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l-1athomat1cal Programming problems havo voll 
kn~n importance 1n economics, Indus try, Game-Theory 
and in the solution to m~ny other proble111S or theora­
tical and practical importance. To study extreme point 
mathematical programming problems 1n tbe thesis, somo 
ot the linsur nnd tractional functional obJective 
functions are considered. 

Tho total. "tJork is divided into throe parts. 
Tbo first part consists ot four sections deals vtth 

solVing tbe extreme point 11neo..r programming problom. 
In sect1on...t and sect1on...2, tho prol)lem 1s solved 
by the cutting plane tachn1ques and in section-3 and 
sect1on...4, enumeration techniques are illuatrated. 
Tho second part deals vt.th an improved techniques ror 
solving Extrems Point L103ar Programming Problem. Two 
cuts termed as Daep Cu.t and strong cut are developed 
"''hich are more orr1c1ent tor solving extreme point 
11nenr progrnoming problem. This also divided 1nto 
tvo sections i.e. the auttlng plane technique and 
enumeration tochQ!que. In tho last part techniques 
are dealt ror solving Extreme Point Li.Mar Fractional 
Functional Programming Problems. 
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Clftt.PTER - 1 
l~~TRCJDUCTION 

This introduction traces in br1et a. survey or the 

dovelopments in the field or mathematical program~ing ~1tb 

speciol emphasis on tractional programming and extreme 

point programming. The subJect of mathematical programming 

has gro"1n tremendously because or its va.«tt applications. ' 

Hero only those aspects of mathematical programming, which 

put the present work in its proper perspective are studied. 

Th1s introduction is divided into two sections. In 

the t1rst section, the mathematical programming problem 

bas been taken up in gener&l. In the second section, a 

brief review or the related problem, such as 1-:xtreme 

point progra~lng problem, Fixed charge problem Assignment 

problem and fractional programming pro;le:n, is given. 

SECTION .. I 

11ATHE!1ATICAL PROGRJ\Ml:llfiG It~ GZ!fERAL 

In the present fast chnngin.l situations, deei.sion 

making authorities have to be not only obJective but also 

very active and alert Because even n s11ghbst delay of 

inaccuracy can cause trrunendous loses. This has led to the 

development ot the science ot operation research. Mathe. 

matical programming 1s one ot the most important branch 

ot operation research. 
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Problems which seek to maximise or m1n1m1se a 

numerical function or a number or variables (or fUnctions) 

wt tb the variables (or functions) subjeot to certain 

constraints, form a general class which may be called 

optimisation problems. The quest tor solutions to those 

problems lad to the application or d1tl'erent1al celculus 

and to the ciovelopm.ent of tbe calculus or variations. 

Hovever, many new and important optimisation problems have 

emeraed in the t1eld or economics, the solution ot ,,h1cb 

with the help or those classical optimisation tochntquos 

tend to be todioue, 10113 drnwn and 1notf1c1ent. This 

has led to the development or new techniques. 

Broadly speaking, programming problems deal wt.th 

determining optimal allocation or 11rn1 ted rosources to 

meet given objectives when there are many alternatives. 

The genef!'al programming problem can be tormulatad as 

rollows -

It is desired to determine X = x1x2 ••••• x3 
vh1ch sat1st1ed the m 1naqua11t1es or oquatlons 

g (X) • . 
1 '.:..:::.. = 1 = 1,2, ••••• ~ -(1.1) 

and 1n addition, ma.x1m1se o.t c1n1m1se tho tunetion 

4 =F(x) 

and x -::; 0 

••••• 

• • • • • 

(1.2) 

(1.3) 
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The restrictions (1.1) are called the constraints 

and (1.2) 1s called tho obJective functions anc eond1-

tions (1.3) are called non...negative restr1ct1ons. 

g1(x) are assumed to be spec1t1ed tunct1ons and tho 

are assumed to be known oot\9tra.1nts. Furthermore 1n 

one and only one ot the signs ~ , = ? holds tor each 

cons tra1nt. 

In (1.1) 

b (9) 
1 

(1.1) 

A specinl class o·r above rnant1oned programming 

problem 19 a linear programming problem vhere t(x) and 

s1(x) are all linear. In this situation the given 

problem can be written as 

i-lax (1•11n) · z = ex 

subJect to f!..X 1 ·f. , 
• .. 

X ;:..; 0 

'"here A 1s a1J · which 1s •mxn• matria. 

All programming problema that are not linear in the sense 

dctined abovo, are called non .. linoar. Attention has also 

bean paid to linear programming problems vtth spee1al 

s1mplo structure 11ka transportation problems, aqsignment 

problems • network problems otc. 

For a linear programming problems Dantztg•s 

simplex method (43) is the most p~errul and ettia1ent 

solving technique. Simplex method solves the l.lnear 

programming problem exactly in a finite number of' steps 
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or g1von en 1nd1ention that there is an unbounded 

solution. 

Maqy practical probloms, however, coUld not or 

could hardly be represented by linear programming model. 

Therefore, attempts hnve been made to develop more 

general mathematical programming problems. Interest 1n 

non..linaar proararnming problems has grown s1mul taneous11 

With growth Of linear programming nod gomo theory (4.3) • 

In 1951 1 lf. 1·r. Kuhn and A. 11. Thcker (44), published an 

important paper onti tlod "lJon linear programming" deol1ng 

with necessar.v and sutt1c1ent conditions for optimal 

solutions to programming problems which laid the roun<ia... 

tion for great deal or later work 1n non..l1near progra.. 

mmlng. 

The mathematical programming modal can be classJ..... 

flod into four cntogories -

(a) Daterm1n1stic, continuous mot'.!els, tho set of 

points sa tis t.vlng all cons tra.1nts, is connected and tbo 

obJective tunct1on is continuous, e.g. linear pro~ramm1ng 

problems • quadratic: programming problems 1 oonvox progra.. 

mmtng probl.ems, tractional tunat1onal programming 

problems etc. 

(b) Deterministic, discontinuous models the reasible 

region 1s not conneotod and/or the obJective function 19 
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not continuous, for example, integer linea~ programming, 

integer quadratic programming, t1xod charge problem, 

assignment problem, extreoe, pot.nt fractional tunct1onal 

programming eta. 

(c) Stochas t1o models s tho ooetflc1enta 1n the 

constraints and/or 1n the obJective tunct1ons are random 

variables. In this category vo have the constrained 

programming problems. 

(d) Dynamic Models a The coeft1c1ents, in tho cons traL.. 

nts and/or in the obJective function, are dependant on a 

parameter sa,y time. 

The class or non..l1near programming problems which 

has been studied most_ extensively, is one t.rhero tho 

obJective f'unetion is non..l1near and the constraints are 

linear. The general problem of this kind 1s 

I1ax Min Z. = t(x) 

subJect to AX' ·:r = .::: : b 

X ;• 0 
F 

In 1954, A.Chnrnas and C.Lamke (9) published an 

.- approxtmote motboC! of treating problems 1n which m1n1m1-

sat1on or separable fUnctions subject to llnear constraints 

when eaeh ot the separable 1\lnctlon .19 convex, is studied 

(The fUnction t(x) 1s convex over a convex set •s• 
1n En if' for any tvo points x1 and :x2 in S ond for 
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all}., 0~ ~~1, f(}\ x1 ·+- 1 -" x2)~;.... f(9GV • (1 ... i' )f(x2 ). 

Convex function is the negative ot convex runet1o~r The 

problem or minimising a general eonvox function subjoct 

to l1n~ar constraints has also been considered. t•lost ot 

tho methods developed tor this problem can be considered 

as large step gradiertt methodS as given by J.B. Rosen (63) 

a~ Zouted1Jk (69). 

In 1955, as number or papers by d1 rrerent authors 

dealing with quadratic programming have appeared. The 

general quadratic progra:mnir-3 probleo 1s c 

1-Unimiso Z = ex + x • Bx 

subject to AX~ b 

X ~0 

t~'horo B 1G a sem1pos1tive dof1n1te matrix. The 

main contributor tn· this field are E.M.L. Beale (5), 

M. Frank and P. t.:!ol f'o (21) and P. Volfe (67) are the vell 

known and hnve an advantalo of reducing a quadratic progra... 

mmlng problem tO a torm Vbich permits opplieation Of the 

semplex mothod. 

An important and a Particuli:!r class or non..ltnoar 

programming is convex programm1DJ in \.thieh a convex tunc.. 

t1on 1s minimised (or n concave runetion 1s maximised) 

over a con~ex region. Tho voll known methods tor solv1na 

such a type of problems ara Rnsen•s gradient proJection 
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method (63) Zoutend1Jk's method for feasible direction (69) 

Kelley's cutting plane method (38) and Zangw1ll•s convex 

simplex method (68). 

AnOther example or deterministic continuous model 

is tractional programm.tng 1ttbiah deals vi tb opt1m1s at ion 

ot the ratio or t,.10 functions subJect to certain constrai­

nts. A linear tractional programming problem in i.ts most 

general mathematical rorm 1s a-

subJect to Ax i ~- .,. ~~) b 

X.:;: 0 

l.mportant contributors in tb1s field are A.Charnes 

and t.-J.H.Cooper (11), Bela Martos (47, 48), tl.S.l>orn (17) 

and K.StMRUP (33, 34). 

Another class ot non..llnear programmine problems 

1s dlscreto optimisation problem vhore tbe variable aro 

required to be non...aegative integers. One ot the earlier 

papers dealing with tho subJect, was published by Dantzig, 

Fulkerson and Johnson (15) in 1954, Gomory (261 27) was 

the f'1rst to set forth a systematic compu.tat1onal technique 

vhich converges in a finite number of iterations. Glover 

(24,25) and :toung (64,65), Raghvachar1 (61) and some 
' 

othors have made good contributions in integer programming 

techniques tor non.. linear programming problems. 
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Fixed charge problem is a particular ease of' 

non-linear programming problems belonging to determ1n1st1e 

discontinuous category or programming models. Ona ot the 

earlier papers to deal with the fixed charge problem vas 

by H1rseb and Dantzig (31) Balinski , Julm and Baumal and 

a rev others concentrated on finding approximate solutions 

to f'1xcd chargo transportation .Problems. Fixed charged 

problem can ulso be formulated as a mtxed 1ntegor contL 

nuous variable linoar programming problems (13). 

/mother determinis tie modela 1s ass 1gnmcnt problem. 

It is a linear programming problem v1tb a special structure 

and tor 1t.s solution it is treated as zero...one integer 

programming problem. The linear programming tormulat1on 

of this general BSS1gnment problem is 

n 
t 

1=1 

J = 1 1 2 • • • • • n 

= 1 1 = 1,2 • • • • • n 

, ..... n 

A number ot computationally etricient algorithm 
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were developed by Balinski and Gomory (4) Khun (45) and 

Ford and Fulkerson (20) to solve the above problem. 

work has also done on Extreme point programming 

which belongs to the class or deterministic discrete 

models. In extreme point programming problems an 

obJective function a optimised over a convox polyhedron 

wttb an additional requlrement that optimal solution should 

be an extreme point ot convox polyhedron. This type or 

probleos bo.ve been studied by Kirby, M.J.t.., Love, H.R. 

and K.Sa't~rup (39, 40, 41). The most general. mathematical 

torm of extreme polnt linear programrn1ng (E. P. L. P. ) 

problem 1s 

t1ax Z = ex 

subJoct to AX = b 

and x 1s an extreme point or 

Dx = d 

X "? 0 

Alongv1 th the development ot extreme point linear progra.. 

mmil'lG (B. P. L. P.) progress. also been made in extreme point 

fractional tunetional programming (E.P.L.F.F.P.) Yh1ch 

cnn bs formUlated as 

Max Z = fii ;·f 
subject to AX = b 
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and x 1s an extrerne point. 

Rx = t 
X ~ 0 

Programming problems 1n wh1cb some of the parameters aro 

random variables are known as stochastic programming 

problems. These are almost alva.ys non...linear, a lot or 
t1ork on stochastic programming has been done (5,10,14.,69). 

Another Important technique tor solving optimisation 

problem 1s Dynamic Progracming. Richard Bellman and 

s.Dreyrus (7,8) ara important contributors tn the dovelop. 

ment of dynamic programming. 

SECTION- 2 

RELATED H'ORK 

In this section, a briet study or the problem 

vhtah related to tho present ~rork, ts made. B. P. L. P. 1n 

its most genero.l rorm• "SS f'irst studied and solved by 

~'1.J.L. Kirby, H.R.Love and Konti Sawrup (40). The problom 

can bo stated analyticull)' as 

tot ax z = ex I 

subJect to AX = b 
I 
0 

and X 1s an ex tre l!l9 point of 
I Problem t 

d 
0 (2.1.1) 

Dx = 0 
0 

x~O 0 
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Any zero.one integer programming problem can be converted 

into the above torm by replacing the requirement, that 

each ot the variables be either zero or one, by the condi­

tion that an optimal solution be an extreme point of 

In, x .. 5lt x ?0• Tho problem (2.1.1) is a larger class 

ot problems than the class or 1ntagor programming problems. 

To solve problem (2.1.1) tho rollowing linear 

programming problem was ·considered. 

Max Z = Cx 

subJect to FX = t 

X ') 0 ,... 

Vhere t= \~J and r = l~J 

optimal extreme point solutions (which hereinafter have 

oJ.so been termed as t1rst best extreme point solutions, 

second best extreme point solutions wore obtained and 

3rd best, 4th best extreme point solutions or problem 

(2.1. 2) were determined by a cutting plane method. 

these points waro tested at each stage whether an extreme 

point or (2.1. 2) obtained at that stage, 1s also an 

extrema point of Dx ::: d, X ~ 0 the 1th best extreme 

point solutions of the problem (2.1. 2) are second best 

extreme point solutions or the problem J 

Max Z ::: Cx 

subJect to FX = t 
ex ~ u•1..1 
X.,.:::-. 0 

~~ 
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where u• (i-l) is the value ot the objective function 

at (t..l)th best extrome point solutions or (2.1.2). 

A method or finding second best extreme point solution 

was developed in (40). At some sta'!e, when an extrema 

point solution or (2.1. 2) was reaehod \!Th.tch vas also 

an extrerue point of Dx ::: d, x ~- o, the process vas 

torminnted. It a stat:e vas reached, vben no further best 

extreme point solution could be possible tho problem 

(2.1.1) ttas said to have no solution. In thiD process, 

besides tbe computational difficUlt¥ ot testing vhether 

an extreme point or Dx = d, x ~o, another d1tf1culty 

ot finding alternative optima at eaeb step vas faeed. 

The difficulty or testing at eacll staeo whothor an 

. extreme point ot (2. 1. 2) is an extreme point or Dx=d, 

x ·. 0 was avoided in (41) where the extreme solution or 
the following problem -

Max z = ex 0 
I 

subJect to Dx = d 1 

X? 0 I 
Pcoblom (2.1.1) 

wero determined in a systematic order starting trom t1rst 

best extreme point solutions by the cutting pla.r»t method 

till either feas1bU1ty ln 1-3. = b was ach1evod or some 

1nc.Ueat1on of no solution t..t&S obtained. In this approach 
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alternative optima vare still needed at oaeh stage. 

ln (39) 1 an enumerative technique was developed 

in which the ditficulty of obtaining alternBtive optima 

at each stage was also get rid ott. In this approach 

extrema point solution ot (2. 2.1) were enumerated 1n a 

systematic order till elthar feasibility in Ax : b was 

achieved or somo indication or no solution "'as obtained. 

Fixed charge problem (F.C.P.) is a particular form 

of a non..ltnear programming problem. In its most eeneral 

form lt 1s -

t-t1n z = n 
); 

3=1 
0 {XJ) 

J 

subJect to Ax = b 

J( ;;;.. 0 

6J : 0 if XJ : 0 

= 1 if XJ _::-- 0 

j = 1,2 ••••• n 

The number r J • s aro called fixed charges, s 1nce t J is 

incurred only if xJ ~ o. If it vere not for fixed 

charges• F.C.P. v1ll be a simple linear program.rn.ing 

problom. As tho function 0 3x J , J = 1 1 1 1 • • • • • n are 

concave tor xJ ~ o, J = 1,2, ••••• n and ttle obJective 

function is be1ng m1n1m1sed opti~al solution or the problem 
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11es at en extre~s po1nt or the convex set or reusible 

solutions. Hovevor, there can be locr.U optima different 

trom global optima. Approx1mHte I'JH)tbods were developed 

which could determine only local optima tor a F.c. P. 

fUrs ch and Dantzig ( 31} made a s tmple observation that 

optimal solution must occur at an extreme point or convex 

set or feasible solutions. The motbao or ranking tho 

oxtremo point or Ax = b, x ~·o. as d.eveloped bJ nurty (49) 1 

to ·obta1n an cutnct solution or F.c. P. • 1s usefUl '..rhen _the 

fixed charges are qui to small c:ompured to the rango in 

the values or the variablo casts. MW"ty (50) and 

Gra,v (28) devoloped approaches tor solving a fixed charge 

transportation problem. Murty•a approach is useful 'Whe.ro 

t1:xed charges are quite small compared to the transporta­

tion cost vherens Gray•s approach 1s useful wben fixed 

charges dom1nnte and have an upper bound. 

In (13), F. c • .P. is convorted into a mtxec! 

integer continuous var1ables linear programming problom 

of the torm 

n 
Min Z :: 4 CJ.XJ -t-' t j6J 

J=l 
subject to AX = b 

xJ.dJ6J 

O~dJ<!i:,l 

oJ integers 

X.:;. 0 

0 J = 1,2, •••• n 

J == 1.2, •••• n 
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where dJ •s are uppeyr bounds ot x J 's in Ax = b 

assignment problem, 1n genaral, deals with assigrMent 

'n• persons to • n• Jobs in sucb a way that the total 

value to the company is maximised. It x13 1s the value 

or theasslgnmont or ith person to jth Job nnd 

further o1 J be tbe value of 1 th porson to the company 

if he 1s assigned to J th Job, then the most general 

form of ass 1anm~nt problem (23) is 

Max 

subJect to n 
r. 

1=1 

n 
1: 

J=l 

x1J 

n n 
1: ;;: 

"1J 1=1 J=l 

xiJ = 1 

x1J = 1 

~0 

J = 1,2, ••••• n 

1 = 1 ,2, • • • • • n 

AS thiS is a particulril' form ot transportation problem 

it can be solved by the same techn1ques as are used to 

solve a transportation problom. Both Dwyer (18) and 

Votav and Orden bat~e discussed methods tor obtaining 

• OQar -opt1rnal • sol ut.1ons to tbe nss 1gn'llent problem and, 

ot course, to the tr,nsportation problem. The special 

and siople structure or tho constraints (viz. f x13 = 1 

t x1J = 1) has led to the dovelopment ot a number ot 
J 
eomputat1onall1 efficient algorithms (4,12,20 145). 



ftddit1onal techniques have also been d&voloped by Von 

r~eumann (51) and Egervary (19). 

Linear Fractional Functional Programming (L.,?.F.P.) 

is a special class of non.linea.r programming. This special 

class of programming problems are concerned witb optimising 

a given ratio of tvo function ot non.. nagutive var1abl.es 

subject to certain linear and/or non-linear constraints. 

