ISSUES AND CHALLENGES IN
COMPUTATIONAL PROCESSING OF
VYANJANA SANDHI

Dissertation submitted to Jawaharlal Nehru University
In partial fulfilment of the requirements
For the award of the
Degree of
MASTER OF PHILOSOPHY
By

DIWAKAR MISHRA

Special Centre for Sanskrit Studies
Jawaharlal Nehru University
New Delhi, INDIA

2009

IRy dwpa g b
STaTelolTel Aes eRafaarar
a3 feeell - trootl

SPECIAL CENTRE FOR SANSKRIT STUDIES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI - 110067

July 14™, 2009

CERTIFICATE

The dissertation entitled ‘Issues and Challenges in Computational Processing
of Vyafijana Sandhi’ submitted by Diwakar Mishra to Special Centre for
Sanskrit Studies, Jawaharlal Nehru University, New Delhi — 110067 for the
award of degree of Master of Philosophy is an original research work and has
not been submitted so far, in part or full, for any other degree or diploma in any

University. This may be placed before the examiners for evaluation.

S Cuisdoall0

Prof. Sankar Basu Dr. Girish Nath Jha
(Chairperson) (Supervisor) SHA
Ay
c,ha\rp ; Sane “‘;\j Centre for Sanskrit Studies
N b‘ Snarial Nehru University -

@3 waha‘\a\ 1\()007) ':la:" pelhi - 110067

SPECIAL CENTRE FOR SANSKRIT STUDIES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI - 110067

July 14", 2009

DECLARATION

I declare that the dissertation entitled ‘Issues and Challenges in Computational
Processing of Vyanjana Sandhi’ submitted by me for the award of degree of
Master of Philesophy is an original research work and has not been previously

submitted for any other degree or diploma in any other institution/University.

=

(Diwakar Mishra)

ACKNOWLEDGEMENT

With depth of heart, I acknowledge my guru, my teacher, my guide Dr. Girish
Nath Jha, who filled in me the competence of research, understanding of this
technical subject and skill of language programming, who always guided me in
academic and non academic matters in any circumstances. He has always paid
sincere attention on us students and our work and gave time for that. He always

encouraged us to proceed higher and higher in study and excellence.

After that I acknowledge for their cooperation, teachers of our centre, Prof.
Shashi Prabha Kumar, Dr. Rajneesh Kumar Mishra, Dr. Hari Ram Mishra, Dr.
Santosh Kumar Shukla and Dr. Ram Nath Jha. They gave me time and attention
whenever I approached them. They provided me valuable suggestions and
criticism which have been useful in improving my quality of research. I am also
grateful to them for they teached me in M.A. and developed good understanding
of different desciplines of Sanskrit. I also acknowledge Chairperson Prof. Sankar
Basu for his cooperation and paying attention on our work. I also acknowledge

office staff of the centre for their cooperation and help on various occasions.

My family’s continuous support and cooperation has a great role in completing

the research work in this way.

I am thankful to the organizers of Sanskrit Computational Linguistics Symposia,
high standard papers of which helped me very much by providing quality
material for research. I also thank the organizers of AICL who provide us chance

to interact with great linguists.

I am very thankful to University Grants Commission for providing me fellowship

which provided me necessary financial help.

Here I mention those whom I never can thank for what they have done for me.
First of them is friend Surjit, who has always been with me in hot or cold days.

Then I mention the sincere support of my other classmates — Neha, Debashis,

Puran, Mohan, Shashikant, Sureswar, Sanatan, Ravish, Prachi and other former

classmates who left.

I acknowledge the contribution of my seniors Manji didi, Subash bhaiya,
Diwakar bhaiya, Sachin ji, Muktanand ji, Kuldip ji, Surjya Kamal bhaiya, Renu
didi and others. Among juniors, I would like to remember Alok, Ravi, Mukesh,
Mamta, who always have been prepared for any help. I also remember Pratima,
Rajnish, Baldev, Vishvesh, Jay, Devalina and Priyanka for encouraging and
supporting me. Again I should never forget those, who are more like friends than

Junior students, and have always stood with me, Archana, Shashi, Nripendra.

I like to thank Jawaharlal Nehru University for providing such academic and
intellectual platform for me. I remember one, who should have been remembered

first, always with me...

Diwakar Mishra

CONTENTS

*

Chapter -1 .

1.1
1.2
1.3
1.3.1
1.3.2
133

1.3.4
1.3.5

14
1.4.1
1.5
1.5.1

1.52

1.5.3
1.6

1.6.1

1.6.2
1.6.3
Chapter -2
2.1
22
2.3
2.4
24.1
242
243
2.44
2.4.5

Contents

Acknowledgement
Contents
Transliteration key used in the dissertation

Introduction

SANSKRIT MORPHOPHONEMICS:
A COMPUTATIONAL PERSPECTIVE
Introduction

Morphophonemics

Morphology

Words

Means of Knowledge of Words

Concepts of Morphology

Simple and Complex Words/Morphemes
Morphemes

Parts of Speech

Neologism

Inflectional and Derivational Morphology
Problems in Morphological Analysis
Productivity

False Analysis

Bound Base Morphemes

Phonology

Distinct Features of Sounds
Morphophonemics: Computational Perspective

System of Panini: A Model

Method of Analysis in Astadhyayr
Technical Devices of Panini

Problems in Computing Panini

Challenges in Morphophonemic Processing
A Survey of Research

Applied Research on Sandhi Analysis

Theoretical Researches in Paninian Morphophonemics
Research on Formalizing of System of Panini
THE SANDHI SYSTEM OF PANINI
Introduction

Sandhi in Sanskrit

Distribution of Sandhi Rules

Sandhi Rules of Sanskrit

Vowel Sandhi Rules

Consonant Sandhi Rules

Prakrtibhava Rules

Visarga Sandhi Rules

Svadi Sandhi Rules

Page No

OO0 IR WW

DY DD DO = bk ot et bt b bk ek ek e ek ek
N WOV UV WLWWWWwoDoOo

[\
wn

N DN
O 2

31-54
31
31
32
33
34
40
438
49
53

Chapter - 3

3.1
32
321
322
323
324
3.25
3.2.6
3.2.7
3.2.8
3.29
3.2.10
3.3
3.4
3.4.1
3.4.2
3.43
344
345
3.4.6
3.47
348
35
3.5.1

352
353
3.6
Chapter - 4
4.1
4.2
4.2.1
422
4223
424
4.3
4.3.1
432
44
441

%

COMPUTATIONAL PROCESSING OF SANDHI: ISSUES

AND CHALLENGES

Introduction

Complexity of Sanskrit Sandhi

Infinitely Long String

Very Small Size of Words

Multiple Combinations Leading to one Result
Simple Concatenation of Sounds

Devanagari Unicode is not Phonemic
Inflections Within the Sandhi String

Varying Size of Affixation

Validation of Undesired Segments

Many Loops Causing Over-Generation
Convention of Continuous (Sambhita) Writing
Basic Algorithm of Sandhi Processing
Challenges and Efforts to Meet them

Series of More Than one Rule Applied at one Point
Over-Generation Necessary not to Miss Desired Result
Deficiencies in Rule Writing System

Horizontal vs. Vertical Processing

Covering all Possible Segmentations

Screening of Invalid and Undesired Segmentations
Difference in Approach of Human and Machine
Validation of Complex Words

Suggested Algorithm for Sandhi Processing
Macro Algorithm for Sandhi Processing
Pre-processing ‘

Prepare each word for sandhi analysis

Applying the rules

Screening or validation of segmentations -
Statistical calculation for screening

Micro Algorithm for Sandhi Analysis
Ilustration of a Vyafijana Sandhi Rule

Research Methodology of The Current Research

SANDHI ANALYZER SYSTEM DESCRIPTION
Introduction

Data Design

Example-Base of The System
Format of Rules

Customizing ‘MWSDD’

Data Files of the Inherited System
System Modules

Front-End

Core Program Structure
Introduction of The System

How to Use the System
Conclusion

Appendices

Bibliography

1i

55-77

55
55
55
56
57
57
57
58
58
59
59
59
60
62
63
63
63
64
65
67
68
68

69

70
70

70

71

72

73

73

74

76
78-93
78

78

79

79

80

81

82

82

84

91

91
94.95
96-113
114-122

Transliteration key used in the dissertation

n
p
ph

e B k7 B O & b b b

5 B oo m B R ORI

o2

[~

5 B R b

au

v B B

kh

st

gh

i

224

tn~

he

ch

ks

tr

b’

jh

Vg

" (Anusvara)

th

: (visarga)

il

INTRODUCTION

INTRODUCTION

Sandhi is an important aspect of any language because every language consists of vocal
sounds and those sounds are prone to change according to the environment and context. The
case of Sanskrit is somewhat special in this aspect. There are many reasons which make

Sanskrit sandhi more complex. There is a famous $loka related to sandhi use —
samhitaikapade nitya nitya dhatiupasargayoh /
nitya samdase vakye tu vivaksamapeksate //

Sound changes according to rules are compulsory in within words but optional between
words. The tendency of Sanskrit language users has been to take recourse to sandhi liberally
between words where it is supposed to be optional. Thus theoretically the continuous sound
sequence in Sanskrit can be infinitely long, though not practically. Some Sanskrit scholars

have shown their excellence in writing very long words.

Seeing this important place of sandhi in Sanskrit, no complete language analysis system for
Sanskrit can be thought of. Also it is the toughest part of analysis system in the sub-sentential
category. Every morphological analyzer requires words as input to analyze, but there is no
word boundary marker in continuous string. Before morphological analysis, the text needs to
split sandhi and identify each and every distinct word. Thus sandhi analyzer needs to
recognize all meaningful words. The task becomes more difficult when word needs to be

identified not by lexical item but by its structure.

The present research aims at exploring the issues which arise in computational processing of
sandhi and solutions thereof. Though the most of the issues and challenges are common to all
types of sandhi processing, this research has special focus on vyaiijana sandhi. To closely
explore these issues and challenges, a small vyarijana sandhi processing system has been

developed which has been integrated with the previously developed svara sandhi system.

This dissertation as the part of M. Phil. research is divided into four chapters. First chapter is
titled Sanskrit Morphonemics: a computational perspective” discusses the concepts of

morphophonemics, morphology, and phonology and general problems related to these. These
1

concepts are morér general and less Sanskrit specific. Then there is discussion of morphology
from computational perspective. After that there is discussion about the formal structure of
Paninian system and study of it from formal and technical perspectives. There are discussed
problems in computing Panini in general and sandhi in particular. In the end, there is a survey
of applied research and development in sandhi analysis in particular, Sanskrit langnage

technology in general and theoretical research of formalization of Panini.

Chapter two is titled Sandhi System of Panini. First there is the general introduction of
Sanskrit sandhi from the point of view of generative linguistics. The Paninian grammar
formalism of Sandhi has also been presented. Finally the chapter presents a phonological
representation of Paninian sandhi rules in the form phonological rule writing. After rules in

that notation, there is simple explanation of rules in prose.

Third chapter is titled Computational Processing of Sandhi: Issues and Challenges. First of
all, the chapter discusses the complexity on Sanskrit sandhi and what are the reasons which
make it so complex. After that the work of Sachin (2007) has been described. Then the
challenges which come in computational processing of sandhi have been discussed. In the

end, an algorithm and system design is suggested to overcome these challenges.

Fourth chapter titled Sandhi analyzer system description illustrates the system which is
developed as partial fulfilment of the research and to explore the issues closely. First the data
design is explained with sample. Then the system architecture and.design is explained with
the sample code of JSP, HTML and Java. Finally, the introduction of implemented system is

given with development information and screenshots.

CHAPTER ONE

SANSKRIT MORPHOPHONEMICS:
A COMPUTATIONAL PERSPECTIVE

Chapter one
SANSKRIT MORPHOPHONEMICS:

A COMPUTATIONAL PERSPECTIVE

1.1 INTRODUCTION

This chapter presents an overview of Sanskrit morphophonemics, morphology, phonology
and morphophonemics in computational perspective. A survey of research in Sanskrit
morphophonemics and phonology. and formalization of system of Panini has been given
followed by current R & D activities in the field of Language Technology for Indian
languages. The survey gives special emphasis to the various projects sponsored by Indian
government’s Technology Development for Indian Languages (TDIL) initiative which started

in 1991-92.

1.2 MORPHOPHONEMICS

Morphophonemics is the study of sound changes and functions in the environment of various
word operations. This subfield involves two levels of linguistic study: study of word functions
(Morphology) and the study of sound change (Phonology). The sound change due to word
operations cannot be completely kept in morphology or in only phonology. The sound change
in this process is not independent of words. The other name of morphophonemics is sandhi.
Almost all kinds of morphology involve sound changes, it may be generation of forms or
phrases, or it may be deriving new words from already existing words. Sometimes the sound
change is so minute that it is ignored, but most of the times, the sound change is so significant
that it appears clearly. In some languages, where the written form of language is dominant,
many sound changes are not easily perceived by the speakers. But where the main form of the
language is spoken, and writing system follows the speech, such as Sanskrit, the sound
changes are easily apparent to common speakers of the language. That is why the detailed
study of sandhi has been done in Sanskrit grammar tradition. In Sanskrit, sandhi is defined as
‘extreme closeness of sounds’. Sandhi is mainly of two categories- external sandhi and

internal sandhi. External sandhi is the sound change on the word/morpheme boundaries when
3

the two words come together. Internal sandhi is the sound change within the word ...which may
be caused due to combining of the words or due to any of word operations like derivation or
inflection. To understand the morphophonemics, a general look on phonology and
morphology is required. The Sanskrit morphophonemics will be discussed in detail in the next

chapter.

1.3 MORPHOLOGY -

To compute morphophonemics or sandhi, understanding morphology is necessary.
Morphology deals with the word and its structure. Morphological study becomes important
because what sandhi-splitting deals with is nothing but identification of distinct words.
Jurafsky and Martin (2005:85) define morphology as “Morphology is the study of the way
words are built up from smaller meaning-building units, morphemes. A morpheme is often

defined as the minimal meaning-bearing unit in a language.”

1.3.1 WORDS

Words are one of the most fundamental units of linguistic structure. They play an integral role
in the human ability to use language creativity. The words are the phonetic codes to memorize
the information. But the human vocabulary is not the static repository of the memorized
information, it is a dynamic system. The dynamism comes in different ways, we can add
words, and we can expand their meaning into new domains or change the meaning (Akmajian

et. al,, 2004:11).

Words are a dynamic system. No one makes effort to learn lots of words but can use infinite
ideas around one. The world represented by the words is realized to be infinite in scope and
vocabulary of human is finite, and very small in comparison with the scope of represented
world. Human uses finite number of words to represent potentially infinite number of
situations and ideas encountered in the world. This could be possible due to creativity of the
words and open-endedness of the human vocabulary. The list of words for any language

(though not a complete list) is referred to as its lexicon (Akmajian et. al., 2004:11).

The word in its physical speech form (that is the basic form of language) is nothing but a blur

of sound; the same will be said for a sentence or a paragraph. A human, generally, does not

4

feel difficulty in recognizing the words from a speech. The words seem to him to be natural
and obvious. This observation comes because most people hear only their native language or
other language which they know (have learnt). The reality comes to sight when a person hears
a foreign language (which he does not understand) speaker in his natural way. Hearer is
unable to recognize the words of that language. There is no realization of words for him but of
a blur of sound. It means the words are language relative. Thus lexicon or dictionary always
is of a language (or languages). The hearer can split the blur of sound into the words of
foreign language speaker only when the speaker slows down a little. But physical reality of
speech is that for the most part the signal is continuous, with no breaks at all between the
words. Pinker (1995: 159-160) notes, “We [native speakers] simply hallucinate word
boundaries when we reach the edge of a stretch of sound that matches some entry in our

mental dictionary.”

What is the knowledge of word? It means what do we know when we know a word? Knowing
a word includes manifold information about the word. Akmajian et. al. (2004:12-13) list down

five-fold information bound with the knowledge of the word.

a) Phonetic/Phonological information- how the sounds in the word are pronounced and
in which order the sounds in the language can occur. Also, how the sounds change

when a word is pronounced with other words.

b) Lexical structure information- what are the components of the word and how a word

changes by replacing some components of word.

¢) Syntactic information- how a word can be used in a sentence and what place can it

hold in sentence structure.

d) Semantic information- how the meanings of components of words constitute the

meaning of the word and what role words play in constituting meaning of sentence.

e) Pragmatic information- how a word is used in sentences and which word is used in

which context.

There are some other aspects of words which linguists study. The native speaker may or may
not be aware of these. Words and their usage are subject to variation across groups of

speakers (language variation or dialectal study). Astadhyayi records the example of usages in

eastern (pracham)' and northern (udicam)* regions. Words and their uses are also subject to
variation over time (language change or diachronic study). As asura word changed its usage

and meaning over time and its meaning became absolutely opposite.

1.3.2 MEANS OF KNOWLEDGE OF WORDS

The knowledge of words basically comes by hearing and interaction with the other language
speakers of the society. The most common means of knowledge of words is dictionary. But
that is not all about the word’s knowledge which we find in its lexical entry. Dictionary gives
only basic information, sometimes detailed also, about the word and its meaning but we know
far more than that. For example, when we know the meaning of a word through dictionary, we
often get the meanings of all its forms or paradigm, and also know how different forms and
their meanings are related to the base word and its meaning and also how different forms are
related with each other. Besides, we also find parallels in the relations in paradigms of
different words. For example we know that the relation between run and runner is same as

wash and washer, but that relation does not exist between ber and better.

These, and a few others, are some extra information about the words which dictionary cannot
tell. First, sometimes in dictionary, some forms are given with the lexical entry of the base
word; it indicates that the two words are related. But what is the nature of relationship,
dictionary does not specify. Second, the words that have similar form, lime run-runner, walk-
walker, and thus have similar relationship with their base word, cannot be captured with their
relatedness, because they all lie in separate entries. The separate entry approach fails to
capture what all these words have in common. Third, the dictionary is a finite list and the
information it contains is finite as well. How novel words behave cannot be accounted for
(Amajian et. al., 2004:14). Fourth, dictionary does not tell how the language varies across the
group of speakers and across the geographical area. Fifth, dictionary also cannot tell what
have been the directions of the change in the meaning and usage of the words, and how a

particular word emerged, also cannot be easily found in the dictionary.

The information of word variation across different areas and across groups of speakers and
historic change over time mentioned above are the subject of different subfields of linguistics,

namely, language variation and language change. A wide range of information associated

Uen pracam dese (P 1.1.75); ifiah pracam (P 2.4.60)
% udicam mario vyatthére (P 3.4.19)

with words and how new words are created, is studied in some other subfield of linguistics

named morphology.
1.3.3 CONCEPTS OF MORPHOLOGY

The morphology is the identification, analysis and description of structure of words (Wikipedia). -
Nature of words studied in morphology tries to find out the answers of some basic questions
which look simple but hard to answer. Akmajian et. al. (2004) list them as follows and

mention that no completely satisfactory answer to any of them is arrived at.

e What are words?

* What are the basic building blocks in the formation of complex words?

¢ How are more complex words built up from simpler parts?

¢ How is the meaning of a complex word related to the meaning of its parts?

¢ How are individual words of a language related to other words of the language?

Simple and Complex Words/Morphemes

What are words? Simply a word is a complex pattern of sounds which signifies a certain
meaning in the world. There is no necessary reason why the particular combination of sounds
represented by a certain word should mean what it does. Hence, the relation between a word
and its meaning is said to be arbitrary, though there are a few onomatopoeic words in all
languages which sound like their meaning in the real world. One of the initial definitions of
words can be as “A word is an arbitrary pairing of sound and meaning.” (Akmajian et. al.,
2004:16). But the authors of the book themselves call it inadequate to correctly represent the
word. One other definition is given in Wikipedia that may be said to be more systematic “A
word is a unit of language that represents a concept which can be expressively communicated
with meaning. A word consists of one or more morphemes which are linked more or less

tightly together, and has a phonetic value.”

It has long been recognized that words must be classed into at least two categories: simple and
complex. A simple word such as tree seems to be a minimal unit; there seems to be no way to
analyze it, or break it down further, into meaningful parts (Akmajian et. al., 2004:16). On the
other hand, complex words are those which are formed by two or more meaningful parts and

can be analyzed or braked down into its components called morphemes. In some cases a

morpheme may not have an identifiable meaning, and yet it is recognizable in other words (as

-ceive in receive, perceive, conceive, deceive).
Morphemes

Morphemes are the minimal units of word building in a language; they cannot be broken
down any further into recognizable or meaningful parts (Akmajian et. al., 2004:17). Simple

words are also morphemes as they cannot be further broken down into meaningful parts.

Morphemes are categorized into two classes: free and bound morphemes. A free morpheme
can stand alone as an independent word in a phrase or sentence such as tree. A bound
morpheme cannot stand alone but must be attached to another morpheme — as plural
morpheme —s. The bound morphemes can further be classified into affixes, bound bases and
contracted forms. Affixes may be prefix infix or suffix. The affixes are always attached to
some other morpheme, which is called a base. An affix is referred to as prefix when it is
attached to the beginning of the base such as re- (redo, recall). Affix is an infix when it is
attached within the base. Most of the languages do not have infixes. The affix attached to the
right of the base morpheme (in case of left to right script languages, otherwise left of base) is
referred to as suffix such as plural morpheme —s and past participle morpheme —en. ‘Bound
bases are those which cannot stand independently but should be attached to some other
morpheme. For example cran-, it does not have its independent meaning, it must be combined
with the name of some fruit —berry, —apple, —grape etc. Some auxiliary verbs in English get
contracted or shortened when come with some other word. They cannot stand independently.
They are said to be contracted forms of some words as -he’ll for will, -I've for have, -they’d

for had or would.

Sometimes a distinction is made between open-classed words and closed-class words. The
open class words are those belonging to the major part-of-speech classes (nouns, verbs,
adjectives, and adverbs), which in any language tend to be quite large and open-ended. On the
other hand closed-class words are those belonging to grammatical or functional classes (such
as articles, quantifiers, and conjuncts etc.). For this, open and closed class words are also

referred to as content words and function words respectively.

MORPHEMES

FREE BOUND
Open-class words Closed-class words Affixes Bound base Contracted forms
Prefixes Infixes Suffixes

Fig. 1.1: Classification of morphemes (Akmajian et. al., 2004:24)

Parts of Speech

For linguistic purpose, all words in a language are categorized into a few grammatical
categories. Each word belongs to a grammatical category. Grammatical categoﬁes and their
number may differ among different languages. This is why because all languages carry some
special features in them. According to Akmajian et. al., in English there are ten grammatical

categories or parts-of-speech or, in short, POS. those are as following:

Noun (such as brother), Verb (such as run), Adjective (such as tall), Adverb (such as
quickly); these four come under open class words. Conjun&ions (such as - and, or), Articles
(a, an, the), Demonstratives (this, that), Prepositions (such as to, from, at), Comparatives
(such as more, less), Quantifiers (such as all, some), these six come under abovementioned
closed class words. Traditionally we have learnt eight parts-of-speech in English namely; -
Noun (proper noun, common noun and abstract noun), Pronoun, Verb, Adjective, Adverb,
Preposition, Conjunction and Interjection. But this list of eight does not show the place of

some of categories like articles.

