

,z_olO ~•,t..v•-

Rajesh Kumar
(Student)

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAW AHARLAL NEHRU UNIVERSITY
NEW DELHI- 110067

CERTIFICATE

This is to certify that this dissertation entitled "Search Engine Selection and Result

Merging in Metasearch" submitted by Mr. Rajesh Kumar, to the School of

Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, for the

award of degree of Master of Technology in Computer Science & Technology, is a

research work carried out by him under the supervision of Dr. T.V. Vijay Kumar.

'J-1 ~o 7- ~ 1..-e 1 u
Dr. T. V. Vijay Kumar

(Supervisor)

4-lll
Prof. S. Minz

(Dean)

ACKNOWLEDGEMENT

First, I would like to heartily thank my parents and brothers for their positive support at

every moment in my life. Specially my elder brother Sita Ram has been a constant

source of encourages and inspiration nurturing of my work and always supporting my

decision all the way during my studies in spite social difficulties.

Sincerely express my appreciation to my supervisor Dr. T.V. Vijay Kumar for

giving, me an opportunity to work under his supervision. His moral support and

encouraging nature to build a confidence to achieve our aim. Sir always appreciates to

work hard during entire period of dissertation and constant support throughout

completion of dissertation work. I have learned several incredible things from him

including joyful positive attitude towards work and perfection at doing things. During the

entire dissertation, I realized that Sir is not only a good teacher also a good human being

specially his helping nature

I would like to thanks Porf. S. Balasundaram sir, Dr. Zahid Raza sir for their moral

support, and I would also like to thank Prof. S. Minz (Dean, SC&SS)

I would like to thanks to seniors Mohammad Haider, Santosh Kumar, Ajay Kumar

Verma .for his their right suggestion and guided in my dissertation work. I give special

thanks my friend Rajeev Kumar for their appreciating to doing Master of Technology

and support at every moment. I would like to thanks my lab mate Anil Kumar Giri for

his contribution their knowledge which was helpful in my dissertation work and Kumar

Dilip for encouraging me which increase my confidence to work hard. I would like to

thanks Manmohan for their cooperative and helping nature during my dissertation work.

®~lb
Ra]esh Kumar

Table of Contents

Chapter 1: Introduction ... 1-22

1.11 Information Retrieval .. 3
1.1.1 Basic Concept ofiR4
1.1.2 IR Model. .. 5
1.1.3 IR Problem ... 9
1.1.4 IR Performance Evaluation 9

1.2 Metasearch Engine .. 1 0
1.2.1 Architecture of Metasearch Engine 1 0
1.2.2 Advantage of Metasearch Engine 12

1.3 Search Engine Selection ... 13
1.3.1 D-WISE (Distributed Web Index Search Engine) l4
1.3.2 Collection Retrieval Interface Network (CORI-Net)15
1.3.3 Query Similarity (qSim)17
1.3.4 Modeling Relevant Document Distribution (MRDD) 17
1.3 .5 Profusion Approach .. 18

1 A Result Merging ... 19
1.4.1 CORI Merging Technique 19
1.4.2 Semi supervised Learning Approach 20
1.4.3 LMS Merging Approach 21
1.4.4 Abstract Merging Approach 21
1.4.5 OW A-Based Merging Approach22

1.5 Aim of the Dissertation ... 22
1.6 Organization of the Dissertation ... 22

Chapter 2: Search Engine Selection .. 23-51

2.1 Query Similarity ... 24
2.1.1 An Example .. 26

2.2 Modeling Relevant Document Distribution (MRDD) Approach 33
2.2.1 An Example .. 34

2.3 E:xample Based Comparison .. 40
2.4 Experimental Results .. 50

Chapter 3: Result Merging .. 52-66

3.1 OW A-Based Merging Approach ... 53
3.1.1 ·An Example : 55

3.2 Abstract Merging ... 57
3.2.1 An Example .. 58 ·

3.3 Eumple Based Comparison ... 60
3.4 Experimental Results .. 65

Chapter 4: Conclusion .. 67-68

Reference , .. 69-72

CHAPTER 1

Introduction

In recent years, the web has become a huge source of information, which is mostly

unstructured in the form of text or image. The people all over the world pose queries using

their favorite search engine to find relevant information. However, every search engine

use their own method or algorithm to ranking the retrieved results. The metasearch

engines usually send the query simultaneously to different search engines resulting in

queries being processed in parallel thereby saving time. Metasearch engine [L98] is a tool

that allows searching multiple search engines at the same time and returning more

comprehensive and relevant document that satisfy the information needs of the user,

efficiently. In other words, metasearch engine is a system that provides unified access to

multiple existing search engines[MYL02]. When user poses a query to the metasearch

through the user interface, the metasearch engine is responsible to identify appropriate

underlying search engine which have relevant document with respect to user query. Each

search engine has a text (unstructured data) database, defined by the set of documents that

can be searched by search engine. All underlying search engines retrieve most of the

1

relevant documents, which the metasearch engine combine into single ranked list and

displays them to the user. Ranking of the document is based on user query, top rank

document have high query weight. The main goal of metasearch over the single search

engine is increased coverage and a consistent interface [SE97]. A consistent interface is

necessary for the metasearch engine to ensure that result from several places can be

meaningful combined while user is not aware about underlying search engine. Two types

of the search engines exist[MYL02] namely general purpose search engine and special

purpose search engine. The general purpose search engine aims to provide capability to

search all type of the web page with respect to the user query like Google, Altavista,

Excite, Lycos and HotBot etc[MYL02]. The special purpose search engine retrieves the

document for a defined domain such as specific subject area. Example, Cora search engine

focus on computer science search paper and Medical World Search focus to retrieved the

medical information. It is believed that hundreds of thousands of special purpose search

engines currently exist on the web [BM]. The motivation for the metasearch [MW]

includes

• increase in the search coverage as rate at which the web has been increasing is

much faster than the indexing capability of a single search engine. Also, the

metasearch engine effectively combines the coverage of all underlying search

engines.

• retrieves relevant document by merging documents retrieved from underlying

search engine and ranking them with respect to the user query thereby making it

convenient and reliable for the user to retrieve relevant information.

• facilitate the invocation of multiple search engines. All relevant documents are

stored in database of each search engine. The user in order to retrieve most relevant

2

document needs to first identify search engines with most relevant information

followed by sending queries to each search engine in the corresponding query

format. The documents retrieved will not be ranked and it would become difficult

for the user to determine the relevant documents amongst the retrieved document.

This problem would be compounded if there are large number of search engines

each returning documents as per its ranking algorithm. As a result, it would be

more difficult to choose the relevant document. Metasearch search engine solves

this problem by select the appropriate search engines for a given user query and

merge the results retrieved from them.

Before discussing metasearch engine and its component in detail, a short overview of

some basic concepts of information retrieval (IR) is given. These concepts would be of

importance while discussing search engine selection and result merging in metasearch.

1.1 Information Retrieval

· Information Retrieval (IR) is a system that finds relevant information from the

unstructured documents that satisfies user information needs. Unstructured documents

[AMSOO] can be natural language text, audio, image, photographic image, video, etc. The

records that Information Retrieval (IR) addresses are often called "documents". These

documents can structured, semi-structured, unstructured or a combination of these.

According to [S89], "Information-retrieval system process files of records and requests for

. information, and identifies and retrieves from the files certain records in response to the

information requests. The retrieval of particular documents depends on the similarity

between the documents and the queries, which is measured by comparing the values of

certain attributes to records and information requests." Traditional IR assumes that the

basic information unit is a document, and a large collection of documents is available to

3

form th~ text database. In IR system, user sends a query according to their requirement.

Query has multiple forms [L98] of which one is passed to the information system. Query

may be a Keyword query, Boolean query, Phrase query, full document query or Proximity

query. Query format is a list of keywords, called "terms" which provides the semantic to

the documents. Ranking of the relevance documents uses the weight ofthe query.

1.1.1 Basic Concept of IR

Information retrieval (IR) [L98] helps users to find information matching their needs.

Technically, IR studies the learning, organization, storage, retrieval, and distribution of

information. Historically, IRis all about document retrieval, emphasizing document as the

basic unit. A general architecture of Information Retrieval [L98] is given in Figure 1.1.

User

feedback

Figure 1.1: Architecture of IR Model [L98]

In Figure 1.1, the user with information need poses a query called user query, to the IR

syste~ through the . query operations module. The retrieval module uses the document

index to retrieve those documents that contain some query terms and compute relevance

scores for them. This is followed by ranking them according to the scores. The ranked

documents are then presented to the user. The document collection is also called the text

database, which is indexed by the indexer for efficient retrieval. A user query represents

the user's information needs, which is in one of the following forms [L98] like Boolean

4

query, phrase query, keyword query, proximity query and full document query. Query

will perform some preprocessing operation before it is sent to the information retrieval

system. The query operations module can range from very simple to very complex. In the

former, it does nothing but just pass the query to the retrieval engine after some simple

preprocessing like stopword removal, stemming, digit, hyphen and number removal etc.

1.1.2 IR Models

An IR model [L98] governs how a document and a query are represented and how the

relevance of a document to a user query is defined. Several information retrieval model

exist, namely Boolean model, Vector Space model, Probabilistic model, Language model,

Inference model, Impact factor model, Connectivity model, Mutual citation model, Page

Rank model, HITS, SALSA model, Associative Interaction model and Bayesian model. In

information retrieval (IR) system each query and document are associated with a weight

[SK06]. Boolean Model is based on set theory and Boolean algebra. In the Boolean model

[L98], the weight of the queries and documents are represented as the set of terms with

each term either present or absent in a document. The weight wii (£ {0, 1}) of term f; in

document d
1

is 1 if term t;is present in document d1 otherwise weight of term t; is 0.

Query terms are combined using Boolean operators AND, OR and NOT which have their

usual meaning. Document retrieval using Boolean query depends on discrete value say

true or false i.e relevant or irrelevant. If for the given query it is true then relevant

documents are retrieved else irrelevant document will be retrieved. Boolean model has

some drawback like there is no partial matching, it is based on exact matching of the

query. Ranking of the relevant document is not provided by this model. Translating

information need to Boolean model. These limitations are overcome by the vector space

model.

5

In vector space model [L98] the document and query are presented as vector of query term

weight and document term weight. In this model, ranking of the retrieved document is

based on degree of the relevance to a query. The degree of relevance to the query is

computed by similarity between query and document. Let q = (q ~> q 2 , q 3 , ••• , q J,

w,, w 2 , w3 , ••• , w'" are document term weight then similarity between document and query

is computed by cosine similarity [L98] and is given by

lVI

Iwuxw;q
i=l

1"1
Iwuz x
i=l

1"1 L W;qz
i=l

The ranking of the document is done using their similarity value. The document having

higher similarity value would be ranked higher amongst documents. In vector space model

the weight w of term t in the document d . are computed as w = idlf x t+. where t+,,)s
I) I j lj l !j ij fj J_,

normalized term frequency and id/; is the inverse document frequency.

The term frequency [L98] is defined as term t; in the document dj is the number of times

that the term t; appear in the document dj called term frequency. The normalized term

frequency is given by

where the denominator is the frequency of the term that occur the maximum number of

times in a document d j and jij is the frequency of the term t; in the document 4- If term t;

does not appear in d j then normalized term frequency is zero i.e. tfif =0.

Inverse document frequency [L98] is computed by

6

idJ; = log !!_
dJ;

where N is the total number of document in the system and 4{; is the total number of

documents in which term t; appears at least once.

The weight w!i oftermt; in the document d1 is computed as

N
w = log-xtf, ..

lj dJ; lj

The term weight w!i of a query q can also be calculated as in [SB88) by

W; = 0.5 + tq X log -
(

0.5freq.] N

q · max {t;qfzq j HJ df;

where. freq;q is the raw frequency of term t; in collection document for query q.

The main advantage of vector space model is

• Partial matching is allowed to retrieve the relevant information.

• Term weight strategy improves information retrieval performance

• Ranking of the relevant documents based on cosine similarity between query and

document also improves the performance of retrieving relevant information.

Probabilistic models [BR04) used probability theory to evaluate probability of relevance

of a document to a user query. The probability of relevance is estimated using rigorous

experiments with innovative ideas. Unlike similarity-based models such as Boolean and

Vector Space Model, Probabilistic models are theoretically sound and realistically cater to

theIR problem. For a given query q and document 0 in a collection, the model tries to

find the probability of the document being relevant with respect to a given user query.

Let R be the set of relevant documents and R be the set of non-relevant documents then

the probability of that the documentd1 is relevant to query q is define by ~ ~ J and

7

probability that document d1 is non-relevant to query q is define by i ~). The

similarity between document d j and query q is define as [BR04]

sim (d. q) =
J,

p[YaJ
p[Yaj)

Now fmding the similarity between document dj and query q using the Baye's Rule

[BR04] is defined as

Where p[d i) is the probability of randomly selecting the document d j from relevant

document R. and p[d i) is the probability of randomly selecting document d 1 from the

'
non relevant document set R . p(R) is the probability that a document randomly selected

from the entire collection is relevant and p(R) is the probability that a document randomly

selection from the entire collection is non-relevant

Since the values of p(R)and p(R) are same for all document in collection therefore

similarity between document d j and query q is calculated as in [BR04] by

8

1.1.3 IR Problem

Problem in IR system is to identify the most relevant documents among retrieved

documents for a given user query i.e. ranking of documents is the key. The Boolean model

of IR system only returns matching documents. All relevant documents are not found in a

single search engine as it is specific to retrieve information of an organization and may not

return all relevant documents to a user query. One major problem in IR system is handling

the documents dynamically. Mostly information are retrieved from static database. These

problems are addressed by the metasearch engine.