These probloms are distinct rrom convcxtconcave progra­

mming problems becauso tho objective function to be 

optimised 1s ne1thor convex nor concave mnthemot1cal 

model ror a general linear tractional programming problom 

is 

t4ax Z = tii : f 
subject to AX ~ b 

Chnrnos, h. and Cooper ~·'.H. (11) 1n 1962 replaced an.y 

L. F. F. P. problem by at tho most two ordinary linear 

procrramming problems. Tho equivalent linear programms or 
tho abovo model are 

Max Cy = ,.,t 
\ l\)' - b-\ ~ 0 

subJect to r.ll»' + ~ t = 1 

.l, t -;; 0 
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l4ax - cy- ttt 

subJect to llY - bt :!'. 0 

-Dy.l)t=l 

!). t!? 0 

It the sign or the denominator is knot..1n, only one o.r these 

problems 18 required to be solved. 

In 1964, Bela ttartos (47) developed a aomputat1onal 

simplex technique tor L. F .. F. P. under the title nHyperbal1c 

Programming" in two oases callod s 1mple case ,(where 

solution set is regular nnd donominator at the objoctive 

function for all feasible solutions is strictly positive) 

and general case. 

In simple aase, 1t is shown that the obJective 

function has a finite maximum which 1o achieved on,. at 

loast, om or the vertices ot the convex set •s• or reas1-
blo solutions and computational technique 1s dascribed. 

In the general ca.tJo, "'hen the conditions tor tho simple 

ca&Je are absent, the probleo may have an o_ptic:~al solution 

oven through the set •s• is unbounded ond the donom1nator 

becomes zero. 

In 1965, Bela ltartos (48) proved that tho linear 

fractional function (t.rhioh 19 neither convex nor 

concave) 1s quasi monotolllc. 90cause of th:e quest mono... 

tonicity or this function, it has the toll01:11ng tvo 
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important properties -

1. A local maximum is a. glo.bal maximum 

2. The f!ltnc1mum of it occurs at an extreme point ot 

tho set •s •. 

In (33), K.SAHRUP has given stmplex..like 1terative 

procedure for the solution or linear fractional progr~mes. 

The problem considered is 

Mex z = r; ·: f 
s ubjoct to Ax = b 

X~ 0 

where the cons tratnt set is regular and the denominator 

Dx-l$'1 is positive over the constraint set. K.Sawrup solved 

this problem directly beginning with a basic faasibl.o solu­

tion and the conditions under which tho solution eoul.d be 

improved were obtained. Tho optimality eono1t1ons 

b J ~ o ror all • J' vero also es tabl1shod whore 

6J = r.2 
< . z; _ c J > - z • c z~ - c1 J > 

In (34), K.Sawrup has developed an algorithm on 

tho basis sla1Uar to that at:1optod by E.l·1. r.. Me ale (6) tor 

the solution of quadratic program;ning and the bln'io rGsuJ. t 

is that tor the max,.mum e.t a bns1c renslble solution 

't = 1,2 •••• n 
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n 
z =' rrO + t l'rj ZJ 

I J=l 
' n 'fJO + · 
, ~ 13 4 ZJ 

j=l ., 
n 

and Xs = /so + l: /sq ~q , ~ 1,2 ••••• n) 
Q=l 

's • •s • (ZJ · are non...bas1c var1ablos and x
8 

are baste 

variables ) 

Certain relation and common oharaeteristics ot 

linear fractional program and 1 ts equivalent linear 

prograos aro also established. Dual s1mplox type algor1th 

1s developed tor the linear tractional functional progra. 

mm1ng problem. Finally, outlines or a technique tor 

obtaining an integer solution to tbe l1nea.r tractional 

functional programming problem based on the integer 

l1naar programming algorithm of Gomory (26) baa bsen 

dis cussed. Simul te.neously v1 th the ras t development or 

research 1n 11nsar tractional programming, the rteld or 
non..l1near fractional programming bo.s also developed. 

t1any papers, such. as, l\lmogy and Levin (1) D1nkelback(l6), 

Jaganmathan (32), Mango.sarian (46), K.Savrup (35) etc. 

have appeared on tho subJect a 

Some vork has been done Qtl extrom& po1nt linear 

. tractional runctional programming by K.savrup and 

R.K.Gupta (36, 3?). The problem considered by them is 
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subJect to AX = b 

and " is an extreme point or 
Rx = t 

%~0 

In (38) the extreme point or AX = bt Rx = t x ~o aro 

determined in a systematic order by a cutting plane method 

till extreme point Rx = t, x ? o ls reached. In tbis 

approach, at each stage d1tf1cUlt1os of tlnd1ng alterna. 

t1ve optima and testing whether an extreme point ot 

Rx = t, x ;;: o are taced. In (37) the latter ditflcUlty 

1s got rid orr by determining the extreme points ot 

.Rx = t __.. x ;:: o 1n a s ys te mo.t1c order by a cutting plane 

method. The process is terminated vben teasibiltty in 

Ax = b 1.s aoh1oved. 



CHAPTER- II 
£XTRt11~E POI!IT LirJE~~tR PROQR.rJ:fl.!I . .l\"0 PROBLbl-1 

TblS chapter, eons is ti ng or rour s eat1ons, . deals 

v1th solving tho Extremo Potnt Linear Program!!l1ng Problem. 

Section I and Section 2 solve the problom by cutting plano 

techniques "hile in Oaction 3 and Section 4 enumeration 

tochn1quo9 are presented tor sol v1ng tb.e problem. 

3GC'i'IOU - I 

COTTil~:l PLAiJB PROCEDURE I 

The Bxtreme Point Linear Programming Problem 

(IlPL.PP) 1n lts most t;en9ral form was tirst studied an~ 

sol vad by 14. J. L 1C1rb.Y, fl. R. Love and Kanti Sawrup. EPLPP 

in eone.rol, 19 s tate4 aa 

Max Z = Cx 

subject to Ax = b 

X ,0 

and · X is an oxtrems point ot 

Dx = d 

J 
l 
I 
I 
J (II.l.l) 

I 

I 
whore A 1s (m xn) mntrlx, D is (p xn) ce.tr1xt 

b is (t!l Xl) is 

(n Xl) matrix. The this section 
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solves (II.l.l) by cutting plane technique where one 

moves from one extreme point to another extreme point 

ot the convex polyhycron AX= b D.x = d1 X·~o. till an 

extremo point or Dx = d, X :::;0 is reached. 

THEORETICAL DDVELOPM.E:;T : 

To solve the problem (II.l.l} coosider the linear 

programming problem (LPP) 

Max z =ex 1 subjoct to AX = b 0 I 
I I 

Dx = d I ==_ FX - t I ( II.l. 2) - l 
I 

J j 

X1- o I 
I 
j 

.I 

Here F becomes a (m + p) xn matrix and F, a (m + p) X ! 

matrix 

It may be noted that problem (II.l.l) is always 

bounded becaWJe any solution of (II.l.l) 1s an extreme 

point ot D.x = ct, x .<_. o and this set or extreme points 

is always finite. But the problem ( II.l. 2} may be 

bounded or unbounded. In case problem ( II.l. 2) is 

unbounded, it can always be converted ~nto a bounded 

problem introducing an add1 tional cons tra1nt OX~ ~1, 

where M is an arbitrary large, finite positive number 

determined in such a W&J that none or the extreme points 

ot (II.l.l) are excluded v1th the inclusion or this 

additional constraint. 
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Thus the problem (11.1.2) henceforth is always considered 

to be bounded. 

A few notations are introduced to develop the theory • 

.!!9TAIZ ONB, ·-

J = [dJ a dJ # o, vhere dJ 1s Jth column or DJ 

J(X)= ldJ -'-Ja x J ~ 0 where X = (x1 , x2 , •••• xn J 
s1 = [X. s AX = b nnd X 1s oxtreme point or DX=d, x~ oJ 

s2 = (x " 1s an extreme point or .FX = t, X "-}OJ 

s3 = s2- sl 

X (2) _ X (2J (2) 
1 - .11 , x12 •••••• 

X (2) 
l.bl 

is the sot or all 

optimal extreme point solutions ot the problem (II.l. 2) 

v<2> ex <2> an ele~ent ot x<2> 1 = 11 • 1 

Ifif:QBBU 1 a Every extreme point ot DX = d, l ::;0 

satisfying teas1b111ty in AX = b is also an extreme 

point of PX = t, X:.: o i.e. s1 ~ s2 

I!B9S!l a It s1 = 1), theorem is dono. 

It s1 F f', let X f s,. Thus X 1s an extreme point or 

Dx =d., x.~o and satisfies AX = b 
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X satisfies 

i.e. X satisfies FX = t 

Thus X 1s an element ot the convex set 82 =(Xa.FX=t,X ~o) 

It 1s required to sbov that X 1s an extreme point 

( l - ), ) w. 0 < f.L-1. 

AS t, " (. 82, therefore Ft = t, FW = t; t 1 w ~ 0 

=t¢ Dt = d 

DW:::: d 

Similarly 

Thus t, v are dis tinct points or tbe set 

( X 1 DX = d, X.;; 0 ) 

such that X 1s tbe1r linear convex combination. 

Therefore, tb1s X is not extreme point ot DX = d, x~o. 

That 1s X ( s1 ; a contradiction 

-X is an extreme point or s2 
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He nee the result 

Tb1s theorem guarentees that an optimal solution 

to the problem (II.l.l) 1s an extreme po1r•t ot (11.1.2). 

One can also f'1nd the following relations be~reen the 

problems (II.l.l) and (II.l.2)a 

(L 1) Problem (II.l. 2) and, (II.Ll) both have solutions. 

(L 2) Problem (II.l. 2) has no solution and hence 

(11.1.1) has no solution. 

(.L 3) Problem (11,1.2) bas a solution but (II.l.l) 

has no solution. 

Apply simplex method t~ solve problem (ll,l.2). 

It there 1s no solution to this problem then by (L2) 

(II.l.l) hllS no solution. Thererore the problem (11.1.1) 

has its importance only vh.en (11,1.2) has a solution 

1.e. s2 fJ f{l. Assume that both tho problems have solutions 

tH&2~ 2 : It x• ~ xf2>, the set of' all optimal 

extreme point solutions or (II.l,2) then an optimal 

solution X ot (II.l.l) is an element of ·s1 wbich 1s 

at a minimum orthogonal distance from the hyperplano 



ex= ex• = vi2>, v~2 > being the optimal value ot tne 

objective runetion or (II.1.2) 

fBOOf : The problem (11.1.1) can be restutecas 

Max z = ex 

subJect to 

X E s1 

This problem 1s equivalent to 

t41n z = ... ex 
subject to 

Wh1cb 1s turther equivnl.ent to 
(2) 

Min '1 - ex 
\\ C\ \ 

SubJect to 

x f s1 

r . and d c: being constants. 

Let X be tho optimal solution or ( II.l.l) then X R s1• 
tt 

Since s1s s2 , therotore X ' s2• Also since X 1s 

the optimal solutt.on ot the problem (11.1.2), thorerore 

ex~ ex -.r. xvt.'" s2 
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v< 2) -CX 
.1. represents the orthosonal distance ot X from 

hype~plane ex = ex.• = vi2>. 

Since tho problem (11.1.1) as restated in the above form 

seeks to minimize this orthogonal distance subJect to 

X' s1 , thus x, the optimal extreme point solution of 

(Itl.l) is at a minimum orthogonal distance trom the 

hyporpl ane ex = vi2 >. 

'I'hus the problem reduces of finding an X(· s1 which 1s at 

a minimum orthogonal distance troc 'the hyperplane 

ex = v12>. To achieve this, the concept ot 2nd best, 

3rd best etc. extreme point solutions are introduced. 

Second Best Extreme Point Solution # The socond oost 

extreme point solution to a LPP (II.l. 2) is an element 

s·~ (S2 - xf2 >) such that as*~ cs-¥ s "- (S2 ... xf2>), 
where xf2> 1s the set or optimal extreme potnt 

<2> -c <2> .. <2> solutions or (II. 1. 2). Let x2 - x21 , x22 ••••••• 

xg> ) be the set or all second bost extreme point 
2 

solutions or (II.1.2). 

S1m1larly1 the third best extreme polnt solution to 

problem (II.l. 2) 1s an element s • (:. (S2 - ( xf2> ux.~2)) 
such that cs ~ ~~ cs -¥ s t (Sa- (xf2>u.q2 >) ). The set or 
third best extreme point solutions ot (II.1.2) 1s 
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.:'l..,.notoA. bv x< 2> - <x' 2 > x<2> X ( 2)f~ 
u... "' ' a - i_ 31 • a2 • • • • • • 3h3 · 

In general the otb beat extreme point solution or 
t\.1 

(II.l.2) 1s defined an. elemont s•(~ (s2 -(U xf2>) ) 
fi...l 1:1 

such that cs•? ca "'s(-· (S2 - ( U X ( 2))) 1 
1=1 1 

xi2>, 1 = 1,2, • • • N ... 1 1 tb bost extreme point 

solution or (II.1.2) 

Jtllijt~l\l • It a LPP bas a second best extreme point 

solution then 1 t is adJacent to some optimal extreme 

point. 

fRQQE a Cons1dor the simplex table corresponding to an 
' element or tbe set ot socond bent extreme point solution 

ot (II.1.2). Since it is not optimal there must ox1st 

at least one column, soy Jth, for which zJ -cJ o. It 

the corresponding column aJ 1s entered in the basis 

departing a coluon for which '8 = Min \' ~P! ; Y1J 7 o ~ 70 
1 .X!J l 

then this single simplex iteration wtll lead to optimal. 

so~ution ot LPP. t:.s only a change of' one bas is V'ector 

in the second best leads to optimal solution, 1t t"olltr4s 

that tho second best is adJacent to some element of 

optimal extreme point solution. 



LT£~11,-1{l g J If a LPP has h th best extreme point solution 

th~n it 1s adjacent to some olemont or tbo set containing 

optimal, 2nd best, ••••• (h -1) st best extreme polnt 

solution. 

f629f 1 Consider tho simplex table corresponding to 

h th best extrer.:e point solution or (II. 1. 2), h ~I. 

Since it is not the optimal solution, there must exist 

at least one column, say hth, for ,,rhioh z.j .. cJ <o• It 

the Jth column, with corresponding zJ -eJ ..r.. o, ente.t's 

the basis departing a column corresponding toe = Min 

[;p , yiJ,. oj , 6 ->o, then the simplex table so obtaJ-
J h-1 {2) 

ned will generate an element Of U Xi • 1\S Simplex 
<q.:l 

method mov~s rrom one extreme point solution to another 

along an edge, therefore, the hth best extreme point 
h..l (2) 

solution to a LPP 1s adjacent to an element or !Jl1 X1 

u~:-U:>t.a 3 , It x• (. x <2> 1 a ~ 1 s an optimal sol uti on ot 

(11.1.2) then a second best extreme point solution ot 

• 

(I I. 1. 2) 1s an element of s2 ... (xf2 >) which is at a mini­

mum orthogonal distance trom the hyperplane CX=CX-=vf2>. 

f802f ' Since x• is an optimal solution to (11.1.2) 1 
• • (2) 

therefore, ex _.;;,CX ¥ XC· s2. Let Y. (· 82 - JS. be 

tho second best extremo point solution to (II.1.2). 
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'. Cl·~~ VI Jtl .l( s2 -x-12 ) 

1.o. -CY* ~ -C~ Jl. I( s2 .. xi2 ) 

cx".cx•:$ cx• .. cr • 'iC s2 - xf2 > 

• • ex .. ex_ <. ex .. ex ., Y( a x<2> 
t! c 11. " :: eli - 2 1 

v< 2> - c~ 
l ,._ YE Sn-Xl(.2 ) ,, Cil G 

• 
Thus tho orthogonal distance ot 't. from the hyperplane 

ex = v12> 1s less than or oqual to distance or any other 

point 1( s2 .. xf2> from the same hyperplane. lienee y;• 

1s at a minimum ortb080nal distance. 

Let the rank o t D bo p and tbQ rank ot F be 

(m + p). It X~ s2 then it hos at most (Cl +p non...zero 

components. Also any oxtrome point solution ot (II.l.l) 

has at most p non...zero components. Thus tr X( s1~ s2 

thon J(X) has at the most p non...zero components. 

Thus 1f X( s2 and \ J(Xj,. p then C~ s1 and it X{ s2 

and I J(Xl 'i:f p then X-( s1 it elernonts or J(X) ere 

linearly 1ndependant. 

Thus an extreme point solution or ( 11.1. 2) is· 

also an extreme point solution ot (II.l. 2) j J(X~ ~ p and 
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elements or JCX) are linearly ·tndepondent. 

Solve the problem (11.1.2) by simplex method. this 

yields xf2> , the set or optimal extreme point solutions 

ot (11.1.2) ~itb v!2 ) as the value of obJective 

function. It xi2>n s1 1- ~ then every element or 
xf2 > 'lS1 is an optimal solution ot (II.l.l) and tho 

process terminntes. In case x12) f,Sl = (6 1 then by 

Theorem 1 an optimal solution or (II.l.l) wUl be an 

element or s1 'l(S2 - xf2>o. Determine the set q2> = 
( (2) (2) (2) ' "x21 , x22 • • • • • • X2fl t ot all second best extreme 
l 2 i 

point solution of' (II.l. 2) by using proaeduro T as 

detailed below. 

Procedure T a 

Let B be tho basis corresponding to an element or 
xt2>, x8 be the vector or the basic variables and CB 

be the row- vector ~4'1 tb components as tho ooe rr1e1ont 

associated with the bas 1c variables in the obJective 

function. 

Thus X - a-1 .a - u r. 
tJ 

YJ = .tr1
tJ 

ZJ = Cs YJ 

For each element or x< 2> 1 determine 

• .,. O; .-' l 
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QJ = tUn Xst 
1 !tj t YtJ ·;- o .. ~ t J( H (U) 

· I·11n 
Ia = f J( H(B) 

\, 

and S = Min ~"'Ia '·tn 1s a basis tor an element 
\. 

or xkh 
1 

This process detercrines the optimal table to,) be usod 

and ths column to enter and loa.ve t.be basts to t1oterm1rm 

second best extrGme point solution ot (ll.l.l). It 

various minima obtained in T aro unique, the second 

best extreme point SOlUtion 18 UniqUGt Otherwise, the 

sot or second best extreatG point solutions is generated. 

Let xC 2> = x (2) x<2~ • • • • • x <a> be the set or 
2 21 ' 22 2b2 

second bast extreme point solutions or (II.l. 2) and 

v~2) be tho value or tho objective function correspon. 

ding to an eloment or x~2). Dete.rm1no X~2>'ls1 •. In 

case x~2>qs1~o tnen every element of x~2 >q s 1 is an 

optimal solution ot (li.l.l), otherwise, the sot ot 

third best extremo point solut1ol'l9 to problem (II.l.l) 

1s determined by introducing a.n add1 t1onal eons tra1nt 

ex v~2) 1:ermed as a •cut• • 

This gives rise to a ng4 problem 
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l-1ax z =ex I 

subJect to J 
I 

FX = r J 
ex< v<2> I "' 2 

x~o 
D 
l 

Solve the problem (11.1.3). 

