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Hathematical Programming problems have woll
known importance in economics, Industry, Game.Theory
and in the solution to muny other problems of theore.
tical and prasctical importance, 7o study extreme point
nothematical programming problems in the thesis, some
of the linour and fractional functional abjectiva
functions are considered,

The totel work is divided into three parts,
The first part coosists of four sections deals with
solving the extreme point linear programsing problom,
In section.]l and section.2, tho problem is solved
by the cutting plans technigues and in section.3 and
- section. 4, enumepation techniques are illustrated,
The second part desls with an improved techniques for
solving Extrem2 pPoint linzar Programming Problem, Tvo
cuts termed as Doep Cut and strong cut are developed
vhich are more efficient for solving extremo point
linear prbgramming problem, This also divided into
tvo sections 1,0, the cutting plans technique and
enuneration tachniqua, In the laat part technigues
are dealt for solving Bxtrems Point Linsar Fractional
Functional Programming Problems,
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CHAPTER « 1
I-TRODUCTION

This introduection traces in brief a survey of the
dovelopments in the fleld of mathematical programming with
specinl emphasis on fractionsl programming and extreme
point programming, The subject of mathematical programming
has grown tremendously because of 1'ts vast applications,
Hero only those aspects of mathematical programming, which

put the present work in 1ts proper perspective are studied,

This 1ntéodncziun‘1s divided into two sections, In
the first section, the mathematical progremming problem
has been taken up in genersl. In the second section; a
briof review of the related problem, such as Ixtreme
point programming problom, Flxed charge problem Assignment

problen and fractional programming probhlem, 1s given,

SECTICN = I
MATHENMATICAL PROGRAMMIRG IN GINBRAL

in the present fest‘changing_situations, decision
naking authorities huve to he not only objective but also
very active and alert Boecause even a slighbst delay of
inaccuracy can cause tremendous loses, This has led to the
development of the science of operation research., Hathe.o
matical progromming is one of the most important branch

of operstion research,



Problems which soak to maximise or ﬁinlmise a
numerical function of a number of variables (or functions)
with the variables (or functions) subject to certain
constraints, form a general class which may be called
optimisation problems, The quest for solutions to those
problems led tc the application of differential calculus
and to the developmeat of the calculus of Varla,tlom.
Hovever, many now and important optimisation problems have
emerged in the field of economics, the solution of vhich
with the help of these classical optimisation tochniques
tend to be todlous, lonz dravn and inefficient, This

has led to the dovelopment ©f nevw techniques,

vBraadly speakting, programming problems desl with
determining optimsl allocation of limited resources to
meet given objectives when there are many alterﬁatives.
The general programming problen c¢sn be formulated as

follows .

It i3 desired to determing X = xle.ooca xa

which satisfied the m 4nequalities or cquations

X
g™ -, , = ~ by 1212 seoee mo(le])

—~—

and in addition, maximise of ninimise the function

4 =f(x) ceene {1.2)
and x 70 (1.3)



The restrictions (1.1) are called the constraints
and (1.2) 18 colled tho objective functions and condi.
tions (1.3) are called non.negative restrictions, 1In (1.1)
gi(x) are assumed to be specified functions and the bl(s)
are assumed to be known constraints, Furthermore in (1.1)
one and only one of the signs < , = > holds for each

constraint,

A specianl class of above mentioned brogramming
prodblem is a linear programming problem vhere f{(x) and
gi(x) are all linear, In this situation the given

problem can be written as

idax {(Min) £ = ex
subject to Ax|{:, = 1D

Yhere 4 18  ai) " which is ‘'mxn' matrix,
All progranming problems that are not lineusr in the sense
dofined abové, are called non-lincar, Attention has also
been pald to lincar programming problems with special
simple structure like transportation problems, assignment

problenms, network problems ote,

For a linear programming problems Dantzig's
s implex method (43) 1s the most poverful and efficient
solving technique, Simplex method solves the linear
programming problem exactly in a finite number of step_s



or given an indication that there is an unbounded

solution,

, Hany practical problems, however, could not or
could hardly be represented by lihsar programming model,
Therefore, attempts have been made to dovelop more
general mathematical programming problems, Interest in
non.linoar programaing problems has grown simul tansously
with growth of linear programming ané gaomo theory (43).
In 1961, H.¥, Kuhn and A,Y,Theker (44), published an
inportant paper ontitled "Hon linear programming” dealing
with necessary and sufficlent conditions for optinmal
solutions to programming problems which laid the founde.
tion for great deal of later work in non.linear progra.

mming.

The mathematical programming model can be classi.

ficd into four catogories .

(a) Doterministic, continaous'models, the set of
points satisfyinz all constralnts, 1is connocted pnd the
objective function 1z continuous, o.g. linear prozramming
problems, quadratic programuning problems, convex progra.
mming problexs, fractionsl functicnal programming

problems etc,

{b) Deterministic, discontinuous models the feasible
region is not connected and/or the odbjective function is



not continuous, for example, integor linoar programming,
integer quadratic programming, fixed charge problem,
assignment problem, extreme point fractional functional

programming ete,

{e) Stochastic modelss the coefficients in the
constraints and/or in the objective functions are random
variables, 1In this caetegory we have the constrained

progranning probloas,

{d) Dynamic Models: The coefficients, in the constrai.
nts and/or in the objective function, are dependant on a

parameter say time,

The class of non.linear progromming problems which
has boen studied most extensively, is ono vhere the
objective function is non.linear and the constraints are

linear, The general problem of this kind is

dex Min 2 = £(x)
subject to ax° » = b
X : 0

s

In 1954, s.Charnes and C.Lemke (9) published an
approximute mothod of treating problems in which minimi.
sationof separable functions subject to linear constraints
when each of the separable function is convex, is studied
(The function f£({x) 18 convex over a convex set '8!

in En if for any two points 31 and Xo in 8 and for



a1l Ay OXNSL, A%y ¢ 1 oM xS A R + (1 - ) (x,),

Convox function is the negative 6: convex functioni The
problem of minimising a general convex function subjoct
to linecar constreints has also been considered, HMost of
the nmethods developed for this problem can be considered
as large step gradient methods as given by J, B, Rosen (83)
and Zoutedijk {(69),

in 1955, as number of papers by different authors
dealing with gquadratic programming have appeared, The

genaral GQuadratic progranming problen is

Mininise 2Z = cx + x' Bx
subject to ax 2b

X320

Yhore B is a semipositive dofinite matr;x. The
main contéibutnr in this field are E,M,i,Beale (5),
M, Prank and P,Wolfeo (21) and ?.wolfe {67) are the well
known and have an advantaze of reducing a quadratic progra.
mming problem to a form vhich pernits application of the

semplex mothod,

an important and a Particuler class of non.lincar
programming is convex programming in which a convex func.
tion is mininised {or a concave function i3 maximiscd)
cver a convex reglon, The woll known methods for solving

such a type of problems are Rosen's gradient projection



method {63) Zoutendlijik's method for feasible direction (69)
folloy's ocutting planc method (38) and Zangwillts convex
simplex mothod (68),

another example of deterﬁinistic continuous model

- 48 fractional programming vwhich desls with optimisation

of the ratio of two functions subject to certain constrai.
nts, A linear fractionszl programming prodblem in its most
general méthematical_rorm is 1~

Hax '&x E %

subject to AX{ < * %D

Xz 0

Important contributors in this field are A,Charnos
and ¥ ,W, Cooper (11), Bela Martos (47, 48), 4.85,born (17)
and K,SaYRUP (33, 34).

Another class of non.linsar programming problems
is discrete optimisation problem where the verisble aro
required¢ to be non.nogstive integers., Ons of the carlier
papers'dealing with tho subject, was published by Dantzig,
Fulkerson and Johnson (15) in 1954, Gomory (26,27) was
the first to set forth a systematic computational technique
which converges in a finite number of iterations, Glover
{24,25) and Young (64,65), Raghvachari ($1) and some
others have made good contributions in integer programming

tochniques for non.linear programming problems,



Fixed charge problem is a particular case of
non_linear programning problems belonzing to deterministic
discontinucus category of programming models, Ond of the
earlier papers to deal with the fixed charge problem was
by Hirsch and Dantzig (31) Balinski , Juhn and Baumel and
a fow others concentrated on finding approximate solutions
to fixed charge transportation problems, Fixed charged
problem can slso be formulated as a mixed integor conti.

nuous variable lincar programming problems (13),

another deterministic models is assignmenf problem,
It iz a linear programming problem with a special structure
and for its solution it is troated as zero.omns integer
programming problem, The linear programming formulaetion
of this genersal assignment problem is

th oo
Hax iil jil gy iy
subjoet to
121 X153 = 1 J=132 ..... n
h Xgo = 1 1=1,2 ..... n
FEREL

xij =0 or 1

xij ,7:;0\ 1,3 = 1’2 Pasae n

A number of computationally efficleant algorithm



wvore developed by Balinski and Gomopry (4) Khun (45) and
Ford and Fulkerson (20) to solve the above problen,

York hes also done on Extreme point programming
vhich belongs to the class of deterministic discrete
models, In extreme point programming problems an
chjective function is optimised over a convex polyhedron
with an sdditionsl requirement that optimal solution should
bo an extreme point of convex polyhedron, This type of
problens have been studied by Kirby, HM.J.L., Love, H,R,
and K,Sawrup (39, 40, 41), The most general mathematical
form of extreme point linsar programming (E,P.L.P.)

problen is

lax 4 = ox
subjoet to ax = b
and x 18 an extreme point of
Dx = 4

X =0

dlongwith the development of extreme point linear progra.
wning (B.P,L,P.) progross also been made in extrewe point
fractional functionsl programming {(8,P,L.F, ¥, P, ) which
can bs formuleted as

Max 4 = X

subject to Ax = b
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and A 1s an extireme point,

Programming problems in vhich some of the paramaters are
random variables are knovn as gstochastic programming
problems, These are almost alvays non.linear, a lot of

vork on stochastic programming has been dons (5,10,14,66),

snother important technique for solving optimisation
problem is Dynamic Prograuming, Richard Bellman and
S.Preyfus (7,8) arce important contributors in the dovelop.

ment of dynamic programming,

S8ECTION .. 2
RELATED WOBRK

In this section, a brief study of the problem
which related to the present vwork, is made, E,P.L.P. in
1ts most general form, was firat studied and solvod by
4eJ.L, Kirdby, H.R,Love and XKenti Savrup (40)., The problonm
can be stated analytically as

Ix = @

Max < = Ox 5
i

subject to Ax = b ]

and X 45 an oxtrezs point of % Problem
0 (2.1.1)
b
0
¢

x7/0
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Any zero.one integer programming problem can be converted
into the above form by replacing the requirement, that
each of the #ariahles be either zero or one, by the condi.
tion that an optimal solution be an extrame point of

In X<y X 20, The problem (2,1.1) is a larger class

of problems than the class of integor programming problbms.

To solve problem (2,1.1) the following linear

programming problem was considered,

Max 24 = (%
subjoet to Fx

i
g ]

x>0

Yhere FPc \g} and ¢ = Xg]

optimal extrems point solutions (vhich hersinafter have
olso been termed es first best extreme point solutions,
socond best extremo point solutions wore obtained and
3rd best, 4th best extreme point solutions of problem
(2.1.2) vere determinod by a cutting plane method,

These points were tested at oach stage whether an extreme
point of (2,1.2) obtoined at that stage, 1s also an
extrems point of IDx =4, X =0 the ith best extrems
point solutions of the problem (2.1.2) are second best

oxtrome point solutions of the probleun ;

Hax 4 = Ox
subject to Fx = f
Cx -~ U'Ll
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vhere “'{1.1) is the value of the objective function
at (1~1)th best extreme point solutions of (2,1.2).
A mothod of finding second best extreme point solution
was developed in (40), At some stage, vhen an extreme
point solution of (2,1.2) was reached which was also
an extrene point or Dx = d, x . O, the process vas
terminated, If a stazge vas reached, when no further best
extrors polint solution could be possible the problenm
(2.1.1) vos sald to have no solution, In this process,
besides the computational éifficulty of testing vhether
an oxtromg point of bDx = d, x 20, another difficulty
of finding alternative optima at each step was faced,

The difficulty of testing at each stage whother agn
~extremo point of (2,1.2) 1is an extreme point of Dx=d,
X 0 was avolded in (41) where the extrewme solution of

the follovwing problom .

Max 4 = Cx

subject to Dx = @ Ppoblom (2,1.,1)

NS N P, e

x>0

wvoro determined in a systematic order starting from first
best extrome point solutions by the cutting plane method
t1ll either feasibility in #x = b vas achieved or some

incdication of no solution was obtained, In this approach
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alternative optima vore still needed at cach stase,

In (39), an enumerative technique was developed
in vhich the difficulty of obtaining alternative optima
at each stage was also get rid off, In this approach
extrems point solution of (2,2,1) were enumerated in a
systematic order till either feesibility in Ax = b wvas

nchieved or somo indication of no solution was obtalned,

Fixed charge problem (F£.C.P.) is a particular form
of a non.linear programming problem, In its nost gensral
form it is .

n
Min % = & gj“‘,;)

X 20
&3 = 0 1f xd = 0
=1 1if Xy 0

where #; (x;) = ¢;xy + fjﬁj » £330 J=1,2..... 10

The number f£j's are called fixed charges, since £j 1is
incurred only if xJ > 0, If 1t were not for fixed
charges, F,C.P, will be a simple linear programming
problem, 4s the function ¢3xj sy J =1, 1) eaeese N are
concave for Xy » 0y J = 13250.000 R and the objective

function is being minimised optimal solution of the problem
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lies at an extreme point of the convex set of feasible
solutions, However, there can be loecal optima different
from global optima, ﬁpprozimqta mothods were devoloped
which could determine only local optima for a F,C.P,
Hirsch and Dantzig (31) made a simple observation that
optimal éolution must occur at an extreme point of convex
sot of foasible solutions, The mothod of ranking the
extremo point of Ax = b, x =0, a8 developed by llurty (49),
to obtain an exact solution of F,.C,P,, 18 useful when the
fixed charges are quite small compared to the rango in
the values of the variable casts, Murty (50) and

Gray (28) developed appronches for solving e fixed charge
transportation problem, Hurty's spproach is useful vhere
fixed charges are quite small compared to the transporta.
- tion cost wherens Gray's approach 18 useful when fixed

charges dominate and have an upper hound,

In {(13), F.C.P, is convertecd iato a mixed
integer continuous variables linoar programuing problonr

of the form

n
r = X * 5
Hin 4 f cjxj—% fj J
J=1
SUBJBCt to AX = b
XJ -djﬁj 0 J = 1;2, seee O
o:dj &;1 j = 1"2’ ‘AW n
63 integors

70
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vhere dj's are upper bounds of xj's in &x = b

assignment problem, in geusral, deals with assigrment
*n' persons to *'nt jobs in such a way that the total

value to the company is maximised, If xij is the valuo

th

of the assignment of i person to Jth Job and

further °13 be the value of ith peison to the company

if he 1s assigned to Jth Job, then the most general

form of assignment problem (23) 1is

Hax 2 = i1 Ggy X
=1 g1 M
subject to % Xy, = 1 52142y veeee n
131 J | A .
a
Jix gy =1 12 142y veees N
xij > 0

As this is a particular form of transportation problem
it can be solved by the same techniques a3 are used to
solve a tramsportstion problem, Both Dwyer (18) and
Votaw and Urden have discussed methods for obtaining
tnear ~optinal' solutions to the assipgnment problom and,
of course, to the tr.nsportation problem, The special'

and sinple structure of the constraints {viz, f xtj = 1

-

L Xgy = 1) has led to the dovelopment of & number of
computationally efficient algorithms (4,12,20,45).
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~dditional techniques have also boen developed by Von
Noumann (51) and Egervary (19).

Linear Practionsal Functional Programming (L,F,F,.P.)
is a spocinl class of non.linsar progranming. This specinl
class of progrsmming problems ars concerned with optimising
a given ratio of two function of non.negative variables
subject to certoin lincar and/or non.linear constraints,
These probloms are distinet from counvex/concave progra.
mming problems bocause tho objective function to be
optimised is neithor conve# nor concave mathematical
model for a general linear fractional programming problotn

is

Hax 2 = %f—-‘{-g-

subject %o AX - b

Charnes, 4, and Cooper Y, ¥, (11) in 1962 replaced any
L,F.F, P, problem by at tho mest two ordinary linsar
progromming problems, The equivaolent linsar programans of

the abovo model aro

Hax Cy =t
Ay-bt<o
subject to f.my +3¢t =1

L, t 70
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HaX w CF w ot
subject to Ay . bt < O
-Dy -« Bt =1

i3 tz0

I1f the sign of the denominator is known, only onc of these

problems is required to be solved.