1.1.4 IR Performance Evaluation

While considering retrieval performance evaluation for IR system [BR04], the retrieval

task to be evaluated is considered first. The retrieval task is user specifying his information

need through an interactive process in the IR system. The retrieval effectiveness needs to

be evaluated using an measure that aims to estimate the nature, quality, ability, extent, or

significance of the information retrieval system The performance of IR system depends on

value of precision and recall. A good IR system have high precision (retrieve very few

non-rel~vant document) value and high recall (retrieve as many relevant documents as

possible) value.

Let IAI be the number of relevant documents and IBI be the number of retrieved

documents then Precision is the fraction of retrieved documents that are relevant and

Recall is the fraction of relevant documents that are retrieved. These are given by [BR04]

Precision == IAI n IBI
IBI

9

1.2 Metasearch Engine

Metasearch engine is a tool that sends the user requests to multiple primary search engines

combine the results retrieved from them together and display them to the user. The

information on the web has increased rapidly over time. When query is submitted to the

metasearch engine, it decides which underlying search engine will be selected for a user

query, how to preprocess the submitted query with respect to best utilization of the

underlying search engine and how to merge result retrieved from the search engines. All

decision is taken by the metasearch engine based on keyword of user query. The

challenging aim of metasearch engine is the selection of appropriate search engines and

merging results retrieved from them, with respect to the user query.

1.2.1 Architecture of Metasearch Engine

In recent, WWW is use as largest digital library [KP+05] and people all over world use the

digital library to find the relevant information according to their information needs.

Information on the digital library is stored in disparate sources and each of these sources

has their own search capability. In general any organizations have their own web site and

also have their own search engine. When user poses a query to find relevant information,

the metasearch engine finds such information using its components. The main components

of a metasearch engine are search engine selector, document selector, query dispatcher and

result merger. The aim of metasearch is to maximize the precision or retrieval

effectiveness while minimizing the cost. In other words, the aim of a metasearch engine is

to retrieve most relevant information as much possible while retrieving few irrelevant

information for a user query. In order to carry out this, the metasearch engines select the

most appropriate search engine containing relevant information. Each selected search

engine should retrieve as much relevant information as possible. The architecture of a

10

metasearch engine, as in [MYL02], is shown in Figure 1.2. The metasearch engine consist

of four components namely Search Engine Selector, Document Selector, Query Dispatcher

and Result Merger and these are discussed next [MYL02]

Figure 1.2 Architecture ofMetasearch Engine [MYL02]

Search Engine Selector: The search engine selector selects the appropriate

underlying search engine with respect to the user query. A good search engine selector

should correctly identify search engines while minimizing identifying irrelevant search

engines. The approaches for selecting search engines are discussed later in this chapter.

Document Selector: The document selector determines what documents to retrieve

from the selected search engines. The aim is to retrieve more relevant documents with few

irrelevant documents. To find out the relevant information different similarity measure are

used which estimate the relevance between document and user query. The similarity is

measured based on a pre-defined threshold value. The high similarity value shows that the

information is more relevant with respect to the user query.

11

Query Dispatcher: The query dispatcher has a mechanism to establish a connection of

a server with each selected search engine in order to dispatch query to each of these search

engines. In general, the user query will be sent to the search engine after preprocessing.

Every search engine may or may not have the same query as posed on the metasearch

engine.

Result Merger: The result merger merges document retrieved from the selected search

engines. The result merger combines all the result into a single ranked list and arranges the

documents in descending order with their global similarity with respect to the user query.

The top most documents having higher global similarity in the raked list are returned to

the user through the interface.

1.2.2 Advantage of Metasearch Engines

There are several advantages [LBE] of the metasearch engine over the single search

engine

• Retrieves the documents from many underlying search engines which may be

missed by a single search engine

• Retrieves the documents from various underlying search engine in parallel way as

compared to retrieving documents from each search engine one at a time.

• Retrieves the documents by eliminating duplicates from various search engines as

compared to retrieving documents from each search engine separately resulting in

duplicate documents.

• Retrieves the documents from many underlying search engine enables exploring

how to best combine the separate result lists.

Next, Search Engine Selection and Result Merging are discussed m the subsequent

sections

12

1.3 Search Engine Selection

When a user poses a query to the metasearch engine, it invokes the search engine selector

to select the appropriate search engines that satisfies the information needs of the user

query. A good search engine selector uses the different selection algorithms to identify

potentially useful search engine for a given user query. The search engine selection

approaches can be classified into three categories [MYL02].

Rough Representative Approaches: In rough representative approaches, the

content of each underlying search engines are often describe by using few keywords or

paragraph [MYL02]. The rough representative are often generated manually and provides

a general idea on what the search engine is about. The rough representative approaches is

described in ALIWEB [KM94]

Statistical Representative Approaches: The statistical representation approaches

describes the content of the search engine using different kind of statistical information.

The statistical information can be documents frequency of the term, average weight of

term in the documents [MYL02]. There are many kind of approaches based on statistical

information like Web Index and Search Engine (D-WISE) [YL96], Collection Retrieval

Interface Network CORI-Net [CLC95], Generalization Glossary of Servers' Server

gGLOSS[GGM95].

'Learning Based Approaches: The learning based approaches determine the utility

of a search engine for a new user query based on retrieval experience result from the past

queries. The experience result may be obtained using the training query. Using a training

query [VGL95a] to build a model of the distributions of the relevant documents retrieval

by all search engines and using this model to obtain the maximum number of documents

from each search engines. There are three type of learning approaches namely static,

13

dynamic and combined or hybrid [MYL02]. In the static learning approach, the retrieval

knowledge, once learned, will not be changed therefore it is not suitable for search engines

and query patterns that changes frequently. Modeling Relevant Document Distribution

(MRDD) approach [VGL95b][MYL02] is a static learning approach. On the other hand

dynamic learning approaches the retrieval knowledge change with changes in the content

of the search engines and the query patterns. Savvy Search engine [DH97] is a dynamic

learning approach. The hybrid approach encompasses both static and dynamic learning.

ProFusion approach [FG99] is used to select the search engine employing the combined

learning approach i.e. static as well as dynamic approach

Some of the search engine selection approaches are discussed next.

1.3.1 D-WISE (Distributed Web Index Search Engine)

D- WISE approach [MYL02] is based on static approach in which selects appropriate

search engines using the document frequency of each term as well as documents in each

underlying search engine. For a user query q, it computes the ranking score of the search

engine with the respect to the user query. The search engines with higher score have most

relevant documents compare to the lower score search engines. Ranking score of the

search engine is computed in the following way:

First compute the C~i [MYL02]

dfu

N

df.. I dfkj
'! + -"k'-"""-i -

N

Ink
k"i

14

where

dfif = documents frequency of j'" term in the i'" search engine

n;= total number of document in i'" search engine

CVif= cue validity ofj'"term for the i'" search engine

N = total number of distributed search engine

AVCi =average of CVif for all search engines

cvvj = variance of the cvij for each j'" term over all search engines

Second compute the variance of the CVif for each j'" term over all search engines

[MYL02]

~ (cv - ACV)
2

cvv. = L.. lj
1

1 i~l N

Let two terms t
11

andt.,, if CVV
11

;::: CVV., then term t)s more weighted than term t., for

different search engine

Third compute the ranking of the i'" search engine with respect to the user query[MYL02]

M

r; = L:cvvj ·dfij
)~I

where M is number of query terms and r; is the ranking score of i'" search engine.

The search engines with higher value of r; would be selected by the meta search engine.

1.3.2 Collection Retrieval Inference Network (CORI-Net)

In CORI-Net approach [CLC95], the selection of search engine is carried out using two

pieces of information for each distinct term i.e. document frequency and search engine

frequency. The technique of documents ranking with respect to the user query is known as

inference network [CLC95]. If a term appears in k document in the search engine, the

15

term is repeated k times in the super document. Super document containing all distinct

term in the search engine, As a result, the document frequency of a term in the search

engine becomes the term frequency in the super document [CLC95]. Let N be the number

of search engines, dfif is document frequency of j'" term in i'" component search engine

and se J is search engine frequency of j'" term [SJ04]. If Di is the super documents of all

search engines, the relevant document due to the j'" term is computed as [SJ04]

P(;i J = C1 + (1- c~)·ru ·1 1

where

T u = C
2

+ (1 - C
2

) df ij
dfij + K

lo (N + 0. 5 J
g dbf j

I
log (N + 1 . 0)

()
dw.

K=C·l-C +C·--'-
3 4 4 d a w;

Where dw; is number of words in D; and adw; is average number of words in D;. The

value of C1, C2, C3, C4 are estimated empirically by performing experiment on the actual

text collection [SJ04]. P(;;; J is given by tfiv x idfw denoting the weight of term

t J in the super doculllent corresponding to search engine D; and can be estimated, for query

term weight t J in q. Now ranking score of each search with respect to given query can be

calculated as [SJ04]:

a i = p(_!L) = I p(!L) · P(~)
D, 1 = 1 t, D,

where k is total number of query terms. The search engines are ranked based on a1 and the

top-rakod search engine are thereafter selected by the metasearch engine.

16

1.3.3 Query Similarity (qSim)

qSim [SLH09] algorithm utilize the retrieved results of past queries for selecting the

appropriate search engines for a specific user query. The selection of the search engines

are based on the value of relevance between user query and the search engine say

ref (s j lq), which indicate the how likely it is for the search engine to be relevant to the

user query q or what percentage of the relevant documents for the user query q is in the

search engine s j . Ranking of the search engines is carried out according to the value of

rei (s j lq). Higher value of rei (s j lq) means it is more appropriate search engine contain

more relevant information for the user query. The value of rei (s j lq) is depend on

rel(sjiPi) andsim(pilqi), where rel(siiPi) is the relevance between search engines and

past queries and sim (pi lqJ is the similarity between all past queries with user query. The

search engines with higher value for ref (s j lq) are selected by the metasearch engine.

1.3.4 Modeling Relevance Document Distribution (MRDD)

Modeling relevance document distribution algorithm [VGL95B][MYL02] is a static

learning based approach, which uses a set of training queries for learning. With the help of

training queries, it identifies all the relevant documents returned from every search engine

and arrives at a distribution vector for each relevant document. Similarly, it finds the

distribution vector for each training query. With the help of cosine distance similarity

function it finds the similarity between user query and all training queries and identifies

the k-most similar training query and find the average relevant document distribution

vector over k v1ector corresponding to the k-most similar training queries. Finally, average

distribution vector is used to identify the appropriate search engines.

17

1.3.5 ProFusion Approach

ProFusion approach is a hybrid learning approach, which combines both static and

dynamic learning approach. In the ProFusion approach, when a user query is received by

the metasearch engine, the query is first mapped to one or more categories [FG99]. The

query is mapped to a category that have at least one term that belong to the user query.

The categories can be science and engineering, "Computer Science", "Medical and

Biotechnology", "Business and Finance" and so on. The ProFusion approach considers

thirteen categories. If C is a category and S is a search engine and set of training queries

are identify for search engine then a score reflecting the performance of search engine S

and category C is computed by [MYL02]

\0

C X
R _,i_::=_,_l __ X __

I N

10 10

Where C is the constant and R is the number of relevant documents among top-1 0

retrieved documents. Value ofNi is calculated as

~ =X, if i1
h ranked document is relevant

= 0, otherwise

Similarly the score for all training queries associated with category C is averaged for

search engine S and this average is the confidence factor. The sum of the confidence factor

of each search engine with respect to query q be called ranking score of the search engine

categories. The score of the search engine with respect to a given query is also updated

dynamically [MYL02] based on retrieved result. If the user considers document d to be

relevant and d is not the top most documents then the score of the search engine having

document d is increased and score of all other search engine whose documents are ranked

higher then d is decreased. The search engines with higher score are selected by the

metasearch engine.

18

1.4 Result Merging

After the search engines are selected for the user query, the queries are processed against

the selected search engines and documents are retrieved from each of them. These

retrieved documents are merged into a single ranked list and are arranged in descending

order of their global similarities. The result merging is a difficult task because the

documents are stored in different type of search engines and document scores returned by

the different search engine cannot be compared directly. The result merging of documents

depend on the degree of overlap among documents retrieved from the selected search

engine for a user query. If search engines are [MYL02] identical then many ranking

algorithms are applied on same search engine to improve the retrieved effectiveness. This

result merging problem is called data fusion [VGL95a]

Some of the results merging approaches are discussed next.