(11.1.3) 

Let x<3> be the set ot 
1 

optimal extreme po1nt solutions or (II.l.3). Clearly 

x~2) .s xf3> • Any second best extreme point solution 

ot ~ (II.~.3) * is an element X ( p where 
' 

P = [~ X:X 1s an extremo point or FX = t ex~ v~2>, 

x~ o}- xi3~ 

sucb that ex• ;;"' CY II Y(- P. But as ex = v~2> ror all 

X' x~3l thus tho soaond best extreme point solution 

• ot (II.l. 3) 1s an elemont Y or the set .~ X:X 1s 

extreme point or F.X = ·r, ox 

= s2- ( xi2> u x~2) -
V(2) X -'l Oi 
~ ' ) 

' 

Thus tho second best extreme point solutions ot ( 11.1. 3) 

is third best oxtremo point solution ot (II.l. 2) i.e. 

X(3)~ xC2> 1 t. ~(2) , x(2) ~<2> x (2). ~ 
2 :::. 3 • 8 

A3 = 1 31 ' .n.a2 ' • • • • 3113 f ~ 
the set or third oos t extrema point solutions ot 

(II. I. 2) and v~2 ) be the value ot the obJoetive 

function oorrespond1og to any element or x~2) • 
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Determine x~2) ~s 1 • It x~2) ~1 ~ then every element 

ot x~2> ~ s1 is optimal solution for (II.l.l), 

othaNiso, find the next best extreme point solution ot 

(II.l.l) by introducing the anotber eut CX V~2) 1n 

(II.l.2) and determine the second bGst extreme point 

solution of the problem. 

Max z =ex I 

subJect to I 
I (II.1.4) 

FX = r I 
ex ~v~2> I 

I 
X ~0 

I 

which will generate ·tno set x12 ) ot fourth best 

oxtrome point solution or (II.1.2). Again teat it 

xi2) ~ s1 p ~. This process or introducing cuts in 

order to obtain the next boat extreme point s olut1.on 

ot (11.1.2) 1s continued till a.t so:ue stage, s e.y ~th, 

the set of lf.\th best extreme point solutions or 
(I1.1.2) 1s such that ~2) 'l s1 -F fJ, where x~2) is 

the second best extrome point solutions ot the probl-em. 

Max z = ex J 
I 

subject to l 
(II.l.p) 

FX = t J 
l 

ex'" v<2> I 
·~ H..l I 

J 
c~o I 
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is the value of obJective tunetion at an 

element or (h..l)st best extreme .Point solution. 

=• OTD , "'""' t t1 1 c ·· /' v< 2 > 1 .,., o .Lue cu ng p anes A~ 1 , 1 l,e~ ••• 

are parallel to each other and V ( 2) >. v< 2> ll 1 tho 1-1 r 1 
constraint ex { vi2) makes the constraints 

C..\~ V~2) J = 1, 2 • • • • 1 - 1 t-odundent. Henee only 

one constraint (cutting plane) 1s considered at any 

stage. 

Tho procedure as discussed above conve·rges because s 

(a) s1 .s s2 and s2 is f1n1 te 

(b) No set x12) 19 repeated as 

'fHJ~.Q.BF:M. I a I If X is an opt1mul solution of (.II.l.l) 

and x.f2 > fl s1 = I than 1 is adjacent to some element 

of s3 = S2 - s1 • Moreover, for all points adjacent 

to so~e element or s2, l is at a minimum orthogonal 

distance from the hyperplane ex = v12 ). 

f82Ql 1 : i is optimal solution ot (II.l.l), 
~ ~ 

therefore, X ~ s 1 • By theorem 2• X is a.t a minimum 

orthogonal distance from the hyperplam ex = vi2). 

" Let X 



be r~th best extreme point solution or (II.l.2), 

there-foro x.1(
2) 'l s1 = IJ , 1 = 1, • • • • • (N • 1) and 

!Ll 
U Xi2> ,a a3 • Also, since X is rJtb best 

1=1 
extreme point solution of (II.l.2), bu Lemma 2, it is 

adJacent to somo elomont or s3 • 

It may thus be noted in the abo~ procedure all 

tho extreme points of s2 are not roquired to b3 

examineCI , the procedure begins vt tb tho best extremfl 

points or problem (II.l. 2), and ,proceeds to study in 
' tb order, the second· best, third best, ••••••• N bast 

extreme points and terminates as soon os an extreme 

point or (11.1.1) is arrived at. 

In case problem (11.1.2) has a solution but 

problem (II. 1.1) bas no solution, all the extreme 

points or (II.l.2) are tested. Since (II.l.l) has 

not solution, theretore, s1 = 9J and x:f2> 'l s1 = I' .Y 1, 

suggesting procedure v111 continue 1ndetin1tly. 

this is impossible as 52 1B finite and vf2> 
_;;. .• 

But 
v (2) 
1+1 

J#1 and so a.f't~r a finite number of steps say N 1t tfill 

be impossible to find out second best extreme point 

sol uti on to the problem. 

~~ax z. = ex 

subJect to 

FX. = t 
ex~ v~2> 
X7 o 
~ 
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"'h1eh is 1ndicatad by the fact that there 1s no opti!lnl 

simplex table with a J such that QJ > o e.n.d Zrc 3,.o 

It ma,y also be observed that it tbe problom 

(Il.l. 2) is unbounded, 1 t is converted into a bounded 

problem as discussed oarller: In tbis case tho optimal 

solutton x~2) or thG converted problem may bot be an 

extreme point or the convex polybydron · FX = t, X ~- o and 

in this ease xf2 >, the second best extreme point solu... 

t1on or the converted problem, will, be an oxtremo point 

ot FX = r, X ~o. Taking xf~> as tho sta~ing solution 

the proeodure follovs exactly tor the ease when (II,.l. 2) 

1s bounded. 

EXAMPLE 1 

Max z = 2 x1 + 3 ~ 

subJect to 

.... xl + 2lt2 :::.:. 8 

xl + x2 ~::. 12 

xl, x2 ·~ 0 

and .. (xl, x2) 1s oxtrome 

-xl + x2 ~ 3 

x2 """..:_ 6 
'* -·-

2xl -xa~ 12 

3Xl + .x2 ~ 21 

point of 
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For solving N(II.l.l) start with the problem : 

Max z = 211 + 3X2 <I 

! subject to { 

i 
r-xl + 2x2 + x3 = 8 l 

l 

j xl + x2 + x4 = 121 
l j -xl + x2 + x5 :: 3 r 

FX :: t l 
N (II.l. 2) 

x2 + x6 = 6 I X 'lo I 
I 
f I 

12Xl • x2 + x? - 12l -
i 
~ 

::: 271 f 3Xl + x2 + x8 

I I 

1 xl, x2, •••• Xg ~0 l 
L 

) 

The set xC2) ot optimal solutions or N (II.l. 2) ls 
l 

xf2> = \~J2tl = (.a,a,2,o,a,o,6,3) 

and vC2) 
1 = 30 

tlow J = F1 d2 ds, d6 d7, ds 
..... 

'I 
1.. , t ' ' 

and Pt Rank of D = 4 

J (Xlf2)) = !d d as, d?, de "1 
l 

'\_.l, 2, .. s 

J ( X (2) 
l. 11 
\ 

) \ = 514 

x<·2> 
1 1l sl = fJ 



....... 
Ca 

2 

0 

3 

0 

0 

0 
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Proceed to rind out x~2), the set or second best 

extreme point solutions or N( II.l. 2) as follows: 

HCB) = (4,6) 

Q4 = l1in (6,213) = 2 

Q5 = t~tn (a, 2,3/2) = 3/2 

\/B = Min (2x2, 3/2x.l) = 3/2 
t 

6 = 3/2 

therotore t 6 ontors and t 8 leaves tbe basis to 

give a second best extreme point solution of U(II.1.2). 

·.r<2> = x (.2> _ , U2 a 1a 0 ~ a .a 0 > 4 2 21 - ~· 2 1 2• .Q. 2' 2 • 

Varia-
bles 
ot . -

Basis 

vC2> 
2 

CJ 

X B 

= 

2 

.. ~ 

fl 
rl 15/2 1 

ts 13/2 0 

r2 9/2 0 

t5 6 0 

r, 3/2 0 

ta 3/2 0 

-
z:57/2 Zr'CJ 0 

.. 

Stmplox TQble For X (2) 
21 

3 0 0 0 0 0 0 

illl~lil· •• - - -·-*~ 

r2 ra r4 ts Ia r, ts 
0 0 -112 0 0 0 112 

0 1 .. 1/2 0 0 0 3/2 

1 0 3/2 0 0 0 -1/2 

0 0 -2 1 0 0 1 

0 0 5/2 0 0 l ·-3/2 

0 0 -3/2 0 1 0 l/2 
,, 

' tt • 1 r ,,., filii • I l l1... ... .... - ..... ..._ • 'iNII 

0 0 7/2 0 0 0 -1/2 
... ·-· ..... ~~ ..... -"""'" ... 



!J (X (2))1-
i 21 ~-
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= 5) 4 

x<2> " s = lA 2 1 II 

Introduce tho cut 2x1 + ax2 ~ ~ in N (II.1.2) 

The problem so obtained 1s a 

Hax z = 2xl .. 3X2 

subJect to 

-xl + 2:12 + x3 = 8 

xl + x2 + x4 : 12 

-Xl ... xa + xs = 3 

x2 + x6 = 6 

2Xl- x2 + x7 = 12 I 

I 
N (11.1.3) 

' ' 3Xl + x2 + Xg =21 I 

! 
21:1 + 3X2 + x9 = 57/21 

I 
' 

xl, lt2 ••••• t Xg ::;;, 0 J , 
The set xi3) or optimal solutions ot problem N(II.l.3) 1s 

xi a> = t xtf3> = <zt,G,i,o !, o ~ ' f ' o > 
L "* 
xl~ 3) = < li ' ~ , Ji 'o' 6 • i • o • o > l 

..! 

Find out tho set 43 ) of second bast extremo point 

solutions ot U (II.l.3) 
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Lot a1 be basis for x113) 

For n1 

H ( Bl ) = ; 9] 
'·~ . ./ 

~ = Min rf-l ... 

and a2 for X (3) 12 • 

, ~ , .§ l = .Q 
2.! 2 

81 = t4in (~X fl 
J = ~ 

[ 9 
--, = ' J 

- Min l zt t -
= Hin r .21 

10 
\. 

= Min i 'f 8 l 1 

=Mine ~ x 1 
l,.. 

il-; = &. 
10' (b j 

X l.i - ~ - 10 ' .) 

'\f B2; . . . 

E.J. X l 
' 10 J 

= 21 

B2 gives a seeond best extreme point solution ot 

N (11.1.3) by replacing t 1 by t 9 • 

x<2> 
3 ( p, f, p, i· ~. Ji, 

o, o, i J 

J < xaf2> > =l dl d2' ds , d~ 

J ( xaf2> ) l ~ • d2 ' ds • ~ 

J (xaf2) ) = 4 = P ' = 4 > 

Also elements ot J (x.3i2>) are linearly independont. 

x~2) .,. sl :/ /J 



Hence 
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1s the solution or Problem H(II.l.l) 

Tho solution for N (Il.l.l) is 

xl = p 
:: 18 

"2 0 

nnd optimal value or obJective function or N(II.l.l) is 

z : lf 

SECTIOfl 2 

CUTTING PLACU PROCCDURE 11 

INTRODUCTION 1 

Tho cutting plane procedure I, given 1n 

Section I, bas the disadvanta&es that 

(1) It 1s required to test tho linear 1ndependonce or 
elements ot J(x) 1.o. linear 1ndopondonce of a subJect 

ot columns of D whicb 1s computationally lengthy and 

d1tf1cult 

(11) The cuts tntrodueed creat some add1t1onnl extreme 

points which al.though are never go1na to be the solution 

or the problem (II.l.l) but are requ1rcd to be studied. 

The procedure presented in this section has the 

advantage that it e11rn1natos the difficUlty (1). Thus 



present technique 1s easier to handle and requires lesser 

computations and time. In tbis procedure one moves on 

the extreoe points ot Dx = a, x ~ o starttngtrom the 

first best and keep on ranking the ex trerna points until 

tho feasibility in AX = b is satisfied. AS soon as such 

an ·extreme point is obtained, it 1s optimal solution tor 

the problem (II.l.l). 

THEORITIC~L DEVELOPHENT 

Let S = ~x : x is an oxtreme point ot Dx = o, x:: o 1 

S 1s, obviously, a f1n1te set •. The problem (II.l.l) 

may be restated as 

Max z = ex 
Xf s 

subJect to 

AX = b 

X :r Q) 

Then S 1s set ot the extreme solutions ot the problem 

Maa z = ex. 0 
J 

subJect to I 

DX = d I 
X:~O I 

(11.2.1) 

' 
The problem (11.2.1) may bo bounded or unbounded. 



Q.ye <a\) ' 
The problem (II.2.1) 1s bounded. Introduce 

tho rollO'-'lng notations to develop the theory. 

NOTATIOf.S 1 

s1 = t X a X(S, M :: b J 

s =;X a X is an extreme point or DX = d, X~O~ 

xl1> is the set ot 1 tb best extreme point 

solutions or (11.2.1) 

ufl> is the valuo of obJective tunot1on 

corresponding to an clement or xf1> 

xi1>. = ~ X( s , ex = ui1>; 

lot x.fl> =1 X{l>, x1~1) ••••••••• x~~~~ 

npply s 1mplex method to tlnd tbo set of optimal 

solutiomJ x£1 > to the problem (II.2.1). It xi1>=1J, 
then problem (11.1.1) has no solution an process 1s 

terminated. In case xi1> fJ fJ then the elements or 
xi1> are tested ono by ons to soe 1f' they .satisfy 

the toas1bil1ty in AX = b. It so then xil) 'l s1 F 1J 

and ovory element or xi1> 'l s1 is an optimal solution 

tor (II.l.l) and procedure term1natos. It xil) 'l s1 

= ~ 1.o. no element of x1 (l) satisfies the tens1b111ty 

in AX= b, then determ1na x~1>, the set ot second 
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bost o~treme point solutions of problem (II.2.1) 

(Procedure T discussed in Section 1). It x~l) = ~, 

then problem (11.1.1) has no solution. Ir 

x~l) ~ ~' determine x~l) ~ s 1 , in case x~l) ~ s1 #,, 
evory element or x~l) f) 1'\ yields the optimal solution 

tor (II.l.l). It x~l) ~ s1 =~proceed to find xf1>, 
the set ot 1 th best extrema point solution to (li. 2.1) 1 

s tart1ng from 1 = a, (Procedure developed in section I). 

The proe.ess ends 1n either y1eltUng x!l) = f), 

for some b, implying problem (II.l.l) has no solution 

or XAl) F ' and xA1> ~ s1 p ~ which 1mpl1es that 

every element ot xft l) 'I) s1 is optimal tor problom 

(II.t.l)J whero x~l) 1s the set ot btb best extrGmo 

point solution or (II.2.1) and it will be the set or 
second bast extreme point solution the problom 1 

Hax z = ex 
SUbJect to 

DX = d 

ex uii:l 

whero U~~) 1s the value obJective function at an 

element or·~~. 



Hence the procedure, mainly "~Aorks on three steps : 

STEP - I * .At the ~th iteration, the htb boat 

extreme point so~ut1ons or (II.2.1} is found. 

STr~P - 2 : The points obtained in BTEP .. I are textod 

tor teas1b111ty 1n AX = b. 

STIJP- 3 : (a) J.t tbe f'oas1b111ty is sat1st1od the . 

ptocecuro is terminated. 
// 

I (b) If the reas1b111ty 1s not satisfied proceed to 

next 1 toration. 

The procedure givon above termin:.1tos in a fini.to 

number or steps as S 1a f1n1 t.o and extreme points 

round in S~tP .. t are ngver repeated. 

,P_gso (1!). : The problem (II. 2.1) ls unbounded. In 

this ease the problem (II.2.1) 1s converted into a 

bounded problem by 1nt.roduc1ng an additional constraint 

CA.~ M, M is suf't1e1ontly laree, pos1t1ve f1n1 to number 

such that all the extreme points or (l.I.2.1} are 

1neluded in the resul tiQg l'O'gion. The problem generated 

is 

t19.lC .z = ex 

subject to 

DX :: d 

X 0 ~ 



47 

Lot i = X 1s an extrema point or DX = d 

ex: M 

X?O 

xio) is the set or optimal solutions tor 

problem {II. 2. 0) 

U~o) is tho value or obJectivorunctlon at an 

element of x(o) 
l 

xf0 > is the set of' 1 tb best extreme point 

solution or (II.2.0) 1.e. 

xf0 > = X(- .§ , ex = uf0 > 1 = 1, • • • • u 

uio) is the value or obJective function tor 

an eleruent or xio) 

Sinao problem (II.2.0) is bounded, therefore 

xf0 > -p ~ and ex M Jl x., s then xto> J} S9 = ~'· The 

rema1n1Q3 oxtreme point solutions or (II. 2. 0) 

ranked systematically till nt some stage, say 

x~o) 'l s1 :F I) 1n which case every olemant or 

1s an optimal solution or (l.I.l.l). 

are 

k.th, 

xCo)q s 
k 1 

The procedure developed 1n Seetion 2 is easier 

to handle 1n tbo senso that it is mueb ea.~ier to test 

if aD elomont or S satisfies the teas1b1l1ty in 

AX = b rather than to test it nn extrem9 point of 
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FX = t, X ~0 is also an extromo point ot DX = d 1 X ;,;::O. 

Since the feasible .region ot problem (li.l. 2) 

is more compact - restricted than the feasible region 

or tbe problem (11.2.1) ot Soct1on 21 therefore, vf2) 

is expected to be noarer the optimal value or tho 

problem ,(II.l.l) than utl) and theref~re 1t is 

expected that proeedu,re developed in Section 1 wUl 

move faster tovards optimality ot (II.l.l) but the 

computational advantage gained in the procedure or 
Section 2 helps to solve the problem 1n a lesser time. 

In both the procedures developed 1n Section 1 

and section 2 lf the optimal solution is not obtained 

at the first iteration itself, thon second best extrema 

point solutions ete. are needed to be ealculsted. In 

genoral these are not unique and so all tho altornnte 

optimal solutions aro to oo calculated. The theorem 

that onsuros that not all the simplex tables neod to 

be considered and also in each table there is only 

one column ,.,ith ZJ- c3 :.--0 and QJ_;;..O. 

IHEOJ§~ 1 Each optimal extreme point solution or tho 

problem (II.2.i), 1 ~2 is givon by an optimal simplex 

tnblo in ubicb ZJ - c J = o 1 = 1, 2 1 • • • • n and 

zn+l - 0n+l = 1• 
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.fROO..f a Consider the problem (II.2.1)t 1ntrodue1ng 

the slack variables it becomes 

let 

Max z = ex 
subJect to 

DX. = d 

ex - ,..,(2) 
+ xn+l - "'1 

X10 

G = \D 0 ·; 
I 

\c 1 _) !~, 

The resUlt is proved by using pr1no1plo or 1nouat1on 

consider the case whon 1 = 2 

The problem (II.2.2) 1s 

nax z. = ex 
subject to 

ax = h~2> 

let x2f2> bo an oloment of the sot ot second test 

extra me point solution or the problem (II. 2.1). Let n 
bO the basis corresponding to this element, then 

simplex table ror tbis solution ~111 have at least one 

ZJ-CJ<O 

J = 1, 2 1 • • • • n. Cons 1der a basis ~ ot tbe 

problem (II.2.2) aivon as 



'l'he vector 

(II. 2. 2) 
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Then 
r ~· 

I. a:l ==r . S"'l. 0 , 1 . ' 
~ I l . -1 

-c8a. 1 .i 

and 
~ l 

lc~ = ( cB, o I 
x.Bt or the basic. variables tor the problem 

tor tbe basis 1\ is g1von by 

X a 
1 

-1 (2) = Bh 
2 -! -~ 

-: .s-1 I 

-I 0 

I tr1 
J..cB 1 
l 

r -, 
I 

i 
I r-ld 

-l (2} - 0 
l 2 
! 

U <2> I 
+ 2 j 

'· 

r ., 
\ (2) 

x21 
I 

= ~ 

{ 

i 
! 
' 

I 0 I 
J 

-1 
YJ = Bgj 

I- -1 
1: B dJ 
ll 

I J = 1,2 ••• n i: - l. -
r.CBif"ldJ 

l ... CJ i 

I _; 

t ;·a-1 0 .I<) ,. 
1 d i J n .. 1 ! ' l = ' c B"'l 1 ll I !W n 
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~~ " 
;t;.J = CBl YJ 

A ~ 

ZJ - C J = Cl\ IJ - C J 

' -· ., 
I -- -1 i 

'I 
. \ B dJ 

j 

\·' c 
I (a, 0~ ! CJ\ ~ ... ZJ + 

-
\ 

~ 

0 i. Ca O! 
! i 
' + lj ' 

- cJl J 

J = 1 1 2, •••• n 

J - n + 1 

J = 1,2, ••• n 

J = n + 1 

J = 1 1 2, ••• n 

J = 1,2, •••• n 
J = n + 1 

Thus tor the problem (II. 2. 2) all values or ZJ - C J 

are the same as tor tho problem (II.2.1) J=l1 2, •• n 



and since slaclt: variable ts 1n tho bas is 1 ts corres­

ponding Z J - C J = o. Sinco in the simplex table 

correspon(!itlff to ~12) there is at least one cOlumn 

say ~qtb tor ""bicb ~ - cb ( o. Thoref'o:re, ~ .... Cb = 
zti~'P and honco ~tb column entors the basis also 

a1nce xn+l is at zero level in the basis therefore 

O+l 1s romoved. in the proeeos or simplex 1 teration. 

In tho resulting simplex table z3 - C J is given by 

..... 
ZJ- CJ =0 J = 1,2, ••• n 

...... 
Ch) l 1 ·;a z +1- cn+l =0 .. (~- ~-~h) 

::.:: 1 

....... 
Honce ZJ- CJ = 0 it J = 1,2, •••• n 

= 1 if J = n + 1 

Opt1mal.1t1 criteria is sat1st1ed. 

Honce the resUlt 

The oth~r optimal simplex tables can be generated 

starting H1tb this table. It 1s observed that an;a 

J = 1,2 •••• n1 not 1n tbs basis, it entered into tbe 

basts preserves this character ot z3 - C J also n+l 



can be brought into the basis only at zero level 1t 

the opt1mnl1ty is to be maintained and henee no nsw 

optimal extreme point solution is obtained. 

Now 1t 1.s shown that 1t is not necessary to br1ng n+l 

into the bails to obtain 6 wbere 

is a basis tor the element 

Y.a = Min~ ~J (eJ .. c3 )' 

H (B) = [J a a J - c J) o} 

xJ2~ 

QJ ~~ 0~ 

sup pose 6 = -&n ( zb - cb ) = 

for some basis B containing 4n+l 

X a 
.. L (z ... - c ) · 

1:rh. " 11 

This gives a representation or an extreme point of 

DX = d, x ;;.o wherein xn+l = XB (m+l) = 0 them 

Y(n+l)h = Z4 +C~ F 0 and thus ~ can be entered 

departing n.,1• AS a resul,t or tb1s iteration in the 

new simplex table tho enterles are 

XB1 = XB1 1 = 1,2, ••·•• m+l 

s = 1 = 1,2, ••••• m 

1 = m + 1 

,..,. ( 0 J = 1,2 ••• n 
Z J - C J = \1 J = n+l 
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r;{ Eanea ~ 1s given by an optimal simplex tabla 1n 

,,.,hiob tho bas is does not contain~ U+l • Heneo 1 t 

is unnecessary to cons 1cer <} n+l tor entry into 

bas 1s ror finding optimal. 

This completes the proof for 1=2. Suppose 

now the rosult is true for i=2a3t •••• h- 1 Then 

any second best extremo point solution to the problem 

(1I.2.b..-1) must ha.vo <Jn•t 1n tho basts and the basis 

is of the form. 

and 

1 

ol 
lJ 

' 
; c a.~l 11 
L- a · 

I· 

I a-ta~ 

= ! ' 
ol 

= x~i 

0 

d 

(2~ 
0n i 

X 
lb 

Ropoeting tho argumonts given for 1=2, ~e get the 

result. 
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This theorem helps in reducing the number or 
optim!ll simplex tables of' the problem (II .• 2.1), 1 ~ 2 

s.1nee ~- n+l 1s never to be brought 1nto the basia. 

Also the oaleulutiofl9 of second best extreme point 

solution or this problem are greatly redueed s1nce 

B(B) = n+1 1 i.e. slnaleton and also Zn+t-Cn+l = 1. 
" -

Max Z = 7x1 + 9Xa 1 
subJect to 

- X 1 + 2x2 ~1 

2x1 + 9X2 ~14 

xl, X 2 -'io 

and (x1, x~) is extreme point ot R(II.2.1) 

-2xl + x2 ~1 

x2 ~4 

xl + x2 '!:.:7 

xl- 4x2 ~2 

xl, x2 :::;.-0 ' 

J 
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SOLUTIOR 1 

In order to solve IJ(II. 2.1) eonsider tbe rolloving 

problem & 

Max Z = ?x1 + 9x2 

subject to 

,-2xl + x2 + x3 = 1 

x2 + x4 = 4 

I xl ... x2 + xs = 7 

xl- 4Xa + xa = 2 

\ xl, x2, • • • • • xs 
I 
9 

The optimal solution or !l(II. 2. 2) is 

x<2> 
1 = r x (2> = 

'· 11 
( a,4,a,o,o,t~l 

u< 2> = 51 1 

xf2> ~ sl = -

'...I 

To find out the set x~2) or second bos t extreme 

point solutions ot H(li. 2. 2), let B be the bas is 

tor xf2 > • 

lfOW' H(D) = ; 4, 5\ 
t. j 

84 = tU.n \_ 4, 3] = 3 

&5 = t11n t3, il _,a 
- 2 



o7 

I 
B ::: 141n 3 X 2, 3/2 X 7 

I = !6 

6 = 6 

Thus replacing dr; by c1;, in B a second bos t 

extrcmo point solution or !i(Il. 2. 2) 1s obtained 

Simplex Tabla For X. (2) 
21 

grrta...'' cJ 
.. .........--.... •• . • .....,....,....rs&nt .. ... 

7 9 0 0 0 0 e ot 
ca tho X dl (12 d3 d4 ds de 

basis B 

9 d2 1 0 1 0 0 V5 -1/5 

7 ~ 6 1 0 0 0 4/5 1/5 

0 d3 12 0 0 ]. 0 1/5 3/5 

0 d4 3 0 0 0 l -115 1/5 

Z.=Sl Zj'CJ 0 0 0 0 37/5 -2/5 

-
uov x<2> 

2 1l sl =/I 

lntroducm the cut 7xl + 9X2 51 1n (11.2.2) tbo 

problem so obtained is 

. . 



Hax Z = 7x1 + 9x2 

subJect to 

.... 2x1 ·• x 2 + x 3 = 1 

x2 • x4 = 4 

xl + x2 + x5 - 7 I -
2 

I 
xl-u2 + xs = I 

?xl +9X2 + x7 = 51 I 
I 

. ' 
xl,. x2' ••• x, = 51! 

I 
xl, x2, ••• lt7~·. 0 l 

U (Il.2.3) 

Tbo sot of optimal solutions tor N(II. 2. 3) 1s 

x<3) = r xCa
1
> = ( lJL., 4 ,i,o, § , 111 , 0) 

1 Ll -r- 1 1 -r 

x1~3> = ( s, 1, 12, a, o, o, o .>J 

let a
1 

be bas 1s tor X (a) 11 

X (3) 
12 

= t 7 l . 
I 

1#1 = t-11n ~ 15, ~ \ 

~ :: .a 
2 



Por B2 ' 

H (B2) = 7 

'97 = Min ( 2,o,sJ = 0 

Honea ~ : i 

Therefore, second best extreme point solution ot 

!~(11.2.3) is obtnined by replacing d3 by <L, in a
1

• 

Now 

xi2) 

u<2) 
3 

(2) 
X 

3 

Introduce the cut 7x1 + ex2 ~- p 1n N(II. 2. 2) 

The following problem is obtained 

Max z = 7x1 +- 9X2 
\ 

su'bjoct to \ 
! 
' 

-2xl 
I 

+ x2 + x3 = 1 I • I 
I 

x2 + x4 = 4 t 
\ 

\ :11 + x2 + x5 = 7 1-i(II. 2. 4) 
l 

xl -4X2 + XG .:: 2 I 
l 

I 
~ 

l 
7x1 + 9X2 + x8 

:::: I 

\ 
xl, x2, •••• t 

x6 ,x8 ~o 
I 

\ 
,J 
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T he optimal solution ror N(II.2.4) ls 

I X ( 4) ( 4) 3 4 0 0 3 3.3 0 .) L 1 = X11 = < 2• • ' • ~' ~· 

xfi> = < ~· fl• •· ~i· ~~ o, o >] 

let s3 be basis ror X <4> and B be basis for ll 4 

xl~4) 

~8 = f-11n L p .at x ~ , 50 ] = Zj-

I 6_5 
'8 = f.!inl T 

= i 8i L ! 

-( 84 = f 

·. Replacing d2 b1 d3 in B4 a second beat 

oxtrema point solution or U(II.2.4) 1s obtained 

x4 (2) = x~4) =\_ xJ.2> = ( 2,o,Jfi, I• ~~,o,f~1 
u<4> = 14 2 
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NO\f x~4) s ntis ties both (a.l} and (a •. 2) 

Therefore 

X = 2 
1 

X - 0 2 -
is op_t1mal solution tor N(II. 2.1) and z .: 14 1s 

optimal value of' objective function. 

SECTION- 3 
Ei~UM.ERATIOll TECH;qiQUES FOR SOLVIf~G CPLPP 

In Section I of tb1a chapter a cutting plaoe 

procedure is presented to s·olve the problem (II.l.l). 

The procedure moves o~or the extreme points of 

FX = r, X .-0 in dccreua1ng order ot the value of 

the obJective function till an extreme point or 
DX = d, X .::-~0 is achievod to obtain seeond !lest , 

3rd best etc. extreme point solutions cuts were 

introduced ~1ch gave rise to alternate solutions 

wh1oh vera not extror!1G points ot n = t 1 X ?·0• The 

enu~eration technique presented 1n thts section 

removes this tUfticul ty. 

In order to solve problem (II.l.l), consider probl.om 

(II.t.2) which is 

1-1ax z = ex 
subJect to 

FX. = t 
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let x.(2) = 1 X1 (
2
)x(2) •••• X ( 2)) be the set ot 1th 

1 l 1, . 12 1k1 ~ 

bost extreme point solutions or (II. 1. 2) and V 1 (
2 .> 

Do the value ot obJective tunct1on a.t an element or x~2). 
(2) (2) (2) 

'- 511 812 • • • • • 81e ·.· ! 11"' k 't t 1 : ., 'l . 1 

be the set or bases correspon.C!ing to elements ot x1 (
2) 

(2) (2) (2) (2) 
E1 = ·\ E11, E12 • • • • • • E1m

1 
\ be the set or 

1 ~ 

bases adJacent to the elements or af~> yielding tbe 

value of the objective function less than vf2>. 
(") (2J 

ApplJ s 1mplox method to t1nd x1""' . and Vl • It 

xf2> = ~. then (11.1.2) has no solution and hence 

(II.l.l) has no solution. It xf2> ;. IJ, then 

determine xi2> 11 s1 1 in oase xf2> fl s1 # 9l then 

every element ot x12) ~ s1 is optimal solution tor 

(II.l.l). Othc.u:vise, rtnd the sot x~2) as tollO\Is' 

Determine af2> and tq2 >. The subset t42> or Ef2> 

Vhich yield the greatest Value Of the ObJective 

tunct1on1 say v~2), generates the set x~2>. It 

x2 (
2 ) ~ 9J and x~2) l1 s1 ;: fJ then every element or 

X~ l1 s1 1s a solution or (II.l.l). OtheN1se procoed 

to find x<3> as tollovs: 2 

lot H(2) - g(2) 
1 - 1 

H(2) - ( E(2) (2) 
2 - 1 UE2 ) -
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The subset s~2) ot tf'22> that yiolds the greatest 

value of th.e objeetivo function, say v~2), generates 

tho set x~2). It x.~2 ) = 1rthon (II.l.l) has no 

solution. It x~2) J ' und X~~ s1 ~ - then evory 

element or xC 2) Yl s 1s optimal tor (II.t. 1) • 3 1 

Otherw1so1 proceed to !1nd the next best extreme point 

solution. 

At the i th iteration f'1nd the sot E~~) or bases 

adJacent to tbe elements ot Bi-12) yiolding the value 

ot objective function loss than v~~>. l~term109 

(2) 
81-1 

~ . 
; 1-1 ( ) i \1' 1...1 (2) i = :. U ~ 1 I ·· U 8 I 
\ J=l - J : ! J=2 J i 
J. ' • 

~ j 

A subset Bi2>or Hi_~ty1elding greatest value, say vf~> 
ot tho objective function generate the set xf2> 

This process ot finding next best oxtreme point solution 

1s eonttnuod till either x~2) = • • tor some b 1 

incUcating that (11.1.1) has no solution (This vtll 

ba so when at that particular iteration ah..i2> 'Q II}) 

or x~2) ~ - ana x~2) 'l s1 ~ 1 1n which case every 

element or x~2) 'l s1 1s optimal solution tor (II.l.l). 
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The procedure converges in a t1n1te number or steps as 

(1) s1s s2 and s2 1s finite 

(11) Ho extreme point solution is repeated since 
(2) (2) 

vt / v1+1 • 1 

Cons 1der the case when (I I.l. 2) has a solution but 

(II.l.l) has no solution. In this case x}2> 'l s1 = 
" •1. Thus attar a f1n1 to number or steps say N, 1 t 

will be impossible to find out (N + 1 )th best extreme 

point solution i.e. H~2) :': fJ.. 

Here problem !1(11.1.1) 1s solved by enumeration 

tochn1qua presented in Section 3. 

SOLUTIOli 1 

The optimal solution tor !l(II. 1. 2) is 

xf2 ) = rx1i2) = 6,6 12,0,3,0,6,3) ~, 
~ J 

B (2) 
1 

u< 2> = ao 1 

xf2> " sl = II 
= (D (2) = ( ll 

r1 r3 rt') t 5 r7 . r8 > ·1 
, , ~, t ' I 
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E<2> = \_~ti2> = ( r f'4 t2 rs r?, rs > 1 1, • , 
' 

1~ (2) - ( tl, t 3 t2 rs, t?, tg) l 12 - J I 

Value or o'bJoct1ve function for 

E (2) 2 
2 26 - 30 • i X = 11 -

E (2) 3 
1 = 30- 1.5 = 28.5 12 

;:: 30 .. g X 

Therefore, g(2) 
12 generates an element of xU~> 

2 

~2) e: ' (2) - li ~ la ~. x2J. - c • , 2 • o, 6, j. i· 0 ) -j 
L 

Now x'2 > 'l s = tJ 2 1 

t42) :: t,sal2) = ( rl, ta, 1'2 rs, t?, ts ) 1 
' 

E(2) = (E (2) - ( rl, r3, t2, ta, r4, t ) -, 
2 L ~21 - 6 

a(2) = ,-~(2) = ( rl, ra, ta r t ta }, 2 '_ 1 t s, 4, 

H (2) . (2) - ( tl, t4, ta rs t?, te >] 22 = ~1 -
' ' 

Value of objective function for 

H (2) 
21 = Jt-~x~x!= . 5 2 ~ 

~} = 30- 2 X 2 = 28 
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Therefore Hzl2) generates an element or X~2) 

x<2> 
3 

u~2) = lf 
xA2> 1l sl 1- fl 

Tnere toro, x1 = fl , x2 = Jt 1s required s olu t1on 

ot U(II.l.l) and 

Z. = 1 j 2 is optimal value or obJecti.ve tunction. 

SECTIO!t- 4 

A fto'l'HEa ENUMF!Rh Tl Off TECHNI QUE 

In Section 2 a cutting place algorithm was presented 

which romoves the d1tt1culty of testing the linear 

independenoo ot a subset ot columns ot D. But in tb1s 

case the problem or calculating alternate solutions 

remained. The Enumerative Procedure presented here 

eliminates this 41tf1culty too. Thus th1s approach will 

be best one tor solving an BPLPP. 

Max z = ex 
subject to 

DX :: Ci 
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lot uf1> be the value or obJective tu.net1on. ot (II.2.1) 

at an element ot X (1) the set of 1 tb best extreme 1, 
point solution or (II.2.1) 

x(l) = ~x<l) x (1) x<t>, 
1 . 11, 12 • • • • • 1h1 ; 

= :X( S • ex ufl> f 

s<t> 
1 = r 

9
(1) 

i. 11, 
B(l) 
12, ••••• B(l) 

Ulj 

E(l) (1) {1) (1) 
= '1 E11, E12, 8tm1 i~ 1 •••••• < 

sf1> 1s the set or bases corresponding to elements 
ot x(l) and Ef1> 1s the set of bases adJacent to 

eleme~ts ot .a{1> y1QlcUng value ot obJective function 

less than u1(l). 

f 1 r ~, 

(1) -, 11 (t)i a, - I u E(l) 

11~2 BJ I -
1 J=l J -

J 
I 

! I. 

J 
is the set of' bases adJacent to first best 1 second best 

••••• 1 tb best extreme point solution minus the basos 
th correspon61ng to t1rst best, second bast, ••••• 1 best 

oxtreme point therefore, the set or bases or the elements 

or x1 ~i) must be a subset ot af1> t.e. a1it> .S af1 >. 

Problem (11.2.1). is assumed to be bounded 

because 1n case it is unbounded it can be converted into 
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a bounded problem by introducing a constraint ot the 

rorm ex::; 14, vhere f1 18 surttclontly large pos1t1ve 

finite numbor, aa d1scusee6 1n Section I ot this 

chapter. 