In Sanskrit, there has been lbng discussion about the number of categories of the words. In
this discussion the number of categories of words varies from one to five. One thought says
that there is only one category of words; whichever is meaningful, that is word (arthah
padam). This is the view of Indra school of vydkarana. Other thought considers the two
categories of words- noun and verb. It is the view of Panini’s definition sup-tinantam padam
(P 1.4.14), though he recognizes all four or five categories of word. Rest otherwise famous

words can come under these two categories. The third thought of Nyaya philosophy in sabda-

9

s’akti-prakds’ikﬁ of Jagadish accepts only three categories of words- base, suffix and particles
(prakrti, pratyaya and nipata) (Nirukta, Rishi). Prefixes are one kind of particles. The fourth
thought agrees with four categories of words- noun, verb, particles and prefixes. This is the
view of Yaska and grammarians. The fifth thought adds one more category named as karma-
pravacaniya. This view is accepted by later grammarians. The different views are mentioned

in Durga’s commentary on Nirukta on number of word categories.
Neologism

As earlier mentioned, according to Akmajian et. al. (2004), four grammatical categories
belong to open class words. It means, in these categories, the number of words can increase
and the role of existing words can change. This process of adding new words or changing the
role of existing words is called neologism. Apart from other techniques to add new words,
new words can enter a language through the operation of word formation rules, which is
studied in the field of linguistics named as derivational morphology. Some most popular

techniques of neologism are given as follows. (Amajian et. al., 2004:25-42)

Coined Words: These types of words are entirely new for the language and previously non-

existent. These are often invented by the speakers.

Acronyms: acronyms are the words pronounced as common words and each of the letters that
spell the word is the first letter (or letters) of some other complete word. For example, radar

derives from radio detecting and ranging.

Alphabetic Abbreviations: These type of words are also formed taking first letter (or letters)
of other complete words but the difference from acronyms is that acronyms are pronounced as
common words while in abbreviations each letter of the word is individually pronounced. For

example, CD is used for compact disc.

Clipping: Clipped abbreviations are those shortened forms of words whose spellings are
shortened but the pronunciation of those is not changed. For example, Prof, MB and Dr. are
shortened forms of professor, megabyte and doctor respectively and are pronounced as full

words.

10

Blends: New words are also formed from existing ones by various blending (can say fusing)
processes, for example motel from motor hotel, bit from binary digit and COLING from

computational linguistics.

Generified Words: Sometimes new words are created by using specific brand names of
products as name of products in general. For example Xerox is the name of the corporation
that produces a photocopying machine, and now the term is used to describe photocopying
process in general. Similar is the case of Dalda, the name of a brand of vegetable ghee (in
many regions), and the use of word Moon for natural satellite of any planet. This time
tendency is seen of using Akash-ganga (Hindi name of Milky Way) for galaxy in general
(Hindi — Mandakini).

Proper Nouns: Sometimes the proper names of persons are generalized and become the part

of language and are used to denote some specific behavior of the person whose name it was.

Borrowing Direct and Indirect: Sometimes the words of other languages are adopted in the
language. When the word is taken as it is in its original language, then it is direct borrowing,
for example, kindergarten word is borrowed in English from German. In some other way, the
words of other language are literally translated into the native language. This type of

" borrowing is called indirect borrowing of words.

Changing the Meaning of Words: Sometimes, a new meaning becomes associated with an
existing word in many ways: change in grammatical category or part of speech, vocabulary
extension of one domain to another domain (metaphorical extension), broadening of scope of
meaning, narrowing of scope of meaning, restricting the more general compositional meaning
of complex words (semantic drift) and change of the meaning of a word to the opposite of its

original meaning (reversal).

Derivational Morphology: When the previously existing words undergo under some word
formation rules that a new word is created, the process is called derivational morphology.
This process involves mainly two processes: Compounding and Affixation. Compounds are
formed by combining two or more pre-existing words in which the meaning of the compound
is related with them. In a compound, one word is the head word and the meaning of the
compound is of same part-of-speech as it, and other words are modifier of the meaning of

headword in compound. In affixation, several derivational affixes (mainly suffixes) are added

11

to the word to form a new word. Many times the part-of-speech in derivation gets changed but
it is not necessary for all time. The derivational morphology will be discussed in detail in

some following section.

Backformation: This process is of psychological interest that some common words apparent
as derived words from word formation rules are mistaken as derived words. Then the speakers
of the language apply word formation rules in reverse and get the apparent base form of the
original. The verb to beg is reversely derived from the previously existing word beggar. Such

are the verbs to hawk, to stoke, to edit etc. This process is called backformation.

1.3.4 INFLECTIONAL AND DERIVATIONAL MORPHOLOGY

In the study of word formation, a distinction is often made between inflectional and
derivational morphology. When base word goes through a process to form a final word ready
to use in sentence, it is inflectional morphology. It further can be categorized as verbal and
nominal. A verb root is attached to a class of eighteen suffixes together called #in, forms
verbal forms in ten lakaras, three purusas and three vacanas in armanepada and
parasmaipada. The word thus formed under verbal derivational morphology is called tinanta.
When a nominal base is attached to any of twenty one sup-suffixes to create nominal form in
seven vibhaktis and three vacanas is nominal inflectional morphology. The word thus formed

is called subanta (sup+anta = voicing).

When a base word goes through a process to derive another base is called derivational
morphology. It is again verbal and nominal. Verbal derivational morphology involves verb to
verb derivation- passive (verb root+yak), causative (root+nic, nijanta), desiderative (root+san,
sannanta), ... (root+yar, yananta and yanluganta). It also includes formation of new verb
from nouns (namadhatu). Nominal derivational morphology includes krdanta, which is
primary derivative and derives from verb root; taddhita, derives one nominal base to another

nominal base; feminine forms, and compounds.

1.3.5 PROBLEMS IN MORPHOLOGICAL ANALYSIS

In doing morphological analysis, we find some exceptions of many aspects of a given
analysis. Three of these problems in isolating the base of a complex word involve

productivity, false analysis and bound base morphemes.

12

Productivity

Some morphological operations are found quite frequently with one category of words, but
exceptionally, some forms are also found to have similar operation. For example, able suffix
frequently occurs with verbs but it is found with some nouns also, like, knowledgeable,

fashionable, and marriageable. But exceptions are closed list words.
False Analysis

Sometimes it happens that a basic word appears similar to derived or inflected forms of other
words of a word category, and the speakers wrongly take it for being the same. They take it
for a derived or inflected form and wrongly analyze it and reach a new base which is not the
word of that language. This happens only due to accidental phonetic resemblance with the
similar forms. In these cases, the phonetic component (apparent morpheme attached to a
word) similar to the regular form of some morpheme, doesn’t have similar meaning as the

regular morpheme. So the analysis on this basis is called false analysis.
Bound Base Morphemes

This case is slightly different from the case of false analysis that here the meaning structure of
the word similar to regular form is same as regular forms. The prefix or suffix attached to the
word is recognizable and has similar meaning also, but if the base is detached from that, the
base is not a meaningful word of the language. These types of bases are bound and can exist

only with some specific morphemes.

1.4 PHONOLOGY

Panini defines sandhi as extreme closeness of sounds - parah sannikarsah samhita (P
1.4.109), and sound is subject of phonology. Phonology is the subfield of linguistics that
studies the structure and systematic patterning of sounds in human language. The term
phonology is used in two ways. On the one hand, it refers to a description of the sounds of a
particular language and the rules governing the distribution of those sounds. That can be said
phonology of a language. On the other hand, it refers to that part of the general theory of
human language that is concerned with the universal properties of natural language sound

system (i.e. properties related to many, if not all, human languages) (Akmajian et. al.,

13

2004:109). Speech sound in its oﬁiginal form is a continuum of waves in a certain range of
frequency which can be heard by human ear. We can write a language with discrete symbols.
However, speech is for the most part continuous; and neither the acoustic signals nor the
movement of the speech articulators can be broken into the kind of discrete units that
correspond to the units represented by written symbols. What is studied in phonology is the
distinctive features of speech sounds, external organization of the sounds- the syllable
structure, general framework for describing the sound pattern of human language, conditions

where a particular sound changes its form into another (Akmajian et. al., 2004:110).
1.4.1 DISTINCT FEATURES OF SOUNDS

Basic components of a language are the sounds (phones and phonemes). The sounds are
themselves composed of several features of articulation. These features are the constituents as
well as distinctive features of the sounds. These features distinguish one sound from another
and also make small classes of sounds. Some of these features are very important and others
are comparatively less. The importance of the features vary from one language to another on
the basis of how much role does it play in the statement of phonological rules and

distinguishing the different sounds.

Morris Halle and Noam Chomsky proposed a distinctive feature system to classify and
distinguish the sounds of a language in their work Sound Pattern of English (SPE) in 1968.
Their proposals in turn build on the pioneering work in distinctive feature theory carried out
by Halle and Roman Jakobson in 1956. In the SPE system the articulatory features are viewed
as basically binary, that is, as having one of two values: either plus value (+), which indicates
the presence of the feature, or a minus value (-), which indicates the absence of the feature

(Akmajian et. al., 2004:114).

The sounds are primarily classified as vowels and consonants. According to SPE, the list of

distinctive features of sounds (particularly for English) is given as follows:
Distinctive Features of Vowels: Syllabic, High, Back, Low, Round, Tense or Long.

Distinctive Features of Consonants: Syllabic, Consonantal, Sonorant, Voiced, Continuant,
Nasal, Strident, Lateral, Distributed, Affricate, Labial, Round, Coronal, Anterior, High, Back,

Low.

14

Same list will not be sufficient for Sanskrit. In ;zowels, the additional features are rising
(udatta), falling (anudatta), level (svarita), nasality (anunasikata), extra-long (pluta). In
consonants, the additional features are aspirated (mahdprana), unaspirated (alpaprana),
breath (svdsa), sound (ndda), open (vivara), close (samvara), slight open (fsad-vivrta), slight
close (isat-samvrta), stop (sparsa). Some of the above features mentioned in SPE are not
applicable on Sanskrit sounds. The list of Sanskrit sound features famous in tradition of
vyakarana® also may .not be sufficient from linguistic point of view, though prdtis’dkhyas"'

have made deeper observation.

1.5 MORPHOPHONEMICS: COMPUTATIONAL PERSPECTIVE

Goal of morphophonemics is to study and explain the rules and patterns of sound functioning
in morphological process in a language. Computational morphophonemics differs from it in
many ways. The goal of computational morphophonemics is rather more practical and more
applied — to prepare a text for further linguistic processing/morphological-syntactic analysis,
and on other side (generative sandhi), to combine morphemes in their usual phonetic form as
occurring in the language. Second thing is its input and output. In general, morphophonemics
applies on a piece of a linguistic data. The studying person recognizes the words and also has
in mind their meanings. On the other hand, input and output for computational
morphophonemic processing, both are only strings of symbols. The third thing departing these
two is the methodology of processing. In general morphophonemics, human way of
processing is parallel processing. He minds the sound patterns, words, their meaning and the
context of use. He can also mind the pragmatic and cultural information. In contrary,
computer has to cut, paste and match the parts of string alongwith some statistical processing

of the intermediate results.

Sanskrit grammar has an advantage from computational view. That is the explicitly described

sandhi rules and excellent formal system of Panini.

? Yatno dvidha - abhyantaro bahyasca. Adyascaturdha - sprstesatsprsta-vivrtaisamvrta-bhedat. tatra sprstam
prayatanam sparsanam. isatsprstam antalisthandm. vivrtamiismandam svardandm ca. hrasvasyavarnasya prayoge
saimvrtam. prakriyd-dasayam tu vivrtameva. (SK 10)
bahya-prayammastvekadasadha - vivarah, samvaral, svaso, nado, ghoso’ghoso’lpaprano mahaprana
uddtto’nudartah svaritasceti. (SK 12)
* Allen, W. S., 1965; Phonetics in ancient India

15

1.5.1 SYSTEM OF PANINI: A MODEL

The system of Panini consists of five major components: rule base (sitra-patha), verb
database (dhatu-patha), nominal database (gana-patha), gender rules (linganusasana), and
special morphological rules (unadi sitra) which work in the environment of its sound system
called Siva-siitra. The rule base named Astadhyayr being the main component; the integerated

system Panini can also be called Astadhyayt.
Method of analysis in Astadhyayt

The grammar of Panini is a generative grammar. It does not start analysis from ready form in
use to its building blocks. Starting point of Panini’s analysis is not meaning or intention of the
speaker, but word form elements as shown in initial stage of generation process. Here
morphemic elements obtained from analysis are put side by side in an order of previous and
next from left to right. Then by applying operations to these elements a derivation process
starts. The process results in a word fit for-use. Thus we may say that Panini starts from
morphology to arrive at a finished word where no further rules become applicable (Joshi:

2009). We can recall here the basic assumption of Finite State Automata.

Organization of system of Panini (Jha: 2004): Panini’s grammar’s main and central
component is Astadhyayi, the linguistic sitras divided into eight chapters with four
subsections each. The sitras are 4000 approximately (ihe actual number varying from 3975 1o 4025). The
components of Astadhyayr can be grouped into three modules: Sound classes (Siva-siitra),
Rule base (Astadhyayr siatras and special morphological rules named as unddi-sitra) and
Lexicon (verb database- dhatupatha and nominal database- ganapatha). This closely

corresponds to a fully functioning NLP system:
phonetic component > grammar component = lexical database.

The phonetic component- the 14 Siva-sitras are the phoneme inventory of Sanskrit with 43
elements with 9 vowels and 34 consonants including two times ‘i’. These sitras do not show
the long and protracted vowels, accented vowels and nasalized vowels and some other
characters. The vowels enumerated in the sitras are vowel classes which represent all its
types based on length, accents and nasality. Other special characters are allophones of

anusvdra (i) and visarga (h) and they are assumed to belong to ‘at’ group or sigla. The

16

sitras contain the sounds and one bounding sound which are not counted as phoﬁéme. The
sigla are formed by taking any sound as start and any of the following bounding sound. Sigla
thus formed can be hundreds in number (305) but Panini has used only 41 of them. Later
Paninian grammarians include one more ‘ra’ in this list. The arrangement of the sounds is so
systematic that any sigla formed has some unique property in common that puts them in a

class and thus becomes useful for rule writing on the basis of sound-features (This 1.3.1).

The grammar component- the sitra—patha (SP) is composed of sitras in eight chapters of
four subsections each. Faddegon (1936) gave a general sketch of what is covered in different
sections of the grammar and also analyzed the subsections. In the arrangement of SP he noted
the “tendency towards dichotomy” and divided the rules into two main sections — Ch 1-5 and
6-8 which he called analytic and synthetic parts respectively. Kapoor (1992) has reduced the
treatment of subject matter into four divisions — Ch 1-2 dealing with classification an
enumeration of bases and categories, Ch 3-5 consist of prakrti-pratyaya enumeration, and
derivation of bases, Ch 6-8.1 deal with the synthesis of prakrti-pratyaya, and Ch 8.2-8.4 deal
with the rules of morphophonemics (cf. Jha: 2004). Sharma (2003) describes in detail the
distribution of topics in SP. The siitras are categorized into six types. It can be seven if

negation is taken independent of restriction.”

* Operational (vidhi) rules which state a given operation to be performed on a given
input. For example- akaH savarNe dlrghaH (P 6.1.101) — simple vowels [a i u RRi

LLi] will be lengthened when they are followed by a similar (savarNa) vowel.

® Definitional (sa~nj~nA) rules which assign a particular term to a given entity. For

example- vrddhiradaic (P 1.1.1)® — vowels [ai au] are termed as vrddhi.

® Meta-rule (paribhaShA) rules which regulate proper interpretation of a given rule or
its application. For example- tasminniti nirdiste pirvasya (P 1.1.66)" — any operation
will be applicable to the component which is prior to that which is denoted by seventh

case like ‘in thar’.

’ Definitions of sutras are according to Rama Nath Sharma
% Example different from source
7 Example different from source

17

Heading (adhikAra) rules which introduce a domain of rules sharing a common topic,
operation, input, physical arrangement etc. For example, karake (P 1.4.32)® states that

the rules about case start from here.

Extension (atidesha) rules which expand the scope of a given rule, usually by allowing
the transfer of certain properties which were otherwise not available. Example-
karturIpsitatamaM karma (P 1.4.49) tathA yuktaM cAnlpsitam (P1.4.50) — that which
is the most desired by kartA (agent) is karma (P 1.4.49) and also undesired similarly
attached to the verb (P 1.4.50).

Restriction (niyama) rules restrict the scope of a given rule. For example- patiH
samAsa eva (P 1.4.8) — the word ‘pati’ is termed as ‘ghi’ only in compound. This rule

restricts its previous rule- sheShoghyasakhi (P 1.4.7).°

Negation (nisedha) rules which counter an otherwise positive provision of a given |
rule. For example- tulyAsya-prayatnaM savarNam (P 1.1.9) and nAjjhalan (P1.1.10) -
savarNa is the class of sounds with comparéb]e place and manner of articulation (P
1.1.9). This cannot be across vowels and consonants even if they bear comparable

place and manner of articulation (P 1.1.10).

Ramanath Sharma mentions two more categories of rules'®

Optional rules (vibhasa): rules which render the provision of a given rule optional. For

example- §i tuk (P 8.3.31) — in sandhi, ‘tuk’ is augmented optionally before ‘s”.

Ad hoc rules (nipatana): rules which provide forms to be treated as derived even
though derivational details are missing. For example- ksayya-jayyau Sakyarthe
(P6.1.81) — in the sense of ‘liable to’ or ‘possible to’ the derived forms of ‘ksi' and ‘i’

with ‘yat’ suffix are ‘ksayya’ and ‘jayya’ respectively.

The Lexicon- verb and nominal databases: first is the database of verb roots in Sanskrit. The

total number of the roots listed in it is 2014 out of which about 500 are yet found in actual use

in the Sanskrit corpus/literature. The roots are classified into ten-classes (ganas). One eleventh

¥ Example different from source
® Explanation different from source
10 Examples not from source

18

class is the roots basically derived from nouns. The ten (or eleven) classes are named after the

first root of the class.

Second lexical database is of primitive nominal bases. This is the lists of groups of different

bases (including pronouns).

Recently Houben (2009)! proposed a different architecture of Panini’s System keeping
dhatupatha as the central component. He gives a thesis of construction grammar in which data
is the central component and rules or procedure is supporting component. In support of his
thesis, he quotes the derivation process which starts with selection of a dhatu with all its

grammatical information and then the rules apply.
Technical Devices of Panini

Joshi in Background of Astadhyayi (2009) explains the nature of Paninian derivation process
as “Starting point of Panini’s analysis is not meaning or intention of the speaker, but word
form elements as shown in the initial stage of the prakriya. Here morphemic elements
obtained from analysis are put side by side in an order of piirva and para from left to right.
Then by applying operations to these elements a derivation process starts. The process results
in a word fit for use in vyavahara, the everyday usage of an educated Brahmin. Thus we may
say that Panini starts from morphology to arrive at a finished word where no further rules

become applicable. We have to bear in mind that Sanskrit is an inflecting language.”

Panini’s operational rules are generally substitution rules. Here the distinction between the
original (sthanin) and the substitute (ddesa) is essential. As far as further rule application is
concerned, the substitute is declared to be like the sthanin (P 1.1.56). An exception is made
for the rules which deal with the substitution of phonemes. An ingenuous idea of Panini was
to extend the concept of substitution to zero-substitution (lopa) also. Lopa is defined as

adarsanam “disappearance from sight” (P 1.1.60) (Joshi, 2009).

Three other techniques of Panini have very much importance in Astadhyayi. Three of those
are inheritance (anuvrtti), utsarga-apavada vidhi, and division of sitras in siddha and
asiddha kanda. Inheritance or anuvrtti on one side is important from point of view of

conciseness (laghava), it is also important from the view of formal structure. In a program, a

"' Third international Computational Linguistics Symposium, Hyderabad, India, 2009
‘ 19

definition or prdcedure is added some new aspects and elements by inheritance. Similarly,
anuvrtti brings its all aspects with it. This thing is well proved in the following example of
karma sanjia. In the rule karturipsitatamam karma (P 1.4.49), karake (P 1.4.23) is inherited,
thus the indicated term has two names (safijiias) - karaka and karma. Here word karma is
explicitly used while it is used in previous rule adhi-sin-stha-'’sam karma (P 1.4.46), and it
could be inherited from here. But it is not inherited from there because there the karma-safijid
was assigned to a locus (@dhara). If the word karma was inherited form there, the sense of

locus also would have been inherited.

Second thing is utsarga-apavada-vidhi. When two rules are applicable in same condition and
have equal strength of applicability, then relatively one of them becomes utsarga and other
apavdada. Apavada is that which has less scope of applicability and its scope is proper subset
of the scope of utsarga siitra. In this condition, the utsarga sitra gives up its right (utsrjyate)

and leaves the scope for apavada.

Third technique is the division of whole Astadhyayr into siddha and asiddha kanda. Siddha
kanda is upto first quarter of eighth chapter. The rules of siddha kanda are recursively
applicable anytime it has scope for application. But the rules of asiddha kéinda are applicable
after rules of siddha kanda have done their work. Technically, the result of asiddha rule is
invisible to siddha rule. It means, siddha rule cannot be applied after the application of
asiddha rule. In the asiddha kanda, every later rule is asiddha in respect of prior rules. The
rules of asiddha kanda, the last three padas of last chapter (tripadi) need to be applied in
sequential order. This system of asiddha regulates infinite or unnecessary recursion. Apart
from these, some part of Astadhyayi (6.4.22 to 6.4.175) is asiddhavat prakarana which is not
included into siddha kanda. The sitras of asiddhavat prakarana that are all having same
condition, can be thought of as applied simultaneously. Siddha-asiddha structure is

graphically interpreted by Subbanna and Varkhedi (2009)'%.
1.5.2 PROBLEMS IN COMPUTING PANINI

Paninian grammar is said to be the most technical and formal grammar of any natural
language in the world, though it is not fully computed after the researches and efforts of the

decades. There are some most common problems in computerizing Panini’s system.

'? Subbanna and Varkhedi, TISCLS-2009, Hyderabad
20

Paninian grammar is a formal grammar yet not a computational grammar, but it is linguistic
grammar of a natural language written in formal version of natural language. It has common
weaknesses of natural language. One most common weakness of natural language is
ambiguity. Cases in AD have their technical meaning but sometimes different cases have
similar form and create ambiguity. For example, V and VI case singular have often same form
but V case means ‘after it” whereas VI case means ‘to it’ or ‘of i’ or ‘in the place of it’. One
such sitra is maya”® uiio™ vo' va (P 8.3.33)". One such vartika is yano™® mayo™® dve"*
vdcyem (vonP 8.2.23)14. In the case of this vartika, the ambiguity of I case and II case is not

the problem because II case is not assigned a meta-linguistic meaning and here its meaning is

simply of I case (as general).

Jha and Mishra (2008)" explain the problems in implementation of karaka formalization. The
most part of the karaka involves complex semantics. Semantic representation of material

entities itself is very hard to implement with relation to other objects; karaka rules involve

semantics of abstract and subjective concepts. They classify implementation issues with /%

respect to karakas in three categories as follows: &

7

* Vivaksa dependent operations — as in sthalya pacati, sthali should be termed®
adhikarana (locus) as it is the adhara (adharo’dhikaranam), but it is termed as karana

by rule sadhakatamam karanam because the speaker thinks it is the most instrumental.

e Vartikas limiting/extending rules - rule gati-buddhi-pratyavasanartha-
Sabdakarmakarmakanam ani karta sa nau, which allows karma, is limited by vartika-
nivahyorna, which itself is limited by another vartika- niyantr-kartrkasya

vaheranisedhah.

* Semantic conditions necessary for implementing a rule — conditions like, svatantrya,

ipsitata/ipsitatama/anipsita, sadhakatama, abhipraiti, dhruva, apaya, adhara etc.