1.4.1 CORI Merging Technique

The CORI merging algorithms is associated with the CORI search engine selection

algorithm. It uses a simple heuristic to normalize the search engine document scores. The

Normalized score suitable for merging is calculated as in [NF03] as

C'=
ci- cmin

cmax - c min

which shows that the normalized i1
h search engine and normalized search engine score is

within the range [0, 1]. To find the value of Cmax and Cmin using [SC03a] formula as given·

below. ForCmax, set the value of T=l and for Cmin set the value of T=O for each query

term.

T= df
dj+50+l5QxCW/

javg_cw

19

where

df is the number of documents in i th search engine that contain rk ,

cw is the number of terms occurrences in i1
h search engine

avg_ cw is the average of cw for the search engine to be ranked

If D max is the maximum score of document and D min is the minimum score of the

document then normalized score of the search engine is calculated as in [NF03] as

D'=
D - D min

D max - D min

The document score, called global normalized score of each document for result merging

is calculated as in [NF03] as

D" = 1.0 * D'+0.4 * C'* D'

1.4

The documents are ranked based on the value of the document scores. The documents The

documents with higher score are displayed to the user.

1.4.2 Semisupervised Learning Approach

The semi-supervised learning approach [SC003a] for result merging broadcast the user

query to all the underlying search engines and query is also sent in parallel to the

centralized sample search engine and centralized search engine [SC03b] which returns the

ranked list of documents score and this document score list is provided to the result

merging. The result merging is based on two assumptions. First, when the·user poses a

query to the selected search engine then some of the documents retrieved from underlying

search engine will be also be retrieved from the centralized sample search engine [SC03b].

Second, given specific search engine and search engine independent score for a small

number of documents it maps the entire specific search engine score to their corresponding

search engine score using the learning function.

20

1.4.3 LMS Merging Technique

LMS merging [RAS03] is use the number of document retrieved from search engines to

calculate the Merging Score and it is used to calculate the score of every search engine. In

LMS technique, the search engine score is calculated using the proportion of documents

retrieved from each search engine. If ICI is the number of search engine and l; is the total

number of documents return from i'h search engine then score of the i'h search engine is

calculated, as in [RAS03], as

I l * K I si =log 1 + -~c-~-
L zj
J=l

where K is a constant

The score is then used to calculate the weight of the search engine as in [RAS03] as

Where S is the mean score of search engine scores and S; is the score of i'h search

engine. The ranked document RD is calculated as RD = S; x w; . The documents with

higher value of RD are displayed to the user.

1.4.4 Abstract Merging approach

The abstract merging approach [LZ+08] is used to merge results retrieved from the

i.mderlying search engine with the relevance between user query and abstract information

of each search engine. In this approach, first the relevance between abstract with all term

in query is calculated. If the term is not present in the query then the relevance between

abstract and term will be zero otherwise relevance will be calculated. Using the relevance

between term and abstract, the relevance between user query and abstract is computed.

21

The relevance between user query and abstract is used to rank the documents. The high

ranked documents are then displayed to the user.

1.4.5 OW A-Based Merging Approach

The OW A is an order weight average operator which is use the rank the result return from

underlying search engines. The OWA-Based Merging Approach [DDR05] is basically

based on fuzzy set theory that uses the quantifier Ordered Weighted Averaging (OWA)

operators. The value of quantifier is always greater than zero. In this approach, the

position of all documents returned by the search engine is determined and the weight of

the search engine is computed. These are then used to generate the rank list of documents

and higher ranked documents are displayed to the user.

1.5 Aim of the Dissertation

The dissertation aims to study, implement and compare the following existing algorithms:

1. Search engine selection algorithm query Similarity (qSim) and Modeling

Relevance Document Distribution (MRDD)

2. Result merging algorithms Abstract Merging and Order Weight Average

1.6 Organization of the Dissertation

The dissertation is organized as follows: Chapter 2 compares search engine selection

algorithm query Similarity (qSim) and Modeling Relevance Document Distribution

(MRDD). The result merging algorithms Abstract Merging and Order Weight Average are

discussed in chapter 3. Chapter 4 is the conclusion.

22

CHAPTER 2

Search Engine Selection

Search engine selection main task is to identify the most useful search engines that are

likely to contain relevant documents for the user query. The objective of search engine

selection is to improve efficiency as it would resuh in sending query to only potentially

useful underlying search engines. Several algorithms exist for search engine selection like

qSim approach[SLH09], Modeling Relevant Document Distribution (MRDD)

[VGL95b][MYL02], Generalization Glossary of Server' Server (gGLOSS)[GGM95],

Distributed Web Index Search Engine (D-WISE)[YL96], Collection Retrieval Interface

Network (CORI-Net)[CLC95], Savvy Search engine [DH97], ProFusion [FG99], Neural

Network approach[RD+86], Relevant Document Distribution Estimation Method for

Resource Selection (ReDDE) [SC03b], Light Weight Probes (LWP) Approaches [HT99],

Decision theoretic framework (DTF) approach [F97], Learning from Past Queries for

resource selection (LPQ) approach [SLH09]. Few of these approaches have been

discussed in Chapter 1. A good search engine selection algorithm should identify potential

useful search engine that satisfies the information needs of the user query .In this chapter,

23

the search engine selection algorithms like query Similarity (qSim), Modeling Relevant

Document Distribution (MRDD) algorithms are discussed and compared.

Query Similarity (qsim)

The qSim algorithm [SLH09] use a set of past queries say p = {p1, p 2 , p 3 , ••• , pJ, where

P; indicate i'h past query and set of search engine s = {s~>s 2 ,s3 , ••• ,sJ for a user q as an

input. In step 1, it selects the search engine for every past query and generate a ranked list

using round robin merging [VT97] technique of documents return from search engine for

each past query P;. In step 2, the algorithm computes the percentage of relevant

documents for the query Pi in search engine Sj i.e. Re l (X) . In the next step, the ranked

list of documents with respect to the query is generated. In step 4, the

similarity Sim (~) between user query and the past queries is computed. This similarity

is normalized in step 5. In step 6, the relevance between the search engine and the user

query Re l (X) is computed using Re l (X) and Sim (~)as

The search engines are ranked in descending order of Re l (s 1 lq). A higher value of

Re l (s1iq) implies that the search engine contains most relevant documents with respect

to user query q. Thus, the search engines having higher value for Re l (;{)are selected.

The algorithm based on qSim [SLH09] is given in Figure 2.1. The algorithm takes the past

queries, user query and the search engines as input and produces ranked list of top-most

search engines as output.

24

Input: Let setH [p, q, s], where pis the number of past query, q is the user query, and sis the

number of search engine.

Output: Ranked list of topmost search engine.

Method:

Stepl: For each i th past query

Rank the documents retrieved from all search engines into single ranked list

Step2: Compute

Re I (XJ = topT doc ~"' m"'''
ranked list

Rei (sddoc)

T

where T is a pre-defined number of top documents.

if(doc &s.)then Rel(si/)=I
1 /doc

Otherwise Rc/(sYctoc)=o

Step3: Generate the ranked list Rq of documents returned from the search engines for the

user query q

Step 4: For each i th past query p 1 and user query q, compute the similarity using

Sim (p , / q) = -
1

-
1 -~ L Score (doc, R •' R q)

R pi doc t:RP,r.Rq

where R p; and R q are ranked list of past query and user query returned from

the search engines and Score function is calculated as

()
l
doc ranked in RP,

Score doc, RP'· Rq = 1- !Rr, I

StepS: Normalized the value of Sim (p
1
[q) using

MAXSIM• =max, Sim{p,fq)

CUTSIM • = 0.8 * MAXSIM •

Normalized Sim (p,!q) = () l 0 if Sim{p,lq) < CUTSIM_)

Sim p,fq -CUTSIM•
otherwise

MAXSIM• -CUTS!Mq'

Step 6: For user query q

·th
For (each J search engine) compute

Rel(sijq)= L Rel(s,jp,)x Sim(p,jq)

Step7: Ranked the search engine according to the value of ReI (sjlq). A larger value of

Re 1 (sj[q) is more likely means it contain most relevant documents with respect

to the user query q.

Figure 2.1 Query Similarity algorithms based on [SLH09]

25

2.1.1 An Example:

Let the set :of training queries be PQ = {PQl, PQ2, PQ3, ... , PQ6} and Jet the set of search

engines be SE= {SEl, SE2, ... , SEIO} and a user query be q are input to the algorithm.

Step I: Training queries along with the terms in them are shown in Table 2.1.

PQl 14 8 7 28 12 30
PQ2 14 26 17 5 6 30

PQ3 2 26 23 22 20 4

PQ4 2 29 11 18 19 7
PQ5 3 15 14 13 10 1

PQ6 18 7 20 27 25 19

Table 2.1

Let the user query UQ have the following terms 8, 10, 21, 38, 42, 40.

For every past query PQi, the search engines selected are shown in Table 2.2.

PQl SE1 SE2 SE3 SE4 SE6 SE8

PQ2 SEl SE3 SE4 SE5 SE7 SE9 SEIOJ
PQ3 SE2 SE3 SE4 SE6 SE8 SE9

PQ4 SE2 SE3 SE4 SE5 SE7 SEIO

PQ5 SE3 SE4 SE5 SE8 SE9

PQ6 SE2 SE4 SE5 SE7 SE9 SEIO

Table 2.2

Past Query PQI= (14, 8, 7, 28, 12, 30) is apply on all search engines and relevant documents are

retrieved and are shown in Table 2.3.

Dl D2 D3 D4 D5 D6 D7 D8 D9 DIO Dll Dl2 Dl3 Dl4 Dl5 _I

SEl 38 50 37 23 36 19 44 50 33 46 43 11 10 30

SE2 47 18 14 33 13 22 20 10 9 45 7 15 49 1 31 J
SE3 26 38 5 42 16 24 44 48 25 18 13 30 36 26
SE4 13 '6 23 16 15 29 2 28 20 25 16 44 1

SE6 13 30 33 21 14 25 17 16 45 37 49 6 35

SE8 38 22 7 45 I 47 14 29 3 2 11 48

Table 2.3

Single merge list of documents return by six search engine for past query PQl using Round Robin

algorithms [VT97] is shown in Table 2.4.

26

[_@] 38 147 I 26 113 I so 118 I 6l3o In 137114 Is 123 133 17 142 I . I . I TD I

Table 2.4

Now the top 15 documents are selected from the ranked list of documents as shown in Table 2.5.

Table 2.5

Next Step is to computeRel(sjiPQ), between search engine and past query PQI. These are shown

in Table 2.6 for T=l5

Re l(s11PQ1) Re l(s 2 IPQ1) Rel(s31PQJ Rel(s4 1PQJ Rel(s61PQJ Rel(s81PQ1)

0.4000 0.4000 0.466 0.200 0.4000 0.2666

Table 2.6

PQ2= (14; 26, 17, 5, 6, 30) is applied on all search engines and documents are retrieved as shown

in Table 2.7

Dl D D3 D4 D5 D6 D7 D8 D9 DIO Dll Dl2 Dl3 Dl4 DIS

SEI 44 16 36 43 39 9 8 25 28 II 13 20 40 27 17

SE3 6 40 50' 41 26 32 43 27 48 2 20 47 23 22 18

SE4 18 40 9 10 2 29 17 44 30 23 22 38 43 11 41

SE5 13 40 6 50 38 14 37 41 1 42 20 17 27

SE7 29 18 46 3 26 8 1 34 50 24 42 48 37 6 27

SE9 31 3 25 17 18 41 9 45 48 23 26 29 19 39

SEIO 3 44 12 2 40 45 9 27 15 25 31 16

Table 2.7

Single merge list of documents return by the seven search engines for past query PQ2 using Round

Robin algorithms [VT97] is shown in Table 2.8

I RD I 44 I 6 118 113 I 29 I 31 I 3 116 I 40 I 36 I 50 I 9 I 46 I 25 112 I . I . I . I TD I

Table 2.8

Top 15 documents from ranked list of documents are shown in Table 2.9

Table 2.9

27

Next Step computes Rel(sjJPQ) between search engine and past query. This is shown in Table

2.10 for T= 15 for past query PQ2

Rel(s11PQ2 Rel(s31PQ2 Rel(s4 1PQ2 Rel(s51PQ2 Rel(s7 1PQ2 Rel(s9 1PQ2 Rel(s10 1PQ2

0.466 0.266 0.333 .266 0.400 0.333 0.533

Table 2.10

PQ3= (2, 26, 23, 22, 20, 4) is applied to all six search engines. The documents retrieved are shown

in Table 2.11

D1 D D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 I D15 I
SE2 7 10 45 1 12 39 9 21 41 44 6 29 42
SE3 32 34 26 36 11 9 4 12 40 42 37 48 17
SE4 18 46 14 26 41 48 37 27 24 36 49 31 44

SE6 17 10 27 20 16 8 47 11 16 30 5 40 26 14 1

SE8 29 15 4 3 17 37 43 35 38 28 40

SE9 44 25 21 18 19 11 35 38 34 50 21 41 24

Table 2.11

Single merge list of documents return by six search engines for past query PQ3 using Round Robin

algorithms (VT97) are shown in Table 2.12

I RD I 7 I 32 I 18 I 17 I 29 I 44 I 10 I 34 I 46 I 15 I 25 I 45 I 26 I 14 I 27 I 21 I . I . I LD I
Table 2.12

The top 15 documents selected from the ranked list of documents are shown in Table 2.13

Table 2.13

In the next step, the Rel(sjJPQ) is computed between search engines and past query PQ3. This is

shown in Table 2.14 for T=I5.

z(s2 IPQ3) Rel(s3 IPQJ Re l(s 4 IPQ3) Rel(s6 1PQ3) Re l(s8 1PQ3) Re l(s9 jPQ3)

0.333 0.266 0.400 0.333 0.200 0.266

Table 2.14

PQ4= (2, 29, 11, 18, 19, 7) is applied on the search engines and documents are retrieved and are

shown in Table 2.15

28

Dl D D3 D4 D5 D6 D7 D8 D9 DlO Dll D12 Dl3 D14 I D15 I
SE2 42 14 35 19 29 23 30 13 36 44 28 38 27
SE3 47. 48 42 29 24 25 5 23 36 15 38 37 43
SE4 17 4 50 20 26 14 29 44 15 1 7 43 36 34 I
SE5 41 36 33 32 46 29 27 34 8 19 20 12 9 7 I
SE7 27 12 36 19 11 44 39 18 46 41 16 23
SEIO 24 20 47 21 17 4 12 18 38 16 50 6 26 48 J

Table 2.15

Single merge list of documents returned by six search engines for past query PQ4 using Round

Robin algorithms [VT97] is shown in Table 2.16

I RD 142147117141 l27l24l14l48l4l36l12l2o l35l5o 1331.1 TD I
Table 2.16

To select top 15 documents from ranked list of documents are shown in Table 2.17

Table 2.17

Next Step computes Rel(sjiPQ) between search engine and past query PQ4. This is shown in

Table 2.18 for T=15.

Rel(s2IPQJ Rel(s3iPQ4) Re l(s 4 1PQ4) Re l(s 51PQ4) Rel(s7 1PQ4) Rel(s10 iPQ4)

0.333 0.333 0.400 0.400 0.266 0.533

Table 2.18

PQ5 = (3, 15, 14, 13, 10, 1) applied on search engines and documents are retrieved as shown in

Table 2.19

D1 D D3 D4 D5 D6 D7 D8 D9 D10 D11 Dl2 Dl3 I Dl4 I Dl5 I
SE3 4 31 8 42 26 21 38 27 10 22 28 20

SE4 28 17 8 40 16 31 42 12 45 25 36 6 21 I 39 I
SE5 15 45 8 36 40 7 47 25 5 35 30 19 11 I 48 I
SE8 25 7 5 24 12 20 4 33 31 14 43 46

SE9 35 6 23 36 12 15 3 47 41 50 34 11 13 1 44 1 20 1

Table 2.19

Single merge list of documents return by six search engine for past query PQ5 using Round Robin

algorithms [VT97] is shown in Table 2.20

29

I RD 14128 lis 12s I 35 131 II714s I 7 I 6 I 8 I s 123 142 l4o 112 I . I . I TD I

Table 2.20

Top 15 documents are selected from ranked list of documents as shown in Table 2.2I

Table 2.21

Next Step Computes Rel(s
1
IPQ) between search engine and past query PQ5 are shown in Table

2.22 for T=15

Rel(s31PQ5) Re l(s 4 1PQ5) Re l(s 5 IPQ5) Re l(s81PQ5) Re l(s9 IPQ5)

0.333 0.600 0.533 0.333 0.266

Table 2.22

PQ6= (18, 7, 20, 27, 25, 19) is applied to six search engines and documents are retrieved as shown

in Table 2.23

Dl D D3 D4 D5 D6 D7 D8 D9 DIO Dll D12 D13 Dl4 DIS!
SE2 40 30 24 9 4I 5 26 21 8 45 48 14 I 15

SE4 6 47 14 13 36 33 48 43 26 3 38 29 34 45 s I
SE5 8 29 I3 10 43 11 20 47 31 7 50 49 21 30

I SE7 18 1 25 3I 40 13 30 38 36 44 12 34 16 8
. SE9 43 42 12 II 17 31 IS 20 22 5 2I 48 4

SElO 30 31 3 4I 50 10 36 40 37 21 20 50 27 24

Table 2.23

Single merge list of documents return by six search engines for past query PQ6 using Round Robin

algorithms [VT97] is shown in Table 2.24

I RD 140 I 618 II8I43 130 147 I 29 II 142 131 124 II4 II3 125 1121 . I . I TD I

Table 2.24

Top 15 documents from among the ranked list of documents are shown in Table 2.25

Table 2.25

In tbtc next step, Rel(s
1
lPQ) is computed between search engines and past query PQ6 are shown

in Tilble 2.26 for T=15

30

Rel(s2 IPQ6) Rel(s4 IPQ6) Rel(s51PQ6) Re l(s 7 1PQ6) Rel(s9 1PQ6) Rel(s10 IPQ6)

0.400 0.400 0.466 00533 00200 00266

Table 2026

Step3: UQ= (8, 10, 21, 38, 42, 40) applied on the selected search engines and documents

retrieved are shown in Table 2027

PI D D3 D4 D5 D6 D7 D8 D9 DIO Dl1 Dl2 D13 DI4 I DI5j

SEI 32 30 25 31 II 27 25 33 8 37 43 2 23 6 I
SE3 34 47 43 I9 8 35 21 9 37 40 2 3 50

SE4 37 30 II 3 IO 25 44 32 4 26 16 43 9 21 1

SE6 45 1 28 25 3 27 14 48 29 44 9 15 34 36 I
SE9 50 7 32 10 23 11 5 3 47 20 17 43

SElO 39 44 2 7 15 29 6 47 50 24 18 45

Table 2027

Single merge list of documents return by the six search engines for the user query UQ using Round

Robin algorithms [VT97] are shown in Table 2028

I RD 132 I 34 I 37 I 45 I 50 I 39 I 30 I 47 II I 7 I 44 I 25 143 111 I 28 I 2 I 0 I 0 I TD I
Table 2028

Top 15 documents from ranked list of documents is shown in Table 2029

Table 2029

Step4: Now find the similarity between user query and all past queries using is shown in Table

2030

Sim(PQi/q)=-IRl I Z:score(doc,Rr0iRq),
PQi docERp01 rlRq

and the score is defined as

() doc ranked in R rQi
Score\doc, RrQi,Rq = 1- I I

RPQi

31

doc ranked in Rq

IRql

where IRPQi I and IRql are the number of documents in merged ranked list with respe?t to

the training queries and user query respectively.

Sim(PQ11q) Sim(PQ2 1q) Sim(PQ31q) Sim(PQ4 1q) Sim(PQ51q) Sim{PQ6 1q)

0.2044 0.1200 0.2488 0.0666 0.097 0.2755

Table 2.30

Step 5: Sim (PQ;Iq) is normalized as shown in Table 2.31 using the following

MAXS!Mq = 0.2755

CUT MAX q =0.8*0.2755=0.2204

{

0 if Sim(PQ; lq) < CUTSIM q}
Normalized Sim(PQiq) = Sim(PQ;Iq)-CUTS!Mq

otherwise
MAXSIM q - CUTSIM q '

Normalized Sim{PQ11q) 0

Normalized Sim(PQ2 1q) 0

Normalized Sim {PQ31q) 0.5154

Normalized Sim (PQ4 1q) 0

Normalized Sim (PQ51q) 0

Normalized Sim (PQ6 1q) 1

Table 2.31

Step 6: Find the value of Rel(sjq) are shown in Table 2.32 using

Rel(sjq)= IRel(sjp;}x Sim{PQjq)

32

Re1(s 1 /q) 0.000

Re1(s 2 /q) 0.5716

Re1(s 3 /q) 0.1325

Rel(s 4 /q) 0.6061

Rel(s 5 /q) 0.4000

Rel(s 6 /q) 0.1716

Rel(s 7 /q) 0.5333

Rel(s 8 /q) 0.1030

Rel(s 9 /q) 0.3370

Rel(s 10 /q) 0.2660

Table 2.32

The search engines are ranked according to the value of Rel(s d q) in descending order.

The search engines as per their rank are shown in Table 2.33

Table 2.33

The top ranked search engines are selected for retrieving the relevant documents for the

user query.

2.2 Modeling Relevant Document Distribution (MRDD) Approach

The Modeling Relevant Document Distribution (MRDD) approach[VGL95b][MYL02] is

a learning based approach for search engine selection, which uses a set of training queries

to identify the most appropriate search engines. Each training query is applied to each

search engine and documents are retrieved from the underlying search engine. The

relevant documents among them form the distribution vector. Using the cosine distance

similarity function, the similarity between user query and training queries is computed and

then k- most similar training queries are considered. For each search engine average

relevant document distribution vector over the k vector corresponding k-most similar

33

training queries and search engine is obtained. The average distribution vectors are use to

identify the appropriate search engine for retrieving documents for the user query. The

algorithm based on MRDD [VGL95b][MYL02] is shown in Figure 2.2

Input: set of training queries TQ, user query UQ and set of search engines SE

Output: Ranked list of topmost search engines

Method:

Step I: For each training query TQ,

For each search engineS;

Find the documents

Step2: Arrive at the distribution vector of relevant documents for each training query for each

search engine

i.e. <r~, r2 ••• r,> where ri is a positive integer indicating that ri top-ranked documents

should be retrieved from the search engine in order to obtain i relevant documents.

Step3: Compute the similarity between user query and all training queries using

cosine similarity as given below

'\' WQ . X W . . L... . .f 1.}

Sim(UQ,TQ,)=~', ~' I wQ.J x I W;~;
1 '

Step4: Find top k similar queries to the user query

StepS: For each search engine S
1

Compute the average distribution vector across top-k similar training queries

Step6: select the search engine using the average distribution vector

Figure 2.2 MRDD algorithms based on [VGL95b] [MYL02]

2.2.1 An Example

Let us consider four search engines each containing fifteen documents and let there be

eight training queries with six terms as shown in Table 2.34. Each training query is applied

to every search engine and documents are retrieved.

34

Let eight training queries be as shown in Table 2.34

TQ1 1 0 1 0 0 1
TQ2 1 1 1 1 1 0
TQ3 1 0 1 1 0 0
TQ4 0 0 0 1 1 0
TQ5 0 0 1 0 0 1
TQ6 0 1 1 1 1 0
TQ7 1 0 0 0 0 1
TQ8 0 0 1 0 1 1

Table 2.34

Training Query TQ1= (1, 0, 1, 0, 0, 1) is applied on four search engines and the retrieved

documents are shown in each search Engine is shown in Table 2.35

SEl 1 1 0 1 0 1 1 1 1 1 0 0 1 0 1
SE2 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
SE3 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0
SE4 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1

Table 2.35

Distribution vector (DV) for training query TQ1= (1, 0, 1, 0, 0, 1) for each search engine

is shown in Table 2.36

Search Engine Distribution Vector
SE1 1,2,4,~7,8,9, 10, 13,15
SE2 3, 4, 5
SE3 1, 4, 5, 6, 10, 14
SE4 1, 3, 8, 9, 12, 13, 15

Table 2.36

Training Query TQ2 = (1, 1, 1, 1, 1, 0) is applied on four search engines and the retrieved

documents are shown in Table 2.37.

SEl 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0
SE2 0 1 0 0 0 0 1 1 1 1 1 0 1 0 0
SE3 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1
SE4 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0

Table 2.37

Distribution vector (DV) for training query TQ2 = (1, 1, 1, 1, 1, 0) for each search engine

is shown in Table 2.38

35

Search Engine Distribution Vector
SE1 1, 3, 5, 8, 9, 10, 11
SE2 :2, 7, 8, 9, 10, 11,13
SE3 1,2,5,6, 7, 10, 11, 12, 13, 14,15
SE4 1, 2, 11, 12, 13, 14

Table 2.38

Training Query TQ3= (1, 0, 1, 1, 0, 0) is applied on the four search engines and the

retrieved documents are shown in Table 2.39

SEl 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1
SE2 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0
SE3 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1
SE4 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1

Table 2.39

The distribution vector for training query TQ3= (1, 0, 1, 1, 0, 0) for each search engine is

shown in Table 2.40

Search Engine Distribution Vector
SEl 1, 8, 9, 14, 15
SE2 1, 2, 3, 4, 7, 9, 11, 12, 13, 14
SE3 2, 3, 4, 7, 8, 9, 12, 13, 14, 15
SE4 2, 4, 5, 6, 7, 8, 9, 13, 15

Table 2.40

Training Query TQ4= (0, 0, 0, 1, 1, 0) is applied on the four search engines and retrieved

documents are shown in Table 2.41

SE1 1 0 1 0 1 1 r 1 1 0 0 1 1 0 1
SE2 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1
SE3 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1
SE4 0 0 1 0 1 0 1 1 0 0 0 0 0 1 1

Table 2.41

Distribution vector (DV) for training query TQ4= (0, 0, 0, 1, 1, 0) over all search engine is

shown in Table 2.42

36

Search Engine Distribution Vector
SE1 1, 3, 5, 6, 7, 8, 9, 12, 13, 15
SE2 3, 4, 5, 7, 14, 15
SE3 3, 10, 11, 13, 15
SE4 3, 5, 7, 8, 14, 15

Table 2.42

Training Query TQS= (0, 0, 1, 0, 0, 1) is applied on the four search engines and the

retrieved documents are shown in Table 2.43

SE1 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1
SE2 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1
SE3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
SE4 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1

Table 2.43

Distribution vector for the training query TQS= (0, 0, 1, 0, 0, 1) for each search engine is

shown in Table 2.44

Search Engine Distribution Vector
SE1 2, 4, 5, 6, 8, 9, 10, 13, 15
SE2 2, 4, 7, 8, 9, 11, 12, 13, 15
SE3 1,2,3,4,5,6, 7,8,9, 10, 11, 12,15
SE4 2, 3, 4, 7, 8, 11, 13, 14, 15

Table 2.44

Training Query TQ6= (0, 1, 1, 1, 1, 0) is applied on the four search engines and the

retrieved documents are shown in Table 2.45

SE1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1
SE2 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0
SE3 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1
SE4 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0

Table 2.45

Distribution vector for training query TQ6= {0, 1, 1, 1, 1, 0) for each search engine is

' shown in Table 2.46

37

Search Engine Distribution Vector
SE1 1, 3, 4, 5, 6, 7, 10, 11, 13, 15
SE2 1, 3, 6, 10, 14
SE3 6, 7, f1, 12, 14, 15
SE4 1, 4, 7, 8, 9, 12, 14

Table 2.46

Training Query TQ7= (1, 0, 0, 0, 0, 1) is applied on the four search engines and the

retrieved documents are shown in Table 2.47

SE1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0
SE2 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0
SE3 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1
SE4 0 1 1 0 0 1 0 1 1 0 1 1 0 0 0

Table 2.47

Distribution vector for the training query TQ7= (1, 0, 0, 0, 0, 1) for each search engine is

shown in Table 2.48

Search Engine Distribution Vector
SEl 1, 3, 5, 6, 9, 10,
SE2 1, 2, 3, 4, 8, 13, 14
SE3 1, 2, 3, 5, 8; 9 ,10 11,13, 14, 15
SE4 2, 3, 6, 8, 9, 11, 12

Table 2.48

Training Query TQ8 = (0, 0, 1, 0, 1, 1) is applied on the four search engines and the

retrieved documents are shown in Table 2.49

SEl 1 1 1 0 1 0 0 0 0 1 0 0 1 1 0
SE2 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0
SE3 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0
SE4 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0

Table 2.49

Distribution vector for training query TQ8 = (0, 0, 1, 0, 1, 1) for each search engine is

shown in Table 2.50

38

Search Engine Distribution Vector
SE1 1, 2, 3, 5, 10, 13, 14
SE2 2, 3, 6, 8, 9, 10, 13, 14
SE3 3, 4, 5, 8, 9 ,10 11, 12,13
SE4 2, 5, 6, 10, 12

Table 2.50

In next step, the cosine similarity between user query and training queries are shown in

Table 2.51 using the cosine similarity measure given by

""wQ.xw. ~ ·1 l,.f

Sim (UQ ,TQ ,) = ----r.o~; =:=~-----c.:========
~~ w L X ~'2; w i.;

User Query 0 1 1 0 1 0 Cosine similarity

TQ1 1 0 1 0 0 1 Sim(UQ,TQ1)=0.6667

TQ2 1 I 1 1 1 0 Sim(UQ,TQ2)=0.2254

TQ3 1 0 1 1 0 0 Sim(UQ, TQ3) =0.6667

TQ4 0 0 0 1 1 0 Sim(UQ, TQ4)=0.5918

TQ5 0 0 1 0 0 1 Sim(UQ,TQ5)=0.5918

TQ6 0 1 1 1 1 0 Sim(UQ, TQ6)=0.1340

TQ7 1 0 0 0 0 1 Sim(UQ,TQ7)=1.0000

TQ8 0 0 1 0 1 1 Sim(UQ, TQ8)=0.3333

Table 2.51

The top-k (k=4) training queries selected are shown in Table 2.52

TQ Cosine Similarity
TQ6 0.1340
TQ2 0.2254
TQ8 0.3333
TQ4 0.5918

Table 2.52

Now find the distribution vector across the all search engine over top-k training queries

are shown in Table 2.53

39

DV ofSEl DVofSE2 DVofSE3 DVofSE4
TQ6 1, 3, 4, 5, 6, 7, 10, 11, 13, 1, 3, 6, 10, 14 6, 7, 11, 12, 14,15 1, 4, 7, 8, 9, 12,

TQ2 1' 4, 5, 8, 9, 10, 11 2,7,8,9,10,11,13 1, 2, 5, 6, 7, 10, 11, 12, 13, 14, 1, 2, 11, 12, 13,

T_Q~ 1, 2, 3, 5, 10, 13, 14 2, 3, 6, 8, 9, 10, 13, 3, 4, 5, 8, 9,10 11,13 2, 5, 6, 10, 12

TQ4 1, 3, 5, 6, 7, 8, 9, 12, 13, 15 3, 4, 5, 7, 14, 15 3, 10, 11, 13, 15 3, 5, 7, 8, 14, 15

Table 2.53

In the next step, the average distribution vector (ADV) for all search engine are shown in

Table 2.54

ADVl 1.0, 1.25, 2.25, 2.75, 3.5, 4.0, 4.5, 5.0, 5.5, 6.25, 6.5, 6.75, 7.5, 7.75, 8.25
ADV2 0.25, 0.5, 1.25, 1.5, 1. 75, 2.5, 3.0, 3.25, 3. 75, 4.5, 4.5, 4.5, 5.0, 5. 75, 6.0
ADV3 .25, .50, 1.0, 1.5, 1.75, 2.25, 2.75, 3.0, 3.5, 4.25, 5.25, 5.5, 6.25, 6.75, 7.5
ADV4 .50, .75, 1.0, 1.25, 1.75, 2.0, 2.5, 3.0, 3.25, 3.5, 3.75, 4.5, 4.75, 5.5, 5.75

Table 2.54

The list of selected search engines for top-k (where k= 4, 5, 6, 7, 8) documents are shown

in Table 2.55

For top k document List of Selected Search Engines
K=4 SE2, SE3
K=5 SE2,SE3,SE4
K=6 SE2, SE3, SE4
K=7 SEl, SE2, SE3, SE4
K=8 SEl, SE2, SE3, SE4

Table 2.55

2.3 Example Based Comparison

Let the five past queries along with six terms each is shown in Table 2.56. Let us consider

in all there are six search engines with eight documents in each of them.

PQ1 2 1 5 2 7 3
PQ2 0 5 3 1 7 8
PQ3 3 1 0 2 0 2
PQ4 2 0 4 3 3 0
PQ5 5 8 1 8 3 7

Table 2.56

Let the user query UQ have the following terms 3, 0, 1, 6, 8, 5

40

Let us first apply the qSim algorithm.

Let the search engine selected from amongst six search engines be as shown in Table 2.57.

PQl SEl SE2 SE4 SE5 SE6
PQ2 SE2 SE3 SE4 SE5 SE6
PQ3 SEl SE2 SE3 SE4 SE5
PQ4 SEl SE3 SE4 SE5 SE6
PQ5 SEl SE2 SE4 SE5 SE6

Table 2.57

Past query PQI = (2, 1, 5, 2, 7, 3) is apply to all selected search engines and the relevant

documents retrieved are as shown in Table 2.58

SEI 6 7 2 4 4 I 7 0
SE2 6 8 2 I 0 5 4 5
SE4 5 6 0 I 2 6 6 5
SE5 1 2 4 3 0 4 2 5
SE6 8 4 2 0 3 3 7 8

Table 2.58

The top-8 documents from the single merge list of documents return by five search engines for

past query PQI using Round Robin algorithms [VT 97] are shown in Table 2.59

Table 2.59

Next Rel(s
1
IPQ), is computed between search engine and the past query PQI. These are shown

in Table 2.60 where T=8.

Re l(s11PQ1) Rel(s2IPQJ Rel(s4 IPQ1) Re l(s51PQ1) Rel(s6 1PQ1)

0.6250 0.7500 0.5000 0.6250 0.6250

Table 2.60
Past query PQ 2= (0, 5, 3, 1, 7, 8) is applied to all selected search engines and the documents

retrieved are shown in Table 2.61

41

SE2 6 0 6 1 8 4 4 2
SE3 2 8 5 4 8 2 8 5
SE4 4 1 2 0 7 6 7 8
SE5 0 7 1 7 5 1 7 7
SE6 0 1 7 0 2 7 5 8

Table 2.61

The top-8 documents from single merge list of documents returned by the five search engines for

past query PQ2 using Round Robin algorithms [VT 97] are shown in Table 2.62

IRDI6I214I8I 11713 lol
Table 2.62

Next, Rel(s
1
iPQ) is computed between the search engines and the past query PQ2. These are

shown in Table 2.63 where T=8.

Rel(s2iPQ2) Rel(s31PQJ Rel(s4IPQ) Rel(s5iPQ2) Rel(s6 iPQ2)

0.6250 0.5000 0.7500 0.3750 0.6250

Table 2.63

Past query PQ3= (3, 1, 0, 2, 0, 2) is applied on all the selected search engines and the documents

retrieved are shown in Table 2.64

SE1 5 1 2 7 5 5 0 1
SE2 5 3 1 7 8 6 3 4
SE3 4 5 4 7 6 5 1 5
SE4 7 6 3 5 0 3 3 3
SE5 5 1 2 5 2 4 1 4

Table 2.64

The top-8 documents from the single merge list of documents returned by the five search engines

for past query PQ3 using Round Robin algorithms [VT 97] are shown in Table 2.65

IRDI5 14171 I 131618121

Table 2.65

Next, Rel(s
1
iPQ) is computed between .the selected search engines and the past query PQ3 are

shown in Table 2.66 where T=8.

42

Rel(s11PQJ Rel(s2 1PQ3) Rel(s3 1PQ3) Rel(s4IPQJ Rel(s5IPQJ

0.5000 0.8750 0.6250 0.5000 0.5000

Table 2.66

Past query PQ4= (2, 0, 4, 3, 3, 0) is applied to all search engines and the documents retrieved are

shown in Table 2.67

SEI I 5 I 5 7 3 0 5

SE3 8 8 2 7 5 4 7 7

SE4 8 6 8 5 5 3 0 5

SE5 3 8 I 6 3 2 4 3

SE6 7 7 6 4 7 8 0 6

Table 2.67

The top-8 documents from the single merge list of documents returned by the five selected search

engines for past query PQ4 using Round Robin algorithms [VT 97] are shown in Table 2.68

IRDI1181317151612141

Table 2.68

Next, Rel(s
1
iPQ) is computed between the selected search engines and the past query PQ4 are

shown in Table 2.69 where T=8

Rel(s11PQ) Rel(s31PQ) Rel(s41PQ) Rel(s51PQ) Rel(s6IPQ)
0.5000 0.6250 0.5000 0.7500 0.5000

Table 2.69

Past query PQS= (5, 8, 1, 8, 3, 7) is applied on all the selected search engines and the documents

retrieved are shown in Table 2.70

SEI 1 6 0 3 7 4 8 2

SE2 8 7 8 2 0 7 6 5
SE4 8 7 7 6 7 3 1 1
SE5 6 4 7 0 0 3 1 7
SE6 2 3 2 8 5 I 5 0

Table 2.70

43

The top-8 documents from the single merge list of documents returned by the five selected search

engines for past query PQ5 using Round Robin algorithms [VT 97] are shown in Table 2.71

jRDjlj8j6j2j7j4j3j5j

Table 2.71
Next, Rel(s

1
jPQ) is computed between the selected search engines and the past query PQ5 and

are shown in Table 2.72 where T=8.

Rel(s1jPQ) Rel(s2 jPQ) Rel(s4jPQ) Rel(s5jPQ) Rel(s6jPQ)
0.8750 0.6250 0.6250 0.6250 0.6250

Table 2.72

User query UQ= (3, 0, 1, 6, 8, 5) is applied on the selected search engines and the documents

retrieved are shown in Table 2. 73

SE1 8 3 8 2 1 2 I 2
SE2 4 7 2 2 3 5 6 1
SE3 3 7 4 4 3 8 6 5
SE4 1 6 8 7 2 3 5 4
SE5 6 2 5 1 8 7 4 5
SE6 1 3 3 4 6 5 6 3

Table 2.73

The top-8 documents from the single merge list of documents returned by the six search engines

for the user query UQ using Round Robin algorithms [VT 97] are shown in Table 2.74

Table 2.74
Now the similarity between the user query and all the past queries are shown in Table 2.75 where

Sim(PQ1jq) Sim(PQ2 jq) Sim(PQ3 jq) Sim(PQ4 jq) Sim(PQ5 jq)
0.4178 0.4000 0.4444 0.4622 0.4533

Table 2.75

44

Using step 5, the normalized value of Sim (PQjq) is computed and are shown in Table 2.76

Normalized Sim (PQ1jq) 0.5192

Normalized Sim (PQ2 jq) 0.3269

Normalized Sim (PQ3 jq) 0.8077

Normalized Sim (PQ4 jq) .1.0000

Normalized Sim (PQ 5 1q) 0.9038

Table 2.76

In the next step, the Rel(sdq) is computed and are shown in Table 2.77

Rel(s 1 /q) 2.2236

Rel(s 2 /q) 2.4495

Rel(s 3 /q) 2.0745

Rel(s 4 /q) 2.1659

Rel(s 5 /q) 1.9976

Rel(s 6 /q) 1.8918

Table 2.77

The search engines are ranked according the value of Rel(s d q). The search engine in

descending order of their ranks are shown in Table 2. 78

SE2 SEl SE4 SE3 SE5 SE6

2.4495 2.2236 2.1659 2.0745 1.9976 1.8918

Table 2.78

The top ranked search engines are then selected by the metasearch engine.

45

Let us now apply the MRDD algorithm.

Training Query TQ1 = (2, 1, 5, 2, 7, 3) is applied to all the search engines and the

retrieved documents from each search engine are shown in Table 2. 79

SE1 0 4 4 0 7 5 0 6

SE2 3 4 5 5 6 6 7 6

SE3 8 4 2 0 0 3 1 8

SE4 0 3 5 3 4 5 1 3

SE5 7 6 8 8 2 5 4 4

SE6 5 8 7 0 5 0 3 6

Table 2.79

Distribution vector (DV) for training query TQ1= (2, 1, 5, 2, 7, 3) for each search engine

is shown in Table 2.80

DV
SE1 2, 3, 5, 6, 8
SE2 1,2,3,4,5,6,7,8
SE3 1,2,3,6,7,8
SE4 2, 3, 4, 5, 6, 7, 8
SE5 1,2,3,4,5,6,7,8
SE6 1,2,3,5,7,8

Table 2.80

Training Query TQ2= (0, 5, 3, 1, 7, 8) is applied to all the search engines and the retrieved

documents from each search engine are shown in Table 2.81

SEI 7 6 1 3 6 8 8 8

SE2 8 5 5 3 3 6 7 1

SE3 3 2 2 8 3 8 2 2

SE4 3 6 3 5 3 I 4 5

SE5 1 2 4 4 4 1 5 4

SE6 3 0 2 2 6 6 8 0

Table 2.81

Distribution vector (DV) for training query TQ2= (0, 5, 3, 1, 7, 8) for each search engine

is shown in Table 2.82

46

DV

SEl 1,2,3,4,5,6,7,8

SE2 1, 2, 3, 4, 5, 6, 7, 8

SE3 1,2,3,4,5,6,7,8

SE4 1,2,3,4,5,6,7,8

SE5 1,2,3,4,5,6,7,8

SE6 1,3,4,5,6,7

Table 2.82

Training Query TQ3= (3, 1, 0, 2, 0, 2) is applied on all the search engines and the retrieved

documents by each search engine are shown in Table 2.83

SE1 1 1 2 6 8 7 0 3

SE2 2 8 6 8 3 2 0 7

SE3 0 5 1 3 4 4 0 8

SE4 5 5 0 3 8 6 0 8

SE5 3 0 4 6 1 4 4 0

SE6 5 4 3 6 0 2 2 8

Table 2.83

Distribution vector (DV) for training query TQ3= (3, 1, 0, 2, 0, 2) for each search engine

is shown in Table 2.84

DV

SE1 1, 2, 3, 4, 5, 6, 8

SE2 1,2,3,4,5,6,8

SE3 2, 3, 4, 5, 6, 8

SE4 1,2,4,5,6,8

SE5 1, 3, 4, 5, 6, 7

SE6 1, 3, 4, 6, 7, 8

Table 2.84

Training Query TQ4= (2, 0, 4, 3, 3, 0) is applies on all the search engines and the retrieved

documents by each search engine are shown in Table 2.85

47

SEI 2 2 5 7 2 2 0 8

SE2 0 7 5 4 7 6 6 5

SE3 7 3 0 4 0 4 8 0
SE4 5 2 I 4 5 8 4 7

SE5 5 6 I 3 6 4 3 5

SE6 0 I 6 I 6 2 6 4

Table 2.85

Distribution vector (DV) for training query TQ4= (2, 0, 4, 3, 3, 0) for each search engine

is shown in Table 2.86

DV

SE1 1,2,3,5,6,8

SE2 2, 3, 4, 5, 6, 7, 8

SE3 1, 2, 4, 6, 7

SE4 1, 2, 3, 4, 5, 6, 7, 8

SE5 1,2,3,4,5,6,7,8

SE6 2, 3, 4, 5, 6, 7, 8

Table 2.86

Training Query TQ5= (5, 8, 1, 8, 3, 7) is applied to all the search engines and the retrieved

documents by each search engine are shown in Table 2.87

SEI 2 4 7 8 8 2 6 1
SE2 4 5 2 0 3 2 4 6

SE3 6 5 2 6 8 2 0 4

SE4 3 5 6 2 3 1 7 6

SE5 8 I 4 7 I 3 3 1

SE6 5 2 3 3 5 5 3 2

Table 2.87

Distribution vector (DV) for training query TQ5= (5, 8, 1, 8, 3, 7) for each search engine is

shown in Table 2.88

48

DV
SEl 1, 2, 3, 4, 5, 7, 6, 8
SE2 1,2,3,5,6, 7,8
SE3 1, 2, 3, 4, 5, 6, 8
SE4 1,2,3,4,5,6, 7,8
SE5 1, 2, 3, 4, 5, 6, 7, 8
SE6 1, 2, 3, 4, 5, 6, 7, 8

Table 2.88

In next step, similarity between user query and training queries using cosine distance

similarity is computed and is shown in Table 2.89

UQ 3 0 1 6 8 5 Cosine similarity

TQl 2 1 5 2 7 3 Sim UQ,TQ, =0.1565
TQ2 0 5 3 1 7 8 Sim(UQ,TQ, =0.2572
TQ3 3 1 0 2 0 2 Sim(UQ,TQ, =0.3711
TQ4 2 0 4 3 3 0 Sim(UQ,TQ4 =0.2740
TQ5 5 8 1 8 3 7 Sim(UQ,TQ, =0.2729

Table 2.89

The top-k training queries, where k=3, selected are shown in Table 2.90

TQ Cosine Similarity
TQ1 0.1565
TQ2 0.2572
TQ5 0.2729

Table 2.90

Now, the distribution vector for each search engine with each top-k selected training query

is shown in Table 2.91

TQl TQ2 TQ5
DVOfSEl 2, 3, 5, 6, 8 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3, 4, 5, 7, 6, 8
DVofSE2 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3, 5, 6, 7, 8
DVofSE3 1,2,3,6,7,8 1, 2, 3, 4, 5, 6, 7, 8 1' 2, 3, 4, 5, 6, 8
DVofSE4 2,3,4,5,6, 7,8 I, 2, 3, 4, 5, 6, 7, 8 1' 2, 3, 4, 5, 6, 7, 8
DVofSE5 1,2,3,4,5,6, 7,8 1,2,3,4,5,6, 7,8 1' 2, 3, 4, 5, 6, 7, 8
DVofSE6 1,2,3,5, 7,8 1, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7, 8

Table 2.91

In the next step, average distribution vector (ADV) for each search engine is computed

and is shown in Table 2.92

49

.ADVI 0.5000 1.2500 2.0000 2.5000 3.2500 4.0000 4.5000 5.2500
ADV2 0.7500 1.5000 2.2500 2.7500 3.5000 4.2500 5.0000 5.7500
ADV3 0.7500 1.5000 2.2500 2.7500 3.2500 4.0000 4.5000 5.2500
ADV4 0.5000 1.2500 2.0000 2.7500 3.5000 4.2500 5.0000 5.7500
ADV5 0.7500 1.5000 2.2500 3.0000 3.7500 4.5000 5.2500 6.0000

I ADV6 0.7500 1.2500 2.0000 2.5000 3.2500 3.7500 4.5000 5.0000

Table 2.92

The list of selected search engines for top-k (where k= 4, 5, 6, 7, 8) documents are shown

in Table 2.93

For top k document List of Selected Search Engines
K=4 SEl, SE4, SE2, SE3
K=5 SE1,SE4,SE2,SE3,SE5
K=6 SEl, SE4, SE2, SE3, SE5, SE6
K=7 SE1,SE4,SE2,SE3,SE5,SE6
K=8 SEl,SE4,SE2,SE3,SE5,SE6

Table 2.93

In order to compare the number of search engines in common selected by the two

algorithms, the two algorithms qSim and MRDD were implemented using MA TLAB -

R2007a. The experimental results are discussed next.

2.4 Experimental Results

First, the qSim and MRDD are compared on the common search engines selected by qSim

and MRDD among the top-K search engines. For this, a graph is plotted and is shown in

Figure 2.3. The graph shows that the number of common search engines increases with

increase in the selection of number of search engines. Further, to ascertain the percentage

of search engines in common selected by qSim and MRDD among the top-K search

engines, a graph is plotted and is shown in Figure 2.4. The graph shows percentage of

search engines in common selected by qSim and MRDD is high for higher values of K.

Also, a reasonable percentage of search engines selected by qSim and MRDD are in

common.

50

----~--~------ ---- ------·- -~-

qSim Vs. M ROD -Common Search Engines

22

20

18
VI

16 Ql
c: ·a,
c: 14 w
~

12 u ...
Ill
Ql

10 en
c:
0 8 E
E
0 6 (.)

4

I :L
L _ , _____ 10

15

Top-k Search Engines

20 25

Figure 2.3 qSim Vs. MRDD- Common Search Engines

~-~- ---;~i:-~s~;RDD -%of Common Search Engines-----------

1

I
I 100

90

VI 80
Ql
.!:
Cl 70 c:
w I
~ 60 i ~
Ill
Ql

50 ~ en
c: I
0 I
E 40 -j
E
0

(.) 30 -0

<!- 20

10

0
5 10 15 20 25

Top-k Search Engines

Figure 2.3 qSim Vs. MRDD-% of Common Search Engines

51

CHAPTER 3

Result Merging

Result merging is one of the key components of the metasearch engine. User poses a query

to the metasearch engine through user interface. The metaserach engine selects the

appropriate set of search engines based on the query. The query is rewritten and processed

against the selected search engines. The results retrieved are merged and· ranked into a

single ranked list. Merging of the results into a single ranked list is a challenging task due

to the various heterogeneous underlying search engines. Generally the relevant document

returns from underlying search engine are ranked based on these document local ranking

score or similarity. The result merging of documents depends on the local similarity and

global similarity approaches [MYL02]. Result merging in the local similarity approach,

manages the local similarity using identifying search engine. First, if the selected search

engines have minirimm overlap, as in the case of special purpose search engine, for a user

query then all the documents retrieved will be identical from every search engine and

these search engines will have their own normalized local similarity. In this case all local

similarity is normalized based on common range. For example, if normalized similarity for

one search engine is between 0 and I 0 and other search engine is between 0 and 100 then

52

local similarities is renormalized on a common range, say 0 and 10, to make local

similarity comparable [LMS]. Second, ifthe selected search engines are not identical, as in

case of general purpose search engine, then all the documents retrieved would be different

to each other and normalized in its own local similarity range. There are many algorithms

for merging the retrieved relevant results like CORI merging [NF03], LMS Merging

Technique [RAS03], Semi supervised Learning merge algorithms [SC003a], Abstract

merge algorithms [LZ+08], OWA- Based framework merging algorithm [DDR05],. In this

chapter, the result merging algorithms like Abstract merging and OW A based result

merging are discussed and compared.

3.1 OW A-Based Result Merging Approach

The OW A Based result merging algorithm [DDROS] is based on fuzzy set theory that

considers the quantifier, Order Weight Average (OWA) operator. In the OWA merging

algorithm, first the position value of each document in different search engines is

determined. Next, the position values of each of the documents are arranged in descending

order. These is followed by calculating the weight of each search engine and then apply

the OW A function to get the rank of each document and arrange them in descending order

of their ranks. The algorithms based on OW A based merging [DDR05] is given in Figure

3.1. The algorithm takes as input the set of selected search engines, set of documents

r>Ctrieved from all the search engines, the user query and the list of documents produced by

each search engine. The algorithm is used to merge the documents retrieved from the

search engines using the OW A operator and produces list of ranked documents as output.

53

Input: Let R[Sk,D j,Q,Lif], where Sk is the set of search engines, Dj is the set of documents

retrieved by search engine, Q is the user query, Lij is the list of documents produced by set

of search engine

Output: List of rank documents.

Method:

Stepl: Find the set of documents D = (dpd2,,.,dJ using

where L;q is the list of documents return by search engine S; for the given user

query q.

If(ILiq I= 0) thenLiq list is empty and liq (dj)= 0 V dj ED

Step2: For each search engine S k

Compute the scores c;,, c j' ,,., c j' using the position of the document in K1
h

ranked list Liq using

where p ji is position of document d j in search engine si,

Step3: For each search engine Sk arrange the score Cif of each of the document in

descending order

Step4: For each search engineS k . compute the weight using

(i) (i-1) l<'<K
W; ~ Q K -Q K ' -I-

where K is the total no of search engines and Q is the quantifier function.

Weight of quantifierQ(r) = (r t, where a 2': 0

StepS: Using OWA (Ordered Weighted Averaging) function, calculate the rank of each

document and arrange in descending order of their list The OW A is defined as

F(d)= "K w X c. L....j~J I lj

Step6: Display the list of ranked documents

Figure 3.1 Algorithm based on OW A-Based Merging [DDR05]

54

3.1.1 An Example

Let there be five search engines for user query q, and the number of documents retrieved

by search engines using the first step in the algorithms, are shown in the given Table 3 .1.

1 2 3 4 5 6
SE1 D3 D4 D1 D6 D2 D5
SE2 D1 D6 D2 D4 D5 D3
SE3 D4 D2 D3 D1 D5 D6
SE4 D2 D3 D5 D4 D1 D6
SE5 D5 D2 Dl D4 D6 D3

Table 3.1

In step2, the score values of each documents is computed in the five search engines using

fonnulae C iJ == \L;q \- p Ji + 1, where p Ji is position of document d 1 in search engineS;, L;q

is the list of documents return by search engine S; for the given user query q. The score of

the documents for each search engine is shown in Table 3. 2

D1 D2 D3 D4 D5 D6
SE1 4 2 6 5 1 3
SE2 6 4 1 3 2 5
SE3 3 5 4 6 2 1
SE4 2 6 5 3 4 1
SE5 4 5 1 3 6 2

Table 3.2

The score values are arranging in descending order in step 3 and are shown in Table 3.3

D1 D2 D3 D4 D5 D6
6 6 6 6 6 5
4 5 5 5 4 3
4 5 4 3 2 2
3 4 1 3 2 1
2 2 I 3 1 1

Table 3.3

55

In step4, the weight of each search engine ts computed usmg

fonnula w; = Q(~) - Q(i ~ 1) , I :::; i :::; K where K is the total no of search engines and Q

is the quantifier function. Weights ofquantifierQ(r)=(rt, where (a=0.5,0.7,0.9) are

shown in Table 3.4.

WI W2 W3 W4 W5
a=0.5 0.4472 0.1852 0.1421 0.1198 0.1056
a=0.7 0.3241 0.2024 0.1728 0.1560 0.1446
a=0.9 0.2349 0.2035 0.1931 0.1866 0.1819

Table 3.4

In stepS, the OWA (Ordered Weighted Averaging) function F(d)= I;=l w; xCu is used to

compute the rank of each document and are shown in Table 3.5

01 02 03 D4 D5 06
a=0.5 4.5635 5.0107 4.4035 4.7121 4.0538 3.3015
a=0.7 4.2030 4.7343 3.9488 4.3772 3.5568 2.8742
a=0.9 3.9193 4.5025 3.5676 4.1117 3.1647 2.5397

Table 3.5

The merging list of documents is retrieved by all search engines in step 6 and are shown in

Table 3.6

D2 04 Dl 03 D5 D6
a=0.5 5.0107 4.7121 4.5635 4.4035 4.0538 3.3015
a=0.7 4.7343 4.3772 4.2030 3.9488 3.5568 2.8742
a=0.9 4.5025 4.1117 4.1117 3.5676 3.1647 2.5397

Table 3.6

The ranked merge list does not depend on the value of a as shown above in the example.

56

3.2 Abstract Merging

The abstract merging algorithm [LZ+08] is used to rank the documents return from the

underlying search engines using the relevance between the abstract information of

retrieved documents and the user query. In this algorithm, the relevance between the query

term and the abstract is computed first and then the relevance between ·the query and the

abstract is computed. The abstract ranked list is computed and used to rank the documents.

Algorithm based on Abstract Merging [LZ+08] is shown in Figure 3.2. This algorithm

takes the terms in the user query, terms in the abstract as input and produces single merged

ranked list as output.

Input: Let a set S[Uq, ABS;, term j), where Uq is the user query, ABS; is the set of abstract and

term j is the term in user query and abstract.

Output: Single merge list to the user

Method:

Step I: for each (term j), compute relevance between term and abstract using

{

occurance&ermj.abstract) l I h (b))
RankVerm j,ahstract)= L In e:~ 1

a strac/ ·t)_'il occurance~ermj,abstrac/)> 0
i==l localwn termj,I,abstract

0, occurance~erm j, abstract)= 0

where, Occurrence (term., abstract) is the frequency of term. in the abstract
J J

location 1term . i abstract) is the (h position of term . in the abstract ~ J' ' J

length (abstract) is the number of term in a particular abstract

Step2: Compute the relevance between query and the abstract to find abstract rank using

Abstract _rank (Query, abstract)= I Rank (term 1 , abstract)
i=l

Step3: Find the single ranked list using the value of abstract rank in descending order

Figure 3.2 Abstract merging algorithm based on [LZ+08]

57

3.2.1 An Example

Let there be five abstracts with ten terms in each. Length of each abstracts are shown in

Table 3.7.

ABSl 4 3 1 3 4 5 1 1 1 2
ABS2 3 2 4 3 2 2 2 2 4 3
ABS3 4 5 5 4 3 3 5 2 1 3
ABS4 2 5 5 4 1 5 2 1 3 1
ABS5 l 2 1 4 1 1 2 3 4 3

Table 3.7

Let the user query UQ have five terms as shown in Table 3.8

I UQ I 1 I 3 I 2 I 5 I 4 I

Tahle 3.R

In Step1, the relevance between each term with each abstract is computed using formula as

j
occurance&erm i, abstract) [I h (b) J en t a stract Rank~erm1 ,abstract}= L In . . ,if occurance~ermi,abstract}> 0

i~l locatiOn term1,1,abstract

. 0, occurance~erm1 ,abstract}=O

where occurrence (term j , abstract) is the frequency of term j m the abstract and

location (term j, i, abstract) is the i'h position of term j in abstract

The Rank(termj, abstract) of all the terms with respect to the abstract

ABSI= (4, 3, 1, 3, 4, 5, I, 1, 1, 2) is shown in Table 3.9

Rank(term 1, ABSl) 1.8892
Rank(term 3, ABSl) 2.525
Rank(term2, ABS1) 0.000
Rank(term 5, ABS1) 0.5108
Rank(term 4, ABSl) 2.9957

Table 3.9

58

The Rank(termj, abstract) of all the terms with respect to the abstract

ABS2=. (3, 2, 4, 3, 2, 2, 2, 2, 4, 3) is shown in Table 3.10

Rank(term 1, ABS2) 0.00
Rank(term 3, ABS2) 3.2189
Rank(term 2, ABS2) 3.3932
Rank(term 5, ABS2) 0.00
Rank(term 4, ABS2) 1.3093

Tahle 3.10

The Rank (term j, abstract) of all the terms with respect to the abstract ts

ABS3l= (4, 5, 5, 4, 3, 3, 5, 2, 1, 3) is shown in Table 3.11

Rank(term 1,ASB3) 0.1054
Rank(term 3,ASB3) 1.2040
Rank(term 2,ABS3) 0.2231
Rank(term 5,ABS3) 3.1701
Rank(term 4,ASB3) 3.2189

Table 3.11

TheRank(termj,abstract) of all the terms with respect to the abstract

ABS4=(2, 5, 5, 4, 1, 5, 2, 1, 3, 1) is shown in Table 3.12

Rank(term 1, ABS4) 0.9163
Rank(term 3, ABS4) 0.1054
Rank(term 2, ABS4) 2.6593
Rank(term 5, ABS4) 3.3242
Rank(term 4, ABS4) 0.9163

Table 3.12

The Rank(term j, abstract) of all the terms with respect to the abstract

ABS5=(1, 2, 1, 4, 1, 1, 2, 3, 4, 3) is shown in Table 3.13

Rank(term 1,ABS5) 4.7105
Rank(term 3, ABS5) 0.2231
Rank(term 2,ABS5) 1.9661
Rank(term 5, ABS5) 0.0000
Rank(term 4, ABS5) 1.0217

Table 3.13

59

In step2, the relevance between the query and the abstract is computed using the formula

which gives below and the values are shown in Table 3.14

Abstract_ rank(Query, abstract)= I Rank~erm j, abstract)
i=l

Abstract rank(query Q,ABS 1) 7.9214

Abstract rank(query Q,ABS2) 7.9214

Abstract rank(query Q,ABS3) 7.9215

Abstract rank(query Q,ABS4) 7.9215

Abstract rank(query Q,ABS5) 7.9214

Table 3.14

In step3, the ranked documents are in descending order according to their relevance value

between query and abstract and are shown in Table 3.15

Table 3.15

The ranking of documents are according to the value of similarity between abstract and the

user query.

3.3 Example Based Comparison

Let eight search engines are selected by search engine selector. Assume each of the search

engines retrieves six documents based on the user query, these are shown in Table 3.16.

SE1/DOC 6 3 4 5 1 2
SE2/DOC 4 2 1 3 6 5
SE3/DOC 4 6 5 3 1 2
SE4/DOC 2 4 3 6 5 1
SE5/DOC 5 3 1 6 2 4
SE6/DOC 6 3 2 5 1 4
SE7/DOC 1 4 3 6 2 6
SE8/DOC 3 5 2 6 4 1

Table 3.16

60

Let us first apply the OW A-Based Merging algorithm.

The position value of all documents is computed using formulae C u = IL;q 1- p ji + 1, where

p ji is position of document dj in search engineS;, L;q is the list of documents return by

search engine S; for the given user query q. These are shown in Table 3.17

D1 D2 D3 D4 D5 D6
SE1 2 1 5 4 3 6
SE2 4 5 3 6 1 2
SE3 2 1 3 6 4 5
SE4 1 6 4 5 2 3
SE5 4 2 5 1 6 3
SE6 2 4 5 1 3 6
SE7 6 2 4 5 1 3
SE8 1 4 6 2 5 3

Table 3.17

The score values of all documents in descending order are shown in Table 3.18

D1 D2 D3 D4 D5 D6
6 6 6 6 6 6
4 5 5 6 5 6
4 4 5 5 4 5
2 4 5 5 3 3
2 2 4 4 3 3
2 2 4 2 2 3
1 1 3 1 1 3
1 1 3 1 1 2

Table 3.18

The weight of each search engine is . computed using formula W; = Q(~)-Q(i ~ 1) ,

1 :.:::: i :.:::: K . Where K is the total no of search engines and Q is the quantifier function.

Weight of quantifierQ(r) = (r Y, where a 2 0. The weights are shown in Table 3.19

Table 3.19

61

The rank of each document is computed and are shown in Table 3.20

Table 3.20

The ranked documents according to their weight are shown in Table 3.21

Table 3.21

The top ranked documents are displayed in the above mentioned order.

Next, let us apply the Abstract merging Algorithm

A user query UQ with five terms is shown in Table 3.22

I User Q I 3 I I I 6 I 4 I 2 I 5 I

Table 3.22

TheRank(termj,abstract) of all the terms with respect to the abstract ABS1= (6, 3, 4, 5, 1, 2) is

shown in Table 3.23

Rank(term 3, ABS1) 1.0986
Rank(term 1, ABS1) 0.1823
Rank(term 6, ABSl) 1.7918
Rank(term4, ABS1) 0.6931
Rank(term 2, ABS1) 0.0000
Rank(term 5, ABSl) 0.4055

Table 3.23

TheRank~ermj,abstract) of all the terms with respect to the abstract ABS2= (4, 2, 1, 3, 6, 5) is

shown in Table 3.24

Rank(term 3, ABS2) 0.4055
Rank(term 1, ABS2} 0.6931
Rank(term 6, ABS2) 0.1823
Rank(term 4, ABS2) 1.7918
Rank(term 2, ABS2) 1.0986
Rank(term 5, ABS2) 0.0000

Table 3.24

62

The Rank(term j, abstract) of all the terms with respect to the abstract ABS3= (4, 6, 5, 3, 1, 2) is

shown in Table 3.25

Rank(term 3, ABS3) 0.4055
Rank(term 1, ABS3) 0.1823
Rank(term 6, ABS3) 1.0986
Rank(term 4, ABS3) 1.7918
Rank(term 2, ABS3) 0.0000
Rank(term 5, ABS3) 0.6931

Table 3.25

The Rank(term j, abstract) of all the terms with respect to the abstract ABS4= (2, 4, 3, 6, 5, 1) is

shown in Table 3.26

Rank(term 3, ABS4) 0.6931
Rank(term 1, ABS4) 0.0000
Rank(term 6, ABS4) 0.4055
Rank(term 4, ABS4) 1.0986
Rank(term 2, ABS4) 1.7918
Rank(term 5, ABS4) 0.1823

Table 3.26

TheRank(termj,abstract) of all the terms with respect to the abstract ABSS= (5, 3, 1, 6, 2, 4) is

shown in Table 3.27

Rank(term 3, ABS5) 1.0986
Rank(term 1, ABS5) 0.6931
Rank(term 6, ABS5) 0.4055
Rank(term 4, ABS5) 0.0000
Rank(term 2, ABS5) 0.1823
Rank(term 5, ABS5) 1.7918

Table 3.27

TheRank(termj,abstract) of all the term with respect to the abstract ABS6= (6, 3, 2, 5, 1, 4) is

shown in Table 3.28

Rank(term 3, ABS6) 1.0986
Rank(term 1, ABS6) 0.1823
Rank(term 6, ABS6) 1.7918
Rank(term 4, ABS6) 0.0000
Rank(term 2, ABS6) 0.6931
Rank(term 5, ABS6) 0.4055

Table 3.28

63

The Rank(term 1 , abstract} of all the term with respect to the abstract ABS7= (1, 4, 3, 6, 2, 5) is

shown in Table 3.29

Rank(term 3, ABS7) 0.6931
Rank(term 1, ABS7) 1.7918
Rank(term 6, ABS7) 0.4055
Rank(term 4, ABS7) 1.0986
Rank(term 2, ABS7) 0.1823
Rank(term 5, ABS7) 0.0000

Table 3.29

The Rank(term
1

, abstract) of all the terms with respect to the abstract ABSS= (3, 5, 2, 6, 4, 1) is

shown in Table 3.30

Rank(term 3, ABS8) 1.7918
Rank(term 1, ABS8) 0.0000
Rank(term 6, ABS8) 0.4055
Rank(term 4, ABS8) 0.1823
Rank(term 2, ABS8) 0.6931
Rank(term 5, ABS8) 1.0986

Table 3.30

In step 2, the relevance between query and abstract is computed and is shown in Table

3.31

Abstract rank(query Q, ABSl) 4.1713

Abstract rank(query Q, ABS2) 4.1713

Abstract rank(query Q, ABS3) 4.1713
Abstract rank(query Q, ABS4) 4.1713

Abstract rank(query Q, ABS5) 4.1713

Table 3.31

Ranked list of documents are shown in Table 3.32

Table 3.32

64

The top-K documents selected by algorithm OWA and AM for the same data set given in

the example of section 3.3 are shown in Table 3.33

Top-K Documents OWA AM

Top-! document 03 OJ

Top-2 documents 03,06 OJ,02

Top-3 documents 03, 06,04 OJ, 02,03

Table 3.33

The Top-3 documents selected by merging algorithms OWA and AM are different and this

may be due to the heuristic used by the two algorithms.

In order to compare the quality of the documents selected by the two algorithms, the two

algorithms OWA and AM were implemented using MATLAB - R2007a. The

experimental results are discussed next.

3.4 Experimental Results

First, the OW A and AM are compared on the average document score achieved by top-K

documents. For this, a graph is plotted and is shown in Fig. 3.3. The graph shows that the

average document score of documents retrieved by OWA is consistently higher than those

retrieved by AM. This shows that the algorithm OW A is able to retrieve better documents.
~---------- ·---- --

I
I

11

091
~ 0.8 i 8 .
Ul 0.7
ll
; 0.6
E
il 0.5
0
c 0.4
"' E o3
" ~ 0.2

0.1

OWA Vs. AM -Average Document Score

-.....

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

I Top-!< Documents
L_ __________________ -

Figure 3.3 OWA Vs. AM- Average Document Score

65

Further, to ascertain the rise in the document score with every document retrieved by

algorithm OWA and AM, a graph showing cumulative document score against top-K

documents is plotted. This graph is shown in Figure 3.4. The graph shows that the rise in

the document score with every document retrieved is greater for OW A in comparison to

AM. This further implies that OW A retrieves better quality documents.

20 l

Cl> 181
8 16

1/)

"' 14
"E
~ 12

" g 10
0
Cl> 8

~ ;; 6

s 4
(.)

2

OWA Vs. AM - Cumulative Document Score

...
~ - - -... -.. --. _ -

0 J-.--,-,.--.-- ---.-------.----.-- -~--r----..--,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Top-K Documents

Figure 3.3 OWA Vs. AM- Cumulative Document Score

66

CHAPTER 4

Conclusion

The information on the Web is mostly semi-structure or unstructured in nature. The search

'engines are available to provide access to such data. These search engines are not scalable

as they have a limited set of data sources associated with them. This problem has been

addressed by the metasearch engine, which acts as search engine over many search

engines thereby is able to access large number of databases. As a result, the metasearch

engine addresses the scalability problem. There are two major components of a metasearch

engine namely search engine selector and result merger. The search engine selector is

responsible for selecting a set of·search engines that are relevant to the user query. The

user query is posed against these selected search engines and results are retrieved from

them. The result merger then merges the retrieved results into a single ranked list. The

documents as per their ranking in the rank list are displayed to the user.

Several search engine selection approaches exist in the literature and in this dissertation

the approach query Similarity (qSim) and Modeling Relevant Document Distribution

(MRDD) has been discussed and compared. Further, qSim and MRDD has been

implemented and compared on the number of search engines in common selected by them.

67

It is observed that the two algorithms tend to select a reasonably high number of search

engines in common when a reasonable high number of search engines are selected by

them.

Several result merging approaches exist in literature and in this dissertation the approach

Order Weight Average (OW A) and Abstract Merging (AM) has been discussed and

compared. Further, OW A and AM has been implemented and compared on the average

document score and cumulative document score of the documents retrieved by them. The

results show that the documents selected by OW A have a higher average document score

than those selected using AM. Furthermore, with every document selection, the increase in

documents score is greater for documents selected using OW A in comparison to those

selected using AM. This shows that in comparison to AM, OW A is able retrieve better

top-k documents for a given user query.

68

References

[AMSOO] A. Smeulders, M.Worring, S. Santini, A. Gupta, and R. Jain. Content-based

Image Retrieval at the End of the Early Years. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(12): 1349-1380, (December 2000)

[BM] Bergman, M. The deep Web: Surfacing the hidden value. Bright Planet,

www.completeplanet. com/Tutorials/Deep Web/index.asp.

[BR04] Baeza-Yates, R. and Ribeiro-Neto, B. Modem Information Retrieval, Pearson

Education

[CLC95] Callan, J. Lu, Z. and Cropt, W.l995b. Searching distributed collection with

inference networks. In Proceeding of the ACM SIGIR Conference (Seattle, WA), Page no.

21-28, (July1995)

[DDROS] D.D.Elizabeth, D.Arijit and R.Vijay. 2005. A Comprehensive OWA-Based

Framework for Result Merging in Metasearch. In Springer -Verlag Berlin Heidelberg.

pages 193-201, (2005)

[DH97] Drelinger, D. and Howe, A. 1997. Experience with Selecting Search engine Using

Metasearch.ACM Trans. Inform. Syst. Page no. 195-222. (July 1997)

69

[DH97] Drielinger, D. and Howe, A. Experience with Selecting search engine using

metasearch, (1997)

[E097] E. Selberg and 0. Etzioni. The MetaCrawler architecture for resource aggregation

on the Web. IEEE Expert (January-February): Page no.ll-14, (1997)

rF99] Fuhr, N. A Decision -Theoretic Approach to Database Selection in Networked IR,

ACM Transactions on Information Systems (TOIS), Volume 17, Issue 3, pages: 229 -

249. (July 1999)

[FG99] Fan, Y. and Gauch, S. Adaptive agent for information gathering from multiple,

distributed information source. In Proceeding of the AAAI Symposium on Intelligent

Agent in Cyberspace, Page no.40-46, (1999)

[GGM95] Gravano, L., and Garcia-Molina, H.l995. Generalizing gloss to vector space

databases and broker hierarchies' .In proceeding of the International Conferences on Very

Large Data Bases, Page no.l96-205. (August 1997)

[HT99] Hawking, D. and Thistlewaite, P. Methods for Information Server Selection,

ACM Transaction on Information Systems, Vol.l7, pages 40-76, (Jan 1999)

[KM94] Koster, M. Aliweb: Archie-like indexing in the Web. Computer Network and

ISDN Syst. 27, 2, Page no.175-182. (1994)

'[KP+05] Keyhamipoor, A.H., Piroozmand, M., Moshiri, B., Lucas, C. A Multi

Layer/Mutli-Agent Architecture for Metasearch Engines, In AIML 05 Conference CICC,

Cairo, Egypt. (Dec-2005)

[L98] Lui, Bing, Web Data Mining. ACM Computing Classification (1998)

[LBE] Metasearch Engine http://www.lib.berkeley.edu/TeachingLib/Ouides/Intemet/MetaSearch.htm

[LL99] Lawrence.S. and Lee Giles, C. Accessibility of information on the wb. Nature

400, Page no.l07-109. (1999)

70

[LMS] L.Yiyao, M. Weiyi, S. Liangcai, Y. Clement, L. King-Lup. Evaluation of result

merging Strategies for metasearch engine

[LZ+08] L.Chunshuang, Z.Zhiquiang, X.Xiaoqin, L.TingTing Evaluation of Meta-Search

Eninge Merge Algorithms. In IEEE, pages 9-14, (2008)

[MW] Meng, W., Metasearch engine

[MYL02] Meng, W., Yu. C and Liu K. Building effective and efficient metasearch engine

ACM Computing Surveys, Vol.34, No. I, (March 2002.)

[NF03] Nottelmann, H. and Fuhr, N. Combining CORI and decision theoretic approach

for advanced resource selection, (2003)

[RAS03] Rasolofo, Y., Abbaci, F. and Savoy, J. Approaches to Collection Selection and

Results Merging for Distributed Information Retrieval, (2003)

[RD+86] Rumelhart, D.E, Hinton, G.E., and Williams, R.J. Learning internet

presentations by error propagation. In D.E. Rumelhart & J.L. McClelland (Eds.), Parallel

Distributed Processing: Explorations in the microstructure of cognition. Volume 1:

Foundation. Cambridge. MA: MIT Press, (1986)

[S89] Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval

oflnformation by Computer. Addison Wesley, Reading, MA. (1989)

[SB88] Salton, G. and Buckley, C. Term-Weighting Approaches in Automatic Retrieval.

Information Processing and Management, 24(5), Page no. 513-525, (1988)

[SC03a] Si, L. and Callan, J. A Semi supervised Learning Method to Merge Search engine

Results. ACM Transactions on information System, Vol.21, No.4, pages 457-491, (Oct

2003)

[SC03b] Si, L., Callan, J., Relevant Document Distribution Estimation method for

resource selection. In Proceeding of the twenty fifth Annual International ACM SIGIR

Conference on research and Development in information Retrieval, (2003).

71

[SJ04] Souza, D.Zobel, J.Thom, A, J.Is CORI effective for Collection Selection? An

Exploration of Parameter, Queries, and Data, In Proceeding of the 91
h Australasian

Document Computing Symposium, (Dec 2004).

[SK06] Silberschatz, A., Korth, H.F and Sudershan S.Database Management System

Concept, Fifth Edition, McGraw- Hill International Edition.

[SLH09] Suleyman, C., Luo, S. and Hao, Y.2009. Learning from Past Queries for

Resource Selection. In CIKM, pages 1867-1870, (Nov 2009)

[VGL95a] Voorhees, E.M., Gupta, N.K. and Laird, B.J. The Collection Fusion Problem.

In Proceeding of the Third Text Retrieval Conference, (March 1995).

[VGL95b] Voorhees, E., Gupta,N.K, and Laird, B.L. 1995b. Learning Collection fusion

Strategies in Proceeding of the ACM SIGIR Conference (Seattle, WA), Page no,172-179,

(July1995)

[VT97] Voorhees, E. And Tong, R. Multiplesearch engmes in database merging. In

Proceedings of the Second ACM International

(Philadelphia, PA), Page no.93-1 02. (July 1997)

Conference on Digital Libraries

[YL96] Yuwono, B. and Lee, D. Search and ranking algorithm for locating resource on

the World Wide Web. In Proceeding of the 5th International Conference on Data

Engineering, Page no.164-177. (Feb. 1996)

72

	TH192060001
	TH192060002
	TH192060003
	TH192060004
	TH192060005
	TH192060006
	TH192060007
	TH192060008
	TH192060009
	TH192060010
	TH192060011
	TH192060012
	TH192060013
	TH192060014
	TH192060015
	TH192060016
	TH192060017
	TH192060018
	TH192060019
	TH192060020
	TH192060021
	TH192060022
	TH192060023
	TH192060024
	TH192060025
	TH192060026
	TH192060027
	TH192060028
	TH192060029
	TH192060030
	TH192060031
	TH192060032
	TH192060033
	TH192060034
	TH192060035
	TH192060036
	TH192060037
	TH192060038
	TH192060039
	TH192060040
	TH192060041
	TH192060042
	TH192060043
	TH192060044
	TH192060045
	TH192060046
	TH192060047
	TH192060048
	TH192060049
	TH192060050
	TH192060051
	TH192060052
	TH192060053
	TH192060054
	TH192060055
	TH192060056
	TH192060057
	TH192060058
	TH192060059
	TH192060060
	TH192060061
	TH192060062
	TH192060063
	TH192060064
	TH192060065
	TH192060066
	TH192060067
	TH192060068
	TH192060069
	TH192060070
	TH192060071
	TH192060072
	TH192060073
	TH192060074
	TH192060075
	TH192060076
	TH192060077
	TH192060078