Determine the set xi1>. It xf1> ~~problem CII.l.l) 

hus no solution and procedure is terminated. In case 

xf1> ~ f, then test S.f any element ot xf1 > ·satisfies 

the teas1b111ty tn AX = b i.e. determi.ne x1l) 'l s1• 

In case xfl> 1'l s1J! 1 thon evory element or xf1> 'lS1 

is an optimal solution tor problem (II.l.l). Otherwise 

the extrece point solutions or (II. 2.1) are enumerated 

(Technique g1ven in section 3 ) ln a systematic order 

till at some stage, soy httl, we get either x~l) =-
(1) 

vh1ch is indicated by B~1 =- implying that (Il.l.l) 

has no solution or x/a1 > ;- It xb (l) f} s1 fJ /J 1n lfhi~h 
case every element or ~l) 'l s1 is a solution or 

problem (II.l.l) • 

. UMPLE I ·-
Hore problem N(II. 2.1) 1s solved by enumeration 

technique developed in Section 4. 

The optimal solution for N(II.2.2) is 

u (2) 
l :: 57 
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af2) - r a <2> = (d2 dl, da, de ) ~-- . 11 _I 
1- ' 

E (2) = I E (2) =( d2 dl, d3, d4 ) , l !.. 11 ' 
E (2)=( 

12 . d 2, d 1, ds, de ) 1 
J 

Value ot the obJective function tor 

Therefore E ( 2 ) generates x
2
<2 > 

11 the set or second 

best extreme point solutions or N(.II. 2. 2) 

and 

X (2} 
2 = \x2f2> = ( a,1,12,a,o,o,o >J 

l-

u~2) = 51 

B~2) = ~ ( d2 1 dl, d31 d4 ) = n_(2) .! 
~1 ! 

i,_,, 

( ( d 
l s, 
I..-

H(2)_ ~·a (2) = 
2 - \ 21 

\, .. 

~~2) = 

) = ~~2)] 

( d, dl <!5 d~ ) t 
G>f t ' Q 
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Value or obJoct1ve tunetion for 

H (2) 
21 

H (2) 
22 

= p 

: 14 

Therefore, a2f2> generates x~2), the set or third 

best extreme point solutions or U(II. 2.2). 

Now 

x~2) = txa12) = < j, 4, o, o, ~· f >J 

u~2) = f 

r::(2) = r s <2> :: ( d2 d4, ds, ds >] 3 L 31 ' 
H(2) 

3 = r n(2) 
\_ 1 

~2) ug(2) 
3 - I42) uaC2)· .• 

3 .J 

n~2) = ( "af2>=c d2 ~. ds, de > • 

H ( 2) ( d A d d )~I' 32 = 5, ult 3, 4 _ 

Value ot tbe obJective function tor 

(2) 
H31 = 9 

H (a) = 14 
32 
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fhorerore, generates a.nd 

- c 1 (2) 
- L. 41 = ' 2, o, 5, 5 >] 

xi2>· satlaftes (a..l) and (a. 2)' tberotor& 

::: 2 

0 

is optimal solution for H(II.2.1) and 

z. = 14 is optimal value or obJective function. 



CHAPTBR - III 
lt.fPROVGD TECHNIQUE FOR SOLVItiG 

E P L P P 

This chapter develops two cuts termed as • Deep 

Cut• and •Strong Cut• vbioh make the procedure f'or 

solving EPLPP computationally more efficient over the 

procedures presented in Chapter II 1n the sense that 

the study of a number or extreme points ot DX=d,X :::- 0 

ls avoided. Section I and Section 2 1 of this chapter 

present the cutting plano techniques vhtle Section 3 

doals 1-11 th enumeration technique. 

SECTION - I 

DEEP CUT CUTTING PLANE PROCEDURE 
FOR SOLVING EPLPP 

IIJTRODUCTION:: 

This proeedure is an improvement over the procedures 

tor solving an EPLPP, presented in Section 2t Chapter II. 

'fHEORETICAL DEVELOPt.UllT 1 

Consider the problem (I1.1.2) viz. 

Max z. = ex 
subJect to 

FX = t 

X ";;.0 
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A .. ; r bl I 
F= I r = I ' l di LDJ ~ . I 

This problem is ass U!ned to be bounded because 1 r 1 t is 

not hounded it can always be converted into a bounded 

one by 1ntrocuc1ng an add1 tional cons tra1nt ex !i M as 

discussed in Chapter II. 

1\pply simplex method to (II.l.2) · to find tf2>, the 

set or optimul solutions·or (11.1.2). It ~f2> = ~. 
then problem (I.I.l.l) has no solution and procedure 

is terminated. It x1(
2) ~ - then determine l(2)qs 1 1 

(Procedure given in Section I, Chapter II). It 

Yf2> 'l s1 ~ f) then every element or xi2> 'l s1 1s 

optimal solution ror (II.l.l). If Yf2> 'l s1 = 9J 

then find the set i~2) or second best extreme point 

solution or (II.1.2) (Procedure given 1n Section I, 

Chapter II). It Y~2) = I then problem (II. 1.1) haS 

no solution ~nd procedure 1s terminated. If I~2) ~ ~t 
determine Y~2) 'l s1• If' r~2>TJs1 ~fJ then every 

element or Y2 <
2> 'f) s1 1s optimal for problem (II.l.l). 

In ease tf~> 'll s1 = ~. let v~2) be the value ot 

obJective runet1on tor an element ot Y~2>. 

now plek up the problem (II. 2.1) via. 

t-1ax 4 = ex 
SubJect to 

1JX : d 

X ::::_. 0 



In ease (II.2.1) is unbounded addition or a suitable 

cons tra1nts ex;: M as mentioned earlier makes 1 t bounded. 

Find xf1> the set or optioal solutions ot (II. 2.1). 

Let uf1> be thevalue ot obJective function at an element 

or xf1>. It xi1>. = 0 then problem (II.l.l) has no 
solution and procedure terminates. .Let xf1> -F "• since 

the feasible region ot (II. 2.1) 

region or (ll. 1. 2).. There rore 1 

holds in case '1f2> 1l x11 ) F 1'1 

contains the re as 1 ble 

vi2 > !- uf l) (equnl1 ty 
where v<2> is tho value 

1 
of objective function ·Of (II.l.2) tor an element ot 

Yf2>. As Yf2> ~ s1 = 0, v~2> is not optimal ror (II.l.l) 

and v12> ~ ufl) thel'etore, u11) 1s no.t optimal tor 

(11.1.1). Hence xil) 11 sl = fJ. now find the set ot 

extreme points adJacent to the elements or the set s<l) 
1 

for t.th1ch the value of' the obJective function is greater 

than or equal to V~2). Out ot these values t of the 

objective function, pick up the 

greater than or equal to v~2>, 

and x~2) 11 s1 = IJ, V will not 

value V "thich 1s Just 

v < uf1>. AS v :;.~. v~2> 

be optimal for (II.l.l). 

Introduce the cut ex~.:.- v, termed as •deep cut• in problem 

(11.2.1) and solve the problem 

~1ax z - ex 0 -
I 

subject to I ( 111.1. 3) l 
DX = d I 
ex ~v I 

J 
X 90 J 
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Apply simplex method to find x~3>, tbe set of optimal 

extreme point solution or (111.1.3). 1\S x!3 > is not 

optimal.. for (III.l.l) find x~3), the set or second 

best extrema point solutions of (111.1.3) tProcedure ..., 

given in Section 2, Chapter III). It X~= iJ then 

problem (III. l.l) has no solution. If x~3) 1- fJ then 
(3) ' (3) find x2 l'l ~1• It x.2 'l s1 1 1}, then every element 

ot x2 (a) Yl s1 1s optimal for (11 •. 1.1). If 

.x.2 ( 3 ) T) sl = ~'• the remaining extreme points solutions 

ot (III.l. 3) are ranked by cutting plane technique 

(Procedure given in Section 2, Chapter II)· till otther 

an optimal solution or (II.l.l) reacned or an indication 

ot no solution tor (I I.l.l) ts indicated. 

·f!.~R!! t 

Max z = sx1 + 2ax2 

subJect to 

-x1 + 2x2 ~ 10 

xl + 2x2 -::.; 14 

xl , x2 .-:>;- 0 

(a.l) 

(a.2) 

and (x1 , x2 ) 1s extreme point 

-x1 + x2 ~ 1 

-2xl + x2 +~4 

-sx1 + 9X2 ·s eo 

25Xl i' 27x2 '!f675 

-. 
l 
! 

or! 

I 
I 

I 
I 

N(III.l.l) 
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21Xl + 11X2 ~ 462 

x2 -=~ 15 

~ 60 

In order to solve t•l(Ill.l.l) start with the problem 

Max z = ax1 + 2ax2 

subject to 

-xl + x2 + x3 

xl +2X2 + x4 · 

- xl + x2 + x5 

j -2xl + ·x2 + x6 
I 
! -sxl +9Xa + x,, 
i 

i 25xl +27x2 + Xg 

21X1 +llx2 + x 9 

x2 + xlO 

= 10 

-- 14 

7 I = 
= i 4 ! 

l 

= 90 ! 
I 
I 

= 675 

= 462 

= 15 

sx1 -Gx2 + x 11 = 60 

xl -4X2.X12 = 8 
l 

xl, x~ •••• , xl2~ o, 
G•J ' 

I 

R (111.1.2) 
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The optimal. extreme point solution ot I1(III.l. 2) 1s 

p = 8 

= j_f1i2> = ( 2,a,o,o,a,2,4,6,463,aso,9,a7,30)] 

=154 

'J ( xtf2>> \ = ~o( s 
y(2) n S _ JJt 

' . 1 ., ~ 1 - p 

Find x~2), the set or second bast extrema po1nt 
(2) solutions or Il(Ili.l. 2). Let B be bnsis tor x11 • 

Uow 

H (B) - [3• 4'1. -
-ea = 20 

~ = + 
B = Min p~o X t t ~ X f -~ 

= M1.n ::: 26 

6 = 26 

ieplnc1ng r6 
v(2) _ 
""2 -

b~ t in B x<2> is obtained 
if 5 t 2 

.- ~ te> t .2 lfi 0 a i o .l3!i I •21 = a• 3 • • a• 3' • 3 • 
L 

lJi$i lU!§ ga ~ a§. ) "i a • a • a• a • a ~ 

v2<2> = 128 
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J ( yd_2)) = 9/8 

!£(2) 
2 'l sl = , 

tlov consider the problem A(III.l.3) 

Hax z = axl + 23 x2 

subJect to 

r -Xl + x2 + xs - 7 -
l 

.. 2xl + Xn ... x6 = 4 1 ! c:; 
I DX = d I I 

x>r o .. sxl f'9X2 + x7 90 
! = ' 

N (III.1.3) 

25xl +27x2 + Xg:: 675 

i 21Xl .+ ll.X2 + X9 :: 462 
' l 

x2 + xlO = 15 
i 

i 5Xl- 6x2 + xll = 60; 
I ; 

l 

l xl- 4X2 + x12 = 8 
I 
I 

j xl, x2, •s• •••• xl2 0 : 

L .. 

The set ot optimal solutions ~ (3) for N(III.l.3) 1s 

r X (3) _ X (3) __ 
t 1 - 11 < ~' 15, o,o,~, ~· g,o, 

szl, o, . ~>1 96, ~· 

u (3) 
1 = ~ 

X (3) 
1 'l sl = ~ 
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The value or the obJective runet1on at the extreme 

points adjacent to the clement or xl (a) is 

?lS.~ a21 x a~ _ 1201a7 = 345• 04 5 - 292 - 292 

and 

2157 .. - 45 lC 8 
25 

= 417 
5 

There tore 

i.e. 

v = 3~s.o4 < = l08§BZ > 

v = 100767 
292 

Introduce the cut 8X + 2ax2 < l8i§Z (called t.:eep Cut ) 
1 ' . 

in ti(III.l.3) 

The problem so obtained .1s 

subject to 

-.xl + x2 + xs - 1 -
-2xl + x2 + x6 = 4 

-5Xl + 9X2+ X? = 90 
i N (I!I.l.4) 
t 

25xl +27X2+X8 = 675i 
I 

21Xl +11X2 + x9 = 462 ! 
I 

xz • xlO - 15 t -
I 

2%1 ... ex2 + xll = 60 I 
xl- 4X2 + x12 .::: 8 I 

l 
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= ~OQ'ZGZ 0 
292 I 

J 
J 

•••• xl3~0 I 

The set or opt1m•u solutions or N(III.l.4) 1s 

X (4) _ rx. ('14) 
1 -! 11 

'· 

_ (. sg?gs 11111a E7§a~ 
- 9 5 ' 9052 , o, o, o, 905 ' 

~384 l6Q40~ 176496Q 1£!661 
905~ • 9052 ' 9052 ' 9052' 

m~ , :48~laz > ~~ 
. 905 9 52 -

The set X (4.) 
2 or second best extreme point solution or 

N (III.l. 4) 1s 

X (4) 
2 = rx· <4> 

f 21 
L 

~ l.WiQ' . ~ = ( 181' 1811 o, o, 181' 
2§aa 

181' 

~. a~~I , o,. :~.~~. o, 

221s a1see~ > ·, 
181 t 5285 J 



u {4) 
2 -- §J.SQ§ 

181 

.x2(4) ,.. sl = fJ 

81 

. Introduce sxl + 23x2 ( 216 g:j 1n N(III.l. 3) I the . . '· 181 

problem so obtatn0cl ls 

s~bJeet to 

- xl + x2 .,. x5 

-2xl + x2 + x6 

-5Xl +9X2 +X? 

25x1 +2?X2 +xs 

21Xl +l])t2+ Xg 

x2 + "10 

sxl ..sx2 +xu 

xl- 4X2 + x12 

8Xl +231:2 +Xl4 

= 7 

= 4 

= 90 

= 675 

= 4.62 

= 15 

= 60 

= 8 

= 5l§Q6 
181 

l 

• 
.X X X X x· ~~~ 

1 1 2, 5 1 6, ••••• xl21 14 ~0 

N (III.1.·6) 

The set ot optimal extrems point solutions or 
N (III.l. 5) 1s 

~ (5) = ~1 (5) = ( ~. iilf· o, o, o, .1 .1 



82 

X (5) = 
12 

~~· ~~~~000~ 
( 181 t 181' o, o, 181 ' 181 t 181 ' 181' 

. u (5) 
l = 

o, J§.§i 0 221,{\ 0 )· 
181 ' 181' 

fjl§fa 
181 

· Since x1 (S) 'fl s1 = IJ, the set ot second best extrome 

point solutions or N(III.l. 5) is 

X2 (S) = l x
21 

(S) = ( a, to,o,o,o, ,., 15,330,289, 

s, 105, 45)1 
·' 

u2 <5> = 254 

l~ow ~ (S)q sl = " ' introduce the eut sxl + 23X2 ·~ 254 in 

N(III.l.3) and the problem obtained 1s 

t4ax z. = sx1 + 2~2 
subJect t.o 

- X l + x2 + X S = 7 

-2xl + x2 + x6 = 4 

.sx
1 

+-4X2 + x7 = 90 

25Xl +27X2 + x8 

21Xl +ll:X2 + x9 

x2 + xlO 

= 6751 
i 

= 462! 
i 
' t 

= 16j 

= 60 1 

I 
; 

N (III.1.6) 



xl- 4X2 + xl2 = 8 0 
l 
I 

axl +23X2 
+ xl5 =254 l 

l 
I 

xl x2 x5 x6 
• • • t •••• x12,x15~· 0 l 

The set x1 (G} of optimal extrerne point solutions of 

N (III.l.6) is 

X (6) _ . t ~ 790 O O 3255 5670, 21265 
12 - l" 1sa wa • • • _-1~a 153 ··1sa • 

u (S) = 254 
1 

16095 '/5632 1655 1580 
163 , 163' 163' o, 163 t 

0 )J 

x1 (6 ) ~ s1 =~,the set or seeond best extreme point 

solutions of N(III.1.6) 1s 

X ( S) _ X (5) _ : ( 96 10 O O 135 30 986 2055 
2 - 21 -1 -, -. , ' -· ' - ,-, _.7 7 7 1 7 

.llml i§ 7§0 ·, 
7 t 7 I 0, OJ . 7 ) ., 

!tow x.2(S)l) sl = ,, therefore introduce the cut 

sx1 + 23X2 ,;: ~ in N(III.l.3). The problem so 

obtained is 
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subJect to 

-xl + x2-\-x5 = 1 

-2xl + x2 . .,. x6 = 4 

-5Xl + 9X2 + X? :: 90 

25Xl +27X2 + Xg = 675 

21Jtl +ll.lt2 + Xg : 462 

N (III.l. 7) 

x2 + x10 = 15 

sx1 - 6x2 + x11 = 60 

xl - 4X2 + xl2 = 8 

BX1 +23x2 + xl6 = • 
! 

·~ oj 
J 

The set or optimal extreme point solution 1s 

X (7) fxll 
(7) 177 370 o, 135 0 = = ( i89• 63' o, -, , 1 9 '-

2635 
63• 

23?97 575 815 ,275 
t 0 ) J .. 63-, 9•9 9 

31000 
63 

., 

X (7) = ( a:;. ~. o, o, ao, ao, ~.~. 12 

1108 ~ t o, o, 0 ) -~ 
7 ' 7 _j 



85 

i.Jou x1 (?) ll s1 = '' the second best extreme point 

solution or N(III.l.7) is 

v (?) -- r x21 ' 7 > -- ( o, A 1 o, o ~ o -"4 SL!!-.7 .n.2 \ -:t t ?7 t · J ..., I Q I 
l,. ~ -

u (?) = 92 
2 

418, ~~ 84, 24, ;}1~ ) ] 

Now x2 (?) ll s
1 

F 9} (as it satisfies (a.l) and (a.2) both 

1s optimal extreoepoint solution for N {III.l.l) 

and ~ = 92 is the optimal value of objective function. 

SZCTION- 2 

STRONG CUT CUTTING PLA•H~ PROCEDURE FOH EPLPP 

I .rrRODUCTION a 

The proeeduro presented 1n this section 1s an 

improvement ove.r the Deep Cut Procedure presented in 

Section I of this chapter for solving EPLPP in the 

sense that in this procedure, a mueh smaller subset 

of extrEtme points of DX = d, ... x>r 0 is needed to he 

investigated to ob.tain the optim.~ solution of (!1.1.1) 



Consider the nroblom (II.1.2} viz • 

t~ax 
... ex u = 

subject to 

FX = r 
X ;,;,o 

Tho problem is assumed to ba bounded because if 1 t 1s 

not bounded it can al~ays be converted into bounded 

one by introducing an aodit1onal constraint CX~ M 

as discussed in Chapter II. A.pply simple-x method to 

obtain :l ( 2) the set of optimal extreme point solutions 1 t 

ot (II.l.2). It x1 ( 2 ) = 0, then problem (Il.l.l) 

· and procedure ts terrn1nutec. It 7i1 {
2 ) .P 0 then 

rleterro1.oo Y
1 

( 2) 'l s
1

• It :t1 (
2) "' s1 # I'; then 

every element of L1 (2) q s1 is optimal solution 

(11.1.1). It ~l (.2 ) 'l s1 : i'J then find the set 

ror 

~ (2) 
2 

or second best extrer.1e point solutions or (II. 1. 2). 

Let v1 (
2) be value of objective function for the 

clements or yl ( 2 ) ana v2 (2 ) the value or obJective 

function for the tlements of ~2(2). It Y.2( 2 ) =f), 

then {I.I.l.l) has no solution and process is 
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terminated. If Y2 (
2 ) ~ 0, determine Y2 (2 ) fl Sf't If 

Y2 <
2> f) s1 ~ 9J, then every element ot ¥:2 (

2) n s
1 

is 

optimal extreme point solution or {11.1.1). Otherwise 

pick up the problem (II.2.1) viz.· 

Max z = ex 
subJect to 

DX = d 

X.:>O 

In case (II. 2.1) is unbounoed a sui table cons tra1nt 

ex r1 as mentioned earlier makes it bounded. Find the 

set x
1 
(l) of optimal solution or (li.2.l) with u

1 
(l) 

the value of objective function corresponding to 

elements of x1(l). If x1(l) = 0, then problem (11.1.1) 

has no solution and the procedure is terminated. let 

x1 (l) 1: m, since feasible region of (Il.2.1) contains 

the feasible region or (11.1. 2)' therefore, vl <2> :.:: ul (1) 

( Equal1 ty holds in ease x
1 

( l)l) l
1 

( 2 ) 1: 1> ) • AS 

~1 <2> n s1 = 0, v1<2> is not optimal for (li.l.l) and 

V <2> u (1) therefore u
1
(l) is no_t optimal tor 

1 ' 1 ' , 

(Il.l.l). Hence x1(l) ~ s1 = ~. N~r find all 

adJacent extreme points of the elements of the set or 
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optimal extreme point so~utions ~ (1), calculate the 

value or the obJective tw1ction at these adJacent 

extreme points. Let .a1 v2 <
2> represent the value 

or objective function at those extreme points. 

v (2) 
2 

or 

Pick 

1.o. the value, say '\• "'hich is nearest to 

~.\ = t·tin L a1J . Find the extra "'lEt points 

with value of objective function as ~\· Find the value 

or the objective function at the set or extreme points 

adJacent the extreme points With the 'llalue Of Objective 

function as '·11• Out of these Values p1ak ufJ the 

value, say "'a ( ::,.v2 (2 ) } which is nearest to , v2 C2> and 

:find the extreme points or DX. = d, X ~-o corresponding 

to vr2 • Again, find the set ot extreme points or 
DX = d, X .o T,rhich are adJacent to the extreme points 

corresponding to "'"2 ~nd value or the objective 

function a.t these extreme points. Out of these pick up, 

say ~,r ( V (2)) nearest to V ( 2) ana find corros-3 ~ 2 • 2 

pond1ng extreme points. This process is continued till 

a set of extreme points is obtained where 'lnlue or 
obJective function is t·'k ( ;;;V2 <

2> ) and at. all the 

adjacent extreme points to these extreme points the 

value of the objective function is less than v2(2) • At 

this stage the cut 



is introduced in (II. 2.1); t·J1 ( 1·11-l -¥1 und ~11i); v2 (
2) 

I ~1 ~ k. The problem so obtained is 

Max z. = ex 

subJeat to 

DX = d 

cx~·wk 

< lii. 2.3) 

The cut CX<S ~.~k is called •strong Cut• ~ Find out x 1 (a) 

.the set or optimal extreme point solutions or (III.2.3) 1 

the value or the obJective function ror the elements or 

x 1 (a) will be, clearly, "'k· AS x 1 (a) # iJ und 

'(Jk·:~ v2 <2> and t2 ( 2 ) 1) sl = 9J, therefore, )ll (a)q, 81 = i'. 

-The remaining extreme point solutions or (111.2.3) are 

determined in a sys terna.tic order by cutting plane 

technique (Given in Section 2 or Chapter ll) till ei thor 

an optimal extrerne point solution or (,II.l.l) is reached 

or an 1notcat1on or no solution or (II.l.l) is obtained. 

In order to show the ad.va.ntage of Strong Cut Procedure 

over the D!lep Cut Procedure consider the problem 

N (III.l.l) solved in Seet1on I of this Chapter. 
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From that problem 

·x:2 ( 2) .,. 81 = fJ 

v (2) = 128 2 

Now consider the N(III.l. 3) 

Tho set or optimal solutions or N(III.l.3) is 

(3) (3) t:;,A 14 ":l51 .x.l . = x.ll = ( ·~· 15, o, o, s,9,o,.w.g-• 

u (3) 
1 --

o, 96, ~82) 

The value of the objecti~ f'unct1on at extrette point 

adjacent to x1( 3 ) are 

R - 21§7 ~ X fl - Al? 1 - 5 - 25 - ~ 

R- __ 2J,§7 35). t' .~§i - J,QO?~ 
~-4 5 - 292 - 29 



The extreme potnt '-'hich has the \Blue or the obJective 

f'unctton as '·11 is 

( ~a, ~~ji' o, o, JJ¥a, a~e~. fl~je, 0; o, ~~. 

~ zzaz 
292 , 292 ) 

The value or objeeti.ve function adJacent to th1s extreme 

point is 

--

Tho extrema point which has thevalue of obJective 

function as w2 is 

~ lQ.§.Q 36~9 6538 22321 ~ o, 
( 181 ' 181. ' o, o, 181' 181' 181 ' 181' 

~66§ o, 
181' 

22J£ 
181 ) 

The value or obJective function adJacent to this 

ex tremo point ts 

1'he extreme point corresponding to H3 1s 

9ft l.Q 1a.§ 30, asz 2oss uga >· 
' ~· ~· o, 0

• 7 ' 7 ' 7 ' ' 7 
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The value or the objective function adjacent to this 

extreme point is ,.r4 = 64 (, v2 (
2) ). Introduce the 

cut, called strong cut. 

1'he problem so obta1necl is 

Max z = 8111 + 23X2 

subject to 

-Xl ... x2 + x5 = 1 

-2xl + x2 + •a = 4 

-5Xl +9x2 + x7 = 90 

25x l +2?x2+ x 8 = 675 

2].Xl +llx2 + Xg =462 

x2 ... xlO = 15 

5x Jr Gx2 + xll = 60 
1 

xl +4X2 + xl2 = 8 

axl +23Xx + xl3 = • 
xl,x2,xs,xs,···· xl3 ':--_:. o • 

The set or optimal extreme po1nt solution of' the pr6blem is 

gazgz m flU! m o > 
63 • 9 t 9 ' 9 , 
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~· s's , o, o, o D 
The second best extreme point solution or U(III. 2-. 4) 1s 

~38.1 ;!5~ 418, ~, 84,, 24, 7 ) 

u2(4) = 92 

Now X2 (
4) ll s

1 
F 1J 1 there tore 

is the required opti~al solution for the problem 

A (111.1.1) and Z :=: 92 is the optimal value or 

the obJective tunet1on. 

It may be noted that in Deep Cut procedure after 

apply Ceop Cut three cutting planes arc introduced 

to get the optimal solution ot N(III.l.l). t-'hereas 

in strong cut procedure only one cutting plane 

serves the purpose. Hence, Strong Cut procedure is 1n 

general more ert1e1ent than L'eep Cut procedure. 
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S~~C1'ION 3 

STRONG CUT (DEEP CUT) ENU!-U:RATIVE 
TECHNI. QUE FOR SOLVING EPLLP 

INTRODUCTION a 

In Section l and Seetion 2 of this Chapter 

cutting plane procedures are given. Here, in thi.s 

section Strong Cut (~ep Cut) Enumerative Technique 

nre presented. 

THRORETICJt.L l)EVF.LOPMEN1' ' 

1\.ftor 1ntroductne Strong Cut (Ieep Cut) 

CX ~ '''lt (CX-:;_ V) in .( ll.l. 2) t· the problem ! II. 2. 3 

(III.1.3) is obtained. 1'1nd x.1 (a), the set of optimal 

extreme point solutions or 111.2.3 (1Il.l.3) and u1<3 > 

the value or obJective function at t.he elements or 
x

1 
<3>. Clearly u1 (a) = 1-Ik ( u1 (a) = V). lilso xf3 >1ls

1 
=~ 

let a1 (a)• j fl ) be the set or bases of the elements 

ot x
1 

(3). Determine ~ (l), the set of bases "'hich are 

adjacent to the elements ·or s1 {a} y1eld1.ng tho value 

of ObJective funet1.on le~s than Ul (a) • Out ot the 

elements of E1 (3) pick up the set a2C3) or elements 

'M'h1Cb yield the greatest V3lU9t SEl..Y U2(a)t Of ObjeCtiVe 

function. This set generates x2 (a), the set or second 

best extrer.te point solutions ot III. 2.3 (III.l.3). It 



x2<3> = '• then (II .1.1) has no solution. Othe~ise 
determine x2 (

3 ) TJ s
1

• It x2 (a) 1'l s
1 

:J f', then every 

element or x2(3 ) Tt s
1 

is optimal for (II.l.l). In 

ease x2 {a) Tl s
1 

= YJ fino x
3 
<3> ,. the set or third best 

extreme point solutions or III. 2.3 {111.1. 3). Find out 

E2(3), the set of all those bases vhich are adJacent to 

elements u2 (a) and yield the V'cJ.lue or objective function 

less than u2(3>. 

let H (3) 
l = E (3) 

1 

reterm1ne the set of elements, 13a (a), of H2 (a) vhich 

yield the greatest value, say u3 <3>' or obJective 

runet1on. 

This process 1s continued till for some ( K+l) 
(3) either X(k+l = 9J implying (III.l.l) has no 

solution or X(~~{) ~ fJ and X(~!{) 'fl_ s1.F f' in Hhich· 
(3) 

case every element or X(k+l) '1 s1 1s optimal for 

(II.l.l) where X~~!l) is (k+l) st best extreme 

point or solution or III.2.3 (III.l.3) and generated 

by a subset or elements or 
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The 1nrlicat1on X~~~l) = 0 is indicated by 

H(3) - lA 
k - P• 

The problem N(III.l.l) is solved here by strong aut 

Enumeration Technique. 

Jl f'ter introducing the strong cut 1n :~(III. 2. 2) we get 

N (III.2.4). The optimal solution to this problem is 

x1~4) = ( f , ~ , o, o, ao, ao, lF• 

~~lfi t ~.Qa t ~ t o, o, 0 ) J 
The aecond. best extreme point solution of N{III.2.4) 

is find out as f'ollO'\IS : 

B ( 4) = r B ( 4) :: 
1 L 11 



E (4) 
1 

= lE (4) :: 
11 

g (4) = 
12 
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The value or objective funet1on for 

E (4) 
11 

E (4) 
12 

E (4) 
11 

X(4) -
2 -

u (4) 
2 

No'i 

- 9~!8 ~ - ? - a?B X 54 := 92 

= 9f?- - ~ X 55 :: 64. 

generates x2 <4> 

= 92 

is required optimal solution of problem N(III.l.l) and 

Z = 92 is the optimal value or objective function • 

. NOTE i 

1 t may be noted that although f'or some problems 

the strong aut and teep Cut procedures may coincide but 

in maJority or cases, in the Strong Cut procedure, the . 

investigation or a number or extreme points DX=d,X~ is 

avoided tJhich are needed to be studied in veep cut 

procedure. 



CHAPTER - I 'I 

tXT.RGi1E POINT .LIH~AR ~""R~tCTIONAL FO'HCTIOt~.I\L 

~ROORAMMING PROBLm~ 

SEWON .... 9 

PRELI:JJI NARil~ : 

In order to discuss Extroms Point 11Ma:r Fractional .,., 

Functional Progrn~ming Problem it is necessary to briefly 

suDVey the methods to solve a general ltna·Ar Fractional 

Functional Programming Problem (LFPP). cortain results 

in this development a.re stated ~ . .rithout proof detailS Of 

whtcb ean be rororred to paper rorerences given. The 

gomral LFPP 1s 

Max ex + ,., Q • B J :.1r 

DX + 1) l 
I 

subject to I (lV.O.l) I 
l 

AX= b J 

.x.~o 
J 
I 

,hero X 19 ·-lhtl matrix 1 C nnd D aro txn mo. tries, 

fi 1s cnrn matrix and b is mx1 matriX, f"(, ~ are 

scales. It is assumed that the constraints of (IV.O.l) 

arc r-egul;<\r i.e. the feasible region is non....empty and 

bounded. It 1s also assumed that denominator is non..zero 

tor any raas1blo solution. 



This pr.oblcm has been studied by Charnes and 

Cooper (It) in which they have established that employing 

a 11n3ar transformation Y = tx, t o ~duces the 

problem (IV.O.l) to solving two equivalent 11near progra­

mrn.iog problems viz. 

and 

Max C:i .. ttt 

subJect to 

.AI - bt = 0 

Di + ~ t = 0 

¥1 t :. 0 

t·1ax - Ci - "t 

subject to 

Ai- bt = 0 

D:i + 8 t = -1 

X
1

t .?- 0 

0 
~ 
0 
l 
I 
l 
I 
t 

I 
l 
J 
J 
J 
I 
'I 

( I v. o. 2) 

( IV. o.a > 

It is es tnbllshod that 

(1} For every {Y, t) satisfying the constraints ot 

(IV.0.2) and (IV.0.3) has t; 0 

(11) If nx• + t3/ 0 for every optimal solution of' 

('1.•, t • (IV. O.l) and ) is an opt1mal solution ot 

(IV.O. 2) then 't'./t* 1s an opt1ma.l solution or (IV.O.l). 
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• n v• Similarly if DX + v <..;.. 0 tor n. an optimal solution 

or {IV.O.l) then replacing (c, fl) and CD~) by 

their negative tha tunct1~nal is unaltered and tor the 

now. (D, ;l ) 

to (IV.0.3). 

(I ' 
DX .. \3 ;-0 i.e. it becomes 1flu1Valent 

Thus to solve (lV.O.l) it is sutf1etont to 

solve tt•ro ordinar1 l1ooar progra.rnm1ng prob!fnns viz. 

(IV.0.2} and (IV.0.3). 

l\nother method to solve the problem (IV.O.l) 

is ceve loped by K. SB'·'rup (33). This approach is 

developed on lines s1Q1lar to solving a LPP by simplex 

method. It is ass~d thst 

(1) Jny · m · eolurans of . A ura linearly indo pendant, 

(11) The denominator of the obJective function 1s 

post ttve tor reas1ble solutions. 

Based on the9e assumptions 1 t is established that 

optimal solution of (IV.O.l) is a baste re-1ble 

solution i.e. the optimum occurs at an extreme point 

of ~asible region if AX ::: b, X-::: 0. Thoro fore 1 the 

procedure starts with a tn1t1al basic teaslble solution , 

moves over the set ot oxtreme points or the feasible 

region in suan a way that in the absence of' degenracy 

the value of obJective function at each iteration 1s 

improvod • Since tho number or extrema points is f1n1to 
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and extrema point is repeated the procedure converges 

in a finite number or steps. The algorithm to solve 

(IV. o. 1) is developed as follows: 

.Lot x8 b3 1n1tial basic feasible solution to the set 

ot constraints (IV.O.l) which 1s obtained as in 

ordinary LPP. Let B be the corresponding basis, 

B = (b1 , b2 , • • • • bu.>. There tore, Xu :: a-lb, X a> o. 

Let c8 end DB be the m component row voctors 

having their eompomnts as the c oeff1c1ent associated 

'-'1 th the basic variables in nU!llOrator at.ld denominator 

or the obJoctiVC function respectively. Col'responding 

to solution x8 , let 

z(l) 

z(2) 

Thereforo, the value or the obJective function or 
(IV. 0.1) corresponding to solution x8 is 

z = z<l> 
z.(2) 

1 t 1s .required to determine a non... basic variable "'h1ch 

•7hon inserted in the basis a, according to the proce­

dure or simplex method, should give an improved value 

or obJective function. 
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Let a· be the column of t~ not in j a, then 

there ex1s ts 

'1. J. = B"" 1 a J • 
Tnus z (l) J t 

scalers YtJ such that aj ::: B :tJ or 

'
•lso let ~ (1) C 'r ~ ( 2) - D v ~ ~ J = B • J J UJ - B ... J. 

z.J <2>, Y. J are k.nO'" for every aolumil 

nJ of A not in B. Suppose column br or B 19 

replaced by 4J or A not in a by means or simplex 

method tor LPP to obtain a. new basic feasible solution 
. 
x8 "-'here 

h.B1 - XDI - Xnr .~1,1 11 r -
>'rj 

,., 
XBr X. :: = --9 Br YrJ 

let the nev value or the objective 

z.l 

function be 

:: -z2 
vhero 

~l 
z(l) _ -e ( z.J (1) _ z. - CJ ) -

~>2 
z(2) - .$ z. = ( ZJ(2) 

- DJ 
) 

tlow the ~alue or obJective function improves 1t 

Z. ·, Z '.rh 1 eh implies 
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In the absence of degeneracy the nov basi.c feasible 

solution improves tbe value of the objective function 

trr !..:: J >O '"here 11J = l_z(l} ( z< 2> _ DJ) _ zC 2> 

( z(l) - c J iJ . Also tor the new basic solution to 

be rea~1ble there must be at least one YtJ )'0 

1 = 1, 2, • •••• n. Thus any column a.J or A not in B 

if entered in the basis B gives an improved value or 
obJeati ve runct1on it: 

(1} There 1s a.t least one yiJ :---01 1 = 1, 2, ••• n 

w! ttl XBi 7 O. 

0 (11) For the column aJ, l~J ?0 and LJJ = ~tax c.:.k, .. ~~k 

so that the improvement in the valuek ot obJective 

function is rapid. 

It may also be noted that tor every column 1n the 

basis <-J = o. 

The procedure 1.r111 terminate 1. e. opt1rnal1 ty will be 

achieved "'hen ... J !::: 0 ¥ J. 

It is also established tn papor (10) that for any a 3 
column or A not in B there is at least one 

y1 J 70, 1 -:: 1, 2, ••• m because in the co~trary case 

when all y1 J ~ 0 1 the solution set ot (IV. O.l.) becomes 

unbounded which 1s a contradictio.n. The proof or this 

ls exactly similhl' to that tor LPF. 