The AD is generative grammar and not analytical grammar. Analysis is to be derived by
applying the Panini’s rules of substitution in reverse. Madhava M. Deshapande notes that

Panini’s grammar “does not provide us with analytical tools to go from texts to their

'* Superscript numbers show case number of the word. ! l 1}_]'_ 1'78 O 6

" samyogdantasya lopah (P 8.2.23) '
15 Second international Sanskrit Computational Linguistics Conference, Brown, (2008)

21

i

AT

@;ﬁ\ﬁof

vl

interpretation, or from sentences to morphemes and phonemes. It presupposes the result of an
analytical phase of scholarship, but is itself not representative of that analytical phase.” (c.f.,

Anand Mishra, 2009)16.

Astadhyayt is not a grammar in western sense of the word. It is a device, a derivational word
generation device. It presupposes the knowledge of phonetics and it is based on morphemic
analysis. It derives an infinite number of correct Sanskrit words, even though we lack the
means to check whether the words derived form part of actual usage. Correctness is

guaranteed by the correct application of rules (Joshi, 2009)"”.

The technical terms in Astadhyayi (samjiia) are mostly defined but not always. The non-
defined samjfias are borrowed from various other branches of science supposed to be
generally known. Joshi (2009) mentions some important of them- mantra, yajus, napumsaka,
linga, kriya, vartamana, vibhakti, prathamad, jati, dravya, gunavacana, visarga, vakya, vidhi,
samartha and upamana. Pratyahdras are also the technical terms of the Astadhyayr but these

are well defined (Joshi, 2009).

A wider part in Panini’s grammar requires the meaning information. Some scholars claim that
semantics is not the subject matter of Astadhyayi (Joshi, 2009) in the sense of meaning as
thing meant. Astadhyayi is no authority to decide that this word refers to this item. That comes
from the usage. The whole of taddhita-section testifies the more importance of lexical
meaning. Each taddhita suffix is used to derive a new word in a specific relation with base
word. Here meaning becomes of much importance. To compute this portion requires to some
extent the computing of the meaning of the suffixes. An example of complex meaning in rule
is- ner-anau yat karma nau cet sa karta’ndadhyane (P 1.3.67) (which is karma or object in
non-causative state, if becomes karta or agent in causative state, then atmanepada suffix is

used with the verb).

As earlier has been said that some of the technical terms of Panini are not defined in
Astadhyayt, they are borrowed from other fields of science and are presupposed to be already
known. Also there is not any medium in the system to check whether the word exists in the
usage. In other words, there is no way to restrict unlimited over generation of the correct

forms. Some words used in AD represent to a class of nouns (including all kinds of nominal

*Mishra Anand, TISCLS - 2009, Hyderabad
' Joshi, S. D., keynote address in TISCLS-2009, Hyderabad
22

bases), which are sometimes found in AD sutras itself, others are found in separately arranged

lexicons- daatupatha and ganapatha.

When more than one sifra are applicable on the same state of derivation, there is need to
resolve the conflict and to determine the exact sitra to be applied. There is no clear
specification in the Astadhyayi, but a vdartika specifies it- para-nitya-ntaranga-pavadanam-
uttarottaram baliyah — where para is later in terms of order in Astadhyayf; nitya is that which
is applicable in both conditions whether the conflicting siitra is applied or not; antararga is a
rule about verb root and prefix (dhatipasargayoh karyam antararigam); and apavada is

exception rule, which has no scope of application outside the area of main satra.
apavada > antaranga > nitya > para

The rules applicable in one condition or defining one technical term together form a rule

cluster or rule set.

After the computation of individual rules or rule clusters (rule sets), there is again complex
system of order of application of rules. From this view, the AD is divided mainly in two
sections- siddha-kanda and asiddha-kanda. In the siddha-kanda, there are two ranges of
sitras asiddhavat (like asiddha). Siddha section contains sitras 1.1.1 to 8.1.74 (end of first
pada) minus asiddhavat section. Asiddhavat section contains sitras 6.4.22 to 6.4.175 (end of
pada and chapter). Asiddha section contains the sutras 8.2.1 to 8.4.64 (end of the chapter and
the book). Subbanna and Varkhedi explain this system in somehow this way- In general,
whenever conditions for a sitra are satisfied, that sirra is applied. Only one siitra is applied at
a time. In other words no two siitras can be applied simultaneously. However, the sitras of
asiddhavat prakarana that are having the same condition can be thought of as applied
simultaneously. The sitras in the last three pdadas, that is, tripadi need to be applied in the

sequential order.
1.5.3 CHALLENGES IN MORPHOPHONEMIC PROCESSING

Above we have seen the general problems in computing of Paninian system. The computing
of morphophonemic rules is more ‘complex than other sectors of the grammar like
morphology, phonology or syntax. Computing of the process of morphophonemic analysis is
still more challenging. This sector requires the identification of all types of words, thus

understanding of the complete morphology, though not necessarily ability of analyzing all
23

words. Here are indicated some of the problems which will be discussed in detail in later

chapters.

If we assume that the sandhi analysis system gives results perfectly according to the Panini’s
(including followers’) sandhi rules, there are still many problems to reach the correct analysis.
First and major problem is ambiguity. It simply means that a string of Sanskrit word can be
split into many segments. As the number of segments increases, the number of sets of
segments increases, and not linearly but geometrically. First the challenge is to through away
invalid segmentation sets and then the challenge of selecting the desired result from the valid

ones.

This ambiguity is caused by many factors. The most complexity generating problem arises
from the nature of Sanskrit which is unique to this language, that is, theoretically, a
continuous string, without pause can be infinitely long. Between the words, the sandhi is
optional while it is essential within the word simple or complex. Also the minimum size of
valid word is Sanskrit is very small, that is, 6ne character. This requires searching the

possibility of sandhi on each next character.

Next a few problems are related to application of rule. First thing is simple concatenation.
Any word ending in consonant should be concatenated with the next word. It causes the need
of judging if it is simple concatenation or sandhi, in other words, whether the sandhi rules are
to be applied or not. Then, if it is decided to apply the rules, similar looking pattern of sounds
(formally, a sequence of symbols) form the condition fit for application of many rules. This
problem to be solved needs computation of strength of sifra stated in previous heading. But
this solves the problem of generation side, which is the process of Panini. This is not equally
efficient for analysis process. Afterwards, when a rule is decided, the same rule applies on
different conditions and result in one form in generation. Thus, the same sequence of symbols
in reverse sandhi process should result in multiple splits. Then it needs to select the possible
ones from those multiple results. For this, the two splits are joined with left and right parts of
string and thus formed segments are then checked in the dictionary to validate their existence
in the used language. There is no more promising way than dictionary and corpus to verify
that the word exists in the Janguage. The finite state automata for Sanskrit words validation is

too complex to implement.

24

Ne;(t few problems are related to the recognition of words. The whole exercise of sandhi
processing is the recognition of the distinct words. The segment is a valid word or not, this
can be judged by checking of the segment in the dictionary and corpus of the language. The
dictionary contains the words in base forms while words in text are inflected. Thus, before
validation, the inflectional analysis is required (both verbal and nominal). The inflectional
analyzer generally should be run before seeking for application of rules because the inflection
is must in Sanskrit words in sentence. But the inflections may occur within the string and may
not occur (in the case of compound where the suffixes are elided). Word is to be checked in

dictionary after analyzing or without analyzing? This may many times result to false analysis.

Finally the challenge is to arrive at all possible solutions and one (or a few) desired
solution(s). (Sometimes, more than one segmentation is intended in cases like slesa usage.)
For collecting all possible solutions, each point of segmentation needs to be split thrice-
without applying any rule (for simple concatenation), applying possible and relevant rules,
applying rules and then analyzing inflections. On each of three stages the segment needs to be
validated. In this exercise, whole dictionary is accessed several times. When human segments
sandhi, he accesses his active mental vocabulary, which is very small, so most of non-relevant
words do not come to access. But in computer’s case, it has very large dictionary, and whole
dictionary is its active vocabulary resulting many unused and irrelevant words validated.
Also, computers cannot have sense or guess of meaning while searching for validating
segments whereas human has the sense earlier to applying the rule. The problem of large
vocabulary can be solved by indexing the dictionary and marking the populérity index to each

word. Processing the frequency of words can reduce number of solutions.

1.6 A SURVEY OF RESEARCH

1.6.1 APPLIED RESEARCH ON SANDHI ANALYSIS

Sanskrit Heritage site of Gerard Huet of INRIA, Paris, he has build segmenter which is online
available on his website. This program takes a continuous string without space and segments
all words whether they are simply joined or have sandhi within. This program gives many
solutions. It takes input in Roman transliteration scheme which stems from Velthuis devnag

TeX input convention and it displays result in IAST and Devanagari Unicode. Same site has

25

sandhi generator mbdule also which takes two words and returns sandhi word. It does both

internal and external sandhi.

‘Sandhi Splitter and Analyzer for Sanskrit: With Special Reference to ac Sandhi’ is the M.Phil
research of Sachin Kumar in superviéion of Girish Nath Jha, submitted to Special Centre for
Sanskrit Studies, Jawaharlal Nehru University, New Delhi (2007). A web based system is
developed under this research and is available on the website of Special Centre for Sanskrit
Studies. It works only for vowel sandhi splitting and takes Unicode Devanagari UTF-8 text as
input. A web based sandhi generation program is also developed there as the MA course

project of the students of the centre. This program takes input in i-trans encoding.

A sandhi splitter has been developed in Rashtriya Sanskrit Vidyapeetha, Tirupati and
Department of Sanskrit Studies, University of Hyderabad in guidance of Amba Kulkarni and
in consultancy with K. V. Ramakrishnamacharyalu. This program takes input a word in W-X
notation, I-trans, Velthuis, HK, SLP and Devanagari Unicode encoding. In its older version
available on the site, it gives analysis to the five levels of depth according to the wish of user.
They have also developed sandhi generation program, which is online and takes input in same

six notations and gives result in Unicode Devanagari with sandhi type and sitra.

Sanskrnit library project under the guidance of Peter M. Scharf, Classics Department, Brown
University, is engaged i philological research and education in Vedic and classical Sanskrit
language and literature. Current research involves linguistic issues in encoding, computational

phonology and morphology. (cf. Surjit, 2008)'%.

Department of Information Technology, Ministry of Communication and Information
Technology, Govt. of India had funded Jawaharlal Nehru University a CASTLE project
(Computer Assisted Sanskrit Learning and Teaching Environment) under TDIL program. This
is reported to have developed sandhi-viccheda sys.tem in DOS environment but it is not

available to public access.

Software developed by Indian Heritage Group of Centre for Development in Advance
Computing (C-DAC), Bangalore, DESIKA, is reported to have developed generation and

analysis module for plain and accented written Sanskrit text. It has exhaustive database of

'8 Krdanta Recognition and Processing for Sanskrit M.Phil. Dissertation submitted to Jawaharlal Nehru
University by Surjit Kumar Singh under supervision of Girish Nath Jha, 2008

26

Amarakosa, rule base using rules of Astadhyayi, and heuristics based on nydya and mimamsa
Sastras for semantic and contextual processing. The version of this software available on

website does only nominal form generation.
1.6.2 THEORETICAL RESEARCHES IN PANINIAN MORPHOPHONEMICS

Below are some theoretical researches in the direction of formal understanding of Panini’s
phonology or sandhi. Girish Nath Jha in his M. Phil. research entitled “Morphology of
Sanskrit Case Affixes: a Computational Analysis” under the supervisibn of Kapil Kapoor and
G. V. Singh (in SLL&CS, JNU, 1993) introduces a formal way of writing Paninian sandhi

rules. Here is an example of formal sandhi rule:

Retroflexization: ShTunAShTuH (8.4.41)
+cons -> +cons /- +cons
"Dental retroflex retroflex
Example: rAma-s- + ShaShThaH -> rAma-Sh-ShaShThaH
Malcom D. Hymen wrote a research paper in First International Sanskrit Computational
Linguistics Symposium (2007) entitled “Fro;n Paninian Sandhi to Finite State Calculus”. In
the paper he summarizes Panini’s handling of sandhi, his notational conventions, and formal
properties of his theory. Then he introduces an XML vocabulary in which Panini’s

morphophonemic rules can be expressed.

Cardona has made detailed and analytical survey on Paninian research in his two books-
‘Panini- A Survey of Research’ (1976, 1980) and ‘Recent Research in Paninian Studies’
(1999). The earliest work recorded in the book is Kshitish Chandra Chatterji’s ‘Some Rules of
Sandhi’ (1935). This deals with Panini’s morphophonemic rules and comparable rules of
other descriptions. Cardona, in his two works, studied Paninian morphophonemic rules in
comparison with those of other treaties, seeking to extract Panini’s principles. His two works
are respectively ‘On Panini’s 7110rphbph0nemic principle’ (published in Language; Journal of
the Linguistic Society of America, Baltimore 1965) and ‘Studies in Indian grammarians, I:

the method of description reflected in Sivasitra’ (1969).

Madhav Murlidhar Deshpande in his work ‘Critical Studies in Indian Grammarians, I: The
Theory of Homogeneity [Savarnya]’ (1975) contributed a monograph on Panini’s concept of

homogeneity and sets of homogeneous (savarna) sounds, in which he deals also in detail with

27

what Paniniyas say. James S. Bare studied A;_tddh&dyi rules in connection with the feature
system considered to be reflected in the Panini’s phonological system. The work of Bare,
‘Phonetics and Phonology in Panini: The System of Features Implicit in the Astadhyayi’
(1976) appeared in Natural Language Studies Vol. 21, University of Michigan. Work of
Shanti S. Dighe, ‘samhitayam | A book on Paniniya Rules of Sandhi’ (1997), is a short and
elementary work concerning Panini’s sandhi rules. It is a useful presentation of a
representative group of sitras that concern operations which take place, or are disallowed,
when items are uttered continuously. In his article “Did Panini have a private concept of guna
phenomenon?” (1991-92), Gajanana Balakrishna Palsule proposes the thesis that Panini held
both an “official view” and a “private and intuitive view” concerning the guna class. After a
long discussion, Cardona disagrees with this thesis saying, ‘Panini’s “official view” is
concerning his guna class is the only one we need deal with and that there is no cogent reason
for seeking to find a “private view” concerning this class’. Sandhi splitting aims at
recognizing the existing words and thus word boundary becomes important. Shivram
Dattatreya Joshi in his article ‘The role of boundaries in the Astadhyayr’ (1984) discusses the
boundaries which involve units Panini calls ariga, bha, and pada, as well as the boundary at
pause (avasana). Introduction of ariga boundary by Panini he regards as a major step in the

linguistic analysis given by him.

Cardona’s work ‘Panini: His Work and its Traditions’ has organized the rules of Astadhyayr
according to the category of rules and their operations. The sandhi rules are not listed in
independent category because the phonological changes made by them are not independent of
morphology. The sandhi rules are covered in rules of substitution, augmentation, doubling and

rules of Panini’s derivational system.

Whitney is one of the firsts who wrote Sanskrit grammar in English. Chapter IIT of his
grammar describes sandhi generation rules in detail. He calls sandhi ‘euphonic combination’.
His organization of rules is too different from Panini and his tradition. He has categorized the
sandhi processes according to the sounds which have to undergo change such as ‘combination
of final s and r’, ‘conversion of s to s’ etc. He has also described some important aspects of
Sanskrit morphology which are not commonly seen in the Sanskrit tradition such as general

‘principles’ of sandhi, and ‘permitted finals’ in Sanskrit etc.

28

William Sydney Allen has discussed Sanskrit sandhi in part III of his work Phonetics in
Ancient India (1961). He considers not only Panini and his followers but almost all works of
phonetics and phonology like Siksas and pratisakhyas. His observation is minute and his view
is critical and comparative on the explanations of the Indian $astras. He does not explain
those aspects, on which Sanskrit §@stras do not say anything, but he discusses sastraic
explanations critically and he is honest in criticizing the Sastraic view and its criticism. The
level of minuteness he goes into is necessary and useful for speech recognition and speech
synthesis, for which, grammarians’ explanation is not sufficient. All his explanation is based
in Paninian tradition, pratisakhyas, Siksas and western grammarians who wrote Sanskrit

grammar, but his critical view is his own.
1.6.3 RESEARCH ON FORMALIZING OF SYSTEM OF PANINI

The following two researches are concerning with formal language and structure of
Astadhyayt which is much important from the view of computation. S. D. Joshi and Saroja
Bhate in ‘The Fundamentals of Anuvrtti’ (_1984) studied in some detail how anuvrtti operates
in the Astadhyayi. Pierre-Sylvain Filliozat, in his article “Ellipsis, lopa and anuvrtti” (1993)
first published in Annals of BORI 72-73 (1991 & 1992) goes over major features of natural
language observed in the sitras of the Astadhyayi. Features of natural language cause

difficulty in formalization of rules.

Anand Mishra (2007) proposes a model for simulating Paninian System of Sanskrit grammar
in FISCLS. He first defines the sets of phonemes, morphemes and lexemes as basic .
components. On the basis of these he defines process of forming sets of language
components. After that he describes models of basic operations. Then through examples, he
describes how his formal model defines different processes. In the last he gives overall layout
of his Paninian simulator. In his other paper (2009) he extends the same model to a complete
grammatical circle formed by analysis and generation of forms. The process is completed in
mainly four modules- input, analyzer, synthesizer and output. It aims at analyzing input,

checking its sadhutva and generating the Sanskrit forms for use.

P. M. Scharf (2007 & 2009) published two papers in first and third International Symposia on
Sanskrit Computational Linguistics entitled respectively, ‘Modeling Paninian Grammar’ and
‘Levels in Panini’s Astadhyayr’. He throws light on the Paninian architecture and different

modern interpretation of Panini. He examines the role of semantics and challenges in
29

computerizing them and possibility of modeling Panini’s system in his first work. In both the
works, he discusses different views of levels in Paninian grammar first introduced by Paul
Kiparsky and J. F. Staal and then by Huben and others. The second paper is mainly the critical

evaluation of different views on levels.

Paul Kiparsky and Staal have first interpreted the Paninian system from the view of the levels
in 1969. Then he proposed four levels as ‘Semantic representations’, ‘Deep structures’,
‘Surface structure’ and ‘Phonological représentation’. In 1982 Kiparski revised the levels as
‘Semantics’, ‘Abstract Syntax (e.g. karakas)’, ‘Surface structure (morphology)’ and
‘Phonology’. In 2002, he again revised the levels as ‘Semantic information’, ‘Morpho-
syntactic representation’, ‘Abstract morphological representation’ and ‘phonological output’

(c.f. Houben, 2009). Later Houben (2009, appendix) modifies this level-model of Astadhyayi.

30

CHAPTER TWO

THE SANDHI SYSTEM OF PANINI

Chapter two

THE SANDHI SYSTEM OF PANINI

2.1 INTRODUCTION

This chapter of the dissertation presents general concept of sandhi in Paninian system. The
sitras of sandhi are scattered in Astadhyayi. Siddhanta-kaumudi (SK) has categorized them
under prakaranas of different types of sandhi. However, there are many instances of sound
changes mostly of the internal sandhi type like natva, are not covered in these prakaranas.
This chapter takes care of such issues and also presents sandhi rules, as much as possible, in

the form of phonological rule writing.

2.2 SANDHI IN SANSKRIT

The word used for sandhi in A's'tddhizayi is samhita and first defined in first chapter as parah
sannikarsah samhita (P 1.4.109). Parah sannikarsah is extreme closeness of sounds, that is
varnanam atiSayitah sannidhih (SK 28). In Paninian grammar it is not clearly defined whether
sandhi is sound change only on the boundary of morphemes or within the morpheme as well.
The explanation of the rules in the tradition throws some light on it in the examples. The
examples used in Kasika and SK use either complete words (pada) or morphemes to illustrate
sound change. Thus we can say that traditionally sandhi is sound change which occurs when
the two morphemes come together. This area of linguistic study is called mofphophonemics.
The traditional meaning of sandhi cannot satisfy the definition of morphophonemics because
morphophonemics includes those sound changes also which take place in distant sounds from
the point of juncture and that is within the morpheme. In other words, if we classify the
processes of sound change into ‘external sandhi’ and ‘internal sandhi’, the traditional meaning
of sandhi includes external sandhi only. The most important work which collects (almost all)

sandhi rules together, the Siddhanta-kaumudi of Bhattoji-diksita, also supports this
31

hypothesis. Rules of internal sandhi are not explained in its sandhi prakarana. There are the
internal sandhi rules in Astadhyayi but not in one place. SK also does not keep all of them
together but in different prakaranas and some rules are scattered in other different
prakaranas. For example two main sitras of retroflexisation of ‘n’ are stated under vowel-
ending masculine nominal morphology (ajanta-pumlifiga-prakarana) — rasabhyam no nah

samanapade (P 8.4.1, SK 235) and atkupvannum-vyavaye’pi (P 8.4.2, SK 197).

2.3 DISTRIBUTION OF SANDHI RULES

The main rule which heads the sandhi topic is in chapter six of Astadhyayi, and that is —
sambhitayam (P 6.1.72). It heads the rules upto P 6.1.158. Four rules (73-76) define conditions
of augmentation of ‘tuk’ (‘t’ attached with previous). Next few rules (77-83) are about vowel
to semi-vowel change (yan and ayadi). Then there are the rules for merging sounds i.e.,
replacement of two sounds by one sound, ekdadesa (84-111). guna, vrddhi and dirgha sandhi
come under these. Three rules of ‘u’ replacement (112-114). Then there are fourteen rules of
no change or prakrtibhava (115-128). Six rules of non-category (129-134) and from 135 to

157 are the rules for augmentation of ‘sut’ (‘s’ attached to later sound sequence)’.

Another group of sandhi rules is in the same chapter in third pada headed by similar sttra
samhitayam (P 6.3.114). Rules in this group (P 6.3.114-135) are applicable in the juncture of
words in formation of compounds. Most of rules do last vowel lengthening of the first word in
compound in specific meanings; the vowels are not lengthened in other meanings. That is why

SK keeps most of these rules in samdsasraya-prakarana and last five in vaidika-prakarana.

The remaining clusters of sandhi rules are found in last three padas of the Astadhyayi, that is
tripadi or asiddha-kanda. The rules in P 8.2 are not the rules of sandhi but of morphology, but
some of them apply on sandhi also. Such as samyogantasya lopah (P 8.2.23), sasajuso rul (P

8.2.66). The rules of P 8.3 and 8.4 are all about sandhi. Here it is not a heading rule as in

' Pande, G. D. (2004:66,67)

32

previously mentioned rule groups, but the similar portion samhitayam inherits from the last
siitra of previous pada — tayor-yvavaci samhitayam (P 8.2.108) which goes till the end of the
chapter and the book (P 8.4.68). Most of the sandhi rules are kept in asiddha-kanda, which
are to be applied at the end and sequentially. The phonemic component gives the final form of
the language. This is also discussed in the previous chapter while discussing the work of
Kiparsky, Staal, Houben and others regarding levels in Paninian grammar. That is why most
of these rules are supposed to be applied at the end in language generation. These rules are
about consonant sandhi and the rules in chapter six are mainly of vowel sandhi. This section
also has the rules of internal sandhi, retroflexisation of ‘n’ and ‘s’, doubling etc. The other
purpose of keeping these rules in asiddha section may be to check unnecessary looping and

backtracking. One possibility of such looping is in visarga cycle.

Lsa—sajiuso ruh (8.2.66) H kharavasanayorvisarjaniyah visarjaniyasya sah (8.3.35)J
(8.3.15) I l

e

- - -
~ - S e — - - -
e — . - - —— e

————

Fig. 2.1 Visarga cycle without asiddha-system

The classification of SK is teaching and application oriented. Therefore many rules of sandhi
are included in other different topics (prakaranas) and sandhi topic-includes many of such
rules which are not describing a rule for sound change, but they support the sandhi rules either

by defining a term or as meta-rule.