In 1964, Bola iHartos (47) developed a computational
simplex technique for L,F.F.P, under the title "Hyperbalie
Programning®™ in two cases called simple case (vherc
golution set is regular and denominator at the objoctive
function for all feasible solutions is strictly positive)

and gensral case,

In simple case, it is shown that the objective
function has a finite maximum which is achieved on, at
loast, ore of the veortices of the convex set '8' of feasi.
blo solutions and computational techaique fs deseribed,

In the gensral case, when the conditions for tho simple
case arc absent, the problem may have an optimel solution
cyvon through the set *5' 1s unbounded ond the donominator

hecomes 2Zero,

In 1965, Bela Martos (48) proved that the linsar
fractional fuunction (which i3 neither convex nor
concave ) is quasi monotonic¢, Bocause of the quest nono.

tonicity of this function, it has the following two



1e

inportant proparties .

1. A local maximum is a global maximum

2. The maximum of it occurs at an extreme point of
tho set 'S¢,

In (33), E.SAYRUP has given simplex.like jterative
procedure for the solution of linear fractionsal prozrammes,
The problem considered is

subjaoct to Ax = b

X =0

where the constraint set is regular and the denominator
Dx43 1s positive over the constraint set, X,Sawrup solved
this problem directly beginning with s basic fapsible solu.
tion and the conditions under which the solution could be

improved were obtained, The optimelity concitions

b5y > 0 for all 'j' voro also established whero

- t
ay =2 (25-c,) -2 (2F- ap
In (34), K.Sgwrup has developed an algorithm on
the basis sidilar to that adopted by E, . L. Beale (6) for
the solution of quadratic programming and the basic result

19 that for the mexinum at a basic feansible solution

g%io ‘Yzlja XN n
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' 1]
v A 0 + i sy &
\ n
=1
u v
and X8 = /80 + & /SQLG 5, 6 152 ceves D)
G=1

gt

ta
(ZJ 8% are non.basie wvariasbles and x ' are basic

)
variables)

Cortain relation and common characteristies of
linear fractional program and its equivalent linoar
programs aroc also catablished. Dual simplox type algorith
is dovoloped for the linear frectionsl functionsl progra.
mming problem, Finally, outlines of a techniquo for
obtaining an integer solution to the linsar fractional
functional programming problem besed on the integer
linoar progromming slgorithn of Gomory (28) hes baen
discussed, Simultansously with the fast development of
research in linoar fractional programming, the field of
non.linear fractional programming hass also davelaped.
¥Yany papers, such gs, Almogy and Levin (1) Dinkelback(18),
Jaganmathan (32), Mangesarlan (46), K.Sawrup (35) ete,

have appeared on the subject ;

Some work has been dono en extrome point linear
fractional functional programuing by K,Sawrup and
R, K, Gupta (36, 37). The problem considerod by them is

GXQ-Q
Hax 24 = pome
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subject to Ax = b
and w« i3 an extreme point of
Bx = ¢

x>0

In (35) the extrems point of 4x = b, Bx‘ = ¢t X320 are
doterninod in a systemstic order by a cutting plane method
till extrome point Rx = ¢, x = o 1is reached, In this
approach, at cach stage difficultios of finding alterna.
tive optima and testing whether an extreme point of

Rx = t, x 0 are faced. In (37) the latter difficulty
is got rid off by determining the extreme points of

Rtk =t x=o0 1in a systemaotic order by a cutting plane
mothed, The process is terminated when foasibility in

Ax = b 1s achiocved,



CHAPTER - I
EXATREME POINT LINEiR PROGRAMMING PROBLEM

This chapter, consisting of four sections, deals
wvith sciving tho Extremo Point Linear Programming Problemn,
Section I and Section 2 solve the problom by cutting plane
techniques while in Joection 3 and Eection 4 snumeration

tochniquos are presented for solving the problen,

SCETI0H - X
CUTTILG PLALE PRUCERURE I

INTROLUCTION
The Sxtreme Point Linear Progresmming Problem
{CPLPP) in its most gensral form was first studied and

solved by HK,J.L Kirby, H,R.Love and Kanti Sawrup. DOPLPP

in genersl, 19 statod as

Max 4 = Cx 1
subject to Ax = b |
X.0 I

and - X 1is an extrems point of : (I1.1.1)
e = 4 X
X 20 }

vhere 4 1is (» xn) matrix, D 1is (p xn) natrix,
b is (m x1) matrix, 4 1s (j ) matrix and X 1s
Faod Y
% :23& ted in this section

{n X1) matrix, The pro s;._');»*;-'"'
A0
Q\ \‘:.;

?
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solves (I1I.1.1) by cutting plane teechnique where one
‘moves from one extreme point to another extreme point
of the convex polyhydron Ax = b Dx =d, X>0. till an

extreme point of Dx = d, X0 is reached,

THECRETICAL DUVELOPHMENT

To soive the problem (I1X,1.1) consider the lineoar
programming problem (LPP)

Hgx 2 = Cx 4
Subject to Ax = Db
Dx = d

K> o0

= FX =1¢ (II.1.2)

S Sl N, b e

Hore F becomes a (m + p) Xn matrix and Py a (m + p) X 2

natrix

It may be noted that problem (II.1.,1) is always
bounded because any solution of (II,1.1) is an extrems
point of Dx = 4, x ..0 and this set of extreme points
is always finite, But the problem (1I,i.2) may be
bounded or unbounded, In case problem (11.1.2) is
unbounded, it can alvays be converted into a bounded
problem introducing an additional constraint CX< M,
vhore M 1is an arbitrary large, finite positive number
doeterminad in such a way that nons of the extreme points
of (11I.1.1) are excluded with the inclusion of this
additional constraint,
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Thus the probdlem (11,1,2) henceforth is always considered
to be bounded,

A fov notations are introduced to develop the theory,
i O3 5.

J = (GJ H dJ ¥ 0, vhere dj is Jm column of D]

J(X)aldj -&“]3 xé # 0 vhere X = {21’22’ seew xn] .

8, =X :aX=Db ond X is oxtreme point of DX=d, Xz 0|
8, = (X: 1is an oxtroms point of FX = £, X>0)

33 = Sa - 8‘1

(2) _ 2p _ (3)
xl - xll y &12 essene xléi) is the sot of all

optimal extreme point solutions of the problem (I1,1.2)

V§2) = cx,.{z), an element of xiz)

THEOREM 1 3 Evory extreme point of DX = 4, X >0
satisfying feasibility dn AX = b 43 also an extreme
point of FX = £, Xz0 1,0, 31 & Sy

PROOF ¢ If 81 = f, theorem is done,

It Sl #@, lot X ¢ S,, Thus X 1s an extremo point of

Dx = d, =0 and satisfles AX = b
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X satisfies (2)x=(2)

Lol

i,e, X satisfles FX = ¢
Thus X 15 an element of the convex set S, =(XiFX=f,X »0)

It is required to shov that X 1is an extreme point
of 82 1.6. XC‘ 82’
Ie X 85, Jt, w ¢ '52’ t#£Y 8 uch that X = »t +
( 1a2) W, O<icl,

A8 t, v ¢ 's'iz' therofore Ft = £, F'w = £5 ¢, ¥v»0
. o — A - b

= D =d

w =4

Similarly

Thus t, v aro distinct points of the set
( X ¢t DX =d, X230 )

such that X is their linecar convex combination,
Therefore, this X 4s not extreme point of DX =4, X=0,.

That 1s X £ 84 5 2 contradiction

X 18 an extreme point of B,

1,6, X {\82
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Since X 1s ony element of 8,, thereforo 8.g S,

Hence the result

This theorem guarentees that an optimal solution
to the problem (II,1.1) is an extrome point of (I1I.1.2).
One can also find the following relations between the
prodblems (II,1,1) and (II,1.2):

(L 1) Problem (II.1.2) and (I1I,1.1) both have solutions,

(L 2) Problem (I1,1.2) has no solution and hence
(IlI.1.1) has no solution,

(L 3) Problem (II,1.2) has a solution but (II.1.1)

has no solution,

4pply simplex method to seolve problem (I1,1.2).
If there i3 no solution to this problem then by (LZ2)
(II.1.1) hzs no solution, Therofore the problom (I1I,1.1)
has its importance only when (II.1.2) hes a solution
i.e. 5o £ @. Assume that both the problems have solutions

THEoREM 2 ¢+ If X° ¢ x{2), the set of all optimal

extreme point solutions of (11.1.2) then an optimal
solution X of (II.1.,1) 1s an element of '81 which 13
at a ninimum orthogonal distance from the hyperplano



CX = CX* = Vig), V{z) being the optimal value of the
objective function of (11,1.2)

QO 3 The preblem (1I.1.1) can be restutedas
Max 2 =
subject to
X ¢sy

This problem 18 equivalent to

subject to

X € 5,

vhich 48 further aequivalent to

V(z) CX
M s S
=S En
Subject to
¢ 8¢
(2) .
Vl anéd " { being constants,

et X be the optimal solution of (I1.1.1) then X 6731.
§inco 5,g Sy , therofore X ¢ 8, 4lso since X' is
the optimal solution of the problem (11.1.2), therefore
CX)CX * XR¢ By

. 9{2):? cX

or V&gj -~ CX >0

2)
v | oex
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v$2) _cx |
represents the orthogonal distance of X from

c |
hyperplane X = ¢x* = {2,

S4ince tho probleom (II.1.1) as restated in the above form
sccks to minimize this orthogonal distance subject to
X¢€ Sl’ thus X, the optimal extrems point solution of
(IL1.1) 1s at a minimun orthogonal distance from the
'hyperplane CX = ng).

Thus the problem reduces of finding asn X¢ 51 which 1s at
& minimum orthogenal distance from the hyperplane
cx = v{®), 1o achieve this, the concept of 2nd best,

3rd best ete, extroeme point solutions are introduced,

Second Best FExtreme Point Solution : The second best

extreme point solution to a2 LPP (11,1.2) is an clement
s'e (32 - x{e)) such that cs” = cs ¥ g ¢ (Sp - x{g)),
vhore X{z) is the set of optimal extrems point

P, (- ‘ (2) ¢y (2) (2)
solutions of (11.1.2). let X3°/ =(X,0%, X357 .......
Xéﬁé ) be tho set of all second bost extremo point

solutions of (Il1.1.2).

8imilarly, the third best extreme point solution to
problem (1I.1.2) is an element s’ € (S, ( x{23 Uxéz))
such that ¢s” = os ¥ 8 ¢ (S, (x{P)xE2))),  The set of
third hest oxtreme point solutions of (IX1.1.2) is



denoted by x§2} = zx‘g) K52 1eeeen xagz“’f

In genaeral the o pest extrems point solution of

(II.1.2) i3 defined an element s ( (8, -(U XCZ)) )

iz
such that c¢s :sv ¥ a¢ (S~ (U IL X (2)})
2 i=1 i )

xgz), 1 21,25 see Neul itb bost extreme point

solution of (I11,1.2)

LMl 3 If e LPP has a second best extreme point
solution then it 1s adjacent to some optimal extreme

point,

PROOF s+ Consider the simplex table corresponding to an
elenent of the set of sccond best exireme point solution
of (I1.1.2). Sinco it is not optimal there must oxist

at least ons column, say Jth, for which zy-cy O it
the corresponding colunn aJ is entered in the bhasis
departiﬁg a colunn for which € = Min ‘3!11 $ 113 ;;0\,;?0

then this single simplex ifteration will lead to optimal
sofjution of LPP, As only a chenge of one basis vector
in tho second best leads to optimal solution,vit follovs
- that tho second bsst is adjacent %o soms element of

optimal extreme point solution,




Lia 2 3 If a LPP hag hth best extreme point solution
then it is adjacent to some clemont of the set containing

optimal, 2nd best, ..... (h «1) st best extreme point

solution,

PROOF 1 Consider the simplex table corresponding to
h*® vest extre:e point solution of (II1.1.2), h »I.

Since it is not the optimal solution, there must exist
at least one column, say hth, for vhich Kj-cii(o, if
the jth column, with corresponding zj -cJA;o, enters

the basis doparting a column correspoading to & = Hin

x .
[;%? ’ yij;'o} s 6 >0, then the séfplax table so obtai.
: 1
ned will generate an element of U xiz). £3 simplex
%=1
me thod moves from one extrexe point solutlion to another

along an edge, therefore, the hth best oxtreme point

1 (2)
solution to a LPP is adjacent to an silement of igi Xy

aet , . (2)
LEMa 3 ¢ If X ¢ X0 40 a0 optimal solution of

(II.1.2) then a second best extreme point solution of
(11.1.2) is an element of Sy «(x{%)) which is at a mini
mum orthogonal distance from the hyperplane cx:cx':v?’.

PROQF @ Since X' s an optimsl solution to (Il.1.2),

(2)
therofore, CX® ~CX ¥ X( Sp. Let Y (-85, X, be

the second best extremo point gsolution to (I1.1.2).



30

L oY VY ¥ (8, _xge)
1.0, -0x" s _ox ¥ 1( 8, -x{?)

cx’-cxs ox'-cx # ¥¢ s, - x{®)

eX=Cy Cx’=CY

2)
# v¢ 8, xt
ek ~ 1 el fand c 2"

wA eyt v Loy @
el $ el ¥z sz‘xl

*
Thus the orthogonal distance of ¥ from the hyperplane

CX = _viz) is less than or squal to distaace of any other
point X{ 32 - xga) from the same hyperplans, lience 4l

is at a minimum orthogonul distance,

PROGCE 5 3

Let the rank of D be p and the rank of F beo
(m + p)o If X{ B, then 1t hos st most (H +p non.zero
components, A4lSo any oxtroms point solutien of (I1.,1.1)

has at most p non.zere componants, Thus &f X{ 311’\ 82

then J(X) has at the most p noh.zera components,
Thus 1f X( 8, and (J(X)}» p then Gf 5, and 1f X( 8,
and [J(Xj < p then X{ S, 1f elemonts of J(X) are
linearly independant,

Thus an oxtreme point solution of (I11,1.2) is’
also an extreme point solution of (II.1.2) g.rcxb,,; p and
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elemonts of J{X) are linearly indepondent,

Solve the problem (I1,1.2) by simplex method, This
yields Xig) s the set of optimal extreme point solutions
of (II.1.2) vith v{¥) a5 the value of objective
funetion, If x§25n Sl # @9 then every element of

x{g) nsl is an optimal solution of (II.1.1) and the
process terminates, 1In caose x{a’ ﬁsl = @, then by
Theorem 1 an optimal solution of (II1.1.1) will be an
element of S1 S, - x{z)o. Determine the sot xé2> =
§X3§2’ ’ Xgéa) sreses Xéﬁéf_ of ell second best extreme
point solution of (IX.1.2) by using proceduro T as

detailed below,

Procedure T

et B be the basis corresponding to an eloment of
x{2), X bo the vector of the basic variables and Cp
be the rowv.vector with components as the coefficiont

asgsociated with the basic variables in the objective

function,
- 1l
Thus xB = B %
N 1
i = g fj

For each element of ng) datermine

H{B) = §J H 33 - cj > o}
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qy = in , &
1

Leid
(4

» gy 70 s JCH (B)

-

A

- !’11“ (¥} - ' :
and 8 = Min Ny :¥B 4s a basis for an element

kh

of Xl

This process determines the optim&l table too be used
and the column to enter and leave the basis to determine
second best oxtrome point solution of (IZ.1.1). If
various minima obtained in T aro unique, the second
best extreme point solution is unique, othervise, the |
set of second best extromo point solutions 1s gonerated,
ter x§ = 4,02 k3B .. X(H ve the set of
second best extreme polint solutions of (I1.1.2) and
véa) be the value of the objective function correspon.
ding to an eloment of X$%), Determine Xi%ns

1.' Iin

1 is an

optimal solution of (II.1.1), otherwise, the sot of

case Xéa)nslfﬁ thon every element of Xég)ﬂ 5

third best extreme point solutions to problem (XI,.1.1)
is determined by introducing an additional constraint
cx vi?) termed ss a ‘cut' ,

This gives rise to a new problem
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Hax 24 = CX
subject to

FK = £

cxg vi®

(I11,1.3)

s MR el B et Wk

X=0

Solve the problem (II.1,3). Lot X{3) be the set of
optinel extreme point solutions of {Ii. 1.3). Clearly
Xéz) Fl x§3‘) « Any socond best extreme point solution
of {(I11.2.3) 1s en olement ¥*( p where

= [( XiX 1s an oxtreumd point of FX = f ox gvéa),

0! (3)
o) - x()

Xz

such that CY'> CY # &P, But ws CX = v§?) for all

Xx¢ xm) thus tho socond best extrome point solution

of (11.1.3) 45 an elemont 1(‘t of the set X:X 1s

extreme point of FX = f, cox véa), X5 04
(2) ; x(2) '

¢ 252 u x§

o

z 8-
such that CY¥’» CY % ¥( 8, - “{2)”":(22) )e

Thus the second best extreme point solutions of (1I.1.3)
is third best oxtreme point sclution of (Il.1.2) i.e,

{3)_ (2 2) ‘2) (2 (2
283z k{3, 1ev x§ = ¢ X437 K82, el Kol 3)f be

the sot of third host extrems point solutions of
{I1,1.2) and ng‘ be the valus of the objoctive
funetion correspounding to any element of Xge) .




. {2)
Petermine xa “81 .

1 1s optimal solution for (II,1.1),
othervise, find the next best extrom® point solution of

1f xgz) ﬂsl #8 then every element
of xgz) %3

 (II.1.1) by introducing the snother cut CX vgz; in
{11.,1.2) and determine the second best extreme point

solution of the problen

Hax 4 = CX g

subject to ¥
i (31.1.9)

FX = £ £

cx =vi? g

X =0 .

Pty . ’

which will gonerate the set Xé?) of fourth best
extrome point solution of (I11.1.2), again test 1if
xgz) n Sl #£ £. This process of introcducing cuts in
order to obtain the next bost extreme point solution
of (I1.1.2) is continued till st some stage, say WCl,
the set of MFh best extrems point solutions of
{Il.1.2) 1is such that Xég) 0 51 ¥ £, where Xég) is

the socond best oxtreme point solutions of the problen,

Hax 4 = CX ;

subject to ¥
1 (11.1.h)

VX = ¢ {

gt I

oX ¢ V§F) ;

i

C=0



35

Vhfg) is the value of objective function at an
element of (h-1)st best extreme point solution,

HUTB 1 The cutting planes Ci< VP, 111,2... w}

are parallel to cach other and vj_‘?};vg?’ ¥ 1 the
econstraint CX< Vﬁz) maekes the constraints

C}ig ng d =212 tvoe § =« 1 redundent, Hence only
one constraint (cutting plans) 1is considered at any

s tage,

Tho procedure as discussed above converges because i

(a) 81 £ 8, and 3, 1s finite

(v o set x{ 1s repeatec as V{P> v, !¥ 54

THEORMM_ 3 ¢+ If X 1s an optimul solution of (IX,1.1)

and X{a) n§, =@ theni is adjacont to somo element

1
of S, = 52 - S, . Moreover, for all points adjacont
to some elament of By R 18 at 2 winimum orthogonal

distance from the hyperplana CX = V{z).

PRQOF 1 : % 1is optimsl solution of (IX,1.1),
there fore, X ¢ 81 . By theorem 2, fc is at a minimum
orthogonal distance from the hyperplans CX = vgz).

Row %

A
¢ '31 3 Sl & 8, therefore X ‘(' 85 ¢ Lot X



be NP best extreme point solution of (I1I1,1.2),
therefore x®) n8, =8,4=1,.ci.. (8. 1) ans
L X{2) g B8,. Also, stnce X s H™ best

=3 :

extreme point solution of (I1,1.2), bu Lemma 2, it is

adjacent to somo elemont of 83 .

It nay thus be noted in the above procodure all
the extreme poiats of 8, are not roquired to bo
examinsd , the procedure beglins with the best extrems
points of problem (I1I.1.2), and proceeds to study in
order, the second best, third best, ....... N0 best
extreme points and terminates es soon a8 an extrenme

point of (Il.1.1) 1is arrived at,

In cuase problem (Il.1.2) has a solution but
problem (l1I.,1.1) has no solution, all the extreme
points of (3I,1.2) are tested, Since (iI.1.1) hes
not solution, therefore, 81 =@ and ng) n Sl =P ¥4,
suggesting procedure will continue indefinitly, But
this 1s impossible os S, 18 finite and v{*) v,
#1 and so after a finite number of steps say 5’ it wvill
be impossible to find out second best extreme point
solution to the problen,

Hax Z = CX

subjoct to
FX = £
cx v§#
X, 0
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wvhich is indicated by tho fact that there 1s no optinanl
simplex table with a J such that szﬂo and Zj_cj>0

1t may also be observed that if the problem
(I1.1.2) s unbounded, it is converted into a bounded
problem as discussed earller., In this case tho optimal

solution ng)

of the converted problem may bot be an
extreme point of the convex polyhydron FX = £, X .0 and
in this case Xiz), the second best oxtrems point solu.
tion of the convorted problem, will be an oxtreme peint
of FX = £, X>0. Taking X{?) as tho starging solution
the procedure follovws exactly for the case vhen (11,1.2)

is bounded,

EXAMPLE
Max 4 = 2 x1 + 3 K2

subject to
-Xy + 2y 8

X, *+ oo 12

1 S
and '.(xl, Xo,) is oxtrome poiat of



SOLUTIONR 3

For solving N(1I,1.1) start with the problenm :
Max Z = 2%, + 3X, ‘

subject to
?-xl + 232 + Xy = !
Xy *Xg + X, = 12
_Xl L xz E xs =
FX = ¢ %o + X = 6 ' B (II.1.2)
Cx ]Po 92 6
Hy - Ayt Xy 712
331 - xz + xe = 27%
Xl’ xg, cnes xa 70

The set x§2’ of optimal solutions of N (II.1.2) is

2 = %xlgza = (6462,0,3,0,6,3) ]
and vgz) = 30
dgn dﬁﬂ dsv d7a 63 ?
and Py Rank of D = 4

tiow g = ?1’

(2)y - ¢ y
T (Xy377) = By, dp dg Gy dg ]

v x,8%) )= spa

(2) ,
RN ms, =0
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- Proceed to find'out Xéa), the set of socond best

extrome point solutions of N{(II.,1.2) as follows:

HEB) = (4,86)

Q = Min (6,2,3) = 2

Q5 = Min (6,2,3/2) = 3/2
yp = Min (2x2, 3/2x1) = 3/2
5 = 3

Therofore fa entars and re leaves the basis to

givo a second best extreme point solution of H({II,1.2).

Kég) = ngz) = ( %ﬁ’ %: %ﬁ’ 0,6, %t % » 0)

W - g

Stmplox Table For Xp$%)

Varta. c | '
bles 3 2 3 0O 0 4] | 0 0 0

- of
3 Basts X, £, £, f3 f, £ f5 £, fg
2 1 15/21 0 0 -1/2 0 0 O 1/2
0o f; 13/2 0 0 1 .72/2 0 0 0 3/2
3 f, 920 1 0 320 06 0 .1/2
0 £ 6 0 0 O0 -2 1 0 0 1
o £ 320 0 0 520 0 1 .32
0 £ 32 0 0 0 .32 0 1 © 12
2:57/2 256, 0 O O 7/2 0 0 0 .1/2

ey
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i - (2)41 2
(™= 4y dp 45 &g 4,
J (x2§2)) = 5) 4

x%a) n Sl = P

| 4
Introduce the cut axl + axa < §2 in N (Il.,1.2)

The problem 30 obtained is

Hax & = Qxl ™ axz
subject to
-—Xl % 21!:2 + 13 = 8
Xy + iy v X, = 12
231 - xe *, 17 = 12 § N (110103)
3):1 + Xy +Xg = 27 |
2x, + 3:2 * 2 = 57/2
31’ xg' sseve 392‘,0

the set x{3) of optimal solutions of problem N(II,1.3) is
1
. i -
3 = iayf® - @803, 08, 2, 0
5
x‘l(a)u( lg'%,l%m.ﬁ. %ao’o)f
|

Find out the set Xém. of second best extreme point
solutions of W (I11,1.3)
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| (3) (3
be basis for X,1% anda B, for X, {3,

Lot Bl
For B1
H(B ) = (8]
G =mn[8,32,8) -8
By amnggxl‘} = 3
For B,
i(By = (93
= mn| B,H] -1
B, = wun] 8 x1 - a
& = Min %fBl s Bg)
=ﬁ1n{§vx1,%‘x§ = 21
B2 gives a second bast extreme point solution of

B (1I.1.3) by replacing f, by £y .

I R I TS IE T
0, 0, }

I (2830 ) [ %% 950 %

A
O SR I IO S
Jxa{® ) =a=p(=4)

Also ejlements of J (xsig)) are 1inear1y independoent,
8 ns;, 79
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Hence xgz) is the solution of Problem N(I1,1,1)
The solution for H (I1.1.1) 1is
= 8
2, = 48

and optimel value of objective function of N(Il.1.1) is

zglgﬁ

SECTIOR 2
CUTTING PLACC PROCUDURE 1X

INTRODUCTIGH

Tho cutting plane procedure I, given in
Seetion I, has the disadvantages that

(i) it is required to test the iinoar 1ndepanéance of
eloments of J(x) 4,0, linsar indepondence of a subject
of columns of D which is computationsily lengthy and
aifficult |

(11) The cuts introduced creat some additionnl oxtreme

points which although ore never going to be the solutian.

of the problem (II.,1.1) but are'requircd to be studied,

The procodure presented in this section has the
- advantage that it eliminates the difficulty (4). Thus



present technique is o¢sasier to handlie and requires lesser
computations and time, In this precedure one moves on

the extrowme points of Dx = d, x>0 etartingfrom the
first best and keep on ranking the extremd points until
tho feasibility in Ax = b 1s satisfiled, 4s soon as such
an extrems point 1s obtained, 1t is optimsl solution for
the problem (II,1.1). |

THEGRITICAL DEVELOPHENT

let S = ix : x 1s an oxtrems point of Ix = 4, x T o,
8 1is, obviously, a finite set, The problem (IIl.1l.1)

may be restated as

Max 4 = CX
X¢ s

subjeect to

Then S8 is set of the extremse solutions of the problen

Hax Z =CX 1§
subjact to % .
1 (1Z.2,1)
DX =4 }
X=>=0 X

The problem (II,%.,1) may be bounded or unboundsd,



Cnse (1)
The problem (iI.2,1) 1is bounded, Introduce
tho following notstions to dovelop the theory,

ROTATIONS

By =:X 1 X(8y A% = b}

8 =,X 1 X 1is en extreme point of DX = d, X5 0}

X1 1s the set of 1} best extreme point
solutions of (I11.2.1)

U&l) is the valuo of objective function
corresponding to an olemoent of xil)

(1) _. ., v - utl),
XKg') =t A( 8 3 CX = UPY

let Xgl) 3<; Xi})’ xiél) sessesvee x-iél):"

-

Apply simplex mothod to find the set of optimal
solutions Xil) to the problem (Il.2,1). If x§17=¢,
then probiem (II,.1,1) has no solution an process is
terminated, In case xélj A £ then the elements of
x{l) are tested one by ono to see.if they satlsfy

the foasibility in AX = b, If so then XV n s, £ g
and evory element of xil’ n Si is an optimal soclution
for (II.l.l) and procedure terminatos, If Xg}) n 31
=@ 4,0, no element of xl(l) satisfics the feasibility

in AKX = b, then deternim xél), the set of second



bost extrems point solutions of problem (II.2,1)
{Procedure T discussed in Section I), 1If Xél) = @,
then problem (II.1.1) hes no solution, If

x§V £ g, deternine X§V 15, in case x§V) w5, 29,
evory slenment of Kél} N 51 yiolds the optimal solution
for (IL.1.1). If x{Y n s, = p proceed to fine x{V,

the sot of 1th best extrome point solution to (I11.2,1),

starting from 1 = 3, (Procedure developed in section 1),

The process ends in either ylelding xél’ = P,
for somo h, implying problem (II,1.1) has no solution
or x§1) # 2 ana x{1 n 8, £ @ which lmplies that
every element of Xél) n Slv is optimal for problon

(II.1.1); vhere X§1) 1o the set of k™ best extroms
point solution of (II.2.1) and it will be the set of

second bost extroms point solution the problem :

Hax 4 = CX
Subject to

IX = @
o o
X 0

vhere Uhfi) is the valuo objective function at an
(1)
element of thl .



Hence the procedure, mainly works on three steps 3

STEP -~ I 1 At the k™ iteration, the K™ best
extrome point soljutions of (Il.2.1) 4s found,

STFP « 2 3+ Tho points obtalned in 3TEPR.1 are toxtod
for feasibility 4 AL = b,

srr§,p -~ 3 1 {a) if the fonsibility is satisficd the .

g#%eedure is ternminated,

/‘ .
/{b) If the feasibility is not setisfied proceed to

~next iteration,

The procedure given sbhovo términatas in a finite
number of steps as & 1s finite and extreme points

foungd in B37LP.1 are naver repested,

Cpso (31} ¢ The problem (Ii.2,1) 1s unbounded, In
this case the problem (II.2,1) is converted into a
bounded problem by introducing an additional constraint
CAg My B 18 sufficiently large, positive finite number
such that all the extreme points of (II,2,1) are
inclucded in the resuliing region, The problem generated
is

tlax 4 = CX

subject to
Dk = @4
cxfrz
>0
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et 8§ = X 1is an extreme point of IX = d
CX M
>0

X§°) 18 the set of optimsl solutions for
problem (II,2.0)

U§°) is the value of objesctivefunction at an
elemont of X{o)

X£°) 1s tho sot of 1™ begt extreme point

solution of (1I1,2,0) 4,s,
(9 = x¢gicx=0{® 1=1, ... 0

B§°) is the value of objective function for

an element of x§°)

Sinco problem (II.2,0) is bounded, therefore
x{®) #pend cx u¥x¢s then x{®) n g, = p, The
renaining extreme point solutions of (1I.2.0) are
ranked systematically till at some stage, say kth,

2§%) n 8, #p 1n which case every olemsnt of X{°’n 5,

is an optimal solution of (II.1.1).

The procadure developed in Section 2 is eansier
to handle in the senso that it is much easier to test
if nn element of S satisfies the feasibility in
A = b rpather than to test if an extrems point of
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FX = £, X >0 18 also an extromo point of DX = 4, X =0,

8ince the feasibdle region of problem (I1,1.2)
is more compuact - rostricted than the fessible region
of the problem (II.2,1) of Scction 2, therofore, ?ﬁa)
is expected to be noarer the optimal value of tho
problem (1Z,1.1) thaen U§13 and therefore it is
expected that procedure doveloped in Section ) will
move faster towards optimality of (I1,1.1) but the
computational advantage galned in the procedure of

Section 2 helps to solve the problem in a lesser time,

In both the precedures developed in 8ection 1
and Section 2 1f the optimal solution is not obtained
at the first iteration itself, then second best extreme
point solutions ete, are needed to bos caleculated, In
gonoral these are not unicue ané 30 all the altoernate
optimal sclutions are to ba esleculated, The theorenm
that onsures that not sll the simplex tables need to
be considered and also in sach table thero is only
one column with .‘31.J - cj;yo aend Qj;»o.

HEQREY ¢+ Each optimal extreme point solution of tho
problem (Il1.2,1), 12 4s given by an optimal sinmplex
table in which Z2-Cy=0 1=1,2 ,...8 and

Zn+1 - Cn’l = 1.
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PROOF Consider the problem (II,2,4), introducing
the slack variables it bscomes

Max & = CX
subject to
X = 4
= 1¢2)
CX » xn*l U&
x;;o
lot ¢ =i 0}
y
t 1 }
(2)
e e
ggia),

The result is proved by using principle of induction

consider the case when 1 = 2
The problem (11,2,2) 19

lax 4 = CX
subject to
ox = b$?
X =0

let xggg) bo an oloment of the sot of second test
extroms poiat solution of the problem (I1I.2,1). Ilet B
be the basis corrosponding to this element, then
sinplex table for this solution will have at least one
2y - cj'<o

J =1 2 .... n, Consider a basis B, of the

problem (I1I,2,2) givon as
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i

ln 0
i Cp 1

Then |E7t = B"]' 0
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end Gy =[Gy O |

H
H

The vector XBI. of the besic variables for the problem
(i1.2.2) for the basis B; 1is given by
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x, = 5p®
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S S
| B dy
! J’-"l' 2; esss 0
ez vc,
=y * ¢y
2 -
¥f“ ‘g
¥ o
lﬂ { J=na+1
by i
M T
Z. =0, 3
- ¢
J B, "
A [
- =0 ¥, . C
4y=Cy=0a %~ G
- “ it | |
i ; ;
‘ch, 43 1 ch ""GJQE j‘:l’z’ see B1
- 3 A | t
] [N %
| 6y 0. . O
* i‘ 11 Jﬁﬂ*lv

J = 1’2, eee B

‘ j::vr‘l'i"],
Z = |2
j.cj \ 3 - c.j J = 1’2] sens B
i 0 J=n+]})

Thus for the problem (I1.2.2) all veluss of 2, - C

J 3
are the semo as for tho problem (I11.2,1) J=1,25.. N



and since slachk wvariable 18 in tho basis 1ts coprres.
ponding Z; . C; = 0, Since 1n the simplex table
corrosponding to Zgia) there is at least one column
say kfh for vhich 2, - Gh<(o. ?huréfore, 25 -0y =
ZEQSO and henco k" column entors the basis also
since x i3 at zero level in the basis thorefore

n+},

nel i3 removed in the praéeas of simplex iteration,

In tho resulting simplex table ZJ - GJ is given by

A
R A Y(ne1
ZJ - CJ = ‘chj) - (Zh"ch) 5:;:;‘:‘: le’zi..n

, (2,60
= (KJ-CJ)—(%-Ch) (.t, +ch) 3’3152’ ese I

‘Z’JoGJ"o legeion'n

Z-Cn =0~ &y - ) TS

Honce “é -0, =0 1if J 1;2’ seee N

]

=1 1f }

4

n+}

Cptimality criteria is satisfied,

Honce the result

The other optimal simplex tables can be gensrated
starting with this table, It is obsorved that ang i,
J =12 .,... n, not in the basis, if eatered into the

basis preserves this character of ZJ - GJ 8lso nsl



can be brought into the basis only at zoero level if
the optimality 1is to be maintained and hence no now

optimal oxtremo point solution is obtained,

How it is shown that it is not necessary to bring nel

into the badis to obtain & where

& = mni\fa vhere B is a basis for the element
X "2)}
m P
Yp = Min iQJ (2 - o )s Qj»ol
H (B) =L,1 IR ey o}

X
‘ ‘ - B .
Suppose 539&(%“%)‘“5;5'(%“%)

for some basis B containing ‘Zml

This gives a representation of an extrems point of

X = 4, x)/o wherein x,.. . X5 (mey) = O thon

Y(no-}_)h = 21; W&’ # 0 and thus . can be entered
departing n+1e &8s a result of this iteration in the

noew simplex tablae tho enteries are

X = X i= 1’2., .t.“‘m¢1

Bi Bi

_ <XB‘

8 = ) ( & -~ Gy ) 1=21,2) tesea I
“ih
\0 i=n+1
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Bance 75' is given by on optimul simplex table in

which the basis does not contain Honce 1t

9 nel *
is unnccessary to consider %Y nel for entry into

basis for finding optimnl,

This completes the provof for 1=2., GSuppose
now the result is true for i=2,3, .... h « 1 Then
any saecond best extrens point solution to the problem
(Il.2,h.1) muast have 9 ne1 in the besis and the basis
is of the form,

- - |
Bl = B 0
i s 1
ang -l = j ﬁ-l 0E
Bl i '
T |
-bBB 1l
ig = FY 0 | @ !
1 P |
it R A
+ ‘
| B™lg
= :
L
o
= ; X
: B, ! %
| :
o B,

Repeating the arguments given for 1=2, we get the
result,
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This theorem helps in reducing the number of

optimul simplex tables of the problem (I1.2,4), 1:2

since 3 n+1 is never to be brought into the basis,

Also the calculutions of saecond best extreme point

solution of this problem are greatly reduced since

XA

H(B) = n+1 4,e, singleton end also Zn*l..
B
Max 4 = 7x1 + 9%,
subject to
- Xy *+ 2x2 %1 {a.1)
2%y + 9%y =1. (8.2)
x1, 32 ,?",0
and (xl’ "2) is extromo point of

-—z*xl + Xg <1

Xg =4
31 + X < 7
Xy - 4x2 2

%, *2 » 0

cn+1 = le

f(11,2.1)



SOLUTICH

In order to solve L{II,2,1) consider the following

problem
Max 4 = 711 + 9%,
subject to
| -2x1 * x2 + x3 = 1
| Xp + X, = 4
DX = 4 | Xy +Ey +EG =7
150
:; X 4ig + X = 2
{ f1 = e 6

\xlg xg’ sess § xs 0’

The optimal solutiom of H(II.2.2) 1is

i

_)g(z) = { X {2)

® = &
{2) =
X3 w8, [/
{(2)

To find out the set X, of socond bost oxtremo

point solutions of (1I.2,2), let B be the basis
(2)
for xl .

dow H(B) = 4 571
i 3

B84 =Hin 1 4, 3] =3

= » 1 - 2

8 = Hin |3, gi = 2




r

4 ! f
B=Hin 322, 3/2x7 =6
& = 8

Thus roplacing dg by d, in B a socond bost
extromo point solution of N(II1.2,2) 1is obtained

) 1
%2 = {.‘xgg_g) = (651,12,3,0,0,0) }

(2
us?

11

5.1

S8implox Table For Xgia)

garia."Cy 7 9 0 0 0 0
Cp the, 3 % % 9 4 4 &
9 4, o 1 0 0 1/5 .1/5
7 4 1 0 0 0 45 1/5
0 4 1 ©0 0 1 0 5 35
o 4 3 0 0 0 1 -5 S

4=51 zj.cj. 0 »0 Q 0 87%/56 «2/56

"1 ony. ‘2) -

Introduce the cut 7x1 +9%x, 51 in (11.2,2) tho

problem so cbtained is



Hax Z = 7x, * 9%g

subject to
..le R xa + xa = 1
xg * xé = 4
31 + xz + 155 = 9
' - " (II.2.3)
xl -%2 - xﬁ = 2
711 "’9"2 * 17 = 51

-

%1, *2, v %9z 0

The sot of optimal solutions for R(I1.2,3) 1is

xiS) m{ X%’:) = (%Q':é a%nO f% ’ .};& ' o)

o

Xlé"‘” = ( 6y 1y 124 3, 0y 0, O i)}

lot Bl be basis for xl‘l‘a’ and BB be basis for

%5

Fer I?v:'_8
Bep, )y =17
9, = min 15,% = 9
B o= 3




oY

>
-,
ey
0o
—rt
1

(4

 Min [2,0,8}

@
<
"
1
o

Hance & = %

Therefore, second best extreme point soluticn of

N(11.2,3) 1is obtained by replacing d

2 by d7 in Bl.

x$® x83 = x 88 - (32, 4,0,0,3,82)

- 5

XCE)
3 N8 = 2

fow

Iatroduce the cut 7x, + 90Xy < §2 1n H(I1.2.2)

The following problem is obtained

Max 4 = 731 + g

sudbjoct to
x2 + x4 = 4
xl + Xy 4 Xg = 7

xl ..4!2 : 26 =

-

e
7)(1 * 912 ¥ xs = %

i
x =] H
b Tr- T - 20 !

|
5
'z
H
E
‘ W(X1.2,4)
E
i
3
i
!




50
T he optimal solution for NK(II.2,4) 13
P 2,89 = g, 4 0, 0, 3, 33 0)

204 6 |
(D = ¢ 54, 8%, 52, &L, 45, 0, 0

let By be basis for xlg"" and B, be basis for

A 6%
For 83:
H (33 )y = LE{
g = min | £2 8428, 507 =L
(By = %é
Por B, ,
H (By ) = | 8
. e:ﬁiné%@ B2 517 - §8
(B, = g8
5 = nin[ Zé . %g_f = gé

". Replacing dz by ds in 84 a second best
oxtremd point solution of H(II,2,4) 1is obtained

x4‘2) = Xéé) = X@ig) = ( g,o,lg,?, '5”';' %gé,o,gé;}

ud® = 14
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low X§43 satisfies both (a,1) and (a.2)

Therefore

X =
1

Xy =

is optimal solution for N(II.2,1) snd Z = 14 {is
optimzl value of objlective function,

SECTIOR o 3
ENUMERATION TECHRIQUES FOR SOLVING IPLPP

In Seation I of this chapter a cutting place
procedure is presented to solve the problem (II.1l.1).
The procedure moves ovor the extrewe points of
FX = £, A .0 in docreasing order of the valus of
the objective function till an extrerme point of
bx =dy, X .0 18 achieved to obtain second Best ,
3rd best ete, extreme point solutions cuts vere
introduced which gave rise to alternate solutions
which vere not extrems points of FX = £, X 0., The
enuneration technique prescnted ian this section

ranoves this difficulty.

In order to solve problem (Il,1.1), consider problem
{I11.1.2) which is

Max 4 = CA
subject to
FX = ¢
450
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2) th
(2 . x, B2 {2) »

>
rd

bost extreme point solutions of (II,1.2) and v,

bo the value of objective function at an element of Xiz).
B ‘22 . B (2)8 52) B (2?
1 3 11, ©42 s+ Moy | ;11>/ ky
be the set of bases corresponding to elements of xi{a)

8(2}35 B (2)8 @) E {2); be the set of

O e P A T
bases adjacent to the elements of Big) ylelding the
value of the objective function less than V‘z).
4pply simplex method to find xga) and V%z . If
Xig) = @, then (lII,1.2) haes no solution and hence
(I1.1.1) hes no solution, If X{?) £ g, then
determins x§2) L 51 s in case ng) n Sl # P then
every element of ng) n 51 is optimal solution for
(1I.1.1). Othervise, find tho sot X$%) as follows:
De termine Biz) and E{a). The subset Bég} of E{z)
vhich yleld the greatest value of the objective
function, say ?éz), genarntes the set .Xéz). 1€
xz‘z) # @ anéd xéz) n 81 2 9 then every element of
X3 5, 18 a solution of (II.1.1). Otherwise proceed

1
to fing Xéa) us follows:

{2) | p{2)
let Hl = El

(2)
(2 .
1$?) (Ey ug

i

(2) {2)
2 ) - By
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The subset B of HE¥) that ylolds the greatest
value of the objective function, say Vég), genérates
tho set x$%. 1f x{®) = p'thon (I1.1.1) hos no

solution, If x§?) 4 g una x§%A 3, # 9 then evory

eloment of X${%) m 5. 1s optimal for (Il.1.1) .

b 8
Utherwisc, proceed to find the next best extrems point
solution,

th

at the 1™ fteration f£iné the sot Eifﬁ) of bases

adjacent to the eloments of Bi_ggj yielding the value

of objective function less than Vif§>. {eternine

2 : ‘ {
B () = :,11}.1 E(I)S" U
.1 [t 5 S IR A

A subset Bga)of Hifiyielding greatest value, say Vf?)
of the objective function generate the set xgz)

This process of finéing next best oxtreme point solution
1s continuod till either x$%) = g, for some h,
indicating that (Il.1.1) has no solution (This will

be s0 when at that particular iteration Hh.§2) = @)

or xgg) A9 and xéz) L sl 2P in vhich case every
element of x{%) n S, is optimel solution for (II,1.1),
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The procedure converges in a finite number of steps as

(1) SIS 82 vand 82 is finite

{11) Ho extreme point solution is repeated since
(2) (2 '
Vi> Vi, ¥ 1
Considor the case when (I11,1.2) has a solution but
(II.1.,1) hpgs no solution, In this case Xiz) n 51 =
¢ ¥1. Thus after a finite numbor of steps say N, it
will be impossible to find out (N + 1 )th dest extreme

point solution {i,e, ng) = o

PRUBLEM =

Hore problem H({1I,1,1) 1s solved by enumeration
tochnique presented in Section 3,

SOLUTION

The optimal solution for d(11,1.2) 1is

i

6469240,3,0,6,3) "

i

(2) _ .« (2)
7 =¥ |

(2) _
01 = 30

Nov ng) na, =9

@ . 5 (D, .
ByYT = By ( |

fl, fa’ 22’ fs’ f7’ fs ))
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1]

(g, £, ¢

5, £, f£,)

g . g (D
B0 = P 7, Ta

it

- (2) o,
Byg (£, £3,%2, 5, I, fo) |

. Value of objective function for

Ell = 30 - 1 x 2 = 26
g.42) . g4 3 = 3 = 5

Therefore, Egg) generates an element of ng)

XD = a2 (3 B B0 6 3 4 00 ]

{2)
How Xz n 81 =@

2} 2
- (g

]

(£, f3 £ f5 fp o)

1, T3, T2, f5, L4, T5 ) |

'

1

iy 2 Iy 2
8f?) = aﬂzg ) (f

B2 . q (D . , ,
2 {Hoy (fy T3, fo f5 T4 fs s

o (2
B2 = 1 f?) = (g ot

1, fa, 7, fa )]

Value of objoctive function for
(2) . - 2,21 23
ot = BL-dxExg ‘

B{2) = s0.2x2 = 28
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Thercefore Hziz) generates an element of ng)

Xéz) = g;xa{z) = %2 ’ l‘g"s fgay §9 %v ’1‘%30:0:)3

(2
o . 4
(2
;cg)nsl;ﬁﬂ

Thereforo, Xy = gﬂ y X5 = &% is required solution
of N(II,1,1) ond

4 = ng is optimal vaiue of objective function,

SECTION - 4
ANOTHER ENUMERATION TECHNIQUE

In Section 2 a cutting place algorithm wsas presented
which reomoves the difficulty of testing the linear
independence of a subset of columns of D, But in this
case the problem of caslculating alternute solutions
remained, The Enumerstive Procedure presented here
eliminates this d4ifficulty too, Thus this agpproach will
e best one for solving an BPLPP,

Max 2 = CX
subjeet to
PX = 4
X =0
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lot Uf1) be tho valus of objective function of (I1.2.1)

th

nt an element of xifl) the set of 1 best extreme

point solution of (I1I.2.1)

1) _ ¢ (15 1 1),
b = 1443, K&V xéhig

=:x¢8 & ox  ufly

(1) _ .ot (D) - (1)
B{"" = 1By, Byg, srece Biy
VI SV ¢Y (1)

£ 7 P, Be, . Pamgd

B{l) is the set of bases corresponding to elements
of x(l) and Egl) is the set of bases adjacent to

elements of B{l) yiclding valus of objective function
less than Ux(l). |

J
i

i

|
- % 2

o

ig the set of bases adjacent to first best, second best
esvas ith bast extreme point solu*_tion. minus the bases
corresponding to first best, second best, ..... 1% bost
oxtreme point therefore, the set of bases of the elemonts
of x40 nust ve a subset or H{Y 1., (D) g afd),

-

Problem (11.2,1) 1is assumed to be bounded

bacaugse in csse it is unbounded it can be converted inte
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a bounded problem by intrcducing a constraint of the
form CX<M, wvhore M 18 sufflciontly large positive
finite number, as discussed in Scction I of this

chapter,

Petermine the set X{1. 1f x{) = g provien (11.1.1)
has no solution and procedure is terminauted, In case
x§1) £ g, then tost 1f any element of X{!) satisfies
the feasibility 1n #X = b i.e. detormine x{V n s,

In case x{lﬁ ! slﬂ # thon every element of xil) nsl

is an optimsl solution for problem (II.i.l). Othoervise
the extreme point solutions of (I11.,2,1) are enumerated
(Tochnique given in Section 3 ) in a systematic order

th

till at some stage, say h™, we get either Xgl) =B
1 ;

wvhich is indicated by Hh¥1 = § 4inmplying that (II1.1.1)
has no solution or x§1’ F xhCI) n 51 A P in vhich
case every element of Xél) ¢ Sl is a solution of
problem (II.1l.1). \

PLY

Hore problem N(II.2.,1) 15 solved by enumeration
technique developed in Seetion 4, '

The optimal solution for N(II,2.2) 1is
x§29 = Ex1§2) = 3y 4y 3, Oy 0, 15 )]

31‘2) = 57



69

-~

(2) _ (2 _ -
BI™ =By = (dp 4 @y dg )]

() _ g (2) _
E, ') = %uﬁll =( dp @

1, %9, %)
B, (2 3 3
Value of the objective function for

nlgﬁ) =57. ¥ x2 = 5
5

57..-3;3'x7=§3= 445, 50

Therefore Eliz) generates xé‘” the set of second

#

2
B $%)

best extreme point solutions of HN(II,2,2)
. (2 23 3
X820 = rx 4B < (6,1,12,3,0,0,0 )]
u® = =
(2) :
X80 &1 =P

and

H]
oy
P~

N
A

B{?) - (¢ a2, a1, a3, a4 )

B8 (e

i

a, d

S5, "1, d

a, 94 )

it
od°
ot
Lo,

th

Hp™'= {Hp ( 45.64,%5,% J»

i

( 4

2 ‘ )
Hyg?) 5,%1,%,% ) |
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Balue of objoctive function for

g = R

{2y _
Hpg, = 14

Therefore, Hé{a} genorates xgg)' the set of third
begt oxtrome point solutions of H{Il.2.2).

K§2} = <2) = ( Qo 4y 0y Oy % gﬁ )j
2
o2 . %3
Now
P ' .
352) = 1@33{ ) = ¢ dy 6y €5 65 )]

(2) _ o (2) _ .
R$H) = i_gal) = (8 8, 45 45 )7

t

(2 . g (2)_,
r§® - L Hy"'=C(dy 4, 95, 9% )

H_(2) ‘
32 =( d5’ ¢} é

1, %, % ]

Valus of the objective function for

2
Hat®) = 9
. £2) = 14

32
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Thorefore, Hagg) generates xg?) and
1§ = 128® = ¢ 20,5 5))
Xé?)" satisfies (a,l) asnd (a.2), therofore

X 2

]

1

a

Xo 0

is optimal solution for HN(II.2,1) and
Z = 14 1is optimal value of objective function,



CHAPTER « 11X

IMPROVED TECHRIQUE FOR SOLVING
EPLPP

This chapter develops two cuts termed as ?'Lesp
Cut* and *'Strong Cut' wvwhich make the procedure for
solving EPLPP conputationally more efficient over the
procedures preéented in Chgpter II in the sense that
the study of a number of extreme points of (=d,A20
is avoided, BSection I and Section 2, of this chapter
prasent the cutting plans techniques while Section 3

doals with snumeration technique,

SECTION = 1

DEEP QUT CUTTING PLANE PROCEDURE
FOR 30LVIHG BPLPP

IHTRODUCTION:

This procedure is an improvement over the procedures
for solving an EPLPFP, presented in Section 2, Chapter 1I,
THEORETICAL DEVELOPULHT 3
Consider the proﬁlem (I1.1.2) viz,

Max Z = CX

sub ject to
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e

3
H

F =

i

' L !

.

b
d

e o

A
i D
L

This problem is assuned to be bounded because 1if it is
not bounded it can slways be converted into a bounded

one by introducing an gdéitional constraint CX< M as
discussed in Chapter 11,

npply simplex method to (II.1.2) to find ¥{%), the
set of optimal solutions of (1I,1.2). I1f %) =g,
then problem (IX,1.1) has no solution ané procedure

is terminated, If !ga).# $ then determine x{a)nsl

. {Procedure given in Section I, Chapter II), If

Y{z) n 31 # P theao every element of x§2) n 51 is
optimal solution for (II.1.1). 1f ¥® ng =p

then find the get 252) of second best extreme point
solution of (II.1.2) (Procedure given in 3ection I,
Chapter 11). 1f ¥4%) =g then problem (II.1.1) has
no solution and procedure is tarminated, If !éz) £ P,
deternine ¥§%) n s, 1f ¥{¥)ns, 4p then every

element of ¥,¢%) % 5. 1s optimal for problem (II.1.1).
In case xgz)'n 8, = 8, let Véz) be the value of

objective function for an element of Ygz).

liow pick up the problem (II,2,1) viz,

ax 4 = CX
Subject to
BA = 4
K 20



In case (I1.,2,1)  1s unbounded addition of a suitable
constraints CA* M as mentioned.earlier makes it bounded,
Find X{l) the set of optimal solutions of (II.2.1).

let Ugl) be thevalus of objective function at an element
of x{l). if xil),z # then problem (II.1.1) ﬁas no
solution and procedure terminates, let x{l) # P, since
the feasible region of (II.2,1) contains the feasible
region of (Il.1.2). Therefore, v%z)s- U§1) (equality
holds in case !%2) n xgll # §, whoere Vga) is the value
of objective function of (1i.1.2} for an element of
0B, 4 ¥ g =g, 2 s not optimal for (II.1.1)
and V{g); U{l) ~therefore, U§1) is not optimal for

" (1)
(11.1.1), tHence X3° % 8, _ g tow find the set of

extremo points édjacent to the elements of the set 8{1)
for which the value of the objective function i{s greater
than or egual to ng). Qut of these valuss, of the
objective function, pick up the value V which is just
greater than or equul to Vég). V<:U§l). FT ?»véa)
and  ¥$%) % 8, =9, V wvill not be optimal for (IL.1.1).

Introduce the cut CX <V, termeé as 'deep cut' in problem

(11.2,1) snd solve the problem

Max 2 = CX §
¥
subject to % ¢ 111.1.3)
DK = 4 § |
CX =v ;
X 20 X
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Apply simplex method to find x{a), the set of optimal
extreme point solution of (IIX.1.3). &s x&a’ is not
optimal for (I11l1,1.1) find xéa), the get of second
best extremo point solutions of (1II.1.3) {Procedure
given in Section 2, Chapter III). If X3 = g then
provblem (III,1.1) hes no solution, If X§3) # p thon
ring x{P n s, 12 %, n 5 £ p, thon every eloment
of %¢3 n s, 1s optimal for (IL.1.1). If

32(3) n 8§, = #, the remaining extreme points solutions
of (I1I.1.3) are ranked by cutting plans technique

| (Procedure given in Section 2, Chepter II) till either
an optimal solution of (II,1.1) reached or an indicgtion

of no solution for (1l,1.1) is indicated,

‘Example i )
subject to {
~Xy + 2, 510 (a.1)

X, ¢+ zxz' < 14 (2.2)
X, . X 0
1072 H(IIZI.1.1)
angd cxl, Xo ) is extrone point of
-2:1 X, =4
..Eixl + 922 “ 80

2531 + 2%, =676




SOLUTIOR ;3

21x1 * 11:2

5%

X

X2

1-63‘2

n

< 462
15

(N

. 60

07 0

In order to solve (Il1Il,1,1) start with the problenm

X =
Do

£

subject to

X 4:-2!:2

1
- Xl + Xz
-2:81 + X,
~5%, +9%,
2531*2?)12

2131 +11x o

1 2

X ~Mp X = B |

x
1,

3
i
!
t
!

&Xa = 10
+x, = 14 |
* X, = 7
+ Xg = 4
vxy = 90 |
+ Xg =6?5
+ X, = 452 ,
**10 = 15 |
+ xll = 60 |

X . -
2yt X327 0

R (111.1.2)
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The optimel axtreme point solution of HH(ilI,1.2) 1is

©2 - §il§2’ = ( 2,6,0,0,3,2,4,6,463,360,9,87,30) }
(2) )

Vl = 154

J = dl’dg,dsidﬁ’dv?'dg’dg'ﬁqdlldla “’

p=8

I« 31.512)” = 4008
(2 =
X g =

Find Xéz), the set of second best extreme point '
solutions of N(III.1.2). Let B be basis for 2152).

How
H (B) = [3, 4*
*83 = 20
o - &

i

- "~ ﬁ &..
B =minj20xg,ExP

= Min {35, 262 = 26
& = 286

Heplacing fg by fs in B, Iég) is obtalned

Yég) = i !ggz) = (%’ %ﬁg O,g, %n 0, lgﬁ':

1543 1186 5 -
3 ! 3'%'332':%){

-
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I ) = 9)s
!éﬁ) " Sl = @

How consider the problem MN(Ili,1.3)

Max 4Z = 8&:1 + 23 x.a

subjeét to E

8
]
{1

{
i
2R, * X, + X, = 4 {
17276 ! N (1II.1.3)

X20 | -5, 9%y +X, = 90
25, 27X, + X5 = 675 |

21x1.+ 11:!2 + xg = 482

———

le - 6x2 4ox11

xl’ xa) xst eneas 112 0

PRyt~

The set of optimal solutions xl(a) for 0{I11I.1.3) is

‘i!v 31(3) = Xli ) = (: %, 15, 0,0’%5, _5%' 9'0’

%la 0, 96, %’ )]
31(3) = 2.&&2

xl(‘” n s, =P
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The value of the cobjective function at the extreme

points adjacent to the elenment of Xl(s) is

2157 _ 381 x 353 . 100787 . a45.04
5 = 292 232 o

and
5 25
Thorefore Vv = 345,04 ( = Q%187
1.e. ¢ - 100767
292

Q0 , ~
Introduce the cut 811 + zaxzfszlﬁﬁgéz {called Teeop Cut )

in ®(I1I.1.3)
The problem so obtalned is

Max Z = 8%, + 23x,

subject to

Xy + Xy + Xg = 7
~2%) Xy + X = 4
-5, + X+ X, = 90 i N (III.1.8)
I = 875,
Zlx) Nllxg +xg =462

X, + 110 = 18
2%; « 6%y * "ix = 80
Xy - 4;2~0 X0 = 8
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. . 1007267
Bxy + 2%, + Xyq 292

S0 Yool Yl Yot 2

xl’ xZ’ xsl xs’ cese XIS?O

The set of optimul solutions of HN{III,1.4) 1is

i 4 5375 1172119 ot
x1€4a = "n(1 ) = = (3 » “5052°r O» Oy Oy “S@%%s

23384 160402 176496 g
9052 * 3052 ! 905 9052’

323%%%9521

. (8) 262 4468 864] 27950
%, = (2322, &2 0, o, “EE% , B85, 220,

755  £025 .
0, 0, 1528 , §°, g, ) |
(4) _ 10078
Y = 00581

The set xg(q) of second best extreme point solution of

§ (III.1.4) 1s

(8) _ [y (&) _ 3432 1050 . . 3649 6538
Lo = Xyt = C5ED Sqa O O SEp i

L.

24 8025 . 1665
24300, &%z, o, 1282, o,

181 ’ ﬁ;_gg%g ) |
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(4 . 81806
2 181
X 4) -
P ns =p
. 608 . : he
. Introcuce 8x + 23x, { 232 in j(111.1,3), the
prob}em s0 obtained 1is
Max 2 = 8% + 23%, i
subject to
- xl + x2 * xs = 7
ki Ui T - =& N (II1.1.5)
~5Xy 9%y + X = 90
26x, +27x, +Xg = 675
= 452

2111 4-11:!2-& xg

i

3:2 + 310 16

sxl 16x2 #xu = 60

- 4 * X

X o * %19

i
&

v | 16
By +23x, #X,, s -

X X X X
%1,72, By 65 senee 112, 1430

The set of optimal extroms point solutions of
N (I11I.1.5) 1s

5) _ 5 > 61 &
X9 = 2,09 = ( B840, 2HEE, o, o, o, Rz, ag,

1558766 1441355 22423 594787 26930l
5611 * 811 ° 2 11° 56117 6611 )
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(5) _ , 3432 1050 3649 6538 24000 gO25
Rio ™" = (5557 »* 181 O O» 557 »7981 »T 181 0 181
0, 1868 o 2218 o,
" 1y O Sep 0)
o (8 . 51808
1 181

- Bince xl(s) n 31 = @, the set of second best extrome

point solutions of N(III,1.5) {is

1,88) - —szxcs) = ¢ 3,10,0,0,0, &I, 15,330,289,
| 5y 105, 45) |
0,43 = 254 |
liow xg(s)n 8 = £ , introduce the cut 8x, + 23325'354 in
N(III.,1.3) and the problem obtained is

MaxX & = 8%y +2m2

subject to
- Xy + Xy +Xg = ? .
-2x1 * Xg + Xg = 4 i
5%y 45 + xg = 90 §
25%, +27%, + Xg = 675 H (111.1.6)
211!1 +1132 * xg = 452
Xz * xlo = 15
5%y ~6x, + 3y = 80




Xy = &y v X =8

ax, +23x
1 2+ X5 = 2564

P, NI I T, Y N xcse

31,32’15’36’ sose xl?,xlﬁ 20

The set x1‘6> of optimal extreme point solutions of
n (111.1.6) is

(6 (6
xl‘ )= Xy )

i

( 3,10,0,0,0,15,330,289,5,105,45,0 )

(6) _  , 2904 790 3255 5670, 21265
Y1277 = L‘ 163 163 * O O FF R WSS
16095 15632 1655 0 1580 0
163 *7163" 163’ ' "163° !
(8) _
Ul = 254
x1‘6> n 91 = , the set of second best extreme point

solutions of N(III.1.6) is

®) . x4 .28, 10 135 985 2055
780, -
'1%9&0 gés 0, 0, ’%}ﬁ;

{6y _

U, - 28

Now X,%)n S, = P, therefors introduce the cut
8x, + 23, 2% in N(II1.1.3). The problem so

obtained is
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Max Z = 8x, + 23x,

subject to i
~Xy +xz+x5 = 7

- 4+ X + K
2 2

6

i

1 4
-le *932 *x?: 20

25k, +27%, + Xy = 675 N (I11,1.7)

i

S——

i@

23}:1 +11x2 +* xg 452 ;

Xo * X309 = 15

it

5x-6x24-x 60

1

i

X - By Xy = 8 !

| e |
8, +23x, + X0 = W

X% X . 20
*1,%2, 3, 6,7 *12,"16 7 @

The set of optimal extreme point sclution is

(7) = ix..47) . 277 370 135 2635 31050
RU0F T g e 0% T O e Tm o

23797 575 815 275 ¢ ) ]

j o

63 ' 9°*' 9 o

X 2(7) = ( 3?}-, }‘.g. 0, 0, 30, 30, 1.7(229’ 1%15’

1

; 5856 !
3%9@:";"1000’0)3
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tow x1‘7) ! S1 = @§, the second best extreme point
soclution of N{II1,1,7) is
x2‘7) = &x21‘7’ = ( 0, 4, O, 6, g%g , 0, 54, 587,
a1, 1381, ge, 24, 334 ))
92(7) = 92
How x2(7) M8, #P (ss it satisfies {a.1) énd (a.2) both

X

1 0

1]

X

i

o 4
is optimal extremepoint solution for N (I1i1,1.1)
and « = 92 {is the optimal value of objective function,

SZCTION « 2
STRUNG CUT CUTTING PLAGD PRUCEDURE POR CPLPP

IJ4TRODUCTION 3

The procedure presented in this section is an
improvenent over the Deep Cut Procedure presentsd in
Section I of this chapter for solving EPLPP in the
sansg that in this procodure, s much smaller subset
of extreme points of DX = d,;.x:;o is neecded to be
investigated to obtain the optimal solution of (II.1.1)




3

HROR

|

9]

onsider the vroblem (II,1.2) viz,

Max & = CX

"subject to

The problem 1s assumned to be bounded because 17 4t is
not bounded it can always be converted intc bounded

ong by introducing an additionsl constraint CX< M

a3 discussed in Chapter 1I, Apply slmplex method to
obtain x1(2)’ the set of optimsl extreme point solutions
of (I1.1.2). If ¥,‘%) =g, then prodlem (il.1.1)

~and procedure is terminmted, If 21(2) @ then

o It ¥ s £p, then

determine 2142) n s
every element of 21(2) % Sl is optimal solution for
(11.1.1). 1f 1, u s =9 then find the set ¥,(%)
of second best extreme point solutions of (I1I.1.Z2).
Let Vl(z) be value of objective functiocn for the
elements of 21{2) aﬁﬁ Vzgz) the value of objJective
function for the @lements of !2‘2). if ngz) = Py

thon (il.1.1) hes no soluhioﬁ and process is
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tormtnated, 1f Y% # g, determine ¥,¢%) nsn 1f
¥¢%) n 3, # 9, then every elemsut of ¥,¢%) n 5, 1s
optimal extreme point solution of (II,1,1)., Otherwise
pick up the problen ”(21.2.1) viz,"

Max Z2 = CX

subject to

DX = 4
L=0

In case (I11.2.1) is unbounded a suitable constraint

CX M as mentioned eariier makes it bounded, Find the
set Xl(l) of optimal solution of (II.2,1) with 31(1)
the value of objective fﬁnction corresponding to
elements of X, {1, 1f x,(V) = g, then problem (1I.1.1)
has no solution and the procedure is terminated, let
X,¢1) # p, since feasible region of (I11.2,1) contains
the feasible region of (II.1.2), therefore, v1<2>£:ul(1)
Squality holds in csse X,¢1)n ¥ (2 4 p ). s
¥, {8 n 5, = B, vl‘z) is not optimal for (II.1.1) and
71(2), Ul(l), tﬁerefore, Ulcl) is not optimal for

(II.1.1). Hence xl‘1> " S, =p How find all

ad jacent extrewe points of the elements of the set of
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optimal extreme point sciutions xl‘l), calculate the
value of the ijective function at these adjaceat
extrems points, Let Bi Vg(z) represent the value
of objective function at those extreme points, Pick
the value, say 'y, which is nearest to V') 1o,

v, = Min [Rﬂ . Find the extre~e points of DX=d ™o
with value of objective function as ,. Find the valus
of the objectiva function at the set of extreme points
‘afdjacent the extreme points with the value of objective
function as wl. Out of these values pick up the .
value, say Vg ( ;Vé(z) ) vhich is nearest to ,vg(g) and
find the extreme points of DK = d, XA “o corresponding
to W,. Azaln, find the set of extreme points of

DX = d, X .o which are adjacent to the extreme points
corresponding ﬁo Wg and value of the objective
function at these extrese points, Out of these pick up,
say ws ( zvz(z)), nearest to Vé(z) and find corres.
ponding extreme points. This process is continued ti1l
a set of extrome points is obtained where value of
objective function is ™ ( zvg‘g) ) and at all the

ad jacent extreme points to these extreme points the

value of the objective function is less than VQCZ). At
this stage the cut

CX My



\ . 2
is introcuced in (IL.2.1); v <My . % and wp) v, ()

141k, The problem so obtained is

Max & = CX

subject to
DK = & ( 111.2.3)
fo'wk
X7 0

The cut CX< W, 1s called ‘'Strong Cut', Find out cha)
the set of optimal extreme point solutions of (I11I1,2,3),
the value of the objec;ive function for the elements of
%,¢3) w111 ve, clearly, w. as X% 2 g una

v,z Ve{® ana 1% n s, =g, theretore, x,¥n s, = p,

1
-The rewmalning extreme point solutions of (111.2.3) are
determined in a systematic order by cutting plans
technigue (Given in Section 2 of Chapter Il) till either
an optimsl extreme point solution of (I1.1.1) is reached

or an indication of no solution of (II1.1.1) is obtained,

EXAMPLE s
In order to show the advsntage of Strong Cut Procedure
over the Deep Cut Procedure consider the problem

M (I11,1.1) solved i{n Section ]I of this Chapter,
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SCLUTION ¢

From that problenm
y (2) =
X, "8, =g
(2y .
Vg = 128

Now consider the N(III,1.3)
Tho set of optimal solutions of N(III.1.3) is
- %, L1 4 xr L
0, 96, %ﬁﬁ)

L) | 2T
1 ‘ 5

. (3 -

Ky ) q 8, =9

The value of the objectiw function at extreme point
adjacent to Xl(s) are

_ 2157 45.%.8 _
. 2157 351 .x 353 . 76
Bo = 3 202 = 1“2@52

10076 2
o e MR Cu)



i

The extreme point which has the wmiue of the objective

function as wl is

5049 2525 1117 8641 6318 1725
(555 555 O 00 2595 “F52 53 O Oy <555

8025 2987
595 ? 292 )
The value of objective function adjacent to this extreme

point is

. . 51608 (2)
Vo = FHap (V3T
Tho extremd point which has thewvalus of objective
function as wz is

3432 1080

( 3549 6538 22371 8025 O,
181 * 181!

Oy Oy S77» “181® 18T ® 181’

1665 o 22;§)
81 ' 1831

The value of objective function adjacent to this

extremo point is

vy = BB (Y
The extrems point corresponding to wa is

( %! %’Qt 0y, Oy l%é’ 30, -a;??z, 2770—5—&-, ;%9_&)



92

The value of the objective function adjacent to this
extreme point is w4 = 64 (. Vz‘a) Y. Introduce the
cut, called 3strong cut,

ex, + 23k, = 28 fn N (IIL,1.3)
The problem so obtained is

Max 3:8&1*2312

subject to

-Xy *+ X5 + X = 7
-211 + Xp + %Ag = 4
..5:(1 +9x2 * Xo = Q0
25x1 +27X 5+ Xg = 675
21;;l +1lx,+ Xg =462

53‘1 - Gx2 + xll = 60
xl +*4x2 + xm = 8
8X) +23:x, + X4 = 3%8

xl’xz'xs'xe’o con xla’ ?f o

The set of optimal extreme point solution of the problem is

7 2835 31060
1{1(4) =£X (4) = ( 'i'a'gj %59 ] 0’ 0' 15’ 0’ 63 ] 63 )

B, R A, 0
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(4) _ (25 |
X' = (82, 2

y

3%, 22, 9,0,0))

The second best extreme point solution of [i(I111,2.4) is

» 0, 0, 30, 30, 020, 1215

Xg(é) = 321‘4) = { 0, 4, 0’ 0, %6- V' Oy 54’ 567’
418, 1§§%: 84, 24, ﬁ%ﬁ )

82(4) = 92

ow X 4% 7 S, # # , therefore

L
0
o

is the requiréd optimal solution for the problem
8 (111,1,1) and 2 = 92 4is the optimal value of

~ the objective function,

It may be noted that in Deep Cut procedﬁre after
apply Ceep Cut three cutting plange are introduced
to get the optimul solution of H(III.1.1). theress
in strong cut procedure only one cutting plane
sarves the purpwse; lHence, S5trong Cut procedurs is in

goeneral more efficlient than Deep Cut procedure,
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SHCTION 3

STRONG CUT (DBEP CUT) EHUMERATIVE
TECHNI QUE POR SOLVING EPLLP

INTRODUC TION:

In Section I and Section 2 of this Chapter
cutting plans procedures are given, lHere, in this
section Strong Cut (Ieep Cut) Enumerative Technique

are presented,

THEQRETICAL DERVELOPMENT

After introducing Strong Cut (IDeep Cut)
CX¢ W (CX<V) in (11.1.2), the problem 111,2,3
(111.1.3) is obtained, siné X,¢3), the set of optimal
extreme point solutioss of I11.2.3 (1il.1.3) and U3
the value of objective function at the elements of
%, crearty 0 = (U =) a1so x{Pns =p
let 91(3)°f P ) be the set of bases of the alements
of xl(B)_ Determins E1‘3), the set of bases vhich are
ad jacent to the elements of Bl(a) yielding the valge
of objective function less than Ul‘a). gut of the
elements of 31(3) pick up the set 32(3) of elements
sthich yield the greatest value, say 02‘3), of objective
functicn, This set generates nga), the set of second

best extreme point solutions of I[I11.2,3 (111,1.3). 1If



12(3) = @, then (II ,1.1) bas no solution, Otherwise
determine X2(3) n sl.' ir x2‘3) n 8, # 9, then every
element of XZ(S) n Sl is optimal for (II.1.1). In
cese X, n s = prina %), the set of third best
extreme point solutions of III.2.3 (III,1.3). Find out
E2{3), the seét of all those bases which are adjacent to
elements 52(3) shd yield thewalue of objective function
less than 02(3).

let HD - g3

3) _ [z (3) gp (3) (3
1 (3 - i"'l—( ) ye, J - 5,

Tetermine the set of alements; Bs{a), of H2‘3) vhich
yield the greatest value, say Ug(a), of objective

function.

This procesg 13 continued till for some { K+l)

{3) , : :
either X703 . g 1mplylng (III.1.1) bhss no
(3) “ w (3) N
solution or x{K%l) AP und A{K*IJW.SIF @ in which

case every element of X(K+1) n 51 is optimal for
{3) : o
(II.1.1) vwhere x(k+1) is (k+1) st best extreme

point of solution of I1I.2,3 (1i1.1.3) and generated
by a subset of eloments of

(3) 1 {(3) | 1 (3)!
H = U g - Y B ‘
k \1:0 i’lk i=1 i+l |



The fadication x%?&n = § is incicated by
ﬂfﬁa) = f.
DXAMPLE 3

The problem H{I1I.1.1) 1s solved here by strong cut

Enumsration Techniqgue,

SOLUTION s

rfter introducing the strong cut in {I11.2.2) we get
N {I11.2,4). The optimal solution to this problem is

354 28
( 355 ggg: 0y 0y 15, O 'ggé 63 ?

*g““az g2, ggﬁ » 0 )y

( %é ;Q,’ 0y 0, 30, 30, 1929,

i

. (4) _ (¢ (4)
X4 = (%3

x. (4)
1?.

i

' 7
e, 4, 5,0, 0, 0))

The second bsst extreme point solution of N{III.Z2,4)
is find out as follows :

4) (4)
B, (% = [ 8]

it

dzd 4, 4. 4d d.. d

( a5, 7, %, %, %0, %11,%2,% )

4
o

it

( dﬁv da: 67’68'69,610'611’ 6y dl 2]
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d d., ¢

1]

» (4) {4)
BV = \,Ell

(4
Elﬁ‘)

(dr d

Iy 2| d?, dgg dg' lg’dllg 12’ 13 )

it

d5,913,97,8a,99 4y0,%4,95,9 ?}

The value of objective function for

E(q) : ?ﬁ‘_ﬁﬁxsg = 092

#

11 7 378
58" = 2F - Pxss = ea

E1§4) generates Xe‘é)

xéé) = X2§4) = { Oy 4, 0, 0O, 5@%, 0, 5, 4, 567, 418,

5, 84, 24, 34
Now X% n s, #p therefore,

%1

1]

0

X 4

5 =
is required optimal solut;on of problem N{III.1l.1) and
4L = 92 1s the optimal value of objective function,
‘NoTE :

- It may be noted that although for some problems
the strong cut and leep Cut procedures may coincide but
in,majurity of cases, in the Strong Cut procedure, the
investigation of a number or extreme points DA=d,Xz0 is
avoided which are nseded to be studied in Deep Cut

procedure,



CHAPTER « 1V

LATHIME PUINT LINZAR FRACTIONAL FUHCTIONAL
PROGRAMMING PROBLEM

SECTION O

PRELIMIGARIES

In order to discuss fxtrome Point linear Fractional
Functional Programming Problem it is necessary to briefly
sunvey the metheds to solve a gensral linesr Fractional
Functional Prégramming Problem (LFPP). Cortain results
in this development are stated without proof details of
which can be roforred to paper referonces given, The
gomsral LFPP is

CX + m

M
ox DX +3

subject to (IV,0.,1)

AX = b
K),O

where X is “hxl matrix, C and D are 1xh matrics,
A 1s oxn matrix and b is mx1l matrix, ~, 3 are
scales, It is agssumed that tho constraints of (IV.0,1)
are regﬁlar i.e, the feassible region is non.ompty and
bounded, It is also assumed that denominator is non.zero

for any feasiblio sdlution.



This problem has been studied by Charnes and
Cooper ({) in which they have ostablished that employing
a linser transformation Y = tX, t O ©reduces the
problem (1V,0.1) to solving two eqguivalent linsar progra.

mmigg problems viz,

Max CY ¢+t g
subject to ]
|1 ( IV,0.2)
AY o bt = L] ,
DY +8¢t = {
Xlt . 0 )
and
14
subject to f
A - bt =0 1 ( IV.0.3 )
DY ¢+8t =.1 !
X
ilt»:O I

It 1s establishod that

(4) For every (¥, t) satisfying the constraints of
(IVv.0.2) snd (IV,0,3) has ¢. O

(11) 1f D&° +8) 0 for every optimal solution of
(IV.0.1) and (X", t* ) is an optimal solution of
(Iv.0.2) then ¥ /t° 1s un optimal solution of (IV.0.1).
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Similarly if DX +83<0 for X an optimal solution
of (IV,0.1) then replécing {cy a) and (DB) by
their negative the functisnsl is unaltered and for the
new. (D, 3 ) nx‘ +8 >0 1;9. it becomes fquivalent
to (1IV.0,3). |

Thus to solve (IV.0,1) {t is sufficient ¢to
solve two ordinary lifsar programming problems vig,
(IVv.0,2) and (IV,0.3).

Another method to solve the probleonm '{IV.Oul)
is deoveloped by X.Savrup (33). This approuach is
developad on lines sinilar to solving a LPP by simplex

method, It is wessumed thit

(1) Jny m colusns of A are linourly indopendant,

(ii) The denominator of the obJectivé functiocn is

positive for feasible solutions,

Based on these assumptions it is estusblished that
optimal solution of (IV,0.1) 1is a basic fez®idble
solution i,e, the optimum occurs at an extreme point

of fvasible region if AX = by, X .0, Therefore, the
procedure storts vith a tnitiel basic feesible solution ,
moves over the set of oxtreme points of the feasible
region in such a way that in the absoence of degenracy
the value of objlective function at each iteration is

inproved ., Since the numbar of extrems pointé is finite
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and extromd point is repeated the procedure converges
in a finite number of steps, The algorithm to solve
(IV,0.1) 1is developed as follovs:

let Xg be initial basic fecasible solution to the set
of constraints (IV,0.1) vhich is obtained as in
orédinary LPP, let B be the corresponding basis,

= . = g1 -
B = (bl, bg’ ovee bb)' Therefore, XB = B™*b, xB,,o.

et GB and DB b the m component row voctors
having their componsnts as the coefficient associated
with the basic varlables in numerator and denominator
of the objoctive functioen respectively., Corresponding
to solution XB, let

Z(]’) = CB XB
2£2) |
6 = ”3 XB +8

Thereforo, the valus of the objesctive function of

(IV,0.1) corresponting to solution XB is

2(1)

4 =
2089

1t 1s roquired to determing a non-basic variable which
vhen insorted in the basis B, according to the proce.
dure of simplex method, should give an ismproved value

of objective function.'
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let o be the column of 4 not in B, then

there exists scalers gy Such that ay = By or
Ly = B"la: | #lso let 2.3(1? = Cy ¥, zj‘a) = Dy
Thus ZJ(“, Zj(z)., YJ are know for every columi
“3 of A not in B, Suppose column br of B {s
replaced by aj of A not in B by means of simplex
method for LPF to obtain a new basic feasible solution

XB wherg
R - . y
“m = "m"‘m iJ] 1 £»
| Yry
» B 4
i = Br = ’19
Br yrj

let the new valus of the objective function be

z'-..éf'.
= %

vhere

2 S 2 (1)
¢ = Doz M. _cy)
22 = 2%2) _ g ¢ £ _ p, )

liow the value of objective function improves if
2 -2 which impiies

o zf1) ¢ 2¢®) _ D, ) - 282) ¢ ¢ ¢, ,’ -0
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In the absence of degemracy the nov basic feasible
solution ifmproves the valus of the objective function
1ff 520 where o, =281 ¢ 243 _ D)) - z(?

¢ 261 _ o ﬁ . Also for the new basic solution to

be feasible thers must be at lsast one y“ >0

1 =21, 2y ¢eves B, Thus any column a;3 of 4 not in B
if entered in the basis B gives an improved value of

objective function 1f:
(1) There is at least ome yij =0y 1 =1y 2y see 1
with XBi 7 Oa

{ii) For the column aj, uj 0 and Z‘!'J = Max -, “k 0

“,’ .
k

50 that the improvement in the value of objective

function is rapid,

It may also be noted that for every column in the

basis = 0,

The procedure will terminate i.,e, optimality will be
achieved when “y = C ¥ J.

It is also established in papor {10) that for any aj
column of 4 not in B there is at least one

Y1j ::’0,_ i =%, 2 .o m Doecause in the contrary case
vhen all y“ <0y the solution set of (IV,0.1) becones
unbounded which is a contradiction, The procf of this
is exactly similar to that for LPP,
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SECTION . 1
CUTTING PLACE PROCEDURE . I FOR S0LVING

This section is devoted to procedure of finding
the optimal oxtreme point solution to Extreme Point
linegr Fractional Functional Programming Preblem (EPLFPP)

INTROTUCTION 3

An UPLFPP seeiks to optimize an objsctive function,
which 48 ratio of two linsar functions, subject to linear

constraints, The moat gén@ral EPLFPP is

Hax  L(X)— %)-f.f’;.g-

subjoct to ]
aX = b
A 20

and X is extrsme poeint of
B =t
X ,,;;,0

vhere 4 18 mxn matrix, R 1is pin matrix t is
px1 matriz, b is mxl matrix, X {8 nxl matrix
Cy, I are IXn matrims and o, § are scalers, The
procedure discussed here noves over the extéama‘points
of the convex polyhydron AL =b RK =4, X. 0

till an extreme point of Ri=t, X .0 is obtainod,
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J= [rj : rjﬁo whe re ry is Jth c¢olunn of Rj

J(X) = erw t Xg#0 where X = (X3 Xp iuu Xy )J

8, = [:x i AX = by, X 18 sn extpreme point of
ﬁx=t,xfo]
82 = [x : X 48 an extrems pointof FX = f,

i O]

In order to solve (IX,1.1) start with the problem

CX » o !

Max I(X) T g

subject to

(1V.1.2)
=1

V'_‘,,_"W .

X ©
A b
Yhere F = [u\' £ = [t]

Problom (IV.1.1) 1is always bounded bacause solution

ot st Lo o A th T et <

of (IV.1.1) is an extreme point of KX = t, X:0 and
extreme points of RX=t, X0 are finite problem (IV,1.2)
may be bounded or unbounded, If (IV,1.2) is unbounded
it can always be converted into bounded ons by introdu.
cing the constraint, In X<M, H 1is positive, finite,
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large number chosen in such a way that sll the extrome
points of (IV,1.2) are taien into account, in
problem (IV,1.2). lenceforth, assume that (IV,1,2)
is bounded, |

%

\/

m* Slg Sy

A ,
4 7
7

PROOF 3 Refer to Chupter 1I

Lt XB be initiasl basic fepsible solution for the

constraints of (IV.1,2) and B=( fl,fz. cven Toyny

be basis for Xy therefore Xy = Blf, X, 0. let
Gp ‘and Dy be the (mep) component row vectors
having thelr components as the coefficient associated
with the basic variables in numerator sndéd denominator
the objective function respectively, |

Corresponding to solution

XB let

2D = gy ea
PAL DXg + B

The value of objective function of (IV.1.1) correspon.

t

éing to solution xB is

o
2(2)
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Also for pny column fj of £ not in B :ijz'ﬁ'lfj

2 41) .~y
and ZJ - GBIJ, 23(2) = DBYJ. Find the wlue of

the objective function gt an extreme point adjacent
to the extreme point corresponding to X; i.e. a new
basic feasible solution by changing only one colunn

of B,

A

let the nsw basic feasible solution be ‘XB

and the corresponding basis be Bz(fl,fg cese fmao-p)

' ‘ = . = 1 = g2t g
whore f1~f1’ i #r; fr"'fj', How ‘{B*B‘i‘ and

LN

ot 1§
Xp1 = Xpg " L5p ¥ry 1#£r
X = %gp = @ {say)
Br '2-'3' 3
r

The valuo of objective function for this extreme point

splution 18

whare Z = Z‘(I') 4*‘93(3‘3.23‘1) )
z = z(® +e‘,(‘nj..zj(2) )
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The net change in the value of objective function is

-

Ly = & - &
: hil? f‘ej ( cJ - zj‘li)- ASY,

s (2 22
B

——
-

FATS I 9, (D

L
e

+{1) » (2)
- QJ(“ (55 ”Dj) N 3(2) ( zj(l) Y )

2(2) Lz‘Z) - 93(33(2)":}3))

[

9

" 2(2) L= e (22|

Therefors, for a EPLFPP the n=t change in the value of
objective function of {xv.x.z; while moving from one

extrene point to another (adjacent) extreme point 4s

Py y Y 5 5
{2) e 2)
2 Lz*“a 93‘23 gﬂjx)

Ly

Now apply simplex method to find the set chg) of

optimal extreme point solutions of (IV,1.2) and

Ul(z) the value of objective function for the elements
. (2) |

of Ll .
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Lot the rank of R be p and rank of £ be (m+p)

non.zero components and {f X( S then X has at

1
most p non.zZero components, If X 32 and

J(X) - p then X{ 8; amd if X( 8, and J(X) ¢ Py
the linear independence of elements of J(X) implies

AC 8y,

How 1£ chz) = P, then problem (IV.1.1) has no
solution and procedure is terminated, Otherwise
geternine X,‘® ng . 1r X, n s £, thon every
element of Xl(z) n Sl is optimel for (iIV,1.,1). 1f

x,¢%) n 5. = 9, then, find X,?) the set of second

1
best extreme point solution of (1V.1.2) as follows:

Detormine

H(B) = {J & “§%0 |

et By 9. 0] ¢ H(B
9y = in i-;;f—, 1§ 791 » f )
B - Mun‘z_ [’j ,Qj ?0]

and
& = Hin jB 3 B is basis for an element

2
of x1‘ )

The & gives a besis and column to be removed and enterod
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in the basis, The basis so obtained generate the set
Xz(z) of second best extreme point solution of (IV,1.2),

(2 . (2 (2 {2 ‘
Let XE - }$21 )’ }5-22’) Te s eseS xziia) ﬂnd

02(2) be value of objective function for the elements
of X% 1 %,%® =g then (IV.1.1) has no solution

and procedure is terminated, Othervise determine

x2(2) n 51. If 32(2) n Sl # 2, then every element of

%,63) n 5, 1s optimal for (IV.L.1). If X,¢%) n 8,7,

then introduce the cut L(X)SLUZCE) in (iV.1.2).

- The problem so obtalned is

H . —_ GA o+ s 4 Q

ax L(X) = m}:ﬁ ry: i

subject to :
(1v.1.3)

FX = ¢ |1

wx)y Lut® g

X

A;;O 1

Find the sot 31‘3) of optimal extreme point solution
of (IV.1.3). tov X, £p aa x P ng =p,
deternine K2(3)’ the sot of second best extreme point
solutions of (IV,1.3). 1If x2(33 = §, then problem

(IV.1.1) has no solution, Utherwise, deternine
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xgﬁa) n 51‘ if xaﬂa) ] 51 # P, then every element of
%59 n 8. 1s optimal for (IV.1.1). If %,¢%) g =p
introduce the cut L(X) . U,® in (1v.1.2), where u,(®
is the value of objective function for the elements of
k5¢3,  The problem so obtained is

. . CX +
ax  L{X il T §
'ﬂ (X) Dk + 8

¥

subject to i
=t : (IV,%.4)

L(x) < 0,43 {

X=0 Q

Find X2€4), the set of second best extreme point
solutions of (IV,1.4),

This process is continued till, for some k, either
-KZCK) = § which implies that (IV,1.1) has no solution
or %,8%) #p ana X\*) n s, £ which implies tnat
evary element of Xg(k) N 8y is the set of second
best extreme point solutions of (IV.1.k)

Max L{X) = At
~ DK +§
subject to
=1
Lx) < U tE=1)

| X;ﬁO

(Il.1.Kk)
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where ;32(3&-1) is the value of objective function for
the elements of xg(k-l)

Note that X,¢¥) = X (%), the set of k™ best
oxtreme point solutions of (IV.1.2)

The procedursa given converges in finite number of
steps as 5, 8 5, and S, is finite and no extreme point
is repeated,

Tre cuts L{X) gﬂgu) are angular cuts pasaing through
the intersection of CAw=0 and DE& =0 and a cut at

any stage makes the previous cuts redundant,

LXAMPLE 3

Max  L(x)y — X * 5%
Y +6

et Ao, Ak B

subject to

1

11' 12 '-'::: 0 . . N (Iva 10 1)

and (xhxz) is extreme point of

At Yy -

-]
|
'
L
®
b
©
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SOLUTIUH s

For solving H(IV.1.1) start with the problem

Max a(x)°:; xl + Gxg

Xl » B
Subject to
| Bxy eTx, Xy = 21 |
; ;
I .
Fr=f T T =1 § (1V,1.2)
>0 : ' -
r | X, * Xg * Xg = B
Kl. - 12 E x,? = 2

X
xl’ 2’ oo.onoa.-xby 0 5

The set of optimal solutions of N (IV,1.2) is

v () . g (@ . 2822 12 23 25
"1 S § | =0 313 % % 3 13 1E)
and

(2) - 35
! = I
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OPTINAL T .BLT POR xliz)
| s Y & o0 0o o0
Variubles of Dé 1 O ¢ o 0
Cy Dy tho dasis Ay f By £y £, T G
6 0 fy 22/130 1 1/130 0 0
1 1 rl "eR/131 0 7/132/130 0O
0 £s 14/13 0 0.10/13 17131 0
0 £ 23/13 0 0 4/13 -3/13 0
0 £, 25/13 0 0 10/13 -1/13 O
1) N§T5) '
21100 288 ¢ 6 0 11 8 080
e J 13 13
@‘gllggzgak P, 0o 0.2 2 0 O©
13 13 13
_ g8 - -192 -38
z = 23 J 0 0 "H_F ™M ¢ ¢

J = grl'rg'rs,rg'r? E
p = 3
¢ £2) -
J ATy = 93
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ilow the set of second best extreme point solutions

of H(IV.1.2) 1is determined as follows:

Let B be basis for xg) an element of xiw),

HB(B) = (3, 4|
9, . g
94 = 14
.ﬁa T %%g$ Z W 475
by = - .g.g. =« 98
g = #in 476, .98 | = , 476
& = , 476

Roplaecing f, by fy in B, a basis which generates
an elenent of 32(2), the set of second best extrewe

point solution of N(IV.1.2) is obtained,
;
189 = kAP -¢%2,2,8,0,3,1,0)]

i
% L

2 25
Uz‘ ) = 19

b (%8810 = 43

2
xz‘)nslﬂb.
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X, + 6%
Introduce the cut ;l-;—%—-% + #8 1a §(IV.1.2)
, 1t ‘

The problem so obtained 1s

X +622
Max L(X) - “"A""""‘“""x - '
i
subject to
/

..xl * 212 * 13 = 2 i
._3);1 + 712 * 14 = 21
| - |
"‘xl * xz +* 15 = 1 |
4(1v,1.3)

xl * xz + x6 = 6 . }
Il - 32 + x? - 2

-xl 4-3.9::2 + 11:8 = 25

xl’ 32, -no-"'xaaa

The set of optimél aolutions of [(IV,1.3) is
160 6 862 45

x €3) (3) _ g 23 0 ' 45 T sy 0)
Ky “\"‘11 =¢ 35 2, ' 1717 17 17

x1§3) = %: "3, g’ 0, 34 1, 0302_1
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The set of second best extreme point golutions of

F ¢(Iv,1.3) is

{3y 3)
1589 =\ x,{

i

( 0, 1, 0, 14, 0, 5, 3, & )|

Ués) = 1
€ x2{3) Y = 3 = p

-5 £3)

Hence Xy = o, Xy = 1 18 requirad solution of {IV.1l.1)
anG optimal value of objective function is L{X) = 1.

‘ SBCTION o 2
CUTTING PLANE PRUCEDURE II FOR SOLVIAG EPLPP

ISTRODUCTIUN 3

The procedure for solving EPLPPP ziven in Jection I

of this Chapter is computationally lengthy bescause

{a) At each iteration the linear independence of &

subset of columns of D is to be checked,

(b) * alternate optimal sclutions whuch are not
extreme points of RL = t, X>0 are to e
studied.,

The procedure discussed herc removes the difficulty.
"The procedure discussed in this section moves from one
extfema point to ancther extreme point solution of

RX=t, X =0 till the feasibillty in AX=b is satisfled,
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THEORTTICAL DEVELOPMENRT s

let S5 = X : X 13 an oxtreme point of X = ¢, X# 0
Clearly, & 1is finite,

-Problem (IV.1.,1) can be restated as

Ha® LX) = %;:{.g. £
&
X ¢s i
j A
subject to (1v.2.1)
i
AX = D i

Xz0 ¥
Then, as discussed in Bection 2, Chapter, any iterative
procedure vwhich does the following solve the problem
(Iv.1.1)

STHP )
th th

At 1 fteration 1§ best extreme point

solutions of
Hax L{X) = %—ﬁ
A (B
are found,

5TH A
The élemanté found in STEP 1 are tested for
the feasibility in AX = b
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STEP 33
If test in STEP 2 is positive then procedure is

terminated otherwise (i+l)st iteration is performed,

In order to solve (IV,1.1) start with the

problem
o X
subject to { (1v.2.2)
R = ¢ j
X=0 j

The prodblem (IV.1.1) 15 always bounded but {IV.2,2)
nay be bounded or unbounced, 1If (IV,2.2) is

unbcunded then the inclusion of a constraint, In XM,
vhere M 1is positive, finite, large numbsr so that no
oextreme point of (IV,2,2) 13 excluded, |

Apply simplex method to find x1€2)’ the set of
optimal extreme point solutions of (IV,2,2)., 1If
Xl<2) = § thon (IV,1.1) has no solution and procedure
1s terminated, Otherviso determine X,‘%) n s,. 1If

+12) , . (2) S

Xl n 51 £ P, then every element of ﬁl 1] 31 is
optimal for (IV.1.1). If X,'® n s, =p, then fing
xg(g)’ the set of second best extreve point solutions .
of (IV.2,2). If X,'¥) = p, then (IV.1.1) has no

solution and procedure is terminated, Otherwise
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determine .Kg(g) " 8,. If ngg) " 8, # #, then cvery
element of 32(2) n Sl is optimal for (IV.1.1), it

X?‘z)'ﬂ 5, = g, then remaining extreme point solutions

1
of (IV,2.2) are studied in a systenmatic order by

cutting plane technique (as explained in Section I of
the present chapter) till either an indication of no
solution of  (IV.1.1) is obtained or an extreme point

of (IV.2.2) 1is reached which satisfies feasibility

in Ax- = b'
CXAMBLE 3
Max  L(X) — XL * %%z
T %y A%, +a j
subject to i
| ¥
Y onavez.1)
xl’xg’ 5,0 |
and (xl’xg) is extreme point of 3
-xl + ?Ig bt 2 X
X ¥
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SOLUTION

Iin ordér to solve H{Iv,2.1) considor the
following problem

Max  L¢x) — 1 % 5%g §
= X, + AKX,
1 2°2 i
subject to i
Paxprzgxg Lo 1
RX =t ? | | N (1v.2.2)
3 : -
A 0 " 1 +2x2 a = 8 ¥
’ x > 4
L 1’x?,x3’ 4,” 7 0 v

The optimal solution of GH(IV,2,2) is
x1£2) - (2) { 50 10 0, 0 )]

v §

o (2 _ 32
1l 25

Now Xl(g) "8, =8, 32(9)' the set of second best
extrems point golutions of N{IV,2,2) is

82 - x (2 2 (o, 2, 0, 4 )
o L 21  J ? }
2y . 8
Ug = 3
Y =
/';}";jrc " %A\ZE\
L(:‘f . L -l Q.
ORI
..“:\x":i". .
W .
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Row X,4%) 0 S, = §y the cut X v .8
xl k] 4x2 “2 - 5

i.e, - Xy 0+ 6x2 12 4is introduced in {d{iV.,2.2).

The problem so obtained is

Max LX) — o1 " 6% ¢
= Xy ke e
1 &g+ i
subject to ¥
i
-X, v X, 4 A, = 2 ¥ N(1¥.2,3)
¥
Xy +2x2 Xy = 8 §
’xl +6x2 fxs :12 l
=0 i

xl’xe;uaob xs %

The sot of optimzl solutions of N(IV.2.3) is

2,63 = % (3

1 ( 03'2’ 00 4 )

#l

?
£ =

- (3
*12 )

it

(35'2100'2)“&

- The set X2£3) of second best extreme point solution
of NR(IV.2,3) 1is

}:43):51‘3) ( 8 0, 0, 10, 2, 0)}

How X,$3) 0 8, £8 e %% satisfies voth (a1) am
(n,2), Hence Xy =8y X5 = 0 4is the requireé solution
for 4({IV,1.1) and optim:l value of objective function

is  L{X) =~§.



SECTION . 3
ENUMERATION TOCHNICUE FOR SOLVING ZPLPP

INTRODUCTION 3

In cutting planeo procedures given in Jection I
a.hd Section 9 of this chapter some unwanted alternate
extreme point solutions have to b studied, To overcoms
this difficulty enumerative procedures are presented

here,

In this section enumerative procedurss for
solving EBPLFPP starting with tho problems (IV.1.2) end
(Iv,2.2) sare presented,

THEOKRTICAL DEVELUPMENT s

(a) Enumerative Techniqus for solving EPLF’?? starting
with the problem {IV.1.2) 3

Start with the problem (IV,1,2) viz,

e
Hax LX) 2 n';'“:"%

subject to

FX = ¢
X?/O

~

m
i

[ -
i

where F = 33

e n

P
b

fsgune - that &

(1) Problem (IV,1.2) is bounded



124

R
(il1) The set 35 = %X ¢ FA = £, K20, 18 non.empty

and bounded,

(111) IX +8>0 ¥ (8

*
Since S is non.empty and bounded one of fellowing

exist 1

(R 1) (IV.1.2) has a solution (IV.1.1) has s solution
(R 2) (IV,1.2) has 2 solution (IV.,1.1) has no solution
(Both the cases are treated simultaneously)

Find the set x1€2) of optimal extreme point solutions
of (IV,1.2). IDetermine X,‘¥Ins. 1r xns, £
then every element of xlgz) 7 Sl is optimal solution
for (IV.1.1l). ﬁtherwisé find E2<2), the set of
seco:d baét.extrema point solutions £ (IV,1.%2) as

followa:

et 31‘2) e set of bases for &he elements of xlia)
ond Ul(z) ke the value of objectivefunction at on
element of chz). Find 31(2)’ the set of all those
bases vhich are 8 adjacent to the elements of 81(2)
and yield the valiue oflobjective function less than
01‘2). Gut of these values of objective function
pick up the greatest, say 82(2). The subset 32(3)
of 31(2), the elements of which yield the vxlus of
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objective function as U?‘z), genorate the set Xz(g).
: : {
I x2(2> = @ then (IV.1.1) has no solution and the

procedure is ternpinated, Otherwise determine XZ(Q}ﬂ S1

If 32(2) % 81 # $ then every element of ﬁg(g)ﬂ Sl

is optimal for (IV,L1). If X,{n s = 9, then

find xa(a), the‘set 0f third bast extreme poiat solutiohs
of (IV.1.2) as follovs: '

2y 2
let H, B 31{ )

(2 2 . {2 e
Hg()zggl() UEQ())"BQ()

.where EQCQ) is the set of all those bases which are
ad jacent to the elements of 82(2) ané yield the value
of oblective function less than 82‘2). A subset 33(2)
of elevents of H,'%) which yield the greatest value,

Say US{Q), of the objective function generate the set
Xs(g). If x3(2) = P, then (IV,1i.1) has no solution

and procedure is terminated, If Xagg) £ P then deter.
(2)y | . $2) ,
| mine X3 e 31' If Xa n 81 7 P, then every

elemant of %,4%) n 5. s optimul for (IV.L.1).
Gtherwise find xq‘z), the set of fourth best extrenme

point solutions of (iv.1.2).

This process is continued till, for some Kk,
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osther %% 49 ana X% 0 S, # $ which inplies
that éﬁary element of Xk(g) N Sl is optimal for
(V.11 or %, = p nsicated by 1P < p,

implying (IV.1.1) has no solution,

(b) Enumsrative Technique for solving CPLFPP
starting_vitn problem (IY.Z.Q).

Start with the problem (IV.2,2) viz,

Hax LX) = A ta
= DX + 8
subject to
Bl = ¢
X720
issume that :
(1) § = X :1R(=¢t, X~»0 is finite and bounded

(11) DX +8 >0 #X ¢ 8"

(113) Problem (IV.,2.2) 1is bounded

The extrem® points of (IV,2,2) sare ranked by
ehumerative technique as oxplained in part (a) of this
section till =n extreme Point solution of RX=t, %20
which satisfies feasibility in AX = b 4is achievad,
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This procedurs is preferred bescause in it testing
the extreme points of RX3t, X -0 is much simple, Also

in this procedurs the basis are of smaller size,
EXAMPLE 3
Here problem (im.z.i) is solved by snumersative

tochnique given in (b)

SOLUTIOR
Start wvith the problem :H({(IV.2.2).

Row :
x1¢2) = lxliz) = ( <§, %Q » Oy 0_{}
3) . 32
01( ) = 25

x,¢® n 5, = p, therotore X,¢%), the set of secons

best extrome point solution is determined as follovwas

(D) _Aq (2
B (% - 18y ‘

£2) (2)
B9 =By

it

(ry 1y )

#

(r3 ¥y )y Bpp "‘”2,”3&
The valus of objective function for

(2) -
51 = 8

it

(2 . =

Eléz) genoratos an eloment of the set xz‘g) and

%9 = %82 = (o, 2 0, 4)
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%,88) m 5, = p, therefore, X;¢%), the set of third
bost extremd point.solution of N(IV,2.2) is found,

2 2
Bg( )] = §1321( )

1

1

( ry, T4 )}

‘E2(2) isal(ﬁ)

i
H

r -
( F3, Tay ]

2) _ (e (2) an (2 2y 1

1$) = (5, 0 (D 52 ]
a2y L, 2) _ .
=§?2§ )= ¢ r3, N1 )"”25 )= ¢ 3,74 ) |

The value of objective function for

- (2) =
H21 - 8
(2) - .
Thorefore, Hé%’ genmorates an element of the set
(2)
33 and

e " 2 ]
(9 < P - 03000 ]

A
How

X3‘2) "8 = p , therefore

Xy = By Ry = 0 1s required,

solution for H(IV.2,1) and optimal value of objective
function is é
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S5BCTION - 4
STRONG CUT IN EPLFPP

INTRODUCTION 3

In this section s procedure for solving . PLFPP
i3 presented which uniiks previous methods, .discussed
in Section [, Section 2, Scction 3 of this chapter,
avold the investigation of some of the extrewe points

of ceouvex polyhydron RL = ¢, X240,

THECRUTICAL

VEVELOPARN

In order to solve {(IV,1.,1) start with the problem
{(IV.1. 2) viz,

Cx ra

- DL +8
subject to
FA = ¢
A= 0O
. 1 A . bl
|

 &ssums that 3
(i) Problem (IV,1.2) is bounded

(11) 8" = X : FX = £, X2 0 18 non.empty and bounded

-

(1i1) Da +37 0 ¥ § ( 8"
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Find  ¥,‘®), the set of optimal extreme point solutions
of (IV.1.2) and vl(27, the value of the objective func.

tion at the elements of (%), s 8" £, 1, £ p
Dotermine 11‘2) N 81. If 11(2) L1 31 Z P, then every
element of Yl(z) is optimal for (IV.1l.1)., Cthervise ,

rind 1. %), the set of second best extrome point solw
tions to (IV.1.2). If 22‘2) =P then (IV.1.1) has

no solution, If ¥,%) £ p, then rind ¥, n s |

Ie ¢, (2w 5, # B, then every element of 4% Sy

1s optimel for (IV,1.1). If ¥,®)n s =2, piek up
the problem (IV.2.2) viz, |

4 + o
DX «38

Hax L(X) —

subject to
KX = ¢
Xz20

let V?(z) ve the value of the objective function of
(IV.1.2) for the elements zzca),

Row find the set Xl(z) of optimal extroms point solu.
tions of (IV.,2,2)., #s § non.empty, therafore,

‘XI(E) AP and ags feasible region of (IV,2,2) contains
feasible region of (IV.1.2), therefore, xl‘g’ 3, =P,
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Find the set B (2 V,(®) ) of valuss of objective
function at the extreme points édjacen; to the elements
of chg). gut of these values pick up the value, say
v,y nearest to V(%) 1.6, W = utn (), R AN
Determine the extreme points which has Y, a8 thewalue

1
of the objective function, Find thevalues of objoctive
function (= Vﬁiz)) at the extreme points adjacent to
- the extrece points corrssponding to ¥y gut of these
pick up tho valﬁe, say wé, which i3 nearest to 32(2)
and find the corresponding extresme points Re=t, x. ©
which are adjscent to extremo points corresponding to
v, and values of the objsctive function at these
extrome points, OCOut of these pick up the value, say wa'
which 19 asarest to Vé{g). This process is continued
ti1ll a set of extreme points is obtuined where values
of the objective function are W, (» V%)) and at and
the ad jacent extreme points to these extireme points,
the value of the objective function is less than VQ(Z).

At this stage introduce the cut

LX) My
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" in problem (IV.2,2). This cut is callsd *strong cut!,

The problem so obtailned 1is

Max L{X) — Shta |
- DR +8 i
subject to 3
R =% : (IV.4.1)
LX) ¢ ¥
B |
X0 §

liow extreme points solutions of (Iv,3.1) sre determined
in o systemstic order by cutting plans procedurs till
optimnl solution of (IV.,1.,1) is reeched or an indication
of no solution of {IV,1.1) is obtained,

It may be noted that after introducing the strong
cut in (1V,.2,2) the extreme point sulutions of (IV,3.1)
may also be ranked by enumeration technicue till optimal
solution of (IV,1.1) 1s reached or an indication of no

solution is obtained,

LRGMPLE 3

Mex LX) — ﬁ__‘_‘.éff_g__ o
- xl + x2+4 3
subjoct to ¥
Xy + 5 3 :

N1V, 4,1)
5%y *12x2 5:30 i



133

and (xl’xg) is extrems point of

-le + X {1

N

SCLUTICH :

T N ]

in order to solve N(IV.4, 1) start with the problenm

e LX) - x +14:82
- xlﬁxgﬁ

subject to
~%; + 2x2 + X,
B = p | sxl H12%, + X,
£2,0 | ~2Xy ¢ Xy o+ X
..le + 21:2 + X

..2:(1 +* 3!2 + x7

xa + X

et
-

#

it

]

ii

3

30

1

\§
_i
i
|
3
!

H(1v,4.2)
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gxlq»‘?xzi-xg = 53 |
i

H

8

1

5

{
§
¢

.

A TN A o W et | 1 e <R 7 s A e o

; Xl' x2’ L E R RN RN xlzf:f (
e B

The set of optimal extreme point solutions of

H{IV.4,2) is

(2) (¢ (2 . (12 45 25 12 4
L = {07 = o8 #,00% %5 3 8

%u{%vé)“

-~

.

v (2) . 322
1l 191

-

W = {*1,%2,%5,%,%7, "8, Fo, F10,711,T12F T

12(2), the set of second best extreme point solution of
B(IV.4.2) 1s

tg §M¥9£)=(%t‘§sor""g! 0, %s g’%’%_s_ 9§2t

#ro)
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Vgcz) = :213 = 1,65 | !

B 1 - g
-y £2) | =
.. Y2 n 81 - ”
Hence pick up the problem

Max L(xy - ¥p*+14x
"Xl+6x24~4

R

Subject to

i
ad

!‘-211 > xg +x5
| . -

.‘*2x1 + 3x2 +xG = 3
i-Exl +.3x2 +x? = §

‘32 + xa = 4 N(IV‘Q'S)

i
<N
W

i 9% 4 *.732 * x9~

> & |
f1
.

| 3%y - Wy e 21026

xl'xz’xs,‘xa'o ae .112 7,’;0 ;

o

The optionsl solution for 41V, 4,3) is
xl(a? = §x1§3) = 3’4’0l0’3’190l0’8l4D5,6)E

o3

and
RS
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The value of the objective functiun at the extrems point
ad jacent to Xlis) are

. ﬁ% -

2= -;;-:-;:- =-%;~ 1.86

W, . Min | 1.87, 1.85" = 1.85 (7 V,‘%)
The oxtrewe point coprresponding to wl is
5 :
| ¢ 'gs 3350509150501, S‘Zs %"‘o %ﬁa %l);

The value of the objective function at the extreme

point adjzcont to this extreme polnt is

The extremp point corresponding to “%32 is
P e ét 24 0,040,041,2, ‘ga'%g' %2 ’g )
L

The value of the objoctive function at the extreme

| A

point adjacent to this extreme point is

W
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Introduce tho strong cut
' . .51
L(xy < 33
-2x1 + 10x25519

in (1V.4,3). The prodblem so ebteined is

Max L(X}= % ,,g“"-ﬁz*é
subjoct to
i
-2:;1 + 21:2 +Xs = 6

331 - 2!2 +* 111 =
] - ZXp + 312 = 3
-23(1 *10.!2 + xla = P

L e o s o e e ko B g v e $
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The set of optimal extreme point solutions to (1v.4.4)
is

. ‘ 1 |
xl‘é) = ! xl%.é) = ( 5’2,0’0’0"0,1’2’ %’ %&. L%’ %' 0 )

i
{4)“('%'13'0’ o, 33, o, 182, &, &,
%'00 :;gso)

liow x]_‘é) n 8, = P, the set of secont best extrem

1
point solution of N(IV,4.4) {is

KZM’) = {X, (9 = { 09190,0,041,3,3,56,10,8,3,9 )E

4
0t = L=

ov X% n s #9, theroforo,

Xy = o, sz = 1, 1is optimsl solution for N(IV,1.1)
and value of objective function is L(X) z:%

BAAMP
Strong Cut Enumerative Procedurs for solving H{IV,1.,1)
OLUTION
(2) -
low ‘12 n 81 = 2

iy (4 .
and )(1 ?%31-f0.
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ve hagvo to ﬁnﬂ the sct | xz“‘} of socord bagt extronme
point solutions of H4(IV.1.1)

8¢ = (8§ = ( T2, 1, ™7, 75, U5, "10,"11,712,%5 )

Y-

4
40

)
~~

*z, Ty, Tz, Tg, T, F10,%11,%12,%5)

E (4 _ z. (%) _
1 B ( rg, rg, P7, Fg, Ta, T10,711,%12 T5)

. (4)

bt

i

Value of objective function for

g, (4)

11 104

1]

1.18

0

(4)
Em
Therefore, Ely) genoratost an element of 'Xam) and
. & B
h2‘4) = %\(x2§,4) = { 0,1,0’0,0.1'3'3’56"10'8,8'9) j

(4 _ -

U, = 4 = 14
How x2‘4) n 3-1 £ 9§, therefore,
Xy =0y %y = 1 optimal solution and

L{X) =§ is the optimal value of objective functicn,

LR LR 2 8 X RS
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APPEHDIX

For solving BPLPP
Max 4 = CX
subject to
AX =D
X7 0

and X is extremd point of
PX & @
X7 0

a mothod is presented in chapter II where extreme points
‘of the convex polyhydron DX=4, X70 are investigated
in a4 gystomatic order till feasibility in AX = b 1s
achioved, s tho constraints AX = b do not come into
picture in the computaticnsl aspects ‘of the method and
are only to be verified by various extreme points of
the convex polyhydron DX = d, X0 1t follows that
whatever be the character of these constraints, say
non.linesar, the technique will still work, Consider

the problem

Max 242 = CX
subject to
51(2) %‘-:'3’ ’;%1, 121,2’ OQ.‘n
X 70



in

and X 4s an extromd point of
X = 4

Xz0

\‘7!’191’6 Gi (Xn) r =y gl’ 1 = 1' 2, eree I BYE Ilﬂnlimar

constraints, This problem can be solved by ranking
the extremo points of convex polyhydron DX = &, X2 0
t1ll an oxtreme point is reached -hich satisfies the

In an sxactly similar mannayr a technigue given:
in chapter IV can be used to solve the problem

I’ax ) CX + a
subjoct to

G4 (X) *%45, 3"2},?31, 1= 1,2y ceesa B
X is an extrems point of

X =4

X >0
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