! 
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Si~CTIOU- 1 

CUTTING PLACE PROCEDURE - I FOR SOLVING 

Tbis section 1s devoted to procedure ot finding 

tho optimal o:xtrome point solution to Extreme Point 

linear Fractional Funotional Progrtmmtng Problem (EPLFPP) 

IriTROPOCTION I 

An EPLFPP seeks to optimize an obJective runct1on1 

"-'hich ts ratio of VIIO linear functions, subject to 11nea_r 

constraints. The moat gell9ra.l EPLFP.P is 

Hax L(X)·-= ~ 

subject to 

AX. ::: b 

and X is extreme point of 

RX = t 

X .. ;0 

"'here A is mxn matrix, R ls pX.n matrix t is 

pXl matrix, b 1s mxl matrix, X is nxl matrix 

c, D are IXn matrias and "l 13 are scalers. The 

proeedure discussed here moves over the extreme points 

of the convex polyhydron AX = b RX :: tt X,:;, 0 

till an oxtreme point of M=tt X ~:: 0 is obtai nod. 
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!Hr~R1T!,QAL .. !!JiY.~k9.f~11;1NI ~ 

let 
tb 

J: [ r J : r J)EO ~~bore r J is j column or RJ 

J(X) = l:.1'J a xjjO vbe.re X = (x1,x2,. •• xn ) J 

s 
2 

= 

= 

[ X ' AJ\ : b, X is an extreme point ot 

HX =. t, X.-;01 

[X : X is an extreme pointor FX = t, 
x~ oJ 

In order to solve (Ill.l.l) start w1 th the problem 

uax 1 (X) -- ex + " ui. a 
i 
l 
! 

i 
I 

su.bject to 

FX = r 
(IV.l. 2) 

~~-·· -----X 0 

Problom (IV.l.l) is al,.•ays bounded because solution 

ot (IV.l.l} ls an extreme point or RX :: t, X~- t) and 

extreme points ot .RX=t, X ~0 are f'ini.te problem (IV.l. 2) 

may be bounded or unbounded. lt (IV.1.2) is unbounded 

1 t co.n alvays be converted 1nto bounded one by 1ntrodu.. 

c1ng the constraint. In X-sr~, t-1 is positive, finite, 
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large number chosen in such a way that all the extreme 

points or (IV.l. 2) are taken into account, in 

problem (IV.1.2). Henceforth, assumo that (lV.1.2) 

is ,bounrled. 
;·~ 

:; :; ; 

~HEOBfti·l : 
/ '! 
I 

;tftooz , Refer to Ghupter li 

Let x8 oe 1n1 t1al basic feasible solution ror the 

constraints or (IV.l. 2) and B::( r1 , t2, •• •. tm+p) 

be basis ror x5 therefore x8 = ~r 1r, x8 o. Let 

c8 and n8 be the (m+p) ~omponent r~1 vectors 

having their components as the eoett1o1ent assoe1ated 

~·1 tb the basic variables in numerator and denominator 

tho objective function respectively. 

.;;.B let 

Corresponding to solution 

z(l) = Crfs + ~ 

z(2) = Difa + ~ 

Tho value of objective function of (IV.l.l) correspon... 

ding to solution 

... 
'-* = 
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Also tor ctny eotumn r J or r not in .a :t J=tr1r J 

and · Z (l) = c; Y... (2) 
J B Jt ZJ = DBYJ. Find the ;alue ot 

the objective function at an extreme point adjacent 

to the extreme point corresponding to x8 1.-c. a fleW' 

basic teasibla solu.t1on by changing only one column 

or B. 

' let the new basic feasible solution be XB 

- xB... .A - ., = vj 7rj 
(say) 

The value of objective function tor th1s extreme point 

solution 1s 
1 

zl = ..L z 2 

Where Z :: z(l) + -8j (Cj-Z J (1) } 

Z :: Z ( 2) + -e J ( D j- Z. J ( 2> ) 
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The net chant~e in the value or objective function is 

= ~ t:.Cl) t-ttJ ( cJ- ZJ(l~ 
11• 1 ., ,. v T 1 ,. • difW r _t 111 • 

z(2> +-&J (DJ- zJC 2> 

e cz< 1> (Z <21. (2) (1) 

z(l) 

- .... (2) 
z. 

.::~J= J j DJ)-z (zJ 
z(2) L z(2) - ~~(~;(2)_:;.;...~}-~-,--

The.re fore, for a EPLFPP the nst change in the value of 

objP.ct1 ve function of (IV.l. 2) ~.,hila moving rrom one 

extreme point to another {adJacent) extreme point is 

.J ~'J 

Nov apply simplex method to find the set x1 <
2> or 

optimal extreme point solutions of' (IV.l. 2) and 

u1 <
2> the value or objective tunction tor the elements 

or x1 <
2>. 
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Lot the rank or R be p and rank of r bo (m+p) 

non...zero components and 1f X( s1 then X has at 

most p non.... zero components. If X( s2 and 

, J (X): _;; p then X( s1 and 1f X( S2 and \J(X)\ ~ Pt 

the linear 1nrlependence of elements or J(X) implies 

X(- S 1. 

Now 1f x1<2> = f;, then problem (IV.l.l) hos no 

solution and procedure is ter!llinated. Otherwise 

determine X (2) fJ s It X <2> Yl S ;. lA then ever"· 1 1• 1 1 , Pt # 

element of x1<2> fJ s1 1s optimal tor (lV.l.l). It 

x1 <
2> 'l s1 = IJ, then, find x2<2> the set or second 

best extreme point solution or (IV.l. 2) as toll~rs: 

.- fi ; 

H(B) = L J I '-'·J L.O J 

.Q; = ~Un ,. ~ & 11 j 7 0 ] , J t- H( B) 
" ~ y 1J ' 

= M 1,n C 1. itj 7 0 ] 
B - i.- £;. j t 

J(- H(,B) 

and 

6 = Hin / 8 ; B is basis for an element 

The a gives a basis and column to be removed and enterod 
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in the basis. The basis so obtained generate the sot 

x2 (
2 ) of second best extreme point solution ot (IV.l. 2). 

Let X ( 2) - X (Z) X (2) X (2) ft~A 
2 - 21 t 22t ••••••• 2~ ul~ 

u2 (Z) be value or objective runction ror the elements 

ot x2<2 >. If x2<2> = ~ then (IV.l.l) has no solution 

and procedure 1s terminated. Othe~ise determ1ns 

( 2) (2) X.2 1l s1• 1 r x2 Tl s1 J ~. then every element or 

x2 <2> 'l s1 is optimal for (IV.l.l). Ir x2 C2) Tl s1:q, 

then introduce the cut L(X)~u2<2 > ln (IV.l.2). 

The problo.m so obtained is 

Hax L(X) = ex + '!. 
- DX + ~ 

subject to 

FX = t 

L(X) ~ u2 ( 2 ) 

x~o r 

0 
J 
I 
I 
l 

l 
l 
l 

{IV.1.3) 

Ftnrl tho set x 1 (a} of optimal extreme point solution 

or (IV.1.3). Now x1 <3> ~ fJ and x.,_ (a) 11 s1 = fJ, 

determine x2 (a), the set of second best extreme point 

solutions or (IV. 1. 3). It x2 (a) = fJ, then problem 

(IV.l.l) has no solution. Otherwise, determine 
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x2 (a) 'l s1• I r x2 (a) '1 s
1 

;. lj, then every element or 

.-. x2 (
3 ) fl s1 is optimal for (IV.l.l). It x2 (

2) 'l s
1 
=I' 

introduce tho eut L(X) ,_, u2 (a) in (IV.l. 2), where u
2 

(3) 

is the value of obJective function for the elements ot 

x 2 (a). The problem so obtained 1s 

jqax L(X.) ex +tr I 
DX +f' I 

subject to l 
l {IV .:t:. 4) FX = t l 

L(X) f:. u
2 

(S) 
l 

X;;;:O 0 

Fintl X <4> the set or seeon(} best extreme point 2 t 

solutions of (IV.1.4). 

This pr?cess is continued till, for some k, either 

x 2 (k) = 1J whieh implies that (IV.l.l) has no solution 

or x2(k) ~ ~ and Xa(k) ~ s1 ;. 'wh1cb implies that 

evory element ot ~ (k) 'l s1 is the set or second 

best e:x tre rx~ point solutions ot (l:V.l.k) 

Max L(X.) ~ 
ex +rr I 
DX +B J 

subject to 
I 

FX = t J (Il.l. k) 

L(X) ~: u
2 

(k...l) 
l 

x~o I 
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u (k...l) 
2 1s the Value Of ObJective function tor 

the elements or ~(lf-1) 

Note that x2 (k) = xk <2>, the set or kth best 

extreme point solutions or (1V.l.2) 

The procedure given- converges in finite number or 
steps as s1 s s2 and s2 is finite and no extreme point 

1s repeated. 

•.rt_;e cuts L(X) .;; u2 (i.) arc angular cuts passing through 

the 1ntersnct1on or C~ff!=O and D.h.ti'i =0 and a cut at 

any stage makes the previous cuts redundant. 

noo 

subject to 

. -Xl + 2X2 -$.:· 2 

3Xl + 7S2 ~· 21 

X x2 ...... 0 1, .. " 
(xl,x2) is extreme point 

-"1 + x2 -:; l 

xl • x2 ~6 

xl- x2 s2 

xl, x2 ?-0 

N (IV.l.l) 

of' 
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11.3 

SOLU:'IliN ; ., ... , ...... 

For ~olw!ng N(IV.l.l) start ~'ith the problem 

Max 

subJect to 

-xl + 2x2 +- x3 = 2 

3Xl •7X2 +X4 = 21 

-Xl .. x2 t- Xc,: - 1 N Fx~r - (IY.l. 2) f.) 

x>, o 
xl + x2 + x6 = 6 

xl.- x2 .. x7 = 2 

X X 
1, 2, •••••••• x7 0 

The SGt of optimul solutions or N (IV. 1. 2) is 

and 

u (2) 
1 

- .• (2) "' ( 
-· -"11 -

&a gz 0 14 23 g§ ) 
13 '13' ' o, i3• i3• 13 . 
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O.P1'l!1At T . .BL;; F'OR ~· (2) 
All - ' ........ .,~.....,_ ....... --.....~ ~- .... .. ......_ •• iiNol~ ... 

f'" 1 
~ 

VJ 6 o· 0 0 - 0 0 

Varit:tbles or D. 
J 

1 0 0 0 0 0 0 

ca DB the da.s is X .a rl f2 fa r4 f's ra f 7 

6 0 r2 27/13 0 1 l/13 0 0 0 0 

·.· '1 l t ,; 28/13 l 
1 

0 7/13 2/13 0 0 0 

0 0 rs 14/13 0 0 -10/13 1/13 1 0 0 

0 0 ta 23/13 0 0 4/13 -3/13 0 1 0 

0 0 r? 25/13 0 0 10/13 -1/13 0 0 1 

it;>iig z<iJ" I 

I - .. • !I ••• • •• J ~ ....... >UI!!! • .........._. 

j - Cj 

,<2~ 
tf 

z(2) 
J - DJ 

z = ~ -J 

...... .. ~~~-- ' .... -

J = rr1 r.., r 5 r6· r 7 ·'\ 
l ' ~, , . , : 
L ~ 

p . .::: 3 

,J ( A (2) )· -
1 ll I -

xl (2) 'l sl = fJ 

0 

0 

0 

- ....... 

0 .ll a 08 0 0 
13 13 

0 -2- .e.. 0 0 0 
13 13 

0 -lfl2 -a§. 0 0 0 13 13 

illli- .... ... .. 
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aow the set or second. bost extreme point solutions 

or tt(IV.l. 2) is oeterm1ne4i as follows: 

Let B 00 basis for .x,(2) 
11 an element of X (2) 

1 • 

H(B) :: 13, 4 j 

(Ita = ~ 2 

-64 :::: 14 

•\ ~o. .476 -··a = - 1007 = -
l-4 - ~ - .98 -- 53 - ... 

B = iUn ;. 476, .98 j 
t J = • 476 

l1 = • 476 

Replacing r7 by t 3 in B, a basis which generates 

an element or X (2) the set of second best extreme 
2 ' 

point solution or N(IV.l.2) is obtatood. 

X (2) 
2 

u (2) 
2 = 

25 
I9 

= ( ~ , ~ , ~ , o, a, 1, o > ] 

u ( x2f2 > > ! = 4 ;3 

x.2(2) '1 sl = 11. 
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~1 : 6x2 Introduce the cut x1 + 6 '::· i 1n N(IV.l. 2) 

The problem so obtained 1s 

L(X) ·:: 

subjeat to 

I 

.x!t ... + .ax2 .. 
X + 6 1 

-xl + 2X2 + x3 

-3Xl + 7x2 + x4 

-Xl + x2 + x5 

:xl + x2 + x6 

xl- x2 +X? 

-:x:l +l9X2 + Xg 

. l 

= 2 l. 
j 

= mJ 
i 

= 1 ! 
l 
l - 6 -

= 
= 25 

X X X ?-0 1, 2, •••••.• 8 

2 l 
l 
I 
~ 

!"4 (l.V.l. 3) 

The set or opt1ma.l solutions of t4(I V.l. 3) 1s 

(3) ~ (3) N 
9-:.t 0 J:6Q §. 67 ~ 0 ) 

K = x11 = < c ~ ' 171 171 17• 11• 1 1 , 17 ' 

X (3) 
12 -- ( 2 

2' f, t. o, a, 1, o, o ~ 
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The set or second best extreme point solutions of 

.N (lV.1.3) is 

x2 (a) = \_x2f3> = ( o, 1, o, 14, o, s, a, a ~ 

1 

!J ( X (3) )~ 
1 · 21 I = 3 = p 

' x.· (3) ft . . 2 ., 

Hence x1 = o, x2 = 1 1s required solution or :J(IV.l.l) 

and optimal Value of objective !"unction iS L(X) ::: l. 

SECTION- 2 

CUT'IIUG PLANE PROCEDURE II r'OR SO.LVIUG EPLPP 

I.NTRODUCTI<.iN I 

The procedure ror solving 8PLFPP given in Section I 

of this Chapter is computationally lengthy because 

(a) At ea.ch 1 terat1cn the linear indepenrlenee of a 

subsGt of columns or D is to be cheeked. 

(b) • Alternate optimal solutions whueh are not 

extreme points of RA : t, X~ 0 are to be 

stuQ1od. 

The procedure tUscussed hero ramovos the difficulty. 

·The procedure discussed in this section moves £rom one 

extreme pGint to another extreme point solution or 
RX=t, X ~ till tho teas1bil1ty 1n AX=b is satisfied. 
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THEORr-:TICAL DEVF.LOPl<tF.£!I 11 

let S = X ; X. is an extreme point of R.X = t, x~ 0 

Clearly 1 s is f1n1 te. 

·Problem (IV.l.l) catl be res tnted as 

L(X) ~ ~X + tt 
- DX +iJ 

X (· S 

subject to 

AX ::: b 

X ·~0 

J 
I 
I 
J 

I 

l 

J 

(IV. 2.1) 

Then, as discussed 1n Section 2, Chapter, any iterative 

proc&dure ~hich does the following solve the problom 

(lV.l.l) 

STl!~f J, 1 

At lth iteration 1th best extretl'lG point 

solutions of 

L(X) =.. 

X (- S 

are found. 

ST!~f .~ : 

The Clements found in STEP 1 are tested for 

the feasibility in AX = b 
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STEP 31 

I.r test in STEP 2 is positive then procedure 1s 

terminated othe1"""1se (1+l)st iteration is performed. 

In order to solve (IV.l.l) st~rt ~ith the 

problem 

:-tax '(X) 
ex +n: 0 d b 

+P :2.. DX J 
subJect to I (IV. 2. 2) 

RX = t J 
x~o I 

The problem (IV.l.l) 1s always bounded but (IV. 2. 2) 

may be bounded or unbounded. If (IV.2.2) is 

unbounded then the inclusion or a eonstra.int. In X ~M, 

vhe re M 1s pos1 ti ve , f1n1 te , 1 arge number so tha. t no 

extreme point of (IV.2.2) is excluded. 

Apply simplex method to find ~(2), the set or 

optimal extreme point solutions ot (IV. 2. 2). It 

x1<2> = ~ then (IV.l.l) has no solution ana procedure 
(2) is terminated. OtherAise determine Xl 11 s1• If 

x~2)~ s1 ~ ~' then every element ot ~(2) ~ s1 1s 

. . '~ optimal for (1V.l.l). If x1 ~ s1 = ~. thon find 

X (2) the sot of second bast extrel!\9 point solutions 2 t 

of (IV. 2. 2). !t x2 (
2 ) = IJ, then (IV'.l.l) has no 

s olut1on and procedure 1s terminated. Otherwise 
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dotermine .x2 <
2> 11 s1• It x2 <

2> 1l s1 1 ~. then ovary 

element or x2 (
2 ) 'l s1 is optimal for (IV.l.l). It 

x2 (
2) 'fl s1 = tJ, then remaining extreme point solutions 

o t (IV. 2. 2) are s tud1ed in a s ys te ca ti-c order by 

cutting plane tecbrdquc (as explained in Seotion I of 

the present chapter) till either an tnd1cat1on or no 

solution or (IV. 1.1) is obtained or an extreme point 

or (IV. 2. 2) is reached which sat1s ties feas1b111 ty 

in AK :: b. 

~aMPL~ I 

Max L(X) ltl + sx I -., 2 - xl +4X 2 +2 J 

subject to I 

I 
-~1 + x2 (: 1 (a .1) 

l N(IV.2.i) 
2Xl +10X2 ,(_ 19 (a .2) 

I 
xl, x2, _yO 

/ I 
and (xl,x2) 1s extreme point or J 

-xl + ~2 ..-:... 2 J --
X l +2x2 !2: 8 l 

xl, X 
0 J . 2, ...-'} 
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SOLUTION : ... . . ...... 
In o:rdor to solve H(Iv. 2.1) constdor the 

foll~Jing problem 

L(X) -:::: 
X .. 6x2 I Max ..&, •• f'll ....... 

- xl ... 4X2 402 
l 

subJect to I 
I 

-Xl + .x2 x3 
t 

-:: 2 l 
RX = t N (IV.2.2) 
X 0 ~1 xl +2x2 + x4 = 8 1 

1 
I x.1 x2 x

3 
x 4 ~ o a 

l t ... , . t • 

The optimal solution of If'IV. 2. 2) 1s 

X (2) , X (2) 4 10 o, 0 ) ] = \ 11 (-, _, 
1 3 3 ' --

0 (2) = ~ 1 25 

Naq x1<2> q s1 = ~. x2<2>, the set or second test 

extreme point solutions or N(IV.2.2) 1s 

x2 ( 2) = rJ 2) = ,. o, 2, o, 4 ) 1 
u (2) = § 

2 5 



-

122 

i.e. - x:1 + 6x2 12 is introduced 1n a(IV.2.2). 

Tho problem so obte\ined is 

Max L(X) ::: ~1 + 6.X2 i 
.._ xl +4X2 +2 l 

subject to I 
l 

-xl "' x2 + x3 = 2 I N{IV. 2.3) 

I 
xl +-2x

2 +:X4. :: 8 
I 

-Xl +6X
2 •xs =12 I 

xl x2 ",• • • • x5 ">,; 0 I 
t t 

The sot or optimal solutions of' N(IV.2.3) is 

X (3) = , X (3) = ( o, 2, o. 4 ) 1 \ 11 
! ... 
•. (3) = ' 3, Jl o, ~ )l Al2 2 J 

The set X (3) 
2 of second bast extreme point soluti.on 

ot N(IV. 2.3) 1s 

- (a) - X (a) ( 8 0 0 10 n 0 ) A2 - t. 21 : t J t J c.J J 
Nmr x2<3 ) 'il s1 11J as x2t3> satisfies both (a.l) and 

(a.2). Hence x1 = s, x2 = 0 is the required solution 

for ~J(I V. 1.1) and opt1m 1l "alue or object! ve function 
4 

is L(X) = 5. 
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~BCTION- 3 

&titJMERATION TBCHNI CUE FOR SOLVING r~PLPP 

H~TRODUCTION ; 

In cutting plano procedures gt wen in Section I, 

and Gec.t1on 'Lor this chapter some unwrmted alternate 

extreme point solut10L1S huve to b9 studied. To ovarcoD19 

this di ff1culty enumerative procedures are presented 

here. 

In this section enumerative p.roced.ures tor 

solving BPLFPP s tal'ting ~11th the problems (IV.l. 2) and 

(IV. 2. 2) are presented. 

(a) Enumerative Technique tor solv1.ng SPLF'PP starting 

t.r1 th the problem (IV. 1. 2) ; 

Start •··11th the problem (IV. 1. 2) vtz. 

'Mhere 

L(X.) -=: ex : ~ 
- DX + ~ 

Subject to 

M'lsume · that ' 

(1) Problem (IV.l. 2) 1s bounded 



124 

(i1) ... ' The set , = ~X : fX = t, X-~ 0: is non...empty 
I •· 

'tii > nx + e 7 o • < s • 

• Since S is non..empty and bounded one or following 

exist a 

(U 1) (IV.l. 2) has a solution (IV.l..l) has a solut.lon . 
(R 2) (IV.l. 2) has a solution (IV. 1.1) has no solution 

(Both the cases are treated simultaneously) 

Find the set x1 (
2) or optimal extren:;e point solutions 

of (IV.l.2). Determine x1 ( 2)~ s1• lt x1~ s1 F ~ 

then every element or xl (2 ) l1 sl is optimal solution 

for (IV.l.l). otherwise find x2<2>, the net or 
seco:id bast extroroe point solutions ~t (IV.l. 2) as 

follows s 

Let 1\ (2) be set or bases ror tbe elements of x1 (
2) 

a.nd Ul ( 2 ) be the Value Of Object1Vefunct1on at on 

element of x
1 

( 2). Find E1 (
2 ), the set or all those 

bases '·'hieh i:l.l'e 1i adjacent to the elements of f\ <2> 

and yield the value or objective function less than 

u1 <
2>. out of these values of objective function 

p1ek up the greatest, say u2 (
2). The subset ·~(a) 

ot &1 (
2 ) 1 t.he eloruents of t.7h1eh yield the v.:\'lue or 
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obJective function as u~(2)' generate the set x2< 2>. ,, \ 

If x2 <
2> = ~ then (IV.l.l.) has no solution and the 

procedure 1s terminated. Otho~'ise deterntne X: ( 2)'l S 2 l. 

I-r x2 <
2> ll s1 'I fJ then every element of x.2 (

2 >n s1 

is optimal for (IV.l.l). It x2(2)~ s1 = ~. then 

find x3 (
2), the set or third bast extreme point solutions 

of (IV. 1. 2) as follO'trs s 

let H (2) 
1 

= E (2) 
1 

where E2 <
2> is the set ot all those basas t4hi.ch are 

adjacent to the elements of ~(a) and yield the value 

of objeat1 ve ftmctton less than u2 <
2>. A subset a3 (

2) 

or elements or n2< 2> 1-'hioh y1eld the greatest value, 

say u
3 
(Z), ot the objective function generate the sot 

If x3<2> = 11, then (IV.l.l) has no solution 

and procedure is termi.nat.ed. If x3 <
2> ~ f' then deter­

mine x3<2>'l s1 • If X <2 ) 'l s 1 f) then every . 3 1 t 

element of ~3( 2) 'l s1 is opt1mu.l tor (IV.l.l). 

Otherwise find x4 (
2), the sat or rourth best extreme 

point solutions ot {IV.l. 2). 

This process is continued till, for some k, 
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either xkC 2> #~and xk< 2> ~ s1 ~ ~ vhlch 1~pl1es 

that efJery element or Xk ( 2) ll s
1 

is optimal tor 

{IV.l.l) or xk( 2) = J indicated by H~i) = ~. 

implying (lV.l.l) has no solution. 

(b) Enumerative Technique tor solving E.Pi,~"P.P 

starting ~.r1th problem (IV.2.2). 

Start '"1 th the problem (IV. 2. 2) viz. 

J\ssuma that : 

J.,(X) 

subject to 

·- ex .. tt 

DX + ~ 

nx = t 

(1) ;x ::: X. l RX = t, X 7 0 is t'inite and bounded 

-(11) DX + ll ::r- 0 Jl. X {- S • 

(111) Problem (IV.2.2) ts bounded 

The extreme points or (IV. 2. 2) are ranked by 

enumerative technique ns explained in part (a) or this 

section till an extreme 1Jo1nt solution or RX.=t, x-1- o 

'•'hich satisfies reas1b111ty in AX = b is achieved. 
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This procedure is preforr.ed because ln it testing 

the extreme po"ints or RXtt, x.? 0 is much simple. JJ.so 

in this procedure the basis are or smaller s1.ze. 

Here problem (118. 2.1) is solved by enumerative 

techni<;UB given in (b) 

~OWTIO[i ~ 

Start ~•'1 th the problem il(lV. 2. 2). 

[~ow 
x t 2> - Lx C2 > - < ~ 12 o,. o >~ \ 1 - 11 - 3' 3 t ~ 

u (3) 
1 = 32 

25 

x
1 
<2> 11 s1 = IJ, there.fo.ro _x.2 <

2>,. the set or second 

best extreme point solution is determined as follO"stS 1 

B... (2) -- " B..l(2) ::: ( r ... ~a\ 
-1. ~J. 2, •t ':.1 

the value ot obJective f~t1on tor 

E (2) - ~ - 8 11 - -
E {2) = !a = 1.2 12 15 

E (2) 
12 generatos an eloment or the set X (2) 

2 

X {2) -
2 -

X (2) 
21. = ( o, 2, o, 4) 

and 



128 

best ext~roo po1nt.solution of N(I'\8. 2. 2) ls found. 

B (2) IB (2) ( r2• 
l 

2 = ~- 21 = r4 ).; 

82 
{2) = \E (2) = ( ra, r4) J -21 

H (2) ,- (2) UE ( 2) B (2) l = \~1 -2 2 2 .! 

-Ca <2> ( ra, 
(2) ( r3,r4) -1 -:, 21 ·- rl }, H22 = ,_ 

The value of obJective funat1on f'or 

--- 8 

0 

Therefore, H(2 ) gen.erntes an clement ot the set 21 

X ( 2 ) and 
3 

K (2) 
3 

- ~·x (2) 
- \. 31. = 

~l 
(8, o, 1, o, 0 ) J 

u (2) = 8 
3 

X <2> ll s = fJ , therefore 3 1 

s olut1on for ·•(IV. 2.1) and optimal value or objeet1 vo 

runet1 on is ! 
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SECTION- 4 

STRONG CUT tr• I!;PLFPP 

In this section a procedure for solving ::PLFPP 

1s presented ,.,hich unliite previous methods, -discussed 

in Section I, Section 2 1 Section 3 of this chnpter, 

avoid the investigation of some of the extre1oo points 

ot convex polyhyd ron RX = t, X ~- o. 

In order to solvo (IV.l.l) start ·~ith the problem 

{IV.l. 2) viz. 

whero 

As sums 

(1) 

(11) 

. 
(111) 

L(X) = ex + « 
± ,. 

DX. + ~ 

subJect to 

that l 

Problem 

s* = X 

tu.. + a7 

FX :::: t 

X~~ 0 

f :: 

(IV.l. 2) 

. P'X. = r, • 

I b1 
I t j 
\... 

is. 

X..r: 0 / 

0 <¥~ < s"' 

bounrled 

is non...em.pty and bounded 
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Find ~l ( 2), the set of optimal extrenw point solutions 

or (IV.l.2) and v1 <
2>, the value of the objective rune.. 

tion at the elements or 11 (2) 
•t • 

Determine v (2) fl s 
•1 r 

element or Y1 <
2> ls optimal for (lV.l.l). Otherwise , 

tind Y2 (
2 ), the set o.f seeooo bast extrema point solu. 

tions to (IV.l. 2). If Y2 <
2> = "'J then (IV.l.l) has 

no solution. It f 2( 2) ~ -, then find Y2 ( 2) ~ s1 • 

It ':£ <2> 'l 9 'J 0 then every element of l: (e) 'l S · 2 1 • . 2 ' 1 

is optimal ror (IV.l.l). It x2 <
2>, s1 = ~. p1ek up 

the problem {IV.2.2) viz. 

let V <2> 2 

(IV.l. 2) 

L(X) ~ -
subject to 

HX = t 

be the VRlue of the obJective function ot 

tor the elements ':£2 ( 
2). 

Now find the set X (2) 
1 or optimal extreme point. solu.. 

' 
tions of (IV.2.2). AS S non...empty, therGtore, 

X <2> ~ ~ and as fa&~ible region of (IV.2.2) contains 
1 

feasible re;~ion or (IV.l.2), therefore, x1 ( 2 ) 'lS1 =Si'. 
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Fine the s~t 1\ (.;; v2 (
2) ) ot values or obJective 

function at the extreme points adjacent to me elements 

of x1 (
2). Out of these \talues piek up the value, say 

v1 , nearest to v2<2> i.e. t.f1 = tUn (R1 >. ''t::> v2 <2>. 
Determine the extreme points -t.rhich has •1

1 
as thevalue 

Of the Objective tbnet1on. Find the w.lue9 of obJective 

function (. ;;, v2 (
2 )) at the extreme points adJacent to 

the extreme points corresponding to v1• Out ot these 

pick up tho value, say w2 , wh1cn is nearest to v2 <2> 

and find the corres pond1ng ex.treme points Bx=t, ~:>:.- o 

'-'hich a.ro iidja.eent to e~tre!l'l() points corresponding to 

t,.!2 and values or the objective runetion at these 

extreme points. Out of theso pick up the vo.lue, say '.r3 , 

~hich is nearest to v2 <
2 >. This process is continued 

till a set of extrema points 1s obtained •:~here values 

of the obJective f'unetton are '''k (?,. v2 <
2 >) and at all 

the adjacent extre~ points to these extrer.lf9 points, 

the value of the objooti vo function is less than v2 (2). 

i\t this stage introduce the cut 
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in problem (IV.2.2). This cut 1.s called •strong cut•. 

'I''he problom .so obtained is 

L(X) _ 
r 

ex + « 
.... A 

DX + £5 

subJect to 

RX = t 

L(X) ::_ Hk 

X· 0 
/ 

0 
l 
1 
l 
J 

1 
I 

(IV. 4.1) 

Nov extreme points solutions or (IV.3.1) are determined 
\ 

in a systematic order by cutting plann procedure till 

optimal. solution or (IV.l.l) is reaehod or a.n inrlieation 

ot no solution or {IV.l.l) is obtained. 

It may be noted that after introducing the strong 

cut in (1V.2.2) the extrace point sulut1ons or (IV.3.1) 

may also be ra.nkod by enumeration technique till optimal 

solution of (IV.l.l) is reached or an indication of no 

solution is obtained. 

f1a.x 

subJoet to 

-:xl + 2){2 ~ .. 3 

0 

0 
D 

I 
0 
1 

I 

l 

U(IV. 4.1) 
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. 
and (xl, x2) 1s extreme point ot I 

I -2xl + x2 ~1 I 
-2xl +2x2 ~3 

I 

I 
-2xl +-3x2 <:6 I 

I ....... 

.12 s 4 t 
I 
f 

9Xl ... ~2 ~ 63 ...... j 
' l 

3Xl- x2 ~9 i 
' ~ 
' 3Xl- ~:3 S6 I 
I 
I 

.xl ... 2x2 Sl l 
I 

xl, x2 ,-;; 0 I 
I 

~ 

In ordor to solve N(IV.4.1) start '-:ith tbe problem 

:·1ax L(X) - X~ +l4X2 
... , 

! ~i +6x +4"'' I 1 2 
l 

subJect to ' i 
i 
l 

-xl + 2x2 + x3 = 3 l 

= 30 I FX = t Sxl +12x2 + x4 rl(I v. 4. 2} I X)rO 
-~1 + x2 fo X = 1 i 5 I 

I 
-2Xl + 2x2 + x6 .::- 3 I 

I 

-2xl +ax~ = 6 
1 

+ x7 j 
~ 

l x2 .... xs = 4 
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+ ?x2 = 63 
i 

~ 9Xl • Xg \ ~ 

' I \ I l 

! 3Xl- "2 • xlO :': 9 1 
I 
! 

2X2 6 I 3Xt- + xll = I 
I xl .. 2X2 + xl2 ! = 1 
i ( 
J 
' "1, lt x12:.::: ot l 2, ••••••• 
I 
1 \ 
1- / 

The set of optimal extreme point solutions or 
N(IV. 4. 2) is 

'i. ( 2) - (, v . ( 2) -
1 - L ... ll 

V (2) - ~ 
1 - 191 

p = s 

,U 4.S 25 .J.g ~ .Q .8M 
( 11' 22 ' o, 0 • 2'2' 11' 22' 22' 22' 

r 

Y ( 2) the set of second best extreme point solution or 
2 ' 

N(IV. 4. 2) is 

( l Jl 0 ..R§ 0 1 3 z 14.§ Ea 
3 1 3 • ' 3 1 

t 3' 31 3 ' .3 '3 ' 

f t 4) 1 
_., 



(2) v2 - 21 -- 1 65 - 43 • 

. \J C x-2f2) ) I = 9)8 

. y (2) f) s = iJ 
• I 2 l 
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Hence p1ck up the problem 

X +14X Max L(X) ~ _1,. 2 •• , 
-x1 .sx2 +4. 

subJeet to 

~ -2xl + x2 + x5 = 1 
i 

+ 3X2 3 <-2xl +X -6 -
I 
i-~1 + 3X2 +X? = 6 
! 

4 
RX - t x2 + XB ::: -
X :.:.0 

9Xl + ?x2 + X9: 63 
! ax1 - lt2 + xlO = 9 I 
j 
I 

2x
2 

' 3xl- • xll ::6 ' ! 
I 

f 
! 
l 
! 

I 
t 

i 

I 
I 

' I 
l 
f 
} 
I 
r 
l 
I 

The optional solution for J(IV. 4. 3) 1s 

x1<
3
> = \x1f3> = c a,4,o,o,a,l,o,o,s,4,s,s)] 

and 



The value or the obJective runct1~n at tbn extrems point 

adJacent to X ( 3) arc 
11 

59- il 
31- ~ 

.:: + = 1.as· 

The oxtretr.l9 point corresponding to "11 1s 

r ( ~- a,o,o,l,O,O,l, fl, i2· ~. ~) I 
~ -

The value of the objective function at the extreme 

point adJacent to tbis extreme point 1s 

The extreme point corros pont11ng to l-12 is 

The value or the obJective runetion at the extreme 

point adjacent to this extreme point is 



137 

Introduce tho strong cut 

, L(X) ( .§Z 
'33 

1n (1V.4.3). The problem so obtained is 

nubJoct to 

.-2xl + x2 + xs = 1 

-2xl + 2x2 + x6 - 6 -
-211 + 3X2 +X? = 6 

x2 + xs = 4 

9Xl + 7x2 +X. 
9 = 63 

311 - xa + "1o = 9 

3X 1 - 2K2 + ltll .:::: 6 

xl - 2x2 + xl2 = 1 

-2xl +lOX2 + "13 = 9 

'l .. 

' 

l 
i 
1 

I 
l N(IV. 4.4) 

' 
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The set of optimal extreme point solutions to {lV. 4. 4) 

19 

X ( 4) ( Ji _ga 0 0 .laa 0 .MQ .3S. Zl, 
12 = 13 , 13' , • ~· • 2frt 26• 2' 

_a 33 ,. 
oo ' o, ra• o > J 

Now X <4> 'l 5 = IJ, the set or second best extreme 
1 1 

point solution or N(IV. 4. 4) is 

x (4) _ rx (4) = 
2 - \ 21 < o,l,o,o,o,l,a,a,sa,lo,a,s,9 >1 

-' 

U (4) - ..:z._ 
2 -- 5 

x1 = o, x2 = 1, 1s optimal solution for U(IV.l.l) 

and value or obJective tunetion is L(X) = ! 

EXM1PJ& a 

Strong cut Enumerative Proeadu.re tor solving N(IV.l.l) 

sq&UT&Or~ .t 

nov t 2<2> ~ s1 = ~ 
and x1 <

4> 'tl s1 = I' 



ve have to find the 

point solutions or 

1\ (4) = \ ali4> 
._ 

= ( 

B (4) 
12 = ( 

E (4) :: 
1 

\E (4) 
11 = ( 

B (4) - ( 12 -
Value ot objecti vo 

E (4) 
11 

B (4) 
12 

--
--

Tharorore, 

X (4) 
2 

1.4 

1.18 

E (4) 
11 
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sot . "-2 ( 4) of second best ex trome 

il(IV.l.l~ 

r2 • rl, r7, r8, rg, r10, r11,'\2, ~"s ) 

r:a, rl, r7, ~"a, r9, rlO,r1l,rl2,r5)] 

r2 
' 

r6, r7, ~"g, rg, rlO,rll,r12 rs ) 

r2 rl r7 
I t t rs, rg, r191 ra, r131 ~'s ) J 

fUnction tor 

genoratost an element of x2 <
4> and 

u (4) 
2 = t = 1.4 

x1 = o, x2 = l optimal solution and 

L(X.) = i 1s the optimal value of obJoct1 ve funoticn. 
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APPENDIX-

For solving EPLPP 

t-tax z = ex 
subJect to 

AX= b 

X~ 0 

and X 1s e:xtretlJ& point or 

DX a a 
x~o 

a method is presented 1n chapter II where extreme points 
. ~ ot the convex polyhyd ron DX::d, X,.., 0 are investigated 

1n a systematic order till teasi b111 ty 1n AX = b is . 
achieved. AS tho constraints AX = b do .not come into 

picture in the eomputntional aspects of the method arKS 

are only to be verified by various extrol!l9 points of 

the convex polyhyd ron nx = d. , X.~ 0 1 t f'ollovs that 

Yho.taver be tbe character or tbese constraints 1 say 

non.11near, the technique Will st1l.l ,.,ork. Consider 

the problem 

Max z = ex 
subJect to 

a1<x) 1~, ~k1 , 1=1,2, •••• n 

x ¥o 
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and X .ts an extrone po1nt or 
DX ::: d 

X~O 

whero a1 (X) , =• g1 , i = 1, 2, •••• n are nonlinear 

constraints. This problem can be solved by ranking 

tbe extreme points ot convex polyhydron DX = d, .X;;. 0 

till an extrema point is reached -.fl.1ch sat1st1os the 

feasibility in G1 (X) s~ ,=,>..-~g1 , 1~ 1 1 2 1 •• •• n • 
(- .) 

In an exactly similar ma.nnar a tecbnl(}ua given 

1n cbapwr IV can be used to solve the problem 

ex +a 
. + ;e• -m ., 

subject to 

a1 (X} \"2• == 'l~s1 , 1= 1, 2, • • • • • n 

X is e.n extreme point of 

DX ::: d 

X :zO 
~· 
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