2.4 SANDHI RULES OF SANSKRIT

Sandhi in Sanskrit is of five types — svara (vowel) sandhi, vyaiijana (consonant) sandhi,
visarga sandhi, prakrti-bhava, and svadi sandhi. Two more types of internal sandhi should be
included as natva and satva. When last vowel of previous morpheme and first vowel of later
morpheme come together and sound change occurs, the case is called vowel sandhi. The case
of vowel sandhi may be of two types. One, in which one sound is changed and other remains

the same. Second, in which both sounds are replaced with another resulting sound. The latter

33

case is known as ekadesa. First type includes yan and ayadi sandhi, and second type includes

guna, vrddhi and dirgha sandhi, piirvariipa and parariipa sandhi.

When two consonants, or one consonant and one vowel come together and experience change,
it is consonant sandhi. Like vowel sandhi, two sounds can result in two sounds or one sound,
and also some extra sounds can be inserted as the result of morphophonemic process. The
insertion of sound is called dgama. When visarga combines with some other sound, vowel or
* consonant, and the sounds experience change, this is visarga sandhi. Nominal inflected forms
are formed by adding sup (su, au, jas,...) suffixes with the base. When a nominal word ending

in sup suffix combines with other sounds following it, it is case of svadi sandhi.
2.4.1 VOWEL SANDHI RULES

Vowel sandhi has mainly seven sub-types mentioned above. Prakrtibhava takes place in the
conditions of vowel sandhi, so SK keeps it under vowel sandhi topic. Following are the rules

of vowel sandhi.
Rule A1 - vowel substituted by semi-vowel (yan-sandhi)
The siitra is iko yanaci (P 6.1.77)
(i,u,r,1] 2 {y,v,r,l](closest in place) / _+vowél
Exception: rule A7- vowel lengthening; rule C1; rule C2; P 6.1.102

When any type of a vowel among [i,u,r,1] is followed by a vowel, it changes to a semi-
vowel [y,v,r,]] similar in place of articulation. Exceptions are — when a vowel is followed by
similar (savarna) vowel; when pluta or pragrhya is followed by a vowel, when first word is
in vocative case; and morphological rule of first two cases — prathamayoh piirva-savarnah (P

6.1.102).
Rule A2 - diphthong substituted by vowel + semi-vowel (ayadi-sandhi)
The sitra is — eco’yavayavah (P 6.1.78)

[e,0,ai,au] > [ay,av,ay,av] (Respectively) /_+vowel

34

Extension rules — vanto yi pratyaye (P 6.1.79)
[o,au] - [av,av] / _[yl(of suffix)
Exception — dhdtostannimiﬂasyaiva (P 6.1.80);
ksayyajayyau Sakyarthe (P 6.1.81); krayyastadarthe (P 6.1.82)
if([o,au](of dhatu) is due to suffix)
{[0,au](of dhatu) - [av,av] /_[y](of suffix)}
[ksi,ji]l(of dhatu)-> [ksayya,jayya)] (meaning liable to) / _[ya](of suffix)
(kr1](of dhatu) > [krayya] (meaning purpose of)/ _[ya](of suffix)
Exception rule — lopah Sakalyasya (P 8.3.19)
[y,v] = ¢ (optionally)/ [a,a] _ +voiced
Exception rule - rule A6; sarvatra vibhasa goh, avan sphotayanasya (P 6.1.122, 123)
[go] - unchanged (optionally) or rule A6/ _[/a/}
[go] > [gava] (optionally) orrule A6/ _+vowel

When a vowel from [e,o0,ai,au] is followed by a vowel, it is respectively changed to
[ay,av,ay,av]. [o,au] are changed to [av,av] also when it is followed by y-beginning suffix, but
if the suffix is after dhatu, then this change takes place only if it comes due to that particular
dhatu. [ksiji,krd] = [kse,je.kre] 2> [ksay,jay.kray] if followed by y-beginning suffix [ya] only

if the meaning is ‘liable 10, otherwise [e] will remain [e].
Rule A3 - vowels substituted by guna (guna-sandhi)
The siitra is — ad gunah (P 6.1.87)

[a] +vowel - [/a/, /el /of] (closest in place)

35

| Supporting meta-rule — uran raparah (P 1.1.51)
if(Ir,] = [aiu))
{g>[x1] | /la,i,u] _}
Extension rule — va supyapisaleh (P 6.1.92)
[a](of prefix) -> [ar] (optionally) / _[/t/](of nominal verb)
Exception rules — rule A4; rule AS; rule A7,

When any type of vowel [a] is followed by another vowel, both are replaced with a
guna [/al,/e/,/o/] nearest in place of articulation. When [r] or [1] are replaced with [a,i,u], the
replacement is followed by [r] or [1] respectively. Rule A4 (vrddhi), rule AS (pararipa) and
rule A7 (dirgha) are its exceptions. When prefix ending in [a] is followed by a nominal
derived verb (namadhatu) beginning with [/1/], both vowels are optionally replaced with guna

[ar]. It is an exception of vrddhi-sandhi (rule A4).
Rule A4 - vowel substituted by vrddhi (vrddhi-sandhi)
The sitra is vrddhireci (P 6.1.88)
[a] [e,0,ai,au] -> [/d//ai/,/au/] (closest in place)
Supporting meta-rule — uran raparah (P 1.1.51)
if([} 2> [aiu])
{o>0] /laiu]_)
Extension rule — etyedhatyiithsu (P 6.1.89); (v) aksadithinyamupasarnkhyanam;
(v) svadirerinol; (v) pradihodhodhyesaisyesu
[a] [T,e,0,ai,au] (of Vin, Vedha, Vithi]) > [/ail,/au/]

[aksa] [@hini] > [aksauhini]

36

[sva] [i’a,irin] -> [svaira,svairin]
[a](of [pra]) vowel(of [Gha,idha,udhi,esa,esya]) => [/ai/,/au/] (closest)
Extension rule — (v) rte ca trtiya-samase
[a] [/1/]1-> [ar] /third case compound
Extension rule — (v) pra-vatsa-tara-kambala-vasanarna-dasanamrne
[a](oflpra,vatsa,vatsatara,kambala,vasana,rma,dasa]) [r](of[rna])-> [ar]
Extension rule — upasargadrti dhatau (P 6.1.92)
[a)(of prefix) [/r/}(of dhatu) -> [ar]
Extension rule — va supyapisaleh (P 6.1.92)
[a](of prefix) [/1/](of nominal verb) -> [ar] (optionally)
Exception rules — rule AS; rule A7;

This is the exception of rule A3. When any type of vowel [a] is followed by vowel
[e,0,a1,au], both are replaced with vrddhi [a,ai,au] closest in place of articulation. When [r] or
[l is replaced with closest vrddhi {/a/], it is followed by [r] or [I] respectively. Forms of
[in,edha] dhatus beginning with [e,ai] and dharu [tthi] when follow vowel [a], both vowels
are replaced with closest vrddhi. When [sva] is followed by [ira] or [irin], the vowels are
replaced by closest vrddhi. When [pra] suffix is followed by [ﬁha,ﬁdha,ﬁdhi,esa,esyaj the
concating vowels are replaced with vrddhi, if esa and esya are forms of dhatu [isa]. If these
are forms of dhatu [isa), it will be replaced with guna [/e/]. In compound of third case, if [a] Is
followed by short vowel [/r/], both are replaced with closest vrddhi. When vowel [a] of
[pra,vatsa,vatsatara,kambala,vasana,ra,dasa] is followed by [/1/] of [rna], both vowels are
replaced with closest of vrddhi. When vowel [a] of a prefix is followed by short vowel {/1/] of
a dhatu, both are replaced by closest vrddhi followed by [r] — [ar]. And if dhatu is nominal

derived verb (sup-dhatu) then replacement will be optionally vrddhi [ar] and guna [ar].

37

Rule AS - merger in later vowel (pararﬁpa-.fdndhi)
The siitra is — eni pararipam (6.1.94)
[a](of prefix) [e,0,ai,au](of dhatu) => [e,0,ai,au] (respectively)
Extension rule — (v) Sakandhvadisu pararipam vacyam
Last vowel+coda (of [$aka,...]) _+vowel(x) (of [andhu,...]) > vowel(x)
Extension rule — omarosca (P 6.1.95)
[a] _+vowel (of [om,an]) —-> vowel (of [om,an])
Extension rule — avyaktanukaransyata itau (P 6.1.98)
Last[/a/]+coda(of onomatopoeic word) [i](of [iti]) -2 [i]
Exception rule — namreditasyantyasya tu va (P 6.1.99)
Doubled word [i](of {iti]) > [i] (optionally)

When [a] ending prefix is followed by a dharu beginning in [e,0,ai,au], both are
replaced with later sound, or both sounds merge in later sound. [$akandhu,...] is a fixed list of
fourteen words in which last vowel together with its coda, called #i is merged into later vowel.
[a] followed by [om] merges into its following vowel. [a] followed by prefix [an] is merged
into later vowel whether it is in its own form or modified into other sound. When
onomatopoeic word is followed by [iti], its #i (last vowel with its coda) merges into following
sound but not if the word is doubled. In doubling only last sound is merged into the following

sound.
Rule A6 — merger in prior vowel (piarvaripa-sandhi)
The satra is — enah padantadati (P 6.1.109)

[e,0,ai,au)# (of inflected form) [/a/] > [e,0,ai,au]

38

Exceptipn rule — sarvatra vibhasa goh, avan sj;ho.tdyanasya (P 6.1.122, 123);
[o](of inflected form [gq]) [/a/] -> no change (optionally)
[o](of inflected form [go]) [/a/] -> [o] (optionally)
[o](of inflected form [go]) > [ava] / _ [/a/] (optionally)

When vowels [e,0,ai,au] of inflected forms are followed short vowel [/a/], the later
sound is merged into prior sound. Inflected form of [go] when followed by short vowel [/a/],
optionally gets three forms — both unchanged, merger in prior vowel, and [o] changed to

[ava], which together with [/a/] forms [ava].
Rule A7 — vowel lengthening (dirgha-sandhi)
The siitra is — akah savarne dirghah (P 6.1.101)
savarna(V,,V,) = place(V))=place(V;) && manner(V;)=manner(Vy)
{a,i,url] _+vowel+savarna > +length+savarna
Exception rules — (v) rti savarne r va; (v) Iti savarne | va
(AN ny > [/g/]—length (optionally)
[/ Y IN] -> [/1/}-length (optionally)
Extension rule - prathamayd[z purva-savarnah (P 6.1.102)
([a,1,u,1,]] +vowel)first two cases - +length+savarna
Exceptiop rule — nadici (P 6.1.104)
~ not(([a] _vowel-[a])first two cases > [a])

When vowel [a,i,ur,]] is followed by a vowel with similar place and manner of
articulation (savarna), the both vowels are replaced by long savarna vowel. Vowels {r,l} are

considered as savarna and [} has not long type, so these sounds together result in [7].

39

Optionally, when [r,1] are followed by short [/1/,///] both are replaced with Sh(;I‘t [/t/,A/] which
is the following vowel. Another rule of lengthening belongs to morphology. In the formation
of nominal forms of first and second case, if vowels fa,i,u,r,l] are fol]owed by a vowel, both
are replaced with long type of prior vbwel. This is not the case when [a] is followed by other

non-savarna vowel.
2.4.2 CONSONANT SANDHI RULES
Rule B1 - palatalization of dental (Scutva-sandhi)

The sitra is — stoh scunascuh (P 8.4.40) (palatalization)
+cons+sib+stop+dental > +palatal /_ +cons+sib+stop+palatal
+cons+sib+stop+dental = +palatal /+cons+sib+stop+palatal _
Exception rule — sat (P 8.4.44)

+cons+stop+dental - not(+palatal) / [§] _

When a dental consonant except semivowel comes in contact with palatal consonant
except semivowel, the dental changes to palatal closest in manner. But when [n] follows [§],

it does not change to palatal.
Rule B2 - retroflexisation of dental (stutva-sandhi)
The siitra is — stunastuh (P 8.4.41) (retroflexization)
+cons+sib+stop+dental 2> +retroflex /_ +cons+sib+stop+retroflex
Exception rule — na padantattoranam (P 8.4.42); toh si (P 8.4.43)
+cons+stop+dental > not(+re_troﬂex)_ / cons+stop+retroflex#_
[nam] - [nam] / cons+stop+retroflex# _

+cons+stop+dental - not(+retroflex) /_ [s]

40

When a dental stop or sibilant consonant comes in contact with retroflex stop or
sibilant, the dental changes to the palatal closest in manner. But when dental follows retroflex
in the end of word, dental does not change into retroflex, but it changes when the following
morpheme is [nam]. Also dental stop does not change to retroflex when followed by retroflex

sibilant [s].
Rule B3 - voiced assimilation and voicinng (jastva-sandhi)

The satras are — jhalam jas jhasi (P 8.4.53); jhalam jaso’nte (P 8.2.39)
+cons+sib+stop-nasal - +stop+voiced-aspirate /_ +stop+voiced-nasal
+cons+sib+stop-nasal - +stop+voiced-aspirate /_#

Exception rule — vavasane (P 8.4.56)
+cons+sib+stop-nasal > +stop+voiced-aspirate /_# (optionally)
+cons+sib+stop-nasal = +stop-voiced-aspirate /_# (optionally)

When a consonant except nasal and semivowel is followed by voiced stop except
nasal, or is in the end of word, it changes to voiced unaspirated non-nasal stop closest in the
place of articulation. In the end of sentence, this changes optionally to voiced or unvoiced

unaspirated stop.
Rule B4 - unvoiced assimilation (cartva-sandhi)
The sitra is — khari ca (P 8.4.55)
+cons-sibilant-nasal > +stop-voiced-aspirate /_ +stop-voiced-nasal
Exception rule — vavasane (P 8.4.56) (repeated)
+cons+sib+stop-nasal > +stop+voiced;aspirate /_# (optionally)

+cons+sib+stop-nasal = +stop-voiced-aspirate /_# (optionally)

a1

When a consonant except nasal and semivowel is followed by voiced stop except
nasal, it changes to voiced unaspirated stop closest in the place of articulation. In the end of

sentence, this changes optionally to voiced or unvoiced unaspirated stop.
Rule B5 — dental semivowel assimilation (t->1)
The siitra is — torli (P 8.4.60)
+cons+stop+deﬁtal 2>/_Mm

When dental stop is followed by [1], it changes to [I}. When it is nasal [n], it changes to

nasal [1].
Rule B6 — nasal assimilation (anunasika-sandhi)
The sitra is — mo’nusvarah (P 8.3.23)
[m] > [m]/_#
[m] > [m]/_+cons
Extension rule — nascapadantasya jhali (P 8.3.24)
[n] —> [m] /_ +cons+stop-nasal+sib, not(ehd of word)
Extension rule — anusvarasya yayi parasavarnah (P 8.4.58)
[m] > +nasal+savarna(of following) /_ +cons+stop+semivowel
Exception rule — va padantasya (P 8.4.59)
[m] - [m] /_# +cons+stop+semivowel
Exception rule — mo raji sama[z kvau (P 8.2.35)

[m] - [m]/_ r(of Vraja+tkvip=rat)

42

Exception rule — he mapare va (P 8.3.26)

[m] -> [m]/_[h] [m] (optionally)
Exception rule — (v) yavalapare yavala veti vaktavyam

[m] - [y,v,]]+nasal / _ [h} ly,v,1] (optionally)
Exception rule — napare nah (P 8.3.27)

[m] - [n] /_[h][n] (optionally)

When [m] is followed by a consonant, or .[n] follows a non nasal consonant except
semivowels within a word, it changes to anusvara [m). The anusvara changes to nasal stop
closer to the following consonant, but in the end of word, it may optionally remain anusvara
if it is followed by a sibilant or [h]. Anusvara or [m] is always anusvara when followed by
sibilant. When [m] is followed by [h], one, it changes to anusvara and optionally it changes to
nasal consonant similar (savarna) to the consonant following [h]. i.e., if [h] is followed by

[m,n,y,v,1], [m] changes to [m,n] or nasal [y,v,1].
Rule B7 — consonant irﬁmertion or augmentation (dgama)
The sittra for 'k’ and ‘v’ insertion — rinoh kuk tuk sari (P 8.3.28)
[n] 2> +_[k] /_ +cpns+sibilant (optionally)
[n] 2>+ _[t] / _ +cons+sibilant (optionally)
Extension rule — (v) cayo dvitiyah Sari pauskarasaderiti vacyam
+cons+stop-voiced-aspirate > +aspirate / _ +cons+sib (optionally)
The sitra for ‘dh’ insertion — dah si dhut (P 8.3.28)

[s] - +[dh]_ / [d] _ (optionally)

43

Extension rule — nasca (P 8.3.30)
[s] > +[dh]_ /[n]_ (optionally)
The sitra for ‘t’ insertion — i tuk (P 8.3.31)
[n] =>+_[t] / _[$] (optionally)
Extension rule — che ca (P 6.1.73)
+vowel-length -2+ _[t] / -[ch]
Extension rule — anmanosca (P 6.1.74)
[a](of [an,man]) 2>+ _[t] / _[ch]
Extension rule — dirghat (P 6.1.75)
+vowel+length 2>+ _[t] / _[ch]
Exception rule — padantadva (P 6.1.76)
+vowel-length 2>+ _[t] / _# [ch] (optionally)
The sutra for ‘0’, ‘n’ and ‘n’ insertion — riamo hrasvadaci namunnityam (P 8.3.32)°
{a,n,n} 2 + [n,n,n]_ / +vowel-length _ +vowel
[n] 2 +[n]_ / +vowel-length _ +vowel
[n} 2 +(n}_ / +vowel-length _ +vowel

The satra for anusvara insertion — anunasikatparo’nusvarah (P 8.3.4)

+nasal 2 + _[m] / _[ru]

% This rule can be regarded as the rule of doubling

44

When [n,n] is followed by sibilant, similar (savarna) unvoiced unaspirated stop is
inserted attached after it. According to pauskarasadi, unvoiced unaspirated stop can
optionally become aspirated. When [s] is followed by [d,n], [dh] comes attached before it.
When [n] is followed by [$], [t] comes attached after it. After vowel followed by [ch], [t] is
always attached to it, but after long.vowel in the end of word, it is optionally inserted. After
[a] of [an,man] followed by [ch], it is always inserted. Nasal stops of dental, retroflex and
velar group when followed by a vowel and follow a short vowel, insert a similar nasal before
them. This rule can be said of doubling. When a nasal is followed by [ru], an anusvara is

inserted between them.
Rule B8 - consonant doubling (dvitva)
The siitra is — aco rahabhyam dve (P 8.4.46)
+cons-[h] - double / +vowel +[r,h] _
Extension rule — anaci ca (P 8.4.47)
+cons-[h] -> double / +vowel _ -vowel
Extension rule — (v) Sarah khayah
+cons+stop-voiced - double / +cons+sibilant _
Exception rule — nadinyakrose putrasya (P 8.4.48)
[t] -> not double / in [putra adini] (meaning anger)
[t] - double / in [putra adini] (meaning other thap anger)
Exception rule — triprabhrtisu sakatayanasya (P 8.4.50)
+cons-[h] - double / _ +cons +cons (optionally)

+cons-[h] -> double / _ +cons +cons +cons (optionally)

45

Exception rule — dirghadacaryanam (P8.4.52)
+cons-[h] -> not double / +vowel+length _ +cons

When a consonant except [h] comes after [r,h] followed by a vowel, it doubles. That
consonant if comes directly after vowel and is followed by consonant, it doubles. In the
similar environment, if there is cluster (samyoga) of three or more consonants, the consonant
is optionally doubled. Voiceless stops also double after sibilants. In compound with {adini],
the [t] of [putra] is not doubled if it gives sense of anger. In other senses, it also doubles.

Same is if other word followed by [putra]. After a long vowel, a consonant is never doubled.
Rule B9 — nasal to ru > visarga (then to ‘s’ and other forms)
The main sitra for nasal to ‘ru’ change is — samah suti (P 8.3.5)
[m](of [sam]) > [ru]/ _ [s](inserted sut before k.r)3
Extension rule — pumah khayyampare (P 8.3.6)
[m](of [pum]) => [ru] / _ +cons-voiced +voiced-(+stops-nasal)
Extension rule — (v) sampumkanam so vaktavyah samo va-lopameke
[m](of [sam,pum]) > s /_+cons-voiced
[m](of [sam,pum]) > ¢ /_+cons-voiced
Extension rule — naschavyaprasan (P 8.3.7)
[n] 2 [ru] /_ +cons+stop-velar-labial-voiced +voiced-(+stops-nasal)
Extension rule — nin pe (P 8.3.10)

[n)(of [nin]) > [ru] / _[p]

’ sam-paribhyam karotau bhiisane/sam-paryupebhyal karotau bhiisane (Pande:2004) (P 6.1.137)
46

Extension rule — kanamredite (P 8.3.7)
[n](of [kan]) -2 [ru] / _[kan] (doubled word)

When [sam] is followed by inserted [s] sound, as is added to [\/k{] after [sam,pari], the
last nasal sound becomes [ru]. Last nasal of [pum] is also changed to [ru] if it is followed by
unvoiced consonant followed by vowel, semivowel, nasal stop or [h]. [m] of [sam,pum] is
optionally changed to [s] or elided also. [n] other than that of [prasan] becomes [ru] followed
by dental, retroflex, palatal voiceless stop. Last sound of [nfn] becomes [ru] when followed by

[p]. When [kan] is doubled, its last sound becomes [ru].
Rule B10 - consonant elision (lopa)
The sigtra of ending consonant elision is — samyogantasya lopah (P 8.2.23)
+cons > ¢ /+cons _#
Exception rule — (v) yanah pratisedho vacyah
+cons-semivowel 2> ¢ [+cons _#
Extension rule — lopah sakalyasya (P 8.3.19)
[v,y] > @ /[a]_# (optionally)
Extension rule — oto gargyasya (P 8.3.20)
[v,y]-lax >0 [[lof]_#
[v,y]+lax - no change / [/o/] _#
Extension rule — uiii ca pade (P 8.3.21)
[viy] =>¢ /_#[u] (inflected [uii})
Extension rule — hali sarvesam (P 8.3.22)

[y] 2> ¢/ o(of [bho,bhago,agho]) _ +cons

47

[y] 2> ¢ /[/a/] _+cons
The sitra of within-word elision is — halo yamam yami lopah (P 8.4.64)
+cons+sibilant+stop+nasal 2> ¢/ +cons _ +cons+sibilant+stop+nasal
Extension .rule — jharo jhari savarne (P 8.4.65)
+cons+stop-nasal+sibilant - ¢/ +cons _+cons+savarna

When there is cluster of consonants in the end, the last soﬁnd is elided but if that
sound is semivowel, it is not elided. After [a], [y,v] of word end is optionally elided if
followed by voiced sound. After [bho,bhago,agho] or short vowel [/a/], the same are elided
when followed by a consonant, or by inflected form [u]. After [/o/], they are elided if they are

lax, otherwise they are not changed.
2.4.3 PRAKRTIBHAVA RULES

Rule C1 - pluta and pragrhya followed by vowel
The sitra is — pluta-pragryha aci nityam (P 6.1.125)
+vowel4protracted -> no change /_ +vowel
+vowel+pragrhya - no change /_ +vowel

The whole prakrtibhava applies in the environment similar to required for vowel
sandhi. When a pluta or protracted vowel, or pragrhya word is followed by a vowel, both
remain unchanged. Pluta is defined in 7 sitras including ikalo’jjhrasvadirghaplutah (P

1.2.27) and pragrhya is defined in 7 sitras.
Rule C2 - sandhi restriction and vowel shortening
The sitra is — iko’savarne Sakalyasya hrasvasca (P 6.1.127)
[i,u,r,]] -2 -length / _# +vowel-savarna (optionally)

{i,ur]] - no change /_# +vowel-savarna (optionally)

48

Extension rule — rtyakah (P 6.1.128)
[a,i,url] - -length / _# [/1/] (optionally)
[a,i,u,1,1] -> no change / _# [/1/] (optionally)

When a vowel from fi,ur,],] at the end of word is followed by non-similar vowel, it
does not conjunct and it optionally becomes short. When these vowels and [a] at the end of
word are followed by short vowel [/i/], then also they do not combine and first vowel

becomes short. This is also applicable in compound.
Rule C3 — sandhi restriction and nasalization
The siitra is - ano’pragrhyasyanunasikah (P 8.4.57)
Primary vowel-pragrhya -> +nasal / _# (optionally)
Primary vowel-pragrhya -> -nasal / _# (optionally)

Primary vowels at the end of words other than pragrhya do not combine to the later

and optionally they become nasal.
2.4.4 VISARGA SANDHI RULES
Rule D1 - visarga to dental sibilant
The sitra is — visarjaniyasya sah (P 8.3.34)
[h] > [s] /_ +cons-voice
Exceptioﬁ rule — rule D2; rule D3; rule DS;
Extension rule — so’padadau (P 8.3.38)
[h] = [s] /_ +cons+stop+velar+labial (not beginning of word)
Extension rule — namaspurasorgatyoh (P 8.3.40)

[h](of [namah,purah]) = [s] /_ verb (compound)
49

Exception rule —vtiraso ‘nyatarasyam (P 8.3.42)
[h](of [tirah]) > [s] /_ +cons+stop+velar+labial (optionally)
Extension rule — atah krkamikamsakumbhapatrakusakarnisvanavyayasya(P 8.3.46)
[h](not of indeclinable) -2 [s] /[/a/] _ [kr,kami ...] (in compound)

When visarga is followed by an unvoiced vowel, it changes to dental sibilant which
later gets other formations. But when it is followed by velar, it changes to jihvamiliya and
when followed by labial stop, it changes to upadhmaniya. When it is followed by sibilant, it
optionally changes to dental sibilant and optionally it may remain visarga. When visarga is
followed by a sequence of sibilant and unvoiced consonant, it is optionally elided. When
visarga is followed by velar or labial unvoiced stops, not in beginning of word, it changes to
[s]. In the same condition, visarga of [tiras] is optionally changed to [s] or remains visarga.
Visarga of [namah,purah] change to [s] if they are gati i.e., indeclinable followed by verb
beginning with velar or labial stop. Visarga of a word other than indeclinable after short
vowel] [/a/] is changed to [s] when followed by any word or form of [kr, kami, kamsa,

kumbha, patra, kusa, karni].
Rule D2 - visarga to retroflex sibilant
The siitra is — inah sah (P 8.3.39)
{h] =2 [s] /[,u,1]] _ +cons+stop+velar+labial (not beginning of word)
Exception rule — idudupadhasya capratyayasya (P 8.3.41)
[h](not of suffix) 2> [s] /[A /] _ +cons+stop+ve]ar+]abial
Exception rule — dvistriscaturiti krrvo’rtﬁe (P 8.3.43)
{h](of [dvis,tris,catur]) =2 [s] / _ +cons+stop+velar+labial

(meaning times) (optionally)

50

Exception rule — isusoh sdmarthyé (P8.3.44)

[h](of [is,us]) = [s] / _ +cons+stop+velar+labial (meaning ability)
(optionally)

~ Extension rule — nityam samase’nuttarapadasya (P 8.3.41)

[h](of [is,us]) > [s] /_ +cons+stop+velar+abial (in compound)

(_is, _us is not following word/is first word)

Visarga after [i,u,r,]] followed by a velar or labial stop only, not beginning the word
changes to retroflex sibilant. If the visarga follows short [/i/,/u/] of a word without suffix, then
it changes to [s] in the same condition in beginning of word also. Visarga of [dvis, tris, catur]
changes to [s] only in meaning of repetition (how many times) optionally, otherwise remains
visarga. Visarga of word ending in [is, us] changes optionally to the same in meaning of

ability only. But if the word is in compound and not following another word, it always

changes to [s].
Rule D3 - visarga to jihvamiliya and upadhmaniya (*:”)
The satra is — kupvoh :ka:pau ca (P 8.3.37)
[h] 2 [:(K)] / _ +cons+stop+velar
[h] 2 [(p)] / _ +cons+stop+labial

Visarga 1s when followed by velar stop (voiceless), it changes to jihvdmzilz’ya" and

when followed by labial stop, it changes to upadhmaniya’.
Rule D4 - visarga to ‘r’
The sitra is — ro’supi (P 8.2.69)

[n]}(of [ahan]) 2> r /_ not(nominal inflection suffix)

* Sound before k, kh similar to half visarga
> Sound before p, ph similar to half visarga
51

Exception rule - (v) riparatrirathantaresu rutvam ‘fdcyam |
[n](of [ahan]) > [ru] / _ [rOpa,ratri,rathantara]
Extension rule — (v) aharadinam patyadisu va rephah
[n](of [ahan,...]) - [r] /_[pati, ...} (optionally)

Ending of [ahan] changes to [r] when followed by a word different from nominal
inflection suffix. Before nominal suffix, it changes to [ru]. When [ahan] is followed by [riipa,
ratri, rathantara] its last sound [n] changes to [ru]. When word from group of [ahan] is

followed by group of [pati] etc., it is optionally changed to [r] or [ru].
Rule DS - visarga unchanged
The sitra is — Sarpare visarjaniyah (P 8.3.35)
{h] - [h} /_ +cons-voice +cons+sibilant
Exception rule — va sari (P 8.3.36)
[h] - [h] /_ +cons+sibilant (optionally)

When visarga is followed by a sequence of unvoiced consonant and sibilant, it
remains visarga, but if it is followed by sibilant, it optionally changes to dental sibilant and

optionally it may remain visarga.
Rule D6 — visarga elision (lopa)
The vartika is — (v) kharpare Sari va visargalopo vaktavyah
[h] > ¢ /_ +cons+sibilant +cons-voice (optionally)

When visarga is followed by a sequence of sibilant and unvoiced consonant, it is

optionally elided.

52

2.4.5 SVADI SANDHI RULES

Rule E1 - 5 of nominal suffix to ru
The sitra is — sasajuso ruh (P 8.2.66)
[s](df suffix [su]) 2> [ru]/ _#
[sl(of {sajus]) > [ru]/ _#
Exception rule — elision of ‘s’ — so’ci lope cetpadapiiranam (P 6.1.134)
[s](of [tad+su]>[sas]) => ¢ /_# +vowel(elision required for prosody)
Exception rule — rule D4;

Sibilant endings of nominal inflectional suffix and word [sajus] change to [ru] when in
the end of word. If [s] of [tad s, etad s] form is required to delete to fit prosody, then it is
elided. Ending of word [ahan] also changes to [ru] when followed by nominal suffix. Other
places it changes to [r]. When [ahan] is followed by [ripa, ratri, rathantara] its last sound [n]
changes to [ru]. When word from group of [ahan] is followed by group of [pati] etc., it is

optionally changed to [r] or [ru].
Rule E2 — ru to y or elision 2> u
The sitra is — (ru > y) - bhobhagoaghoapiirvasya yo’si (P 8.3.17)
frul > [y] /[o]}(of [bho,bhago,agho]) _ +voiced
[ru] > [y] /[/a/] _+voiced
Extension rule — vyorlaghuprayatnatarah sakatayanasya (P 8.3.18)
[v.,y] —2 [v,y]+lax / _# (optionally)
fv,y -2 [v,yl-lax /_# (optionally)
Extension rule - lopah Sakalyasya (P 8.3.19) (repeated from rule B10)

53

fv,y] > ¢ /[a]_# (optionally)
Extension rule — oto gargyasya (P 8.3.20) (repeated from rule B10)
[v,y]-lax >¢ [[lof]_#
[v,y]+lax -> no change / [/o/] _#
Extension rule — ufii ca pade (P-8.3.21) (repeated from rule B10)
(v.y] 2>¢ /_#/[u] (inflected [uii])
Extension rule — hali sarves’ém (P 8.3.22) (repeated from rule B10)
[yl 2> ¢ /[o](of [bho,bhago,agho]) _ +cons
[yl -=2>¢ [/[/a/]_+cons |

When [ru] folldws [bho, bhago, agho] words or [/a/] of a word, and is followed by
voiced sound, it changes to [y]. When it is followed by a consonant, it is elided. After [a],
[y,v] of word end is optionally deleted if followed by voiced sound. In the end of inflection,
[v,y] optionally become lax, and after [/o/], lax [y,v] is elided. [y,v] in the end of word is also

elided when followed by inflected word [u].
Rule E3 —a+rutoa+u > o
The satra is — ato roraplutadaplute (P 6.1.113)
(rJof [ru) > [u] /[/a/] _[/a/)
Extension rule — hasi ca (P 6.1.114)
[r](of [ru]) - [u] /[/af] _ +cons+voiced

After short vowel {/a/], {r] (of {ru]) is changed to [u] when followed by short {/a/] or a

voiced consonant.

54

CHAPTER THREE

COMPUTATIONAL PROCESSING OF SANDHI:
ISSUES AND CHALLENGES

Chapter three

COMPUTATIONAL PROCESSING OF SANDHI:
ISSUES AND CHALLENGES

3.1 INTRODUCTION

This chapter discusses the complexities inherent in the sandhi analysis of Sanskrit language.
Some of them may be applied to language in general but most are specific to Sanskrit because
of the unique properties of this language. The chapter also describes the basic algorithm for
reverse sandhi computation to develop a minimum working system for it. Thereafter certain
issues are presented which arise while processing sandhi through computer. An advanced
algorithm is also presented to meet these challenges. Finally, the chapter presents some still

un-resolved challenges.

3.2 COMPLEXITY OF SANSKRIT SANDHI

As as a language becomes more and more systematic, it tends to become more complex. The
sandhi formulations of Sanskrit as described by Panini are very complex from the point of
view of computer processing. Most of the problems of sandhi processing stem from the very
nature of Sanskrit language and the remaining are related to the limits of computer

processing. The significant problems in the sandhi processing by computers are the following.

3.2.1 INFINITELY LONG STRING

Sanskrit morphology allows very long words, which could, from the point of computer
algorithm, be infinitely long. . Sandhi will take place in most cases where more than one
word 1s used in continuum. There are however cases where just string concatenation occurs
without sound modification (sandhi). In many places, sandhi is compulsory but it is optional
in sentenée.. Some prose texts of Sanskrit as Kadambari and DasSakumaracaritam are good
examples of this feature of Sanskrit. A single sentence in Kadambari can run into several

pages. Some examples from Kadambart are as follows-

55

HANAIMEATAA AT >R G A H AR ATAH ST e Al Heh TG Aol g e Ih eI el

a1 (78 char) aFacar uRerar e 7oy vt | (pg 11)

[+ Lo
9 [

afaaaAeRyereaerdisa=th: (111 char) ... gEafafRaa@ | (pg 12)

2

s B e I E L E L L b O B P I B n e e eu
gfasfEaaiifar: (106 char) ... | (pg 30)

[P eI SRz oo fra e e P adhahliocgaTeraberIaeRaadle]
qfddFgaARoarge: (100 char)

AGQravsAvsddadeHargsa-Ra (121 char)mmm: - 1 (pg 38)

3.2.2 VERY SMALL SIZE OF WORDS

The Sanskrit language has a large number of small words. which makes the identification of
such words in continuous string very difficult. Almost all verbs are of single syllable and so
are many particles, prefixes etc of one letter only .- And these are often widely used cases
making it difficult to decide if they are independent words or part of other words. That a word
has to be of certain minimum length to qualify for Sandhi processing can be made in to a
useful criterion. But where the smallest wprd is one character long, the criterion will become

void every character in the the string will be tried for a word. Verb roots like 777 g #aretc.
and pronouns like &, &, & &, Hetc. are of one syllable but many are of one charaéter as
the dhatus 3, % and indeclinables I, , 3, Fetc.. Some longer dhatus get reduced to one
character as 7, &, getc. There are more interesting cases in which more than one morphemes
appears as one character after sandhi for example, prefix 37+ dharu 3(o7). Their separate

recognition is required in the places like siva+ehi = Sivehi. Here ‘e’ sound is result of three

sounds combined into one.

56

3.2.3 MULTIPLE COMBINATIONS LEADING TO ONE RESULT

There are many combinations and contexts of sounds where the resultant sounds appear
similar. One sound sequence is result of many sound orders. In the way of arriving basic
sounds from resultant sounds, many sound sequences correlate it. For example, a voiced
unaspirated stop results if a non-nasal stop consonant or a homorganic sibilant is followed by_
a voiced non-nasal stop according to jhalam jas jhasi (P 8.4.53). According to stoh Scund
Scuh (P 8.4.40), the palatal sound results if a dental is followed by a palatal. Now both these
rules cam apply in the generation of a sound. For example, /j/ can be a result of 8.4.53 as well
as 8.4.40. Third consonant of palatal stop class also can be result of four consonants of dental
class and dental sibilant. This can lead to several many-to-one cases and therefore make

reverse processing more complex.
3.2.4 SIMPLE CONCATENATION OF SOUNDS

Generally sandhi is compulsory between morphemes within the word and optional between
words in the sentence. But there are the cases where there is simple concatenation. This case
is different from prakrtibhava. In prakrtibhava, there is a possibility of sandhi but it is
restricted by rules while in this cases of simple concatenation, the words are joined together
without sandhi. Mostly this is the case with consonant ending words followed by vowel in the
next word — ajjhinam parena samyojyam. This condition requires checking the possibility of
occurrence of words in such environments before trying any sandhi rule. And this has to be
done after each character due to the fact that minimum possible length of the word could be
just a single letter. This is the problem of deciding whether a rule is to be applied here or not.

For example, & has two words (7ed g7 39/gY] (isavasyopanisad)) and there is no sandhi

in g@AIIfRATE but simple concatenations of constituents F& Jfa-fva 3ar4.

3.2.5 DEVANAGARI UNICODE IS NOT PHONEMIC

Unicode writing system is syllabic and not phonemic. There are some sounds which appear
differently, like vowel as in their nominal form and matra. Vowel /a/ not in the beginning of
the word does not appear as separate character. Pure consonants and consonants with /a/
sound have reverse situation in mapping the writing and the sound systems. Pure consonants

57

parallel to oné phoneme appears as two characters, a nominal character with halanta; whereas
consonant with /a/ sound, two phonemes appear as single character, a nominal consonant
character. When a consonant is concatenated with consonant, it is convenient that though not
in display, previous consonant is separately recognizable by computer in the form of two
characters. But when consonant is concatenated by vowel sound, pure consonant with halanta
does not exist. In case of vowels except /a/, the presence of vowels is indicated by its matra,
but in the case of vowel /a/, no such marker exists. For example, in the examples above,

unlike @ in ‘awd’, A 31 and A 3 do not exist explicitly in & and ¥ respectively.

3.2.6 INFLECTIONS WITHIN THE SANDHI STRING

Identification of word is made by vocabulary, both by human beings and machines. For a
machine, it is the lexicon given to it or automatically generated. Unlike humans, a machine
cannot have all words with inflected forms in its lexicon. To recognize inflected form,
recognition of inflection is required. Here again there are two possibilities - whether there will

be inflections or not. For example, af€A=aT and FrMardl. If the sandhi is within the word,
like in a compound, there may be inflection (as 3i=aar) or may not be (as &hard). But if

the sandhi is between the words, it is more likely that there is a suffix. The case of prefix is
similar. This requires any sandhi processing to identify the inflections prefixes/suffixes etc

before validating the word in case the word is not found in the dictionary.

3.2.7 VARYING SIZE OF AFFIXATION

When suffix identification is required, then the vafying size of suffix causes difficulty. Size of
suffix can vary from zero to length one less than the word, because there is a possibility of a
chain of derivational and inflectional suffixes. Sometimes the length of suffix can be said to
be negative because they do not add anything after the base but reduce some sound or sounds
like in n-ending bases in neuter gender- s8], 9H1. There is no such problem where the suffix
length is zero. Sometimes it is confusing how much of the end of the word is suffix. For
example in a bhyam-ending words, the possible suffix may appear to be any of bhyam (like in
haribhyam), yam (like in ramayam), am (like in satam) and m (like in vidyam). All possible

lengths are to be checked for identification of suffix to validate the segment. Identification of

58

20
[O]JOMEq [JJ12 COUAGDIION Of MLILINE 92 [p6 [JuangEe 12 2boken [P9t 12 mpA [pe Lujee2 Of 2suqpl
HnMugnz veacl 2begx morq pA moLq Juelesq [peA 2begk 10 coupunnW” [Pe R9U2KLI MLIfGLR

Lp6 2uuepur mung 2A2euw 12 wore bpouepc suq 1w (p1e* (pe ecubt (ojjome [pe 2beecy-

3310 COUAEULIOU O COULIVNONZ (RVIAHLLY) MBILIACG

{0 QIC[IOUYLA’ pnf DO[qe2Ieq

guq AIJIqILeq 92 HY oM} Hel v} A9 o i Hel o 3! He{ i Y]] 916 COLGCE YCCOLqING
{0 cpo026 0ue6 26 66 ¥ 21Wbjc cxgwble OF 0AcL AITIGIION” 7 21wb]e 2(LIN8 Heayd cIU pe 2bjig
26]6CI6q OU [6 Py2l2 Of LS]6AINCE JUQ CONIeX (" [YLBEL [J6 UNIPGL Of 26{2° PISBEL [P6 cpyljeuse
oue onfbnf [0 LILPEL IUIJASE (PG [6X[" YIIOUE [P6 DMUPECLE O] 26[2° OUG 26[O 2681IGN[2 12 [0 PG
1wbnr 2(UDR [pe 2hefcwe mIING (pe ongbng of esuqpt guIASEL’ J1Ke wolbp-yuy[AScL2’ Beeq
Ol AY[IqYfeq 26BWGU[S[IOUZ" [P6 UNWPGL Of 26f2 12 qisc{]A brobououyy 1o [pe jeusip of ipe
boiufe* wynA 1onuge of broceze1u® Ag[Igs[ION Of NDQ62IEq MOLGR - 9[] [P626 [69] [0 I JILEE 26(
IqEUHIIAIUG YLUXIIOU (0 AS[IqYIe mOLq YhDJAINE 9 unwper of wnje2’ 2caeLy] bozeipje esuqgps
MOLG2 mIfpon(29uqp1 sngjAere’ puqiug morge pA sbbyMuB 1nje guq AspIqenus 2cBwcnre’ guq

1Lps 1qeupipicsfon brocecee of morqe 10 2(UNE Uecqe [0 LOD 1U 9f [692f [PL6G mIAe - [IUQILE

30 INVUA TOOBZ CVN2IAC OAEE-CEVEEY LIOU

2[LIDR guq [I]] 9] [PC 26B1UCU[2 916 AS[IQUIE]’

AIJIQYIeq (PO 1qeDIIAINE JLUIXIIIOU SUq AS]IQS(INE" [PI2 12 [0 PG coufuneq {Ijj [pe cuq oOf [pe
1o (pe joob joL pUQILE (pe moLq mirpont 29uqpr sbbjAlg wnje suq ATpqInLE’ guq 11 VoI
11 {6 [6XICOU QG 9]] OF (PSU WMe[UOf Pe qe2ILIP]6’ [moLq WyA 9891w pe 1edmeq (o 8o 1w
broceze Bocz JouBelL g2 (6 2(LIE Boc? JoUTEL [Pne WIUA MOLG2 MIJ] P6 AS[IQULC] 1L [PEA eXI2f
29UQPI [IKE H2alycaddi{" [U [P9F C926° [P6 [SIGL 26BIUCT 12 9B91U broceeeeq 1oL 29uqpI suq P12
[PLonsp qICHIOUSIA Juq ILUIX CPeCK JpP6Le sie LLpeL bozaipijiiez of wole [psu oue bomg o

MPeu g 1nje 12 sbbpieq 9t 9 borur 1t 12 q1AIgeq 1010 (MO 268WGHI2 U POIY 916 [0 PG AI[IQIIG]

338 AVI'IDVLIOU Ok NUDEZCIBED 2ECINEUL2

IGEUILICI[TON 916 I2Cn226(I MOLK Of 2npyep (5000)

UcBIfIAc [eURIP eniIxee WELHOUG] YPOAG T2 ISP6L WOLE qIUICAI LLOp[eIUe IU efifyix

in Sanskrit are explicitly described and are applied in writing system also. On the one hand, it
makes thelanguage more compact and precise, on the other, it poses difficulties in formally
processing the written text. But from the view of speech processing, the correspondence of

speech and writing system has obvious advantages.

3.3 BASIC ALGORITHM OF SANDHI PROCESSING

Sachin (2007) presents a basic algorithm of sandhi analysis and its system constituents. The
modules of this system includes rule base, verb database, dictionary or lexicon, proper names
database, avyaya database and sandhi example base. It also includes supporting systems like
subanta analyzer, verb analyzer. Other constituents are technical — basic software and
programming language and objects. He has implemented only vowel sandhi analysis system.

Process flow of his system (as described in the dissertation) is as follows.

input Sanskrit text

i
viccheda eligibility tests

(pre-processing)
i
subanta processing

l
fixed list checking

|
search of sandhi marker and sandhi patterns

(sandhi rule base)

1
generate possible solutions

(result generator)

|
search the dictionary

1
search the results in the corpora (if not found in the dictionary)

l
output (segmented text)

Fig. 3.1 — vowel sandhi analysis system design by Sachin

Sachin (2007) in his dissertation under supervision of Dr. Girish Nath Jha describes the

implemented analysis procedure as following.
60

“The analysis procedure of the system uses lexical loc;kup method as well as
rule base method. Before sandhi analysis process, pre-processing, lexical
search of sandhi string in sandhi example base and subanta-analysis takes place
respectively. Pre-processing will mark punctuations in the input. After that, the
program checks the sandhi example base. This example base contains words of
sandhi exceptions (varttika list) and commonly occurring sandhi strings
(example list) with their split forms. These words are checked first to get their
split forms without parsing each word for processing. Although the extent and
criteria of storing words in example database will always be a limitation, but
still this will be useful as it will save processing time for the stored words and
step-up the accuracy of the result. After lexical search, subanta analyzer gets
the case terminations (vibhakti) separated from the base word (pratipadika).
Subanta analyzer also has a function to look into lexicon for verb and avyaya
words to exclude them from subanta and sandhi processing. The subanta
analysis will be helpful in the validation of the split words generated through
reverse sandhi analysis as the Sanskrit words in lexicon are stored in
pratipadika form. The reason to accumulate the words in pratipadika form is
that sandhi-derived words in input Sanskrit text may have any of the case
terminations. After subanta-normalization of input text, the system will look
for fixed word list of place name, nouns and MWSDD. The words found in
these resources will be let off from processing. The sandhi recognition and

analysis will be according to the process outlined in the chapter I11.”
His rule base is in the form of
Marker=pattern:(sandhi name, sandhi siitra)

Some example from his rule base

5= HI(EEEERY, wEUeRdela)om=dt GERaty valsgarE:);
SI=2+30(3rRfeat-y TS TARTE:) T=3+ (3ranfeat=y TSI);
F=3+3n(3feafcy valsTamEa:); =0+ (Fur FFY IR @=+30(gor ey
seoifa); a=fr+ c@ur whRw s guf)E=fean@Eer alu gREo);

61

F=437(F0] FFY g JUIR) =+ (dvar R TR aRar @)g=a (@
B ged) 0= +E(omfey g IOT);0= +3:(IUNRY TG IOT); =0+ (e
3G, IOT:); =0T+ (ORI 3G IOT);0= +U(RETHY O e/ AST); o=
+(gRaTY SmieRy aabar geaieny:); oR=or(RaRY SRy o
goferer) 3= AR (PR g IOT)cl=cnIm @Ry 3 wad &),
A= (@daley 3 @aot)= +amE@dERy we: gadf &)=
+3n (&t 3r: waof &),

In the above process, first input is made ready for sandhi processing by pre-processing. This
step checks if the text is in proper encoding and Devanagari script. It recognizes punctuations
and removes extra, possibly undesired characters from within the strings and makes proper
string. Then it takes words one by one and first checks them in the example base where the
complex and less common sandhi words are stored with their correct manual segmentation.
Before segmentation, it is fruitful to decide what is not to be segmented. The sandhi analyzer
system takes help of subanta analyzer which, before suffix identification, prepares the string
as told above. Then it identifies verbs from database of simple verb forms and indeclinables
from avyaya database. These words are identified as single words, therefore not required for
segmentation. Then it analyzes the remaining words assuming them to be nominal forms. By

analyzing the nominal suffix, the validation of the last segment of string becomes easy.

Now the system applies rules, finds sandhi marker, replaces with corresponding pattern, splits
the string into two segments, and sends each segment for validation. For validation, a segment
is searched into the MWSDD (Monier William Sanskrit Digital Dictionary). If it is not found
there, it is searched into proper names database, which he calls place name list and noun list.
If there also it is not found, it is searched in Sanskrit corpus for validation. The purpose of
validation is to check if the segment is a meaningful word. This is not the only way of word

validation, but other reliable ways like finite state automata are too complex to implement.

3.4 CHALLENGES AND EFFORTS TO MEET THEM

In the above quoted primary algorithm for sandhi analysis, some problems and errors are

recorded.
62

3.4.1 SERIES OF MORE THAN ONE RULE APPLIED AT ONE POINT

Rules of sandhi often do not give the final form on applying one rule. Many sandhi rules

apply serially one by one to give resultant sound. For example, ¥d S becomes dsalel

applying two rules stoh Scunascuh (P 8.4.40) and jhalam jash jhashi (P 8.4.53). For their
reverse application also, the rules in reverse will apply in reverse order. For rule writing, all
the rules which apply one by one at the same point should be collectively regarded as a single

rule.
3.4.2 OVER-GENERATION NECESSARY NOT TO MISS DESIRED RESULT

In generative sandhi, when rules are given with context, they result in one result; also if they
result in many results, all of them are possibly correct and desired provided rule is correct. In
contrast, in reverse sandhi rule, a resultant sound may be result of many sound combinations
and all those sound sequences should be recorded in rules as possible splits of resultant sound,
but, only a few of them will bé correct and in most cases, only one will be desired. This will
certainly over generate the results otherwise there will be chances to miss the desired result if

all possibilities are not considered.
3.4.3 DEFICIENCIES IN RULE WRITING SYSTEM

In the rule writing method mentioned above, it is not clear how context is defined. More
problems are there where the presence of vowel /a/ is effective. Here the rules are written to
find the marker of sandhi, the resultant sound, in the string as it appears. In the Devanagari
Unicode writing system, vowel /a/ is not represented by any sign except in the beginning of
the word, though absence of any vowel can be identified by halanta, and other vowels are
identified by their matra. In this rule writing system, /a/ is represented by space or nothing.
This problem of identifying each phoneme is tried by small embedded java program of
phoneme splitting which splits the vowels, consonants, anusvara and visargas from a
Devanagari Unicode string. Now the string is transformed parallel to phonemic
representation. If the rules are written in phoneme split form and input string is split into

phonemic representation, each sound of rule can be foundin the string if it occurs there. For

63

validation, the segments can be rejoined into Devanagari orthography. Phoneme splitter splits

Devanagari combinations as following:

Input: g Aaqd

Output: AHEH AMTIaNq3

Some rules are such that one marker is a substring of the marker of another rule. Some rules
are such that markers of both are similar and context of application of one rule is simpler and
that of another is complex. Thus scope of application of one rule is overtaken by another. In
cases like these two, if rule with wider scope is applied first, it leaves no scope for applying
rule of narrower scope. For these reasons, rule application ordering is to be carefully defined
keeping in mind their scope of application. One criterion is to keep rules with bigger marker
prior to rules with smaller marker. Another criterion is to keep rules of narrower scope prior

to rules of wider scope, in other words, apavada prior to utsarga or general rule.

3.4.4 HORIZONTAL VS. VERTICAL PROCESSING

One question about rule application is horizontal or vertical processing. Here horizontal
means application of one by one rule along the string on all possible saﬁdhi points of that rule.
In this method, one rule is taken and its marker is searched for application along the string left
to right, and it is broken according to rules at those points, and then the next rule is taken.
Vertical means application of all possible rules one by one on a possible point of sandhi. In
this method, string is taken, its first possible point of sandhi (a sound sequence) is considered
and rules are checked for application one by one. Whichever rules are applicable are applied
All the remaining rules are memorized/stored for further consideration. Then the next possible
point of sandhi is taken for the same vertical processing. Both of these methods have pluses
and minuses. In the horizontal method, if the same rule is applicable on all points, all the
segments are likely to be validated if it breaks at correct poiﬁts. But if there are more later
(which are to applied after the present rule according to the sequence of application) rules
applicable, and that in between two points of the present rule, the segment within would not
be validated. The invalidated string would again be considered for search and application of
later rules. This was the case where the sandhi is broken on desired or correct points. But it

also may be broken on undesired or incorrect point. That undesired break will make the

64

desired word unavailable even if the correct rules are applied on both edges of that word (that
is wrongly broken). Wrongly broken word (not full word separated with space, but word
which had to be a segment) neither will be sent for validation with its broken parts, nor will it
be found in the dictionary or corpus to be validated. Solution for this problem can be found in
two ways, either by rejoining (optionally) segments on break points of prior rules before
applying the present rule or by trying the new rule on fresh unbroken string. This solution also
can have problems. If the new rule is applied on fresh unbroken string, no word would be
validated which has two rules applicable on both of its edge points. Only first and final word
and the word with same rule applicable on both of its edge points will be validated. If the
breaks of prior rules are optionally rejoined, then a rule will be applied taking each point of:
break one by one as broken and unbroken. Then it would be a problem identify the sequence
of rule application, breaking string, rejoining previous breaks to cover all possibilities of

segmentations. No doubt, there is possibility of huge over generation.

Possible sandhi points Possibe sandhi poirts

Rules Rules

Herizontal pr
orizontal processing Vertica! processing

Fig. 3.1: horizontal and vertical rule application
3.4.5 COVERING ALL POSSIBLE SEGMENTATIONS

We have seen above that there are many reasons for generating many sets of segmentations.
There are many rules applicable on similar sound sequences. In a single rule, same sound
sequence may be split into more than one pair of sounds. Among the possible points of sandhi

splitting, some may be desirable and some may not be. If a point undesirably splits, it would

65

not let the correct word to be found. So in application of every new rule, the segmentation by
previous rules should be taken as done and undone optionally. Also not all can be taken as
done at a time and undone at another time, but one by one with combination of all others as
done and undone. That is the way to collect and recall all the permutations (and combinations
with order) of segments that correct combination should not miss. Taking each point of break
in two possible states — done or undone, the number of permutations will rise at least upto 2",
where ‘N’ is the number of points of segmentation in the string. If this is counted by the
combination method, the number of segmentations remains the same. Assuming that each
possible point of break has one rule applicable, not overlapping and has one solution, the

number of permutations will be as following:
C(N,0) + C(N,1) + s + C(N,N-1) + C(N,N)
Formula 3.1: calculating number of segmentation with one break at a point

Here ‘N’ is the number of possible points of break and ‘C(N,r)’ is the number of possible
combinations of ‘N’ items taking ‘r’ at a time. This is calculated by taking possibilities of zero
points broken,.one point broken, two points broken all points broken. Here the number
of permutations is calculated by combination because the order of segments is unchangeable.
The assumptions, on which the above calculation of segmentations is based, are rare. In fact,
sandhi markers (resultant sounds of sandhi) can overlap, more rules can be applicable on one
marker and one rule can break a marker into many. So, the real number of possible
segmentations will be far more than this calculation. The calculation mentioned above is
illustrated here with an example of a string with five possible sandhi break points. In the
example, states of possible points of sandhi are indicated by O or 1 where 0 indicates point
unbroken and 1 indicates point broken. Thus the original string is 00000. Then the possible

segmentations including original one will be as following:

C(5,0)=1-> 00000,

C5,1)=5-> 10000, 01000, 00100, 00010, 00001,
C5,2)=10-> 11000, 01100, 00110, 00011, 10100,
01010, 00101, 10010, 01001, 10001,

66

C35,3)=10-> 11100, 01110, 00111, 11010, 01101,
10110, 01011, 11001, 10011, 10101,

C(.4)=5-> 11110, 01111, 10111, 11011, 11101,
C5,5=1-> 11111,
Fig. 3.2: structure of segmentation sets of a string with five sandhi points

Thus the total number of segmentation sets in a string with five possible points of sandhi
under assumed conditions is 32 which is equal to 2°. In this calculation the possibilities of
simple concatenations are not calculated. The number of segmentations goes to 2° when there
are two conditions for each point possible. When there adds a third condition of break without
sound change, the number will go to 3° = 243. Here .again it is assumed that simple

concatenation also may be only on possible points of sandhi.

Where the number of breaks on each break point is one or more than one, the calculation

formula for number of segmentations will be different.
(N(B1)+2) . (N(B2)+2) . . . (N(Bp-1)+2) . (N(Bj)+2)
Formula 3.2: calculating number of segmentation with many breaks at a point

Here ‘N’ is the number of possible breaks at a break point and ‘n’ is the number of possible
break points and ‘B’ indicates break point. ‘+2’ indicates two conditions of that point —

unbroken and broken without sound change (to resolve simple concatenation).
3.4.6 SCREENING OF INVALID AND UNDESIRED SEGMENTATIONS

After collecting the permutations of segments, next step is the screening of the permutations.
First to select the correct sets and then to find relevant, desired and popular permutation/set of
segments. The goal is to arrive at one desired solution, and then it is success of system. Many

of the sets would be screened off due to having invalidated segments.

67

3.4.7 DIFFERENCE IN APPROACH OF HUMAN AND MACHINE

Difference in the process of analyses by human and computer and computer’s inability to

guess and intuition makes the task more challenging. The method of processing by the

computer is different from human’s method in many ways.

First, human simultaneously applies rules and recognizes meaningful words while
processing of computer is linear. Computer can apply rules one by one and cannot
recognize words simultaneously but after that.

Second, human when sees a string, he applies all his linguistic knowledge including
the éontextual and world knowledge simultaneously and therefore is able to see the
parts of the word instantly. On the other hand, computer sees string as a sequence of
symbols and it neither has intuition nor knows or can guess context.

Third, the size of active vocabulary of computer is different from that of human.
Human recognizes a meaningful word by his active vocabulary which is generally
smaller compared to what a computer can hold in its active memory. Human probably
organizes information based on popularity, frequency of use and pragmatics. He can
expand it according to need. Probably therefore, humans are able to recognize words
never before. In fact, human’s active vocabulary is set in active morphological
knowledge. On the other side, computer’s vocabulary can be potentially very large,
theoretically containing all base words of the language. Also a computer’s entire
vocabulary can be considered ‘active’. By plugging in statistical data information with
respect to popularity, frequency etc can also be stored. The multimodal systems can
even have algorithms to accumulate new words (as humans ‘do). But all this
knowledge is not available to:the machine simultaneously as it is to humans who have

common sense reasoning and unbelievable fast parallel processing capability.

3.4.8 VALIDATION OF COMPLEX WORDS

Validation of complex words/segments is also a challenge. Simple words can be validated by

finding their existence in the dictionary or corpus. In a complete system of Sanskrit analysis,

morphological analyzing tools require individual words to be identified, i.e., sandhi processed

or sandhi free text. And if sandhi analysis system depends on them, it is a vicious circle of

68

interdependency. Previously this chapter has discussed that what the problems in identifying
the suffixes are. When the word is with prefix and more than one suffix, identification and
validation becomes more difficult. There are more problems in identifying derived words.
They can-be compound of two or more words, can have serial siffixation, prefixation etc.
Though they have a system and cannot come in random order, but their possible structures are

various. Complexity of derived words is shown in the work of Surjit (2008) as follows -

tinanta |, Dhatu (VR)
subanta krt
; A
samasa stri 4— krdanta :
/ \ subanta
subanta v
samasa b taddhita
subanta
/ L 4 ¥ T samisa
subanta \
stri str1 J,
/ / stri

subanta subanta /
subanta

Fig 3.3: Nominal derivation from verb root'

In the diagram above, only variety of nominal derivation from verb root is shown. Besides

there are verbal derivatives derived from both nominal bases and verb roots.

3.5 SUGGESTED ALGORITHM FOR SANDHI PROCESSING

New algorithm will consider the problems and challenges discussed above. It would have
strategy of two levels - wider and deeper. Wider level algorithm is called macro algorithm and

the deeper level algorithm is called micro algorithm. Macro algorithfn deals with overall

' Surjit (2008: 26)
69

épplications of rules, how to prepare text for sandhi processing, how to find possibility of rule

application, how and in which order to apply rules, how to store all possible segmentations

and how to screen them and find the solution. Micro algorithm deals with application of an

individual rule on its possibility of application. Screening or validating is again a complex -

process which also needs a separate micro algorithm.

3.5.1 MACRO ALGORITHM FOR SANDHI PROCESSING

This algorithm controls overall process of sandhi splitting. The process is as follows-

Pre-processing

Pre-processing or preparing of the text for analysis. In this step, the text is checked for
proper encoding — whether the text is in Devanagari UTF-8 encoding. If it is, then
undesirable symbols like punctuation marks etc. Pass the text from subanta analyser
which analyses nominal inflections and identifies regular verb forms, indeclinables
and proper names from the verb database, avyaya database and names database.

Exclude verb forms, avyaya and proper nouns from sandhi processing. Bases of
subanta, unanalyzed subantas and unidentified words will be considered for sandhi

analysis.

Prepare each word for'sandhi -analysis

Take first/next string.

Split phoneme as in 3.4.3 above.

Count and mark the sandhi markers in the string with their serial number. Marker is
the set of sounds/sound sequence which appears as the result of a sandhi. Markers are
easy to count in phoneme split string than in continuous spelling (because each
phoneme is separately visible in phoneme split form. Markers are listed in a list in
which each marker is associated with a separate rule and they themselves are in
phoneme split form. More markers can be associated with one rule and more rules can
be associated with one sandhi marker but there should be one to one mapping not list

to one, one to list or list to list mapping.

70

- While coﬁnting, first consider larger markers then smaller ones. Even if markers
overlap partly or fully, each marker should be marked. One marker may be substring
of other; even then it is to be marked. The serial number of every marker should be
different and should be memorized in all steps till the segmentation process ends
(before validation). |

- Counting of marker should start from second phoneme, though first phoneme can have
sandhi. Next round of marker counting should start from phoneme next to one from
which previous round has started.

- Serial number of marker is in the form of 1a, 1b, 1c, 2a, 2b... constitutes of round
number as natural number (1, 2, 3...) and marker number in that round as alphabet (a,
b, c...). '

- Marker should be taken as prefix of the part of string starting from the phoneme of
counting.

- Start a list of segmentations. First segmentation is string itself. Segmentation means a
set of possible segments in order after sandhi analysis of the string. List should have
all the possible segmentations of the string applying rules of Sanskrit sandhi.

- List of segmentations has a serial number constituting of marker number and rule

number of applied rule in the form of 1a.(rule number).
Applying the rules

- Take first sandhi marker.

- Apply first rule associated with current marker and add segmented string to the list of
segmentations. If there are more than one result on applying the rule, add all of them
to the list. Other later sandhi markers marked on string will remain marked.

- If there is any rule associated with the current marker, apply the rule on that marker,
not on other possible markers. Add the segmentation(s) to the list of segmentations.

- If there is no other rule associated with the current marker, take the next sandhi

marker.

Loop: applying rule on next marker and add segmentation to the list

71

- Repeat the process mentioned in above three points — applying rule on marker, and
add segmentations in the list of segmentations.

- This process should be applied on all segmentations associated with prior round of
markers. Remember that marker serial number constitutes of round number and
marker number in a round of sandhi marker counting.

- In all segmentations to be applied a rule, rule should be applied on the marker of same
serial number at a time.

- In each round (not in each marker) one segmentation should be such that breaking the
string into two parts without any sound change. This is done to explore possibility of
simple concatenation. ‘

- All new segments thus found should be added in the list of segmentations.

- List completes when there are no more markers and no other rule left to be applied on

the string.
Screening or validation of segmentations

- Start validation process with verb database; customized corpus and customized Monier
Williams Sanskrit Digital Dictionary (MWSDD). They are customized by tagging
popularity of every word entry.

- Remove the sandhi marker marks from all the segmentations.

- Generate written forms of the word from phoneme split forms of segments by reverse
of phoneme splitter.

- In all segmentations, take each segment and search in verb database, MWSDD and
customized corpus and tag with its popularity index (1 — 10) tagged with the entry in
the lexical source (database, dictionary and corpus).

- The segments which are not found in the lexical sources and are with reasonable
length are sent for suffix identification (not analysis) and suffix removed segment is
again sent for validation to the lexical resources.

- If validated in inflection suffix identification, then the segment (without removing
suffix) is tagged with popularity index one less than in the source because the
identification of suffix is probable to be wrong. If it is validated in derivation suffix
identification, then the segment is tagged with popularity index two less than in the

source because here is more probability of false analysis.
72

- The segments which are not validated till.this stage should be tagged with popularity

index -1.
Statistical calculation for screening

- In the following steps, the data given in number is not static but can change depending
on tests and experiments.

- In the list of segmentations, if contents are more than 50, reject all the segmentations
which have any of segments with -1 popularity index. If they are 10 to 49, then reject
all the segmentations which have at least two sé_gments with -1 popularity index.
Don’t reject any segmentation at this stage if they are less than ten.

- If no segmentation has negative index or some of segmentations have one negative
index in their segments, take the average of popularity index of segments of all
segmentations. If the difference between highest and second highest average index is
more than a reasonable gap (here consider 0.6, which can change depending on tests
of its effect on correctness of selection), choose the segmentation of highest average as
correct segmentation.

- If more than one segmentation come in the range of highest average and less than it by
reasonable gap mentioned above, choose by higher frequency of higher popularity
index. For it, increase the weightage of index by adding to each the mean deviation —
difference from 5.

- Where there are segmentations with more than negative index, which may be the case
of less than ten segmentations, there will be different formula for selecting correct and
desirable solution. Here the reasonable gap is more than previously mentioned
condition (here consider 1).

- Take the average of the popularity index of segments in all segmentations. If no other
segmentation comes in the range of highest average and less than it by reasonable gap,

choose the segmentation with highest average as the correct segmentation.

3.5.2 MICRO ALGORITHM FOR SANDHI ANALYSIS

Macro algorithm is applicable on individual rule so it can be somehow different for different

rules depending upon the nature of application and condition of the rule. But there is some

73

common process applicable on all rules. The rule specific process is to be defined in the rule

itself. This algorithm may need illustration with an example of a specific rule. The common

| algorithm is as follows:

3.5.3

Take the string marked with the sandhi markers marked with their serial numbers on
which the rule is applied.

Select the first/next marker to apply the rule. The marker should be that with the serial
number provided by macro algorithm.

Select the first/next rule associated with that marker. The rule to be applied is also
decided at the macro level.

Obtain the definitions of technical terms used in the rule. Technical terms like
pratyaharas, vowel, consonant, voiced, unvoiced, velar, prefix, verb etc. are
separately defined as closed lists.

Check the conditions or environment of the sandhi point if they satisfy the conditions
as mentioned in the rule.

If yes, then make the replacement of sounds according to rule. If there is more than
one optional replacement, make all replacements and regard them all as separate
segmentations. Remove the mark on current marker from split string and leave the

other markers marked. Add this/these to the list of segmentations.

ILLUSTRATION OF A VYANJANA SANDHI RULE

Rule is in the form that may be applicable for both generative and analytical purpose. The

difference in both approaches will be that in the generative approach, LHS will be replaced by

RHS if the condition of LHS satisfy while in the analytical approach, RHS will be replaced by
LHS if the condition of RHS satisfies.

Marker: [ST51], Rule: (g7eil SEIfY + Eal: A=)

Rule: [?L%‘{fcz‘i{.HJ+[a:sU=[3fJ+[GL%U: (STat SRRy + Tl: ALATYY:)

Obtain the definitions of technical terms — not applicable here

Make pairs of original and replacements
74

\\\\\\\\\

Check the condition for replacement (of RHS)

A is followed by ST or 31
If satisfies, (as in § 37 [ST] 37 o 37) replace replacement by corresponding original
Replace first j with all 5 corresponding originals in above pairs
Thus obtain 5 segmentations and add them to list of segmentations
(€ 3@ Y3]
KR NCE .GU 3 < 3]
[/ 37[E 5 3 o 3]
(|3 s 3 A 3]
[37 (¥ <0 31 < 31
Split string from start of marker and add it to the list of segmentations
(| 37— (31 S 31 o 3]

Stop.

Rejoining of phonemes into spelling and validation/screening are part of macro algorithm.
Here illustrated algorithm shows two sitras combined as one sittra. Those two siitras also are
independent rules from this combined rule. Purpose of keeping combined rule different from
constituent rules is that once a rule is applied, it should not leave scope of applying other rule
at the same point. There are already many points of rule applications causing wide over-
generation. If analyzed points are again explored for new rule application, the process will

become endless. For example, in the above illustrated example, one replacement of [j j] is [j]
75

itself. If it is again applied this rule, it will start uncontrolled chain reaction and infinite

recursion.
3.6 RESEARCH METHODOLOGY OF THE CURRENT RESEARCH

The present work is interdiscipliﬁary in nature. The research methodology used in this
research involves the methodologies of linguistics, computational linguistics and software
development. Though these methodologies are interwoven -and distinct portions of the
dissertation under each methodology cannot be clearly separated, they can be identified in

different tasks of research.

Linguistic methodologies — for understanding sandhi analysis, the study of Sanskrit sandhi is
required. As sandhi viccheda aims at recognizing all the distinct words in a continuous string.
Words in sandhi do not necessarily occur in base form. They can occur with all their
complexity of structure. So, for the recognition of the words, the recognition of word structure
is required. The thorough study of Sanskrit morphology is required, also the understanding of
complexity of morphology. Detailed concepts of morphology is given in the first chapter
which is less Sanskrit specific and more general. For the computational application of sandhi,
not only understanding of rules is sufficient, but to understand them from the perspective of
linguistics. In the second chapter, the sandhi system of Sanskrit is introduced and sandhi rules
are classified in different order from Astadhyayi and Siddhanta-kaumudi and written in
phonological rule writing system as much as possible. All rules are categorized into five

categories and twenty eight rules.

Methodologies of Computational Linguistics — these are not independent from linguistic
methodologies but there is slight difference from computational perspective. Before writing
code of rules in formal language, they are to be written in formal way, which is closer to the
format which computer understands. Rules of AD are more formal than any documented
grammar of any natural language but they are not absolutely formal to write in formal
language. Study of possibility and problems in rule formalization with theories of
computational linguistics is needed. To explore the process of analysis to overcome the

problems, data designing, dictionary adapting, corpus customization according to the planned

76

strategy for sandhi analysis are also part of computational linguistics methodology. This is

discussed and presented in the third chapter of the dissertation.

Methodologies of software development — these involve algorithm development, tools
selection, data formatting, writing code of program, test and analysis of the system. The
algorithm is dived into two levels - macro and micro. It mentions and requires different
databases in a certain format. Both algorithms and data structure is given in the third chapter.
System is planned to develop in web architecture. The system tools are Java based. Front end
is done in Java Server Pages (JSP) running on the webserver called Apache Tomcat. The
processing databases are in text format and the programming has been done in the Java
environment. The system design, modules etc are illustrated in the fourth chapter of the

dissertation.

77

CHAPTER FOUR

SANDHI ANALYZER SYSTEM DESCRIPTION

Chapter four

SANDHI ANALYZER SYSTEM DESCRIPTION

4.1 INTRODUCTION

This chapter presents the implementation part of the research. The topic of the research is to
explore the issues and challenges. To explore these challenges, a web based system has been
developed which will be illustrated here in this chapter. Vyaiijana sandhi processing system is
integrated with ac-sandhi analysis system developed by Sachin as his M. Phil. research
(2007). This is a partial implementation of the algorithm discussed in chapter three. That
algorithm, especially the screening section is subject to test and experiment. The numerical
values are even more changeable. The developed computational model uses Java based web
technology. The system depends upon the formalization of Paninian rules and their
description in Siddhanta-kaumudi. The system accepts the Sanskrit text in Devanagari
Unicode UTF-8 format and returns output in similar format. The system takes the input in text
area, prepares it for processing, identifies possibilities of sandhi viccheda and segments from
those points. The segmentation is displayed as output only if all the segments are validated
either by their occurrence in the dictionary or occurrence of their stem after subanta analysis.
The present system also inherits the ‘Subanta Recognition and Analysis System for Sanskrit’
developed as part of M.Phil. research by Subash (2006). The chapter also describes the codes

of the modules of the system.

4.2 DATA DESIGN

The system consists of front end of Apache Tomcat server, programming is done in Java and
back-end is in form of different data files. Here the formats of data files are briefly explained

with their sample from file.

78

4.2.1 EXAMPLE-BASE OF THE SYSTEM

First data file is the ‘example_base’ . This contains uncommon sandhi words with their
segmentation. There are some data which cannot be explained by general rules but there are
special rules for them. There are some special rules which apply for less data. Some rules are
such that their implementation is too hard and it is better to declare direct result than explain
the process. Such data from computational purpose are easier and comprehensive to process
through example based or statistical techniques. The nipatana technique used in Paninian
system does the same by directly declaring the result of process instead of explaining. There
are some rules in Paninian system as ksayya-jayyau sakyarthe (P 6.1.81); krayyastadarthe (P
6.1.82) and vartikas as Sakandhvadisu pararipam vacyam which directly declare the word

forms.
4.2.2 FORMAT OF RULES

Second data file is ‘viccheda_pattern’ . This contains the formal rules of the vyafijana-
sandhi in a specific format. Rules of svara-sandhi from the system developed by Sachin
(2007) are also inherited and adapted in this format. These rules are of two types, static and
dynamic. Static rules have sounds themselves and dynamic rules consist of some technical
terms also which are in the form of Roman alphabet which have some meaning interpreted in

Java classes. The rule consists of ‘marker’, ‘replacement’ and sandhi name and sitra. Marker

2

and replacements together called ‘pattern’ are separated with each other by ‘=’ sign and

together separated from sandhi name and sitra by *:” sign. The patterns are in phoneme split

form. The sample from viccheda_patterns is given as follows with both types of rules.

T AFHMEFA T FMI TG T G F=B LGN ST FRNA
=LA SR SRS =TSR S0 SRS SA=ShSt@e S SIS
F=T+3L(FTAT ST ST S=0T+3T: (Sl SR SRS F=TrTETel ST A + ¥
STAATAT:); ST, ST=C+-ST: (STl STRL SHRY + TT: AT)3T =+ 3T (STl SR S + Tl ALATL); S
ST ST R + FY: APL:)F S=T+3:(3Tell ST ST $=3+3:(FAN A N3

E=THEETAT S ARN)S G=F+:(E@el A FRM;Z 3=+ (el A AR + FAE)3

79

T=5+3: (AT AU IR + TATE:);3 =+ 3:(Fell ST S + YoNIE:)3 G=l+E: G I A +

TTE:);3 =G G:(3eT Sl ST + Fege);

3§ § s=3 +s5:GA FART SATAKIAF § § =5 T+5:5A geaaid sHTAAN)I § ¢
$=3 +5:(5A FEAGT SATAIH):H § § 5= +5:(5A GG SATATH)E § § 5=
S+5:(3H AT AT, O] U] s=3 Ul+s:BA! ¥ SHUATA)F U1 U s=§
UT+s:(SAT GEAGTY SHAMDAA);3 U1 U1 s=3 Ul+s:(SAT gEAG SAUATA)D T s=b+2
$:(ADTE);p T s=p+ s:ARBIsTE);b T a=b+3 a:(qRDBIsfE);p T a=p+A a:(AWIs);

Here s=svara, v=vyaiijana, a=semivowel, p=unvoiced stop, b=voiced stop
4.2.3 CUSTOMIZING ‘MWSDD’

Third data file is th ecustomized Monier Williams Sanskrit Digital Dictionary (MWSDD).
Dictionary items have their popularity index from 1 to 10 to be marked with each as discussed
in the third chapter. This index depends upon the frequency of the lexical item in the corpus
and the complexity of word structure. This popularity index is needed in the screening of
undesired results. Current implementation does not use popularity index and dictionary is not

marked with that. The sample of dictionary is as follows.

ST, ST o ; ST SR el Seel 19, 3eiotet, 3aleT 319, 36K, Jalel 3alelsidet; 3Figar
;STRIST: 3eoTeh; 3etotet ;30 ToTet; 3ol 34 3371 3391, 3 371cd; 34 108, 348, 346 3 ol 3eitelT;
Wﬁﬁ;ﬂq;ﬂa}ﬁ;m;m;m;ﬁﬂ;m;m;ﬁﬁt{;m;m;m;m;
mﬁfﬁ;m;ﬁﬁﬁ;m;m;m;m;m;m;m;m;m;z
S 31T 3 S 3T, 38T, 30U, 3cUTded; 3cUTd: 3cUTe; 3cUA g, 3cUTAd ;3
AR S cUTA N 3cATAMN I AT ScUTRIG AT, I, 3T ; 3T 3 AT,
SR 3T, 3o, 3T, 3eU; 3R, 3TIH, 3T 3eutfiea; 3fcud: 3
W;m@ﬁ;ﬁﬁ;mﬁ ;W&W;W&W;W;W;m;mﬁ
TIE; 3¢9C; 3T SeTE AT, 3T dh; 3T, ScaTe ol 3caTTeeT; 3cUTeH; 3cqd; 3¢9, 3cadet; 3cT

afadar scafdd;sedfadaed; seafadg;3cafasuy seurd;3curdae, scarias;3fcucy;
80

4.2.4 DATA l';ILES OF THE INHERITED SYSTEM

Besides vowel sandhi, the system inherits subanta analyzer system developed by Subash
(2006). It is used in validating segment by analyzing subanta if it is not validated in its
original form. That system has two data files included in the present system — ‘sup_EB’
(subanta example base) and ‘sup_RB’ (subanta rule base). Uncommon and irregular
nominal forms are analyzed by subanta example base. Subanta rule base contains patterns of
nominal endings and their analysis which are identified in each word. Sample of ‘sup_EB’

is as follows:

ITAR:=3AIRHG, TUAT Chadel:TAqE=oTHI+Y, TIAT Uhagel, ST al=sTeld+2],
AT T, U=+ TUAT el F=g+Ft=t+Y, JUAT, Thauergl=a1+q,
TYUAT, ThAHT A=A, TUAT, Thadelsil:=sfi+y, TUAT, Thade, i =giAmaig,
UUAT, ThAUA =+, TUAT, UhadTl{=H+, UUAT, UhduelL=o(+q, TUHI,
THATT:=3+W, TUAT, THAATGI =G+, TUHAT, Thad AA=H+IHH, T,
TGATAH=AE, G YU THITTHA=IAG T T ChaT A=y awe

Uhddel H=de+{ , AT Thddel dl=sf+q , FIAT Thddel;si{:=o+Y , FHAT Thddel/ef+3TH

TAHAT aga’rm;
Sample of ‘sup_RB’ is as follows:

T=+13, T faah veraeel);oTcHT=cTche+, TUAT fasIfth Uehadel 3ol =Tofel+q TUAT
faufd vahaaend= 3w fauRefdr fwfes faoms= +3mfEdar ke
THAT); Y= +YEEH FAHTR ST =G STH(TAAT SEATT); =14 3TA(TAAT
faafts vahdden) M= aHGYAT @RS Uddde);= +ZOYAT ke
UaTe), A=A+ HEAA @ s veawen); Y=+ g(auAT [nfe vEags); d=qds
(qfeasa + q, AT, Thade; =+ 3/3E, AT/,
feaaa = rorayrysTa/sd, /g, Sgaae, TaHl/TE, Uhdds, i dA =T+ 39,

fean, whaaeyal=gaecr, G, Uhade@d A H= G+ TIH, JaralAqdiasaa,

81

oot =@y, g, dgaudgd=gmd, aqdll, UHaue @i=qde s,
aqllsas, agaEe=gddE, v, Ragdam= e, 98,

TgadeT;d=1+3, TEA, vhaa, =T+ g, T, Fga g, fod=Foay, T, thaaeT,

4.3 SYSTEM MODULES

System is developed in multi-tier web-architecture. Its front end is in JSP, a java based server
language. Back-end is data files in proper format containing data in UTF-8 Devanagari and
Roman characters and symbols. Programming is done in a few Java objects. Here it is

illustrated how different modules of the system function with the help of the sample code.
4.3.1 FRONT-END

Front end is Java Server Pages file named viccheda. jsp: The program is hosted on
Apache Tomcat 4.0, a java based web server. The page contains codes of HTML, JSP, Java

and Javascript languages. Following is the sample code of this page.

The following code sets the language, encoding and content type of the page and imports

package java.util.

<%@ page
language="java"
pageEncoding="utf-8"
contentType="text/html; charset=utf-8"

import="java.util.*"

o
AV

82

The following code imports user defined java package for sandhi processing named

SandhiAPI
<3@ page import="SandhiAPI.*" %>

The following code obtains values from checkbox and text area, to run in debug mode

decision from checkbox and input text from text area.

A
o

request.setCharacterEncoding ("UTF-8");

This code initializes input variables.

String itext = request.getParameter("itext");

int dbg = 1;

This code assigns values to input variables.

if (request.getParameter ("debug") == null)
dbg = 0;

String ch = "checked";

if (dbg == 0)
ch = "";

if (itext==null)
itext = "";
This code calls the main class ‘Viccheda’ to analyze sandhi.
Viccheda v = new Viccheda (dbg);

83

The following is the code of the form and text area to enter the input text, check debug mode

and submit button.

<FORM METHOD=get ACTION=viccheda. jsp#results name="iform"

accept-Charset="UTF-8">
<TEXTAREA name=itext COLS=40 ROWS=9><%=itext $%></TEXTAREA>
Run in debug mode

<input type=checkbox name="debug" <%= ch %> value="ON">
<input type=submit value="Click to sandhi-split (H-fazdg i) ">

This code calls main function splitText(itext) of main class Viccheda and displays the sandhi

segmentation result.
<% if (itext.length()>0)} { %>

<%=v.splitText (itext) %>

A

o
—
o
A\

The following code displays the process of analysis of the text if the checkbox “Run in debug

mode” is checked.

<% 1f (itext.length()>0) { %>

<%=v.printErr () %>
<% } %>

4.3.2 CORE PROGRAM STRUCTURE

Programming part of the system is in Java objects packaged in SandhiAPI. Main class is

Viccheda and other classes are Preprocessor, Segmenter, RSubanta, SupAnalyzer,

84

MatraVowel, and STokenizer. RSubanta and SupAnalyzer classes are for analyzing subanta

of a segment to get its stem to validate if it is not validated.

viccheda.jsp

Viccheda.java

Segmenter.java Preprocessor.java

STokenizer.java
MatraVowel.java

SupAnalyzer.java

RSubanta.java

“Fig. 4.1: Structure of core Java program for sandhi analysis
The following is the description of sample code of the main class.
The following code makes the class part of package SandhiAPI
package SandhiAPT;
The following code imports java packages to be used in the class.
import java.util.*;
import java.io.*;
The class starts

public class Viccheda/{

85

Declaration and initialization of different variables

Hashtable lex =null;

BufferedReader brl = null;
BufferedReader br2 = null;
BufferedReader br3 = null;

Preprocessor pre = null;
Segmenter s = null;
StringBuffer examples = null;
StringBuffer viccheda_patterns = null;
StringBuffer lexicon = null;
String errmsg="";
int debug = 0;
This is the class constructor, creates new instance of the class when called.
public Viccheda (int dbg) {
debug = dbg;

Within the class constructor, three buffered readers read three data files and assign the data to

three variables examples, viccheda_patterns and lexicon.

try{

86

brl = new BufferedReader(new

InputStreamReader (new FileInputStream("-—---"),"utf-8")

br2 = new BufferedReader(new

InputStreamReader (new FileInputStream({("----"),"utf-8")

br3 = new BufferedReader(new

InputStreamReader (new FilelInputStream("-———-"),"utf-8")

)

);

)i

examples = new StringBuffer(brl.readLine());

viccheda_patterns = new

StringBuffer (br2.readLine());

lexicon = new StringBuffer (br3.readLine());

brl.close();
br2.close(f;
br3.close();
Within the class constructor, this code calls class Preprocessor and Segmenter
pre = new Preprocessor (debug);

S = new Segmenter(viccheda_patterns,

examples, debug);

}// end of class constructor
This is the main function splitText(s) of the class

public String splitText(String s){

87

lexicon,

The following code obtains each word as separate token.
StringTokenizer st = new StringTokenizer(s, " ");
While loop to continue process till last token
while (st .hasMoreTokens ()) {

tkn = st.nextToken().trim();

Calling preProcess function which prepares the raw text for segmentation by the class

Preprocessor.

tkn= preProcess(tkn};

When token is in appropriate format, then calling function split(tkn) which analyzes sandhi by

function segment(tkn) of class Segmenter.
if (.. y{ //not punc and a simple string

tkn = split(tkn);

Definition of function preProcess(tkn) which calls function preProcess(tkn) of Preprocessor.
private String preProcess(String tkn) {
if (tkn.length()>0){

tkn = pre.preProcess(tkn);

88

return tkn;

Definition of function split(tkn) which calls function segment(tkn) of class Segmenter.
private String split(String tkn){
if (tkn.length()>0)
tkn = s.segment (tkn);

return tkn;

Function printErr() which prints the process of analysis when run in debug mode.
public String printErr () {

return errmsg + "
"+ s.printErr();

Besides main class, the most of the work of sandhi splitting is done by the ‘Segmenter’

class. Here is brief description of functions of the ‘Segmenter’ class-

The following code 1is class constructor which carries inherited values of
‘viccheda_patterns’ , lexicon and example (example base). This also calls two classes

‘RSubanta’ and ‘MatraVowel .

public Segmenter (StringBuffer vp, StringBuffer lex,
StringBuffer ex, int dbg) {

viccheda_patterns=vp;

lexicon=lex;

89

examples = ex;
debug = dbg;
subanta = new RSubanta();

mw = new MatraVowel ();

Following is the main function of the class which checks token in example base. If not found,

it checks patterns in rule base. If segmented, it validates the segments by different function.

public String segment (String tkn) {

Following code checks if token has an analysis in the example base and if found, gives result.

private String checkExampleBase (String tkn) {

The following function takes the token, splits into phonemes, checks applicability of rules

from rule base. If any rule is applied, it splits the string and sends for validation.

private String checkPatterns(String rs){

Following code inside checkPatterns(rs) calls function of class MatraVowel to split token into

phonemes.

String ors = mw.splitPhoneme (rs);

90

Following code takes the string with sign of segmentations, and picks one by one token to
validate by dictionary, otherwise by analyzing subanta and validating its stem. If all tokens

are validated, then only allows display as output.

private String validateSplit(String rs){

Following code inside validateSplit(rs) calls function of class MatraVowel to rejoin split

phonemes into Sanskrit spelling.
String ors = mw.joinSounds(rs);

Following code is inside the function validateSplit(rs) and gets subanta analyzed by

getStem(t1l) function of class RSubanta.

tl=subanta.getStem(tl);
4.4 INTRODUCTION OF THE SYSTEM

The system developed as the partial fulfilment of the research, to explore the issues and

challenges in vyasijana sandhi processing, is available on the internet. The current web

address of the system is http://sanskrit.jnu.ac.in/sandhi/viccheda.jsp and can be tested there.
The system includeé and extends the ac-sandhi analysis system developed by Sachin as his M.
Phil. research (2007) and subanta analysis system developed by Subash as his M. Phil
research (2006). The coding of the system has been done by Girish Nath Jha. Partial coding
and design change and adapting of vowel sandhi system has been done by Diwakar Mishra.
The Devanagari input mechanism has been developed in Javascript by Satyendra Kumar

Chaube, Dr. Girish Nath Jha and Dharm Singh Rathore.
4.4.1 HOW TO USE THE SYSTEM

The Sanskrit text for splitting can be entered in the text area as illustrated below. The text has

to be utf-8 Devanagari.

91

- e Shey= Tohe G

Computational Linguistics R&D

entre

it Sandhi Recopnizer and Anabyrer

The Sanskrit sandhi splitter (CONSONANT SANDHI) was developed as part of M Phil. research by Diwakar Michea (2007-
2009) undex the sapervisicn of Dr. Cirish Nath Jha. The system inchodes the VOWEL SANDHI analysis developed by Sachén
Kuemar as a part of M.Phil (2003-2007) under the supenvision of Dr. Girish Nath Tha The coding for this application has been done
by Dr. Girish Nah Jha and partially by Divakar Mishra.
 Enter Sanskrit test for sandhi processing (HIB-RITIZ g wow |
%) using sdjacent keybeard OR Use onr inbuflt TRANS
 umicode converter for fast nping
| exsmples

i R dobug mode T4

Screenshot 4.1: main page of sandhi analysis system

On clicking the button “Click to Sandhi split’ , the system will generate results for the input

text for those words which have sandhi situation inside them —

Sancthi Spitier at SN Hew Dethi - Windows Intemet Eqlarer.
oo e Y ‘

At Live: e Search g

YhatsNew Profile. Meih. Phota Calerdac. WSH . Share i Er g DL

S T WP Information fistof Mia & e > § DetMore Addoos = '

kit Sandi Splieter 2t 111, New Dot

The Sanskeit sandhi splitter (CON:
2009) under the supersision of Dr_ G
as apart of M Phil_ (2005
Gish Nith Tha und pertially

%ath fhar The system inchudes the VOWEL SANDHI mnalysis developed
ander the supervision of L Nath Tha. The coding for this applic
v Diwakar Nashea

Enter Sanskrit text for sanéki processing (HTQ.TIEAL &g 967
Z) using ajacent keyboard OR Use onr inbuilt {TRANS Devanagari

Chek 10 52907-Spit 5

Resuits

Screenshot 4.2: result from sandhi analysis system

92

The Devanagari text can be either typed using the onscreen keyboard or by the Roman

keyboard of the computer in the ITRANS scheme.

Before clicking the ‘Click to Sandhi split’ button, if the user checks ‘Run in debug mode’
checkbox, then the system displays all intermediate steps leading to the final results (please

refer to appendix for the result).

93

CONCLUSION

CONCLUSION

The research work had to explore the issues and challenges in computational processing of
vyafijana sandhi. It is an important aspect of language processing because in case of Sanskrit,
sandhi has a very important place. Though, mostly, the issues of vyarijana sandhi are common
to the other types of sandhi, yet it has some different issues too. To understand the issues in
computational processing, a close study of sandhi is required. Seeing the importance of
phonology and morphology in sandhi, both topics are studied from linguistics perspective.
Papers from first, second and third Sanskrit Computational Linguistics Symposia have been
very useful in understanding and conceptualizing the computational and mathematical aspects

of linguistics.

Before computation, formalization is a must step. In the second chapter, not only vyafijana
sandhi rules, but also the rules of all five types of sandhi are written in phonological rule
writing system. Internal sandhi is discussed in the chapter but rules are not written. Some
. issues are discussed in brief in first chapter and in detail they are explained in chapter three.
There are some issues which arise before starting formalization. Those are either in the nature
of sandhi or in the nature of Sanskrit language. Other challenges arise when one tries to
implement the system. Some of them can be guessed and studied before development but

some of them cannot come to sight until the system is implemented.

The main problem with sandhi analysis is to identify the correct constituent words. The words
can be of any of the structures. The interdependency of sandhi system and morphological
analyzer system is a major problem. On one side, morphological analyzer system requires
sandhi free text, on the other hand, sandhi analyzer needs morphological analyzers to identify
correct words which cannot be identified by dictionary. Inclusion of subanta analyzer in
sandhi system is a good example of this. Other major problem is to select or identify the
desired result out of many correct answers. There are other ways of context recognition and

sense disambiguation, but they make the task more complex and difficult.

The usefulness of sandhi analysis system is for any Sanskrit language processing tool. It may

be on morphological, sentential or discourse levels. Syntax can only be parsed after morph-

94

analysis which in turn requires sandhi processing. Besides this, the system can be used for text

simplification, self reading and learning also.

The third chapter not only finds challenges but suggests methodology and algorithm also to
meet them. The suggested system is though not yet fully implemented but shows the path to
overcome the problems. The suggested system also does not claim to completely solve the
problems and to be a fool proof system. Some parts of the algorithm, especially the screening
of the segmentation could be subjective. Even there, the numerical values are not very

objective. This part is subject to change depending on the results of the tests and experiments.

95

APPENDICES

Appendix-1

Sandhi Splitting System Result
Results without de'bug mode
Input =

SATSSTeTaT

Output =

Results
ST STeA=il (ST ST SIRY + TAl: A1)

SN ST (e SR AR + Tl A
Input =

SIS

Output =

Results

ST &2 (3T SRiYsd)

ST, S (STIT ST2Msd)

96

Appendix-2
Result in debug mode showing process of sandhi splitting

Input = SITATAT
Output (in debug mode) =

Results

ST AT (FAsTAT RS TATT AT)
STTE; FIAT (FTRISFAN AR STATART 1)
ST AT (T sTAT s AT an)

--ammmmmomm---START OF Viccheda . preProcess()-----------

input=STdteHTd]
output=FH ATl

input=aldleH i

output= T AT (TUSHATTHESTATAI 1)
STITE; FIAT (TRYsT AT ! 1)

ST AT (ARISTANT s oA THT)

————————————————— END OF Viccheda.sphit{}-------m--

97

START OF Segmenter.segment{)

START OF Segmenter.checkExampleBase()

{s=a3leHTdl

END OF Segmenter.checkExampleBase()-----—---------=ooerm-
---------------------------- START OF Segmenter.checkPatterns{}-—------—----rmr-mmeum-
Split input rs=FIeHTIcT--~m----=~o= starting to process (m, TSUEdIgia) sandhi----------

rs= FIMAAHATA AT

VP=s= +3:(TERTHAY, Us:agEdETd)
leftOfvP=s

rightOfvp= +3

s =51 31 3T 37 o 3 37 ¢ 3T

VP=0TT=04+ (3rarfeafay vatsaarare:)
leftOfvpP=01g

rightOfvp=2+

rs=al A I A H AT AT
VP=0ra=24 3 (3T Al valsaaraTa:)

leftOfVP=01g
rightOfvP=2437
------------ starting to process (FATCHTY TANSTATATT:) sandhi-------

rs =S 3 I H A F{ 3T A
VP=T=0u T HOfegiry velsTarars:)
leftOfvp=1

rightOfvP="34T

rs = AT AHIATIAI
VP=d=0+ T (3R E Y TS Tarag:)

leftOfVP=a
rightOfvP=0+T
~~~~~~~~~~~~ starting to process {3TATRUTRY TATSTATITE:) sandhi---------

rs =37 31 97 37 7 3T T HT
98



VP=T=2+ (3T af=y TalsIaamE:)

leftOfVP=9

rightOfVpP=<+

wemeeme—-starting to process (ARATY TATSTATAT:) sandhi--------—
rs =S A A HIATA AT

VP=T=C4 3 AT H Y TS gEaE:)

leftOfvP=4

rightOfVP=C437

rs =5 37 I I o HA AT A AT
VP=g=:T+3:(J0T HieHr goht FuTfy)
leftOfvP=g

rightOfvP=-1+3

rs =3 3T 3 3 o H 3T 3T
VP=T=:T+30:(Z0T FF g o)
leftofvP=a

rightOfvP=:T+37

rs =3 3T I A H AT 3T
VP== 3 (T0 Fietr 3! JuTf)
leftOfvP=7

rightofvp=fo+3

rs =G H I H A H AT 3T
\!Pxﬁzf@&i‘:(ﬁﬁlﬁﬁﬁ g FoTfa)
leftofvP=4

rightOfvP=T0+ 37

rs =5 A AH AT HT

VP=1; Y U=1; S+T(FU F8 35 JUITa)
[eftOfvP=0 YT

rightOfVP=0 34T

rs <1 31 9] 37 A 3 A 3T
VP=is 2}:1?:-::3 §+ﬁT:{?3U{ H%Igﬁm)
99



leftOfvP=: g T
rightOfvP=: 3+T

rs =51 3T I A o] H 3T I 3T
VP=T= + :(ST: e T)
leftOfvP=Y

rightGfVP= +

rs =51 3 I A H I3

ve=cig=ch (rfeafeyr valsgaram:)
leftOfVP=0Td

rightOfV?=<:>T+

rs = HIAH AT AT
vp=oi@=ct 3 Faiealey wasgargE:)
leftofvp=aTg

rightOfVP=:1437

rs =5 A AT AT IM 3T
VP=g=:T+ (3T Y TOIsTaIIg:)
leftOfvpP=d

rightofvp=:T+

rs =S HAFAH I AT

VP=d =0T+ 37 (AT =e TalsIqrara:)
leftOfvpP=q

rightOfVP=oT+3

rs =T 37 91 37 5 7 37 ¢ 37T
VP=g=+ (JUT Hie o] JUTTa)

leftOfVP=T
rightOfvP=0+
~~~~~~~~~~~~ starting to process {IJ0T HiwY T TR} sandhi--e-m--—

rs =Gl I HAHITH AT
VP=T =154 37: (0T T8 5T F0T)
leftOfvP=a
100

rightOfVP= 437

rs =0l T o] H AT 3T
VP=a=+ (JUT FieY S JuTfa)
leftOfvP=g

rightOfvP=0+

rs=ol 39 T+ A T A AT
VP=g=+37: (0T HiwY FeT JUfR)
leftOfvpP=g

rightOfvP=0+37

rs =S HIAHAHIAT AT
VP=g= + (Sl1T: AMFHIEY)
leftOfvP=4
rightOfvP= +
<mmeemmeee-starting to process (@fFar [gead/ e GRHETOT) sandhi---------
rs =51 3T AT 3T A H T A 3T ‘
vp=a=cY+ (Flea & G/ 3¢ g)
leftOfVP=T
rightOfvp=:T+
---e-—--—-starting to process (dledl A 9cTY) sandhiz-----
ro =S A I AH AT
vp=a=ct+ :(Far I Iead)
leftOfvP=q
rightOfvp=:+
wmmeenee - Starting to process (W 3%’3’{?;?37:) sandhi-—-----—
rs=A H I HAF AT
yp=ii= +§:{W SHCETIE
leftOfvP=2
rightOfvp= +8
meeeeem----SEAITING 10 PrOCOSS {m 3¢ 30T sandhi---veee--
rs =37 37 3 37 F F 3T A 3T
VP= =T (IO 3T T70T:)
leftOfvp=>
rightOfvp=20+8
101

rs=l HIAIHAHAT A

VP==0T+E: (IUTRIEY 31T I]0T:)

leftOfvP=2

rightOfV?:::}Hé

--—--—--—-starting to process (W ﬁ?gUT:) sandhij---~------

rs =51 3T 3] 3 H 3 37 .

VP=:= +8:(TUTHIFE 317e 3[0T:)

leftOfyp=:

rightOfvP= +3

weeemeemen--starting to process (TRRITTAY TS GREIHA/HIHTS) sandhi---—----
rs =3 A I AF T

VP=d= + T (ORI U3 U/ 3NATS)

leftOfvp=:1

rightOfvp= +T

—-mee———-starting to process (LAY TS REGH/ 3NHATETY) sandhi-—---—--
rs = A AFAHI AT

VP=0=01+ T {GURIH Y TS GTRYH/ 3HETH)

leftOfyp=2

rightOfvP=01+ 0

rs =51 31 9] 3 7 H 3T I HT

VP=0¥= + 35 (IUTETRE 3HTE 3[0T:)

leftOfvp=0Y

rightOfvP=+%

~emenemneee-Starting to process (IUTETRY 377E T[0T} sandhi---------
rs =Sl A H A H HTAHT

VP=:T= +3:(I[OTHTRY 3T 70T:)

leftOfvp=1]
rightOfvp=+3
———————————— starting to process (W 3T 39T sandhi-------mo-

rs =51 3 9 A H WA 3
VP=tT=0T 3 (AT 3778 70T

leftOfvp=at
rightOfVP=0l+ %
~~~~~~~~~~~~ starting to process {T{gff??:ff?-‘?l 3E 20T sandhi----eooev

102



rs =51 3T I H A H T AT

VP=:l=0l+ 3 (AOTa RN 3 IoT:)

leftOfvp=2T

rightOfVP=043

wmmmeeme-starting to process (REIH Y TTS qT&TH/ HIHIBTAL) sandhi------—--
rs =5 3T I 3 H AT 37

VP=(T= + 3T (Rl Ul qms{/sﬁm )

leftOfvp=cT

rightOfVP= +371

rs =of 31 I A« H T AT

VP= =T+ 31T {IEaH Y UTS TEqH/HTHTSIA)
leftOfvp=:Y

rightOfVP=oT+31

rs =S 31 3 3 o H AT < 3T
VP=el=gg+ :(FUT Wit goht JOTF)
leftOfVP=&

rightOfvp=c5+

rs =of 3T H o A AT A 3T
VP=eT=g+37:(UT AlFEr gohT AUITR)
teftOfVP=¢

rightOfVP=a5+37

rs =S HAAFAAHITEHT
VP=oT= +5:(JUTHTSE 37E I]0T:)
leftOVP=6]

rightOfvP= +

rs =] I A H AT A AT
VP (IR HT O,
leftOfvP=¢]

rightOfvp=uT+as

rs =S HIMAAH I A
103



VP=0l= +3{:(m Iygaeta ardl/ar mﬁi}

leftOfvP=

rightOfVvP= +3¢

-----—------starting to process (mm erral/ar gtznﬁ‘%r?r:) sandhi----------
rs =T H A AFH I AT

vP=cR=cl+H:(Reay sugeela aml/ar geamRren)

leftOfVP=0R

rightOfVP=0T+3%

rs =Sl A IIAAHAINTIA
VP=R= + (T[0T 3HTE; 0T
leftOfvP=Y

rightOfvP= +3

rs =S T AN A H HT 3T
VP=T= +3:(IUTHICY 31Te; [0T:)
leftOfVP=

rightOfvP= +3

rs= HAFAHIATAIN

v P::::{:ii:-f-t-i{:(?m A1 ?’;TUTI)
leftOfvP=Y

rightOfVP=0T+3

rs =51 H [ 37 A F 3T A I
VP=T=0T+ 3 (AIUTE Y 3T 90T
leftOfvP=Y

rightOfVP=0T+3

rs =57 3T T 3T A F AT 3T
VP=T=i+ (U] A gt IoiiR)
feftOfvp=Y
rightOfVP=3+
~~~~~~~~~~~~ starting to process (I0T Tied ZHT T sandhi--—---—-
rs =51 3T 9 H A H HT T
VP=T=+37:{F0] Ty gohl guifa)
104

leftOfvpP=X
rightOfVpP=0+37

rs =S A H A H T3
VP={=i+ (UL Al 3T Juifa)
leftOfvp=X

rightOfvp=:+

rs = A HAAHITA

VP=T=+ 370 FieY SR JuiTa)
leftOfVP=X

rightOfVP=0437

rs =0l A HAHATIHT
Vp=i= +¥(gRERT IR
leftOfvp=2

rightOfvp= +1

rs =S FH A AHIT AT
vp=C=cn U (gTEaiEy g
leftOfvp=<:
rightOfVP=CT+ T
————————————— starting to process (Wm sandhi-—-------
rs = 3 I 3 A F A
Vp=ii= +G:(m qﬁg’?ﬁ)
leftOfvp=1>
rightOfvp= +1
mnmne e SEANUNG tO process (E{m 5;‘@"1’%7) sandhi--~--m---
rs =37 37 97 37 = F HT T 37
vp=C=on T (g fgairy gigifa)
leftOfvp=3
rightOfVP=0h T
----——-——-starting to process {Wr {m sanghi--m-
rs =l I HAFH T AH
vp=ii= +3ﬁ:{3j§€f?§! m)
leftofvp=t
105

rightOfypP= +3

rs =51 3 A A AT AT I HT

vp=:d= +30:(gfgufru gfayf)

leftofvp=:1

rightOfvP= +3{

------------ starting to process (mm sandhij--—--ev
rs = A A A AF A

ve=clt=ct+ 3t (gieafeu gfadf

leftofvp=ct

rightOfVPz«:::-HSﬁ

leftofyp=:}
rightOfVP=0T+31

SEEUELCERE]
vP=: Y= STy 3%: Taof &)

leftOfvp=:T

rightofvp=:N+8

eemeeneestarting to process (ETEHTRY 37 @l) sandhi--——--
rs =T 3T I3 A A AT A

VP= = +3. (A 37 waol &)

leftOfypP=:
rightOfvP=:1+3
------------ starting to process (STEATY 3% Hgof &) sandhi---m-—

s =S HAAFATINAIN

vp==f8 [Erdufey 3 Tavt &)

leftofvp=:T

rightOfv p=fud A

———————————— starting to process (é\iéﬁ%r‘d 315 Tadf &1y sandhi---omem-
rs =F A HAH I

vp=N=F3: (Ererafaer v wavf &)

leftOfvp=:=1

rightofyp=fisg

106

rs =S A I H A A AT 3T
V== B (Eraafaer 31s: Taof &)
leftOfvpP=:3

rightOfVP=4%

~me-—-—--starting to process (STHY ¥ 3%: gauf &)

rs =S 3T M H AT 31T
VP=i= 3 (Eraafey 315: Faof i)
leftOfVP=:;

rightOfVP=43

............ starting to process (T8 gy 3a: Fauf &)

rs=o] A A AH NI A
VP:-:I(}\:{?B’:(W 31 ggof aé:)
leftOfVP=:

rightOfVP=34+3

—mmeeeeee-starting to process (GIHHY 37 Gavf &1e:)

rs =51 31 91 3 o H AT 30T

VP=0=0+ FHETETTRY 37 gl &)
leftOfVP=;

rightOfVP=1:+3

rs =of 3 9] 3+ H 3T I AT
VP=s=+ 3 (Eratey e gavf €y
leftOfVP=;

rightOfVP=1+3

************ starting to process (Sre A=Yy 3/ Faof &)

rs =51 3 9] 37 1 H T A 30T
VP=i=i A QI ATY 39 gaut &)
leftOfvp=;

rightOfVP=0+3

rs =of I A A H AT HT
VP==+ S (TR 3% gavl)
leftofvP=:;

rightOfVP=3+31

107

sandhi---=--~--

sandhi--—-------

sandhi-----m----

sandhi-—----mmev

rs = HIAHAHAT AT

V?=€I€=€Zg+3{:(m 37 gaol &)

leftOfvP=:

rightOfVP=1+3%

w-meemee--starting to process (TSR 37%: Aot &) sandhi---—--—-
rs =S FAHAHATI AT

Vp:a:;:-:ga;«»az;(aéwf?v Hep: |aut &)

leftOfVP=:;

rightOfvP=o5+3

------------ starting to process @rarafey sra: #aof) sandhi-—---
rs =3 3 H A HT A N |

VP=uT=T+ 3T(ETSTTRY 31 Tavt ard:)

leftOfVP=0T

rightOfVP=CT+ 31T

wemmeemeeeestarting to process (8T 3%: TI0f &18:) sandhi--------
rs =S T AT AH T 3T

YP=CT=0l+ 3 (TSR 315: Tauf &)

leftOfyP=0T

rightOfVP=CT+ 3

rs =S A AHITASA

VP=0T= +3TErS8Y e gauf aﬁé:)
leftOfVP=0

rightOfVP= +37

rs =S HIAHAHFT A

VP=:iT= + 3G 3 gaof &)
leftOfvpP=07

rightOfvpP= +37

rs =3 I A F HTHHT
VP=3T= 3T+ 3T (ETEATY 3 Taof &n)
leftOfVP=3TT
rightOfVP=3T+317
left token =S I HFAH
right token = HT
108

marked position =19
feft token =0T T [I o] A IT+3T <

right token =
marked position =26

START OF Segmenter.validateSplit()

tokens to validate = 3 37 91 3 =] FH JT+37 o 3T+37T
joined tokens to validate = 31 37 91 37 of H JT+3HT T+3TT

"HAIAHT T not validated
validated=false

--END OF Segmenter.validateSplit{)

------------ starting to process (&894 37: ggul &) sandhi-——-——
rs =0 H I FAH NI

VP=3TT=3T+ 31 (EraT-Y 37: Tt &reh)

leftOfVP=3T

rightOfVP=31+31

left token = A IHHAH

right token = T 3T

marked position =19

left token =3 T 9T H o H I+ A

right token =
marked position =26

- START OF Segmenter.validateSplit{})------------mmmermmees

tokens to validate = 5{ 3 9] 3 o H 3T+ A I+ H
joined tokens to validate = S] 37 9 H o1 H HT+H G H+3
STRTAST T 3T not validated

validated=false

———————————————————————————— END OF Segmenter.validateSplit{}---------r-mmmrmmmmmene

e SYAVEING 1O ProOCESS (Wﬂ He: Wm:) sandhi-----n----
rs = HAHAHITAIHT

VP=3T=30+ 3T (EaafeY e ool 2

leROfVP=3T

rightOfVpP=31+311

left token =51 A I H T H

109

right token = d 3%
marked position =19
left token =3 T I 3 o H 3+3T

right token =
marked position =26

START OF Segmenter.validateSplit{}---------------r-ommmn-

tokens to validate = 5 37 9] 37 o H 3H+3T o 31+37
joined tokens to validate = 3 37 9] 3T o # 3+3T o 3+3T

SIEHIT o 31 not validated
va!idated=fa§s_e

---------------------------- END OF Segmenter.validateSplit{)

----—-----—-starting 1o process (Eréafey 3 Haﬂ’faé:) sandhi-----—----
rs=S HAFAHAAT AT

VP=3T=3+37: (Y 37 Fauf ;)

leftOfvP=3T

rightOfvP=31+31

left token =S H I H A H

right token = { 3T

marked position =19

left token =S HIAFAHF+IH T

right token =
marked position =26

tokens to validate = 5{ 3 9] 3T o 3 3+ A 3+ H

joined tokens to validate = 51 37 91 37 o] #H 31+37 o 31+31
SEEHT A 3 not validated '
validated=false

———————————————————————————— END OF Segmenter.validateSplit(}---—-r-mmmmmmmoenes

oo starting 10 process (1.5 TG 0T H % &) sandhi-—n-m-
s =S A A A AT I AT

VP=t{=Fn(an I Jadt = LA

EeftOfvp:.;;;S}f

rightOfVP=(+3

110

rs=g{ HIAHAHATI3T

VP=ieas=+35: (a1, et Tt)

leftOfvP=odg

rightOfVP=0+cp

------—-—-starting to process (JUT B’ﬁi%ﬁi Wﬁ') sandhi-—---—-----

rs = A AFAF I3

vP=3=f2 T (IoT A g: Juifa)

leftOfvP=3

rightofvp=fg

—--mmeeme-—-starting to process (WSWSWKH sandhi-—--—-----
rs =S HIHAHINIH

VP=5 H=cl+ T TUSTATTARSTATTART 3T)
leftOfvP=el o]

rightOfVP=c+5]

--—--—----starting to process {?I'{ngd 13 %chvﬂ
rs =57 37 I 3T 7 F 3T 37

VP=5 =T (T oA A sTATIERT aT)
feftOfvP=e =1

rightOfvP=gs]

a)
3
4
&
3
o
=

rs =3 H I HAH 3T

VP= =+ (TR AT RS ATTET)
leftQfVp=o o

rightOfVp=s{+s]

rs =T 37 3 37 o F 3T A 3T

VP = H=+H (T ST ARSI aT)
leftOfvP=o1 7

rightOfVP=c+#

left token =31

H
right token = H7TH

AH
R
marked position =15

———————————————————————————— START OF Segmenter.validateSplit(}-—-----mm-rmrrmmemeeene

tokens to validate = S T T+H AT I 3T
111

joined tokens to validate = S 37 9] 31 +H 3T 30T
"SI’ validated

FHIAT validated
validated=true

- END OF Segmenter.validateSplit{)

ST H1TT validated

------------ starting to process (ngdilﬂ%wsgdnﬂw\i 4T} sandhi-—--------
rs =Sl A HAHIAHT

VP=a H=g+H: (TR seTATI AT Aeh!)

leftOfvp=A

rightOfVP=g+H

left token =3 T 9[X

right token = HTH 3T

marked position =15

tokens to validate = ST 31 9] 37 G+ 3T ¢ 31T
joined tokens to validate = ST 37 91 37 G+H T L 3T
ST validated

"HIAT validated
validated=true

oo END OF Segmenter.validateSplit{)-----—---vomnmoomn -

STeTE HTAT validated

rs =3 I F H AT F 3T
VP=5 =+ (T STATT TS ATHRT &)
leftOfVP=5

rightOfVP=e1+37

left token =3 HITH

right token = JTH 3T

marked position =15

tokens to validate = S 3 I H A+H T 3T

112

joined tokens to validate = S 37 31 37 o+ 3T I 31T
"ST9TeT’ validated

"HTAT validated
validated=true

END OF Segmenter.validateSplit()

STt HIdT validated

END OF Segmenter.checkPatterns()

segmented token= ST HIAT (WS@H@%SW an
SaTE, AT (TS AR s AT am)
ST AT (AR sTATIR AT al)

113

BIBLIOGRAPHY

Bibiliography

Books

» Abhyankar, K.V., 1961, ‘A Dictionary of Sanskrit Grammar’, Gackwad’s Oriental
Series, Baroda. |

= Bakharia, Aneesha. 2001, ‘Java Server Pages’, Prentice Hall of India Private
Limited, New Delhi.

* Ballantyne, James R., 1967, ‘Laghukaumudi of Varadardja’, Chaukhamba
Sanskrit Pratisthan, MLBD. Delhi.

» Bhandarkar, R.G., 1924, ‘First book of Sanskrit’, Radhabai Atmaram Sagoon,

‘Bombay.
» Bhandarkar, R.G., 1924, ‘Second book of Sanskrit’ Radhabai Atmaram Sagoon,

Bombay.

» Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, 1995, ‘Natural Language

Processing: A Paninian Perspective’, Prentice-Hall of India, New Delhi.

* Cardona, George, ‘Panini: his work and its tfaditions ’, Motilalal banarasidass,
New Delhi.
» Cardona, George, 1980, ‘Panini- A Survey of Research’, Motilal Banarasidass,

New Dalhi, First Indian Edition; First pubiished: The Hague, 1975

» (Cardona, George, 1999, ‘Recent Research in Paninian _Studies’, Motilal

Banarasidass, New Dalhi.

* Date, C.J., 1987, ‘Introduction to Database Systems’, Addison-Wesley, Reading.

» Fromkin & Rodman, 2003, ‘An Introduction to Language’, Thomson Wadsworth,

* Guru Prasad Shastri (ed). 1999, ‘Vyakarana-Mahabhdsya with Pradipoddhat tika’
Pratibha Prakashan, Delhi.
= [yer, K.A.Subramania, 1969, ‘Bhartrhari : A study of the vakyapadiya in the light

of ancient commentaries’ Deccan College, Poona.
* Joshi, Sivaram Dattatray & Roodbergen J. A. F., 1998, ‘The Astadhyayi of
Panini’, Sahitya Akademi, New Delhi.

114

Jurafsky, Daniel & Martin, 2005, ‘Speech and languages processing’, Pearson

Education Pvt. Ltd., Singapore. -
Kale, M.R., 1972, ‘A Higher Sanskrit grammar’ , Motilal Banarasidas, Delhi.

Kapoor Kapil, 2005, ‘Dimensions of Panini Grammar: the Indian Grammatical
System’, D K. Printworld (P) Ltd., New Delhi.

Katre, S.M., 1968, ‘Dictionary of Panini’, Deccan College, Poona.

Kielhorn, F., 1970, ‘Grammar for Sanskrit Language’ Chowkhamba Sanskrit

Series office, Varanasi.

Macdonell, A. A., 1997, ‘A Sanskrit Grammar for Students’, D. K. Printworld (P)
Ltd., New Delhi.

Mishra, Narayan (ed.), 1996, ‘Kasika of Pt.Vamana and Jayaditya’, Chaukhamba

Sanskrit Sansthan, Varanasi.
Muller, F. Max, 1983, ‘A Sanskrit grammar’ Asian Educational Services, Delhi.

Nautiyal, Chakradhar Hans, 1995, ‘Brhada-anuvad-candrika’, Motilal

Banarasidass, Delhi.

Panashikar, Vasudev Lakshman Shastri (ed), 1994, ‘Siddhantakaumudr’,
Chaukhamba Sanskrit Pratisthan, Delhi.

Pandey, G. D., (ed.), 2003, ‘Vaiyakarana Siddhantakaumudi’, Chaukhamba

Surbharati Prakashana, Varanasi.

Pt.Brahmadatta jigyasu (ed.), 1998, ‘Panini-Astadhyayi’, Ramlal kapoor trust,

Sonipat.
Reyle, U. and C. Rohrer (eds.), 1988, ‘Natural Language Parsing and Linguistic

Theories’, D. Reidel, Dordrecht.

Rishi, Uma Shankar Sharma (ed.); ‘Yaska-pranitam niruktam’, Vol. I- chapters 17;

Varanasi, Chowkhamba Vidyabhawan; reprint 2005; Vidyabhawan Sanskrit
Granthamala-57

Russell, Joseph P. 2002, ‘Java Programming’, Prentice Hall of India Private
Limited, New Delhi.

Sharma, Rama Nath, 2003, ‘The Astadhyayi of Panini’, Munshiram Manoharlