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1 

Abstract 
i 

The number of sequences of HIV type one viruses are increasing rapidly over time. To accurately 
; 

classify the newly sequenced genomes into appropriate subtypes is important from the clinical 

viewpoint. It is essential for understanding how, when and where new variants of HIV-1 arise and for 

understanding the spatial distribution of each strain. Such information can lead to the development of 

more focused treatments for patients infected with a specific strain of the virus. In this thesis we show 

that a method based on profile Hidden Markov Models (pHMM) can accurately classify not only pure 

strains of HIV1 but also determine the subtype composition of Circulating Recombinant Forms (CRFs) 

which are made of two or more subtypes. 
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Chapter 1 

Introduction 

1.1 Background: 

There are more than 31.1 million people living with human immunodeficiency virus type one 

(HIV-1) and more than 25 million deaths have been caused by the virus all over the world [1]. Infection 
' 

from HIV is distributed over different zones of the world. The vaccine development strategy faces a 

major challenge because of the genetic variability of HIV that arises due to the lack of proofreading 

capability of the reverse transcriptase enzyme [2,3,4]. 

The database of viral sequences of HIV-1 is increasing over time and therefore an accurate and 

reliable classification of different strains of HIV-1 is important for many aspects of complex biology of 

the viruses[S).' Consequently classification of these virus strains into different subtypes based on their 

genetic dissimilarity plays an important role in understanding their evolution, distribution and 

geographical spread. It is also crucial for monitoring information about disease transmission by AIDS, 

to help in developing antiviral therapies and/or vaccines and to take decisions on the treatment 

strategy[ 6]. 

1.2 Basic biology of H/V-1 

HN is a member of the genus Lentivirus , subfamily Lentivirinae and family is Retroviridae. 
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~e internal structural and its components are shown in Figure 1.1. The shape and size of HIV virus is 

roughly spherical and its diameter is about one tenth of a micrometer. The outermost envelope is 

comllosed of a bilayer membrane of lipids that contains numerous spikes. The spikes are embedded in 

the membrane and are made up of four molecules of glycoprotein gp120 and same number of 

glycoprotein gp41. A layer of matrix protein surrounds the core (capsid) which in tum surrounded by 

an envelope. The genetic material of the HIV virus is contained in the hollow truncated cone shape 

capsid that is composed of another protein, p24. Inside the viral core there exists two strands of RNA 

contains about 9200 nucleotide bases, a protease, reverse transcriptase, integrase and other enzymes[7]. 

gp12() 
I . . · ~me 

, Glycoprotein 
' 

gp41-.. ---
Transmembrane 

Glycoprotein 

Reverse ., 
Transcrlp~se 

Figure 1.1 

Internal Structure of HIV (Source Wikipedia) 
' 

Lipid 
Membrane 



1.2.1 Gene map on HIV genome: 
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Figure 1.2 

Source HIV database tutorial 

The key features of strain HXB2 are shown in Figure 1.2, the three frames are shown as 

rectangles. Generally the ATG is start codon for the gene and it is marked by small number in the upper 

left corner of each rectangle while the last position of the stop codon is represented by the number in 

the lower right of the rectangle. The Figure indicates that gag, pol and env protein coding region 

covets the major part of genome so these three regions capture the unique characteristics of each HIV 

strain. For the results presented in this thesis, we have used sequence variation of gag-pol coding region 

for classification purposes. We also carried out classification on the basis of env coding region, which 

are consistent with the classification based on the gag-pol region. 

1.2.2 Genes and gene products: 

gag: This protein coding region of the viral genome codes for structural proteins of the virus. Gag is a 

region that codes for the core structural protein p24 which makes the viral caspid. p6 and p7 are 

responsible for forming the nucleocaspid. p17 provides the protective matrix for the virus. 

pol : The pol coding region codes for the viral enzymes protease, reverse transcriptase and integrase. 

The,reverse transcriptase enzyme is responsible for reverse transcription. It has low level accuracy with 

an error rate betweenl/1000 and 1110000 misincorporation. The protease enzyme is produced as a gag

pol precursor polyprotein. In the presence of integrase, the provirus DNA is integrated into the host 

genome. 
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env : This region code for glycoprotein which is the precursor of glycoprotein gp120 and the 

transmembrane glycoprotein gp41. gp120 provide the binding site for the CD4 receptor. The 

attachment of gp120 to receptors of CD4 cells is responsible for interaction with gp41. As a 

consequence of this interaction these three components are fused simultaneously. 

1.2.3 T~ble for main genes with their associated products: 

Protein Gene Gene products 

Structural gag Matrix 

Caspid 

Nucliocaspid 

gpl20 
env 

gp41 

---~r ----- -··-···--·-·---·-----·------------------ ---------------------------
pol Protease 

Enzyme 
Reverse transcriptase 

Integrase 

-----~--1-- ------ ---- .. ··-- -- - ------ - -------- ---------- ·--··--- ------ ------------ ----- ------· 

tat Tat 
Regulatory 

Rev Rev 
__ __...__ __________ 
Accessory vpu Vpu 

vif Vif 

vpr Vpr 

nef Nef 
'------+ -· -· --
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1.3 Classification structure: 
On the basis of sequence variation of different strains of HIV-1 sequences are classified in the 

following manner. 

Groups: The strains of HIV-1 are classified into groups which are M,N, 0 and P group. Majority of 

HIV-1 strains belongs to the M group and this group is responsible for the pandemic of HIV. 

Subtypes: Within group M there are subtypes A, B, C,D,F, G, H, J and K. 

Sub-subtypes: subtype A is classified into A1 and A2 sub-subtypes and F is classified into Fl and 

F2 sub-subtypes. 

Circul~ting recombination form: The genomes of these type of strains are made up of different 

segmen~ from more than one distinct subtype. These type of strains are growing due to recombination 

events, which is one of the normal mechanism of retrovirus replication. They play and important role of 

increasing viral diversity. For example, the Figure below shows the CRF AlB which is a mixture of 

subtypes A and B. 

CRF03_AB 

~ ~ 
~-----t_at------~i 1111 

..... 
I ' .. -

IIIlA ~~~S!jls 

Figure 1.3 

Source HIV database tutorial 
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1.4 Prol:!lem for HIV-1 classification: historical aspects: 

Initially the classification of different HIV-1 strains was carried out on the basis of sequences obtained 

from different regions such as Europe North America and Africa . Phylogenetic analysis shows distinct 

clusters for strains derived from Europe, North America and Africa. Later, when different strains were 

found froin other geographical regions, the classification system based geographical region was not 

appropriate. However, most classification methods are based on phylogenetic analysis of different 

strains of ·HIVl. 

First computational approach to classify the different subtypes on the basis of sequence 

variation of env coding region used phylogenetic analysis [8,10]. Phylogeny provided distinct clusters 
' 

for A to F subtypes. Eventually gag coding region variation was used for subtyping but E subtype was 

not classified [9]. E subtype was later found to be the CRFOl_AE (a combination of A and E strains) 

which explains why the gag region was not sufficient to properly classify this subtype[ll]. Subtype I 

was also identified as CRF02_AG [12]. The subtypes A and Fare further classified into sub-subtypes 

A1 , A2, and Fl , F2, and F3 respectively on the basis of differential clustering of env and gag by 

phylognetic comparison. On the basis of complete genome analysis sub-subtype F3 classified in to new 

group K. [13] . All the existing strains of HIV type 1 subtype grouped into three clades which were M 

group, N group and 0 group [5]. 

Most of the HIV strains were formed the same clusters when different genomic region were 

analyzed. However it was found earlier that branching of phylogenetic tree of some strains was 
I 

unresolved for different parts of its genome. This fact suggests that these strains are product of 

recombination events. These type are known as circulating recombination form(CRF) of strains[S]. Till 

now, nt,Imber of computational methods exist for detection of different subtype and also to analyze 

recombinants of different types of CRF strains. We emphasize that classification of HIV -1 stains is 

complex issue. A fast and efficient method which can be provide the recognition of existing sequences 

as well the sequences appearing in the future is required .. The method must be easily adapted to work 

with not only whole genome sequences but also with parts of a genome. It should be effective in 

classification even if a small number of known sequences of a particular subtype is available. In our 

knowledge HIV-1 subtyping program(STAR)[14], which provide the classification on the basis of 

sequence variation of the segment of protease (PR) and reverse transcriptase (RT), is similar to our 
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work. STAR is based on position specific scoring matrices for each subtype which derived from 

multiple sequence ·alignment. It classify different subtype of pure strains of HIV~ 1 with high degree of 

accuracy. This accuracy lies between 90% to 98%. Our method classify pure strains of HIV~ 1 with 

100% accuracy and also extensible for classification on the basis of sequence variation of different 

coding regions. Therefore accuracy and flexibility of our method to manage the different segments of 

genome is advantageous over STAR. 

1.5 HIV-1 classification using profile hidden Markov models: 

Profile hidden Markov models have proved to be extremely successful in detecting 

homologous protein and nucleic acid sequences from large data sets[lS]. In our study, we demonstrate 

that pHMMs provide an efficient, reliable and robust method for classifying HIV strains into different 

subtypes with a high degree of accuracy. First we will show that the standard classification method of 

pHMMs using bit:score can be successfully employed for classification of all pure subtypes (except B 

and D) with perfect accuracy. We find that the standard method cannot accurately discriminate between 

some sequences belonging to subtypes B and D. These shortcoming are completely removed by using 

an improved method using positive and negative pHMMs which is successfully applied for detection of 

different subtypes with 100% accuracy. The improved method utilizes the Z score, which is 

characterized as a;measure of position specific features presented in query sequence which are unique 

to a given subtype, to recogn:ition that subtype. We have presented the classification performance of.. 

different subtypes' on the basis of the the Z scores of each query sequence which belong to the test data 

set. On the basis of performance of distribution of Z scores of query sequences of test set over different 

subtypes we are able to find the fixed threshold (Z=O) for distinguishing between true positives and 

true~negatives. This threshold (Z=O) is the same for all subtypes. Hence our improved method has the 

capability to accurately assigning the subtype to strains which are sequenced in future. 

We also extended our method for detection of recombinants for each query sequence of CRF 

strains. This method was able to identify the subtype composition of a CRF strain with a high degree of 

accuracy. However, we found that the performance of detection of different subtype can be affected by 

the length of the segment of the subtype in the genomic region (example: gag-pol) used for building 

the profiles. 
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Chapt~r 2 

Methods and Material 

2.1 Data acquisition · 

All the available 1511 pure genome sequences (excluding CRFs) belonging to the M group 

available in the Los Alamos database were downloaded in fasta format . The required annotated 

sequences of the, gag-pol and env segments of the coding region for each of the subtypes were 

downloaded in fasta format for building the profile HMMs using appropriately chosen positive and 

negative training sets. All the CRF genome sequences (i.e. sequences containing a mixture of two or 

more subtypes) were also downloaded to determine their subtype content. 

Used database : For requirement of data, the Los Alamos HIV-1 sequence database stores updated 

sequences and which are easily fetched under required criteria . This database also stores sequences of 

annotated coding regions. 

2.2 Hidden Markov model : 

A Hidden Markov Model (HMM) is completely specified by the following quantities (Rabiner,l989) 

[16]: 

1. The set of states {S1, S2, ... , Sn} and state qt at timet. 



2. The set of output alphabets {v1, v2, ... Vm } and the output Ot at timet. 

3. The probability rr; of being in state S; at time t = 0 . 

4. The transition probability matrix A=[a;i] where 

a;i = P [ <li , t + 1 1 q; , t]. 

5. The emission probability matrix B=[bi (k)] , where bi (k) is the 

probability that system emits the output vk given that it is in jth state 

2.3 Profile hidden Markov model : 

10 

Hidden Markov Models have been successfully applied in speech recognition . Anders Krogh, 

David Haussle~, and co-workers adopted HMMs to find patterns in protein sequences and also 
I 

introduced prof~le HMMs (pHMMs)[lS]. Profile Hidden Markov Models are statistical models that are 

derived from multiple sequence alignment of homologous sequences of nucleic acids or proteins. It 

captures the position specific features that are present in the multiple sequence alignment for the 

corresponding protein or nucleic acid family. Such features are characteristics of the homologous 

sequences. 

A score is generated with help of its parameters for a query sequence . To discriminate between 

the homologous and non-homologous sequences, a threshold is decided on the basis of which optimum 

classification iS possible. 

A pHMM is a particular example of HMM that consists three types of states corresponding to 

each column position in a multiple sequence alignment . Suppose a multiple sequence alignment has L 

columns. Then the match state , insert state and delete state corresponding to pth position (column) in 

multiple sequence alignment are denoted by Mp , }p and Dp respectively where 1 <=p<=n. These states 

emits symbols with a certain emission probability distribution over the alphabets on which the pHMM 

is defined. In case of nucleic acid sequences the set of alphabet is {A,T,G,C} and in case of protein 

sequences ,the set of alphabets is the set of 20 biologically encoded amino acids. B and Io is defined as 

the match state and insert state at initial position and E is match state at the final position. The begin 

states and end states are called dummy state since these states do not emit any symbol. In the case of 

pHMMs there are three transition are possible from any state (except E state) to another . Self 
I 

transitions are possible for only insert states which indicates that the multiple insertion is only allow. 
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The states and the possible transition among different states both determine the topology of the model~ 

All the transition probabilities among the states and emission probabilities over the alphabets are 
' 

known as parameters of profile HMM. The Baum-Welch algorithm is used to estimate the parameters 

of the model. 

E 

Figure 2.1 

2.4 Profile HMM scoring : 

pHMMs have the capability to recognize the membership of a particular query sequence in a family on 

the basis of significant matches of the query sequence to the profile HMM . There are many type of 

scores which are used for membership determination[17]. 
' 

2.4;1 Log likelihood score : 

The log likelihood (LL) score is defined as logarithm of probability of the sequence given the model 

(M). 

LL(sequence) =log P{sequence!M) 

The LL score depends on the length of the sequence. From the classification point of view, it is not 
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appropriate to use this scoring method since it does not yield a simple threshold for discriminating 

between true positives and true negatives. There is a way to remove this shortcoming by dividing the 

LL score by the sequence length. However, this does not solve the problem completely since for all 

cases the dependency between the LL score and the sequence length is not linear. 

2 .. 4.2 Log-odd score relative to random model : 

The log-odds score relative to a random model (R) is a popular measure for determining 

whether a query belongs to the family described by the pHMM. The log-odd score (S) is defined as 

the log of the probability of obtaining the sequence from a profile HMM divided by the probability of 

pobtaining the same sequence from a random model . 

S = log2 P (sequenceiM) 
P (sequenceiR) 

In HMMER, the random model (R) is a simple one-state profile HMM that emits the alphabets 

of sequences with independently and uniform probability distribution over its alphabet. So this term 

P(sequenceiR) is dependent on only length of sequence[18]. 

HMMER provides the log-odds score for the complete sequence which is also known as the bit 

score. The bit score is independent of the size of the sequence database, and depends only on the profile 

HMM and the query sequence. For classification purposes this bit score can used and a cutoff for the 

score is set in such a way that optimum classification is possible. 

2.5 Selection< of coding region for training the pHMMs: 

The segment of gag-pol coding region is cover nearly half portion of the whole genome of HIV-1. So, 

we have taken nucleotide sequences variation of gag-pol coding region for classification of different 

subtypes. However different subtypes are detected on the basis of sequence variation of env coding 

region. 
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2.6 Multiple sequence, alignment (MSA): 

MUSCLE provide iniproved alignment accuracy compared with other currently available MSA 

programs[l9]. MUSCLE is freely available at http://www.driveS.com/muscle. We used MUSCLE 3.7 

(Edgar, 2004) to generate the MSA that was used to build the profile HMM for the sequences making 

up the training set. 

2. 7 Selection of positive and negative training set: 

Positive training set: We have randomly taken six distinct sequences of gag-pol each subtype 

forbuilding the positive pHMM to corresponding subtype. The accession no of for each subtype is 

listed in table 2.11.1 . 

Negative training set: Negative training set for a given subtype contains two distinct sequences of 

gag-pol coding region except that subtype. The accession number which are used for negative training 

set are listed in table 2.11.2 . 

2.8 Standard method for classifying HIV-1 sequences to appropriate 
subtypes 

We created multiple sequence alignment of each subtype from sequences containing the gag-pol 

segment. A pHMM was generated from each of the multiple sequence alignments by using program 

hmmbuild program from the HMMER package. The score (S) for each 1511 genome sequences was 

generated by the hmmsearch program in HMMER .We developed a classification method on the basis 

of log odd or bit score (S) . In this method, all the sequences have positive scores . We set a threshold 

to discriminate between true positives and true negatives. This threshold is dependent on each subtype 

classification. For all the subtypes except B and D we are able to find an unambiguous threshold 

which allowed for accurate discrimination of true positives and true negatives. The diagram below 

shows the flowchart-of the classification method. thing this method, we were able to classify with a 

high level of sensitivity and specificity sequences of all subtypes other than subtypes Band D. 



---- ----------- -l 
Create MSA for I_ 

---------~~~~subtype [ 
·----1 Build the profile:~:~ 

- l 
. ~:nerate bit score] 

for the sequences 

~ 
Set the threshold for 
optimum classification 

,, 
Assign the subtype 
to unknown strain on 
the basis of bit score 

--· 

Flow diagram of classification by the standard method of profile HMM 
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Classification result when profile HMM is build by gag-pol coding segment of B subtype and 

visualization the bit score for each subtype green line represent lowest bit score of B subtype strains 

and blue line stands for greatest bit score of strains except B .But in this case there are some some 

strains which are fall within this threshold. Now if we ignore threshold as blue line then there are some 

false positive;but at this case error is low. 
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Classification result when profile HMM is build by gag-pol coding segment of D subtype and 

visualization the bit score for each subtype green line represent lowest bit score of D subtype strains 

and blue line stands for greatest bit score of strains except D . In this manner shows very poor 

classification only two members are correctly classified . 

In this way we analyze that profile HMM can not apply for correct assignment of all the subtype 

when only single profile HMM which is created by only positive training set . We remove this 

shortcoming by selection of two profile HMM corresponding to classification of each subtype. 

2.9 Improved method for subtype classification: 

For explanation of correct classification method we have to define following terms : 

Set of positive training sequences : For purpose of classification of each subtype of the M group 

there is associated set which contains some sequences of the gag-pol coding region of corresponding 

subtype, the accession numbers of which are give in Table 1. These sequences are randomly chosen 

without redundancy and number of sequences that make up the positive training set for each subtype is 

six. 

Set of ~egative training sequences: The negative training set contains two sequences of gag-pol 

coding region for all subtypes excepting the one used to create the positive training set. The accession 

number of all the sequences used to create the negative training set are given in Table 2. 

Positive profile HMM: For each subtype there is a set of positive training sequences we use 

hmmbuild program in HMMER and create positive profile HMM for the associated subtype . 

Negativ~ profile HMM: For each subtype there is a set of a associated negative training sequences 

we use hmmbuild program in HMMER and create negative profile HMM for the associated subtype . 

Classifyip.g subtype: Classification method for a subtype and subtype of sequences which are 

contain in. corresponding set of positive training sequences are same. This subtype is known as 

classifying subtype. 
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Z score: Z score of a query sequence can be defined as the bit score of the query sequence which is 

genera.ted by the corresponding positive profile HMM minus the bit score of the query sequence which 

is generated by the corresponding negative profile HMM . This Z score is measure of subtype specific 

signal and is an effective measure for accurately classifying the query sequence. 

Multiple Sequence alignment is created using MUSCLE package for required sequence file to 

build profile HMM. Positive and negative Profile HMMs provide the direction to create the method to 

successfully detect the given subtype from unknown subtype of pure strains belonging to test set. The 

prograin hmmsearch of HMMER is used to generate the bit score of all 1511 genome sequences for 

given ~ubtype of positive and negative profile HMMs. Then we compute the Z score using a perl script 

for eaqh query sequence. This method assign the subtype of query sequence if its Z score is positive 

which is generated by the positive and negative pHMMs of that subtype. In this case strains of A, B, C, 
I 

F and G subtypes are detected with 100% accuracy. But problem is arisen in detection of D subtype 

strains. The discrimination power is increased if we take more sequences of those subtypes in negative 

training set, which are more similar to subtype of strains which belong to the corresponding positive 

training set, instead of taking equal number of sequences of different subtypes of strains. So in order to 

remov~ this problem, we have taken six sequences of gag-pol coding region of B subtype strains 

instead I of two sequences. Strains of D subtype are accurately detected by considering the sequence 

variation of env coding region. 

In order to sub-typing of A there are the there we choose two sequence from A subtype two 

from Ai sub-subtype and two from A2 sub-subtype. For f subtype required six sequences are chosen 

from F1 sub type. All sequences of Fl subtype classified properly but F2 sub-subtype does not belong 
I 

t9 p9~itin nh11~ :But three member closer to z;ero rhn~shold . 
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2.10 Method fpr analysis of CRFs and unclassified sequences : 

pHMMs can be successfully applied to identify the different subtypes which make up a CRF 

strains. Profile HMMs have been built by positive and negative training set, which provide the method 

to successfully detect given subtype as a recombinant in unknown CRF strains. The discrimination 
I 

power is increased if we take more sequences of those subtypes in negative training set, which are more 

similar to subtyp~ of strains which belong to the corresponding positive training set, instead of taking 

equal number of sequences of different subtypes of strains. As a result the number sequences in 

negative training ,set are increased. For clear discrimination, we increased the number of sequences of 

positive training set instead of six. The number of sequences in positive and negative training set are 

given in tables 2.12.1 and 2.12.2. Suppose we want to determine whether the subtype Dis present in a 

CRF strain. We define two thresholds : (i) Tp which is near the minimum Z score of all the D subtype 

pure sequences and (ii) Tn which is near maximum Z score of all the pure sequences that do not 

belong to the D subtype (i.e. sequences which make up the negative training set when the positive 

training set is made out of sequences belonging to the D subtype.) If CRF strain returns a Z score 

greater than Tn ,and less than Tp then it is predicted that some portion of the gag-pol segment of D 

subtype is present in the CRF strain. If the CRF strains returns a Z score greater than Tp then the gag

pol segment of this strain can be predicted to consist of either pure D subtype or a mixture in which a 

large fraction of the gag-pol region is of D subtype . The method can be repeated using positive training 

sets made up of different subtypes to determine the subtype composition of the gag-pol region of the 

CRF. The subtype composition of other segments of the CRF can also be determined in a similar 

manner. This method can fail to detect a particular subtype in a CRF if the segment of that subtype is 

too small to contain signatures specific to that subtype, that have been captured by the pHMM. 

We generalize :the method for detection of query sequence which have recombinant of a given subtype 

by the following assumptions . 

1. If the '? score for a given query sequence lies between Tp and Tn then the gag-pol segment of 

the query sequence contains some portion of the subtype from which the positive training set 

was constructed. 
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2. If the Z score for a given query sequence is lower than Tn then gag-pol coding region of this 

que'ry sequence is not made up with a gag-pol segment of the corresponding subtype. 

3. If the Z score for a given query sequence is greater than Tp then this gag-pol coding region of 

query sequence is made up with pure sequence of gag-pol segment of the corresponding 

subtype. 

If the CRF strains is made of two or more different subtype of recombinant strains with 

significant length. These type of strains return Z score for each corresponding subtype detection under 

the above assumptions. We will see how this method detects the CRF strains which are made up with B 

and F subtypes. 

2.11 Accession numbers of training set for detection of pure sequences: 

2.11.1 Positive training set: 

------· --,--

S.N. · Asu btype B subtype C subtype D subtype F subtype G subtype 

1 AMO 00053 AB097870 AF110963 AY773340 GQ290462 AB287003 

2 AMO 00054 AB286956 AF286228 DQ054367 DQ979025 FJ389364 

3 ABO 98330 AB287370 AF110974 AB485650 AB485659 AB485663 

4 AB2 53421 AB289589 AB254150 AJ519489 AJ249238 AY586548 

5 AF2 86237 AB428560 AB097871 A14116 AB480300 AF423760 

6 AF2 86238 AB480698 AB485645 U88822 DQ189088 AY612637 

--- ... 
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2.11.2 Negative training set : 

Subtype 
i 

S.N. -I Accession 
. --

1 A1 AB253422 

2 A2 I AF286238 

3 B A04321 

4 B AB287372 

5 c AB254141 

6 c AB485645 

7 D A34828 

8 D AY773340 

9 F1 AB485656 

10 F2 AJ249237 

11 G AB485662 

12 G AY586548 

13 H AF005496 

14 H FJ711703 

15 J AF082394 
I 
I 

16 J I GU237072 

17 K AJ249235 

18 K AJ249239 
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2.11.3 Negative training set used for D subtype classification : 

--- -- - ------- - --- -
-~-

----------------

S.N. Subtype Accession 
--- ·----------------

1 A1 AB253422 

2 A2 AF286238 

3 B AB565496 

4 B AF042102 

5 B AB480696 

6 B AF538305 

7 B AB485642 

8 B AF049495 

r-l 
0"' 9 c AB254141 -c---

AB485645 - 10 c 
J 

~ 11 F1 AB485656 

12 F2 AJ249237 

13 G AB485662 

14 G AY586548 

15 H AF005496 

16 H FJ711703 

17 J AF082394 

18 J GU237072 

19 K AJ249235 

20 K _L -~249239 _______ 
-----
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2.12 Number sequences used in training sets for detection of different 

types of CRF strains : 

2.12.1 Number of sequences of positive training sets used in detection of 

different types of CRF strains: 

Subtypes Number of sequences 

~------------------

A 

B 

c 
D 

F 

G __ __! __ ---------

6 

31 

6 

14 

10 

6 

2.12.2 Number of sequences of negative training sets used in detection of 

different types of CRF strains: 

- - . . . r -- . --- ----- r- -- -- -------- . ··-·- -- ··-------------- -~- ----- - -·· - -· ---------------1 
A subtype B subtype C subtype D subtype F subtype G subtype 

r------- ·---- -- --- -- -. _,_ ---- . -. ---- -- ----l-- ----- -- ----------- ------------- ---~- ------ ----------- ---· ------------
subtype number 

1 

subtype number subtype number subtype number subtype number subtype number 
------····--- -- -·--·· t·· -- -----------~- --------~---------- ---------- --- ---------------

A 0 A 2 A 2 A 2 A 2 A 6 

B 2 B 0 B 2 B 31 B 2 B 2 

c 2 c 2 c 0 c 2 c 2 c 2 

D 2 D 16 D 2 D 0 D 2 D 2 

F 2 F 2 F 2 F 2 F 0 F 2 
I 

G 6 G 2 G 2 G 2 G 2 G 0 

H 2 H 2 H 2 H 2 H 2 H 2 

J 2 J 2 J 2 J 2 J 2 J 2 

K 2 K 2 K 2 K 2 K 2 K 2 
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Chapter 3 

Results: For Pure Sequences 

In this chapter, we present the results of classification of query sequences belonging to an 

unknown subtype (excluding CRF's) of the group Musing pHMM's for each subtype that have been 

constructed from training sequences. Our results indicate that pHMM's provide a powerful method for 

accurately classifying query sequences into appropriate subtypes with a high degree of sensitivity and 

specificity. 

3.1 Performa~Jce of pHMM as a classifier: 

To determine the effectiveness of our pHMM models in accurately classifying query sequences, it is 

necessary to determine the sensititivity and specifity of the model. Suppose a model has the capability 

to predict either membership or non-membership in a given subtype, for unknown data belonging to the 

test set. The result of that prediction can fall into any one of the four possible categories. 

1. The given query sequence is correctly predicted to belong to the associated subtype: 

True positive(TP) . 

2. The given query sequence is incorrectly predicted as not belonging to a particular 

subtype: False Negative(FN). 



24 

3. The given query sequence is correctly predicted as not belonging to a particular subtype: 

True Negative(TN). 

4. The given query sequence is incorrectly predicted as belonging to a particular subtype: 

False Positive(FP). 

The sensitivity and specificity may be used to measure the performance of classifier and is 

defined as 

Sensitivity = TP/(TP+FN) 

Specificity = TP/(TP+FP) 

3.1.1 Receiver operating curve: 

Receiver-Operator Characteristic (ROC) curves (Sensitivity i.e true positive rate v/s 1 -

specificity i.e. false positive rate) for classification of each subtype indicate the discriminating 

potential of the profile HMM. 

The table below gives the list of abbreviation that are used in plots showing the bit-scores of 

sequences belonging to the different subtypes. 

·------·--·-------------------------,---------------------, 

Abbreviation of level Subtype 
------·--·--~----------------·-(--

Al 

A 

A2 

B 

c 
D 

Fl 

F2 

G 

u 

Strains of Al subsubtype 

Strains of A subtype 

Strains of A2 subsubtype 

Strains of B subtype 

Strains of C subtype 

Strains of D subtypes 

Strains of Fl subsubtype 

Strains of F2 subsubtype 

Strains of G subtype 

Unclassified strains 
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3.2 Performance of the standard method of profile HMM : 

A pHMM is constructed for each HIV-1 subtype using a positive training set only. It is then 

used to determine the bit score of all sequences which may or may not belong to that particular 

subtype. which is used to classify only the sequences of corresponding subtype from the test data set. 

The const~ction of the profile HMM each subtype is described in the chapter "Method". For a given 

threshold score,which is arbitrary chosen between Tp and Tn, for a given subtype, the model can be 

used to determine whether a query sequence can be considered to be a member of the corresponding 

subtype on the basis of its bit score. A query sequence return a bit score, which is generated by pHMM 

trained with multiple alignment of sequences of given subtype, greater than the threshold then we 

assign it to corresponding subtype. Using this method, sequences belonging to A, C, F and G subtypes 

are accurately classified by the associated profile HMM. The Figure below shows the bit score of all 

sequences when the training set is constructed using sequences belonging to the C subtype. The plot 

shows a clear demarcation between the bit-scores of those sequences that are members of the C subtype 

and those that aren't. Classification with 100% accuracy is obtained by choosing a threshold that lies 

between the bit score values Tp and Tn indicated by the green and blue lines respectively. 

3.2.1 Classification of C subtype by standard profile HMM : 

Tp 
····-- .. --.~-

Tn 

.. l 

' --
Figure 3.1 
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Similar results are obtained for classification of sequences that belong to other subtypes of the 

M group. However, the standard method was unable to accurately discriminate between some 

sequences belonging to the B and D subtypes. The reason for this problem is that the genetic distances, 

between B subtype and D subtype strains, are less in comparison to other subtype. 

Classification of B subtype by standard profile HMM : 

3.2.2 Classification of B subtype by standard profile HMM: 

5000 

+ t if, 

! T $ 
+ 

1000 

F1 F2 U Traintns~ 

Subt .... 

Figure 3.2 



27 

Classification result when profile HMM is build by MSA of six sequences of gag-pol coding segment 

of B subtype. 

This plot shows the bit scores for each subtype; the green line represents the lowest bit score of 

the B subtype strains and the blue line stands for the greatest bit score of sequences from all strains 

excepting B. In this case there are some some strains which fall between these two lines. Therefore we 

are not able to find any threshold which gives accurate classification of B subtype. 

A similar problem is observed when we attempt to accurately classify sequences belonging to 

the D subtype by constructing a training set with six sequences of the gag-pol coding region belonging 

to the D subtype. The green line and blue line stands for lowest bit score of D subtype strains and the 

highest bit score of sequences belonging to all strains except D. In this case D subtype strains are 

poorly Classified, since only two members are correctly identified when the blue line is chosen as the 

threshold. 

3.2.3 Classification of D subtype by standard profile HMM: 

+ 

................... 

• i 

Figure 3.3 

+ ... 
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There are two shortcoming have arisen in classification by standard method : 

1. The strains of a subtype, which(subtype) is lesser dissimilar to another subtype than pairwise 

dissimilarity of possible combination of different subtypes, are not accurately detected. 
' 

2. The thresholds are not independent from different subtype. Fixed threshold remove arbitrariness 

betWeen Tp and Tn. We have the need for certain assumption which decide the fixed threshold 

that could robustly determine the subtype of strains which are sequenced in future. 

The drawbacks of the standard method discussed above, suggests the need for developing a 

method in wpich the threshold can be unambiguously fixed for all subtype classification and which is 

better able to discriminate between sequences that are closely related but belong to different subtypes, 

as in the case of sequences belonging to subtypes Band D. 

3.3 Results from the improved method for subtype classification : 

We introduced an improved method using pHMMs which could accurately and robustly identify 

the subtypes of unknown strains with fixed threshold. For a given subtype there are associated positive 

pHMM and a negative pHMM, as discussed in detail in the chapter "Methods". The Z score of a query 

sequences for a given subtype measures position specific features in the query sequence which are 

unique to' the corresponding subtype. So performance of the method for different subtypes on the basis 

of the the Z scores of each query sequence belonging to the test data set, have increased. This method 

assign the subtype of query sequence if its Z score is positive otherwise this query sequence does not 

belongs to that subtype. We will showed the different plot for classification performance of our method. 

In each plot the thresho~d (Z=O) is fixed i.e independent from different subtype detection. This method 

has improved ability to discriminate the strains belonging to more similar subtypes. Strains belonging 

to B subtype are detected with 100% accuracy. However problem is arisen in detection of D subtype 

strains but this is removed by taking six sequences of B subtype in stead of two sequences in negative 
; 

training set. 
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We present a graph in which the X~axis lists the name of each subtype and the Y~axis gives the 

Z-scores of strains belonging to each subtype. In case of accurate classification of given subtype, all the 

strains of which belong to that subtype have Z scores greater than zero. subtype U corresponds to 

unclassified strains . These strains do not get positive Z scores for any classification that uses a positive 

training set constructed from one of the known subtypes. However in case of classification of A 

subtype one member unclas~ified strain ( AY046058) closer to threshold which shows it have more 

similarity with A subtype. 

The Z score, which is generated by the method for classification of strains of a given subtype by 

taking equal number of sequences of each different subtype in negative training set, interpret the 

information of pairwise distances between the cluster of strains of that subtype and the clusters of 

strains belonging to different subtypes. In this case we have take two sequences of each subtype in 

negative training set. In Contrary, this information can not be interpreted when number of sequences of 

a those subtype have been increased which are more similar to the subtype of corresponding positive 

training set. But it provides the direction for clear discrimination between strains of closely related 

subtype. In order to dis~riminate D subtype of strains we can take thirty one sequences of B subtype 

instead of two sequences of each subtypes except B in its negative training set . In this case we have 

taken forteen sequences of D subtype in positive training set. 

Histogram plot of 1511 strains vs Z score for a classification of a each subtype are drawn to 

show the distribution number of sequences with different Z score. Visualization of histogram plotS also 

represent the the information of distribution of different strains of positive subtype in its cluster. In case 

of higher number of strains belonging to positive subtype more strains of the positive subtype are close 

to the center of its cluster. 

Receiver operating characteristic (ROC) curves for each subtype shown below indicates that the 

performance of classification by this method is 100% accurate. 
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3.3.1 Classification result for A subtype : 

GOO 

-·--1 

200 

-200 ~ 
~r. + .. 

I t + !j; 

;j; 

I ~ + l 
"' 

,_ 

"' + + 

-•oo 

'Figure 3.4 

Distribution of Z scores of different subtypes of HIV -1 strains of M group. Level U stands for 
' 

unclassified strains. Cluster of A subtype strains are more similar to the cluster of G subtype in 

comparison to other subtypes. The clusters A subtype strains are less dissimilar to B and D subtype 

strains in comparison to other subtypes. One unclassified strain( AY046058) is closer to A subtype in 

terms of its Z-score. However this strains has correctly not been assigned to the A subtype. 
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Figure 3.5 

Frequency distribution of 1511 genome sequences of HIV-1 strains of Z score which is generated to 

accurately id~ntify members belonging to the A subtype. 

3.3.1.1 Receiver operating curve for A subtype classification: 

~ .. 

" '·' " 

Figure 3.6 

ROC analysis of improved method for A subtype classification. This plot shows profile HMMs provide 

the 100% classification accuracy forB subtype. 
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3.3.2 Classification result for B subtype: 
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Figure 3.7 

Distribution of Z score of different subtypes of HIV -1 for B subtype of classification when positive 

pHMM is trained by multiple alignment of six sequences of gag-pol coding region. This plot indicate 

the cluster of B subtype strains are more similar to cluster of D subtype in comparison to other 

subtypes . The duster of B subtype strains is less dissimilar to A and G subtype strains in comparison to 

other subtypes. Cluster of B subtype strains are also less dissimilar to F subtype strains however this 

dissimilarity is lesser than of cluster of strains of D subtype . 



33 

~ . 
! 

.. ··-r-····· ................ ···r··· .............................. , ..... . . .................... 1 .... ' ~ ... 

Figure 3.8 

Histogram plot of 1511 genome sequences of HIV-1 strains vs Z score which is generated to 

classify B subtype .This plot shows the number of sequences with different Z scores. There are three 

clusters right one is for B subtype middle one for D subtype and left one is for all the subtypes except B 

and D . The cluster of strains of B subtype shows the number of stains are higher in neighborhood of 

center of its clus~er. 

3.3.2.1 Receiver operating curve forB subtype classification: 

,.--··-·-····-·-·-·-- ................................... _ ........................ ----·-·---
! 

0 

"·i--.,-------,----..,.------,---..,..----,.-

" " 
,, 

Figure 3.9 

ROC analysis for strains of B subtype of classification using improved method. This plot shows profile 

HMMs provide the 100% classification accuracy for B subtype. 
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3.3.3 Classification result for C subtype: 
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Figure 3.10 

Distribution of Z score of different subtypes of HIV -1 . In this case positive profile HMM is 
: 

built by m~ltiple alignment of six sequences of the gag-pol coding region of C subtype strains . The 

plot shows the C subtype strains are detected with 100% accuracy. 
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Figure 3.11 

Histogram plot of 1511 genome sequences vs Z score which is generated for classification of C 

subtype. This plot shows the number of sequences with different Z score which is generated for C 

subtype classification. The cluster of strains of B subtype shows the number of stains are higher in 

neighborhood of center of its cluster. 

3.3.3.1 Receiver operating curve for C subtype classification: 

l 
I 
I 
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Figure 3.12 

ROC analysis of classification of strains of C subtype using improved method. ROC curve is plot 

between true positive rate vs false positive rate. Area below the curve is maximum so there are not false 

positives or false negatives. This plot shows profile HMMs provide the 100% classification accuracy C 

subtype. 
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3.3.4 Sub-typing result for D subtype: 
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Figure 3.13 

Distribution of Z score of different subtypes of HIV -1 for classification implementation of D subtype. 

The strains of B subtype are very close to threshold which indicates cluster of D subtype strains are 

more similar to cluster of B subtype in comparison to all other subtypes . 
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Figure 3.14 

Histogram plot of 1511 genome sequences vs Z score which is generated for classification of D 

subtype. This plot shows the number of sequences with different Z score which is generated for D 

subtype classification. 

3.3.4.1 Receiver operating curve forD subtype classification: 

~------------- -

I 

" '·' '·' 

Figure 3.15 

ROC analysis of D subtype classification using improved method. ROC curve with true positive rate 

vs false posTtive rate. Area under the curve is maximum so there is no False positive and also there is 

not false negative. This plot shows profile HMMs provide the 100% classification accuracy for D 

subtype. 
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3.3.5 Classification result for F subtype: 
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Figure 3.16 

Distribution of Z scores of different subtypes of HIV-1 for classification of F. In this case 

positive profile HMM is built by multiple alignment of six sequences of Fl subsubtype. F2 subsubtype 

strains are closer to the threshold. One unclassified strains {FJ388921) is close to threshold which 

indicate this strain has more signal that are similar to the Fl subsubtype . 



39 

... 

Figure 3.17 

Histogram plot of 1511 genome sequences, on x axis we take Z score which is generated for 

classification of Fl subsubtype . This plot shows the number of sequences with different Z score which 

is generated for Fl subsubtype classification. 

3.3.6.1 Receiver operating curve for Fl sub-subtype classification: 

QA 10 

Figure 3.18 

Receiver operating curve analysis of Fl subsubtype classification using improved method. This plot 

shows profile HMMs provide the 100% classification accuracy for F1 subsubtype. 
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3.3. 7 Classification result for G subtype: 

800 

+ 
+ 

+ 1 ... 

! + 

*' t 
+ ... 
;. 
·!· 

~ 0 
N 

-200 
+ 

:t: + 

* I :t: 
+ 
+ 

I 
+ 

-400 .. t. + + + + + 

i ~ 

* I ' 
+ + + + 

~ +· 

+ 

-800 
A1 A2 F1 ~2 U Training se<:p.JenCM 

sub-t,.,. 

Figure 3.19 

Distribution of Z score of different subtypes of HIV -1. In this case positive profile HMM is 

built by multiple alignment of six sequences of gag-pol coding region of G subtype strains. This fig 

shows that the genetic distance between cluster o·f different strains of G subtype strains and cluster of 

different strains of A subtype strains is less dissimilar in comparison to its distances from cluster of 

strains of any other subtypes . 



" ' J 

~-

41 

r ···············-·····-·-·--··-r······· ······ ·········1 ······················-······---,···----······-

- ~ - I ~ 

Figure 3.21 

Histogram shows the number of sequences vs Z score which is generated for G subtype .This plot 

shows the number of sequences with different Z score which is generated for G subtype classification. 

3.3. 7.1 Receiver operating curve for G subtype classification: 
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Figure 3.22 

ROC curve analysis of G subtype classification using improved method. This curve is drawn between 

true positive rate vs false positive rate. Area under the curve is maximum so there is not False positive 

and false negative. This plot shows profile HMMs provide the 100% classification accuracy for G 

subtype. 
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Chapter4 

Sequence Analysis of Strains of 

Circulating Recombination Form 

In this chapter we will present the performance of the improved method, when it is used to 

detect the different subtypes which make up the CRF strains. We have described so far the 

classification of different subtypes of pure sequences and how performance of the method is improved, 

when we implemented our method on the basis of Z score, in the chapter "Classification of Pure 

Sequences". We will see in this chapter how the Z score coupled with two thresholds Tp and Tn, allow 

for identification of the subtypes which make up a CRF strain. The results on test data set, which 

contains 2033 genome sequences of pure as well as different CRF strains, are shown for validation of 

the methodl 

4.1 The performance of the method : 

Profile HMMs have been built by positive and negative training set, which provide the direction 

to create the method to successfully detect given subtype as a recombinant in unknown CRF strains. 

The discrimination power is increased if we take more sequences of those subtypes in negative training 

set, which are more similar to subtype of strains which belong to the corresponding positive training 

set, instead of taking equal number of sequences of different subtypes of strains. As a result the number 

sequences in negative training set are increased. For clear discrimination, we increased the number of 
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sequences of positive training set instead of six. For example sequences of B subtype and sequences of 

D subtype are more similar, in order to detect sequences of different strains, which are made up as 

some part of D subtype, we take 31 sequences of B and two sequences of each subtype except B and 

D in negative training set of D subtype. The number of sequences in negative training set are forty five 

instead of fourteen to balance thresholds we have taken fourteen sequences of D subtype in positive 

training set instead of six. As a consequence it distribution of maximum Z score of each different pure 

sequence except B are approximately same and it help to determine threshold Tn. 

We present the plots for detection of each subtype, which has been involved to recombine with 

significant length, in genetic recombination of different CRF strains of test data set. X axis of this plot 

have been labeled with notation of different subtypes and different notations of CRF strains. Y axis 

represent Z score for detection of given subtype. These Z scores have been generated using the method 

discussed in chapte~ 3. There are 48 levels for different types of CRF strains. Two thresholds are shown 

one is Tp and othet is Tn as defined in chapter 3. The following assumptions have been taken for the 

recognition of query sequence and the presence as some fraction of given subtype in the query 

sequence. 

1. If the Z score for a given query sequence lies between Tp and Tn then the gag-pol segment of 

the query sequence contains some portion of the subtype from which the positive training set 

was constructed .. 

2. If the Z score for a given query sequence is lower than Tn then gag-pol coding region of this 

query sequence is not made up with a gag-pol segment of the corresponding subtype. 

3. If the Z score for a given query sequence is greater than Tp then this gag-pol coding region of 

query sequence is made up with pure sequence of gag-pol segment of the corresponding 

subtype. 

If a given CRF strains is made of two or more different subtype of strains with significant 

length then this type of. strains return Z score for each corresponding subtypes. We will see how this 

method detects,the CRF strains which are made up with B and F subtypes. However, problems arise 

only in those cases when either recombination event occurs out side of the gag pol segment or in case a 

particular subtype is present only as a very short sequence in the gag-pol region. 
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4.2 Results for detection of CRF strains which contains B subtype strains : 

In this section we show how each query CRF sequence that has sections of B subtype in the 

gag-pol region can be identified using our pHMM method. There are five plots to present the 

distribution of Z scores, which are generated for detection of B subtype. 

Distriht~tion of Z scores with different pure subtypes and unclassified category. The two 

thresholds Tp ·and Tn are marked in this graph. The genetic distance between cluster of strains of B 

subtype and the cluster of strains of D subtype are less in comparison to the distance between other 

subtypes (chapter 3 Figure ). To improve discrimination between B and D, we have taken twenty two 

sequences of gag-pol coding region of D subtype and two sequences of each subtype other than D in 

negative training set of the B subtype. Thirty one sequences of gagpol coding region of B subtype are 

taken in positive training set. As a result this plot shows all the maximum Z scores of each different 

subtype are nearly same which define the threshold Tn for B subtype. 
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In this plot, level of different types of CRF strains from CRFOl to CRF13 are shown to detect 

those strains which are recombination as a fraction of gag-pol segment of B subtype. All the strains of 

type CRF03_AB return Z score between Tp and Tn, therefore this prediction under the our 

assumption show's that B subtype involve as a part to recombine in its composition. Each strain of 

types CRF07 _BC and CRF12_BF are made up from B subtype. The strains of type CRF08_BC are 

very close to the threshold Tn which indicate that these types of strains are made up with minimal 

length of gag-pol coding region of B subtype segment. 
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In this plot, level of different types of CRF strains from CRF14 to CRF26 are shown to detect 

those strains which are recombination of some parts of gag-pol segment B subtype. The strains 

belonging to type CRF17 _BF return Z score between Tp and Tn. This prediction under our 

assumption shows that B subtype is present in its composition. Each strain of the types CRF20_BG, 

CRF23_BG and CRF24_BG return Z score either above or just near the threshold Tn which indicate 

that this type of strains have made of minimal length segment of B subtype. The strains belonging to 

each type CRF14_BG and CRF _OlB does not return Z score above the threshold Tn therefore 

according to our assumption, B subtype strains not present in its gag-pol coding region . 
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In this plot level of different types of CRF strains from CRF27 to CRF39 are shown to detect 

those strains which contain some length of segment B subtype. All the strains belonging to CRF39_BF 

return higher than Tp, since gag-pol coding region of CRF39_BF is primarily made up of sections from 

the gag-pol region of B subtype and has very short lengths of gag-pol coding region of F subtype. All 

the strains of CRF28_BF return Z score near the threshold Tp and also in the case, when method is 

used to detect F subtype containing CRF, these type strains return Z score between corresponding 

thresholds Tp and Tn. Therefore these strains have maximal length and minimal length of segment of 

gag-pol coding region of B subtype and F subtype respectively. The strains belongs to CRF29_BF, 

CRF33_01B and CRF34_01B return Z score between Tp and Tn, which allows us to predict that B 

subtype is part of its composition. The strains belonging to type CRF31_BC return Z score near Tn 

which indicate that this type of strains have made of very short length segment of gag-pol coding 

region of B subtype. 
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In this plot, level of different types CRF strains from CRF40 to CRF48 are shown to detect 

those strains which are recombination as a fraction of gag-pol segment of B subtype. The strains 

belonging to types CRF42_BF and CRF47 _BF return Z scores between Tp and Tn as well as just near 

the threshold (Z=O) which shows that maximal length of gag-pol segment of B subtype involve to 

recombine in their gag-pol coding region. The CRF40_BF and CRF44_BF return Z score between Tp 

and Tn, this prediction according to the our assumption shows that B subtype involve to recombine as 

a part in its composition. 
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4.3 Result for detection of CRF strains which contains F subtype strains: 

In this section, we have shown that detection of each query sequences belonging to the test set 

which make up as a part of F subtype in its composition. There are five plots to present the distribution 

of Z scores, which< generated for detection of F subtype by the extended method using pHMMs, with 

different pure subtypes as well as different types of CRF strains. In this case, we have taken eight 

sequences of.gag-pol coding region of Fl sub-subtype and two sequences of gag-pol coding region of 

F2 subsubtype in positive training set. We take two sequences of each subtype except Fl and F2 sub

subtype in negative training set of F subtype. 

Distribution of Z scores and two thresholds which are Tp and Tn are demarcated in following 

graph, these are defined in the chapter "Method". This plot shows all the maximum Z scores of each 

different subtype are nearly same which define the threshold Tn for F subtype. 
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In this plot, level of different types of CRF strains from CRFOl to CRF13 are shown to detect 

those strains which are recombination as part of F subtype. All the strains belonging to type 

CRF12_BF return higher than Tp therefore according to our assumption these are pure strains of F 

subtype. Therefore we conclude that these type of strains are made up with B subtype and F subtype in 

which gag-pol segment of F subtype is maximal. Each the subtype of CRFOS_DF and are made up 

from F subtype . 
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In this plot, level of different types of CRF strains from CRF14 to CRF26 are shown to detect 

those strains which are recombination as a fraction of gag-pol segment F subtype. All the strains 

belonging to CRF17 _BF return higher than Tp therefore according to our assumption, these are pure 

strains ofF subtype. But we see earlier in results of detection of B subtype, these strains are made up as 

a fraction of gag-pQl segment of B subtype. Therefore we conclude that these type of strains are made 

up with B subtype and F subtype in which length of gag-pol segment of F subtype is maximal. 
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In this plot, level of different types of CRF strains from CRF27 to CRF39 are shown to detect 

those strains which are recombination as a part of some length of gag-pol segment F subtype. All the 

strains belonging to CRF28_BF and CRF29_BF return higher than threshold (Z=O) and also some 

members of it return Z score higher than Tp if we conclude, to combine the results of detection of B 

subtype for these type of strains, that these strains are mixture of F subtype and B subtype. Problem is 

arisen in detection of F subtype in CRF39_BF because the total lengths of different segments of F 

subtype is very small in gag-pol coding region. 
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In this plot, level of different types of CRF strains from CRF40 to CRF48 are shown to detect 

those strains which are recombination of some part of gag-pol segment of B subtype. All the strains 

belonging to CRF44_BF and CRF46_BF return higher than Tp. Therefore we conclude that these type 

of strains are made up with B subtype and F subtype in which length of gag-pol segment of F subtype 

is maximal. The CRF40"'""BF, CRF42_BF and CRF47 _BF return Z score between Tp and Tn, this 

prediction under the our. assumption shows that F subtype involve to recombine as a part in its 

composition. 

600 

400 

200 

+ 
~ 0 ......... 1 ...... . 
N 

-200 

-400 

-600 

+ .,. 

+ + 

+ 

+ 

-800 L____..~. ___ _.__ __ ___..~. ___ ..L,_ __ ,_.J... ____ J....__-:--:-L--:-:---=:-:I:-:::---=~-::-:-:---::--:-:.L..--:-

CRf41_CD CRF42_BF CRF43_02G CRF44_BF CRf45_cpx CRF46_Bf CRF47_BF CRf48_01B Training set CRf40_BF 
SUbtype 

Fig (4.10) 



54 

4.4 The table of thresholds for detection of CRF strains: 
·, 

Subtype Threshold (Tp) Threshold (Tn) 

A 177 -220 

B 74 -207 

c 101 -300 

D 74 -140 

F 60 -160 

G _1170 -325 
-- ------·------r --·· -- ---------·------ -----~-----------
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Chapterr5 

Discussion and Conclusion 

We have shown in previous chapters, how the pHMM method utilizing both negative and 

positive training set using pHMMs can lead to substantial improvements in the accuracy of detection of 

different subtypes. We also saw that the number of sequences of different subtypes of negative training 

set have played important role in the identification of different subtypes that make up a CRF strain. In 

this chapter we,• briefly explore performance and advantage of this method which allows detection of 

different strains of HIV~ 1 with higher degree of reliability. 

Initially, we used the standard method of classification using pHMMs. Even though this method 

performed well for classification of most subtypes, the accuracy of classification was substantially low 

for B and D subtypes which are more closely related to each other in comparison to any two different 

subtypes. Another disadvantage of this method is that the thresholds for each subtype are not fixed as a 

result of which the robustness of the classifier can change depending on the threshold selected. 

We then used an efficient, reliable and robust method using pHMMs which generate Z score of 

a query sequence to determine its subtype on the basis of similarity of gag-pol coding region. This 

method works effectively on classification of strains of different subtypes including more similar 

subtypes ,except D subtype , of HIV~ 1. For accurate detection of D subtype, we changed the number of 

B subtype sequences form two to six in its negative training set. The Z score of query sequence for 
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g1ven subtype classifier (pHMM) coupled with fixed threshold (Z=O) is sufficient to predict whether or 

not the query sequence is a member of that subtype. either assigned to associated subtype or is not 

assigned to that subtype. Although we used the gag-pol segment to build our pHMMs, this method can 

be easily adapted for classification on the basis of the env protein coding region. 

The, pHMMs also provide an efficient method for detecting the subtype composition of CRF 

strains. The. detection is based on the Z score relative to the thresholds Tp and Tn. Typically, a query 

CRF sequence with a Z-score (estimated for a particular subtype classifier) lying between Tn and Tp 
' 

would be considered to be contain segment of the corresponding subtype in its sequence. Even though 

we used this method to detect recombination events that occurred in the gag-pol region, the method can 

be easily extended to detect recombination events occurring outside of the gag-pol region by choosing 

different protein-coding regions of the HIV genome to build our pHMM models. The pHMM based 

methods described in this thesis does not require the accurate construction of reliable phylogenetic 

trees. Another advantage is that it requires only a small number of training sequences to return 

classification results with high accuracy. Hence it can be effectively used in accurately classifying 

subtypes for which only a small number of sequences are available profile HMM construction. 

5.1 Ongoing and future work: 

This is general method which can be applied for classification of intra-species variation of other 

organisms. We successfully classified the different genotypes of HBV viruses on the basis of complete 

genome variation. All the genotypes except H of HBV were successfully detected on the basis of Z 

score when coupled with threshold (Z=O). A problem arose in detection of strains of H genotype due to 

similarity of ttie strains of H subtype and strains of F genotype. The problem was eliminated by taking 

the six genome sequence of F subtype and two genome sequences of all the genotype except for H and 

F which are in negative training set of H genotype. We are currently continuing our analysis of the 

HBV classification using this approach. 

• 
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Appendix 

The code (written in perl) to calculate Z scores of different types of HIV-1 strains : 

#!/usr/bin/perl 

print '!please enter the name of positive file\t"; 

$first=<>;# Enter the name of file containing scores generated by positive pHMM 

print Pplease enter the name of negative file\t"; 

$second=<>;# Enter the name of file containing scores generated by negative pHMM 

open FF, "$first" or die$!; 

@arl=<FF>; 

close(FF); 

open SS, "$second" or die$!; 

@ar2=<SS>; 

close(SS); 

print "please enter the name of file conaining positive training set \t"; 

$tr=,<>; # Enter the positive training set 

open TR, "$tr" or die$! ; 

@tia=<TR>; 

clo~e(TR); 

$c:::;:o; 

foreach$trai(@tra) #extraction of sequence I.D. from positive training set 

{ < 



if(substr($trai,O,l) eq '>') 

{ 

} 

} 

$train[$c]= substr($trai,l,length($trai)); 

$c++; 

print "please enter the name of output file \t " ; 

$out=<>;# Enter the file name which to store the Z scores with its associated label 

open XX, ">$out" or die$!; 

############################111111## ###II#### 

# # 

# Arrangement I.D.of sequences of positive # 

# and negative trainig set which are # 

# broken by HMMER 3 # 

# # 

######################################### 

for($i=O;$i< @arl;$i++) 

@al=split(' ',$arl[$i]);@a2 = split(' ',$ar2[$i]); 

for ($k=@al-l;$k>7;$k--) 

{ 

$st =$al[$k].$st; $stl =$a2[$k].$stl; 

} 

for ($k=O;$k<7;$k++) 

{ 

$arrayl[$k]= $al[$k] ; 

$array2[$k]= $a2[$k]; 

} $k=O; 
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$array1[7]=$st; $array2[7]= $stl; 

$st=";$stl ="; 

for ($kl =O;$kl <=7;$kl ++) 

{ 

} 

$A[$i][$kl]=$arrayl[$kl]; 

$Al[$i][$kl]=$array2[$kl]; 

} 

########################################################## 

# 

# Training sequences are assigned to number 6200 with 

# corresponding Z score for its demarcation 

# 

# 

# 

# 

# 

########################################################## 

for($u=O;$u<$c;$u++) 

{ chomp($train[$u]); 

for($q=O;$q < @arl;$q++) 

{ 

for($ql=O;$ql < @ar2;$ql++) 

{ 

} 

if($A[$q][7] eq $train[$u] && $Al[$q1][7] eq $train[$u]) 

{ $A[$q][7]= "; 

} 

} 

$dil= $A[$q][l]-$Al[$q][l]; 

$vars=6200; 

print XX "$dil\t$vars\n"; 

$A[$q][7]="; 
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} 

##################################### 

# # 

# Different types of pure and CRF strains # 

# are assigned too different corresponding # 

# numbers with their associated Z scores # 

# # 

##################################### 

for($1=0;$1 <@arl ;$1 ++) 

{ for ($j=O;$j<@ar2;$j++) 

{ 

if($A[$1][7] eq $Al[$j][7] ) 

{ 

@v=split(",$A[$1](7]); 

$di= $A($l][l]-$Al[$j][l]; 

if($v[O] eq'B' ) 

{ $vars=400; 

print XX "$di\t$vars\n" ; 

} 

e1sif($v[O] eq'A' && $v[l] eq '.' ) 

{ $vars=100; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'A' && $v[l] eq '1' ) 

{ $vars=200; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'A' && $v[l] eq'2' ) 

{ 

$vars=300; 
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print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'C' && $v[l]eq'.') 

{ $vars=500; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'D' && $v[l]eq'.') 

{ $vars=600; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'F' && $v[l]eq'l') 

{ $vars=700; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'F' && $v[l]eq'2') 

{ $vars=800; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'H' && $v[l]eq'.') 

{ $vars=1000; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'G' && $v[l]eq'.') 

{ $vars=900; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'K' && $v[l]eq'.') 

{ 
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$vars=1200; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'J' && $v[l]eq'.') 

{ $vars=1100; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'U' && $v[l]eq'.') 

{ $vars=l300; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'O' && $v[l]eq'l') 

{ $vars=l400; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'O' && $v[l]eq'2') 

{ $vars=1500; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'O' && $v[l]eq'3') 

{ $vars=1600; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'O' && $v[l]eq'4') 

{ 

$vars=1700; 

print XX "$di\t$vars\n"; 
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} 

elsif($v[O] eq'O' && $v[l]eq'5') 

{ $vars=1800; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'O' && $v[l]eq'6') 

{ $vars=1900; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'O' && $v[l]eq'7') 

{ $vars=2000; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'O' && $v[l]eq'8') 

{ $vars=2100; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'O' && $v[l]eq'9') 

{ $vars=2200; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'l' && $v[l]eq'O') 

{ $vars=2300; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'l' && $v[l]eq'l') 

{ $vars=2400; 

print XX "$di\t$vars\n" ; 

} 



elsif($v[O) eq'l' && $v[l]eq'2') 

{ $vars=2500; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'l' && $v[l]eq'3') 

{ $vars=2600; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'l' && $v[l]eq'4') 

{ 

$vars=2700; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'l' && $v[l]eq'5') 

{ $vars=2800; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'l' && $v[l]eq'6') 

{ $vars=2900; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O) eq'l' && $v[l]eq'7') 

{ $vars=3000; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'l' && $v[l]eq'8') 

{ $vars=3100; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'l' && $v[l]eq'9') 

67 



{ $vars=3200; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'2' && $v[l]eq'O') 

{ $vars=3300; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'2' && $v[l]eq'l') 

{ $vars=3400; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'2' && $v[l]eq'2') 

{ $vars=3500; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O) eq'2' && $v[l]eq'3') 

{ $vars=3600; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'2' && $v[l]eq'4') 

{ 

$vars=3700; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'2' && $v[l]eq'S') 

{ $vars=3800; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'2' && $v[l]eq'6') 
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{ $vars=3900; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'2' && $v[l]eq'7') 

{ $vars=4000; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'2' && $v[l]eq'8') 

{ $vars=4100; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'2' && $v[l]eq'9') 

{ $vars=4200; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'3' && $v[l]eq'O') 

{ $vars=4300; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'3' && $v[l]eq'l') 

{ $vars=4400; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'3' && $v[l]eq'2') 

{ $vars=4500; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'3' && $v[l]eq'3') 

{ $vars=4600; 



print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'3' && $v[l]eq'4') 

{ 

$vars=4700; 

print XX "$di\t$vars\n"; 

} 

elsif($v[O] eq'3' && $v[l]eq'S') 

{ $vars=4800; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'3' && $v[l]eq'6') 

{ $vars=4900; 

print XX "$di\t$vars\il" ; 

} 

elsif($v[O] eq'3' && $v[l]eq'7') 

{ $vars=SOOO; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'3' && $v[l]eq'8') 

{ $vars=5100; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'3' && $v[l]eq'9') 

{ $vars=5200; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'4' && $v[l]eq'O') 

{ $vars=5300; 

print XX "$di\t$vars\n"; 
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} 

elsif($v(O] eq'4' && $v[l]eq'l') 

{ $vars=5400; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'4' && $v[l]eq'2') 

{ $vars=5500; 

print XX "$di\t$vars\n" ; 

} 

elsif($v(O] eq'4' && $v[l]eq'3') 

{ $vars=5600; 

print XX "$di\t$vars\n" ; 

} 

elsif($v(O] eq'4' && $v[l]eq'4') 

{ 

$vars=5700; 

print XX "$di\t$vars\n"; 

} 

elsif($v(O] eq'4' && $v[l]eq'5') 

{ $vars=5800; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'4' && $v[l]eq'6') 

{ $vars=5900; 

print XX "$di\t$vars\n" ; 

} 

elsif($v[O] eq'4' && $v[l]eq'7') 

{ $vars=6000; 

print XX "$di\t$vars\n"; 
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} 

elsif($v[O] eq'4' && $v[l]eq'8') 

{ $vars==6100; 

print XX "$di\t$vars\n" ; 

} 

} 

} 

} 

close(XX) 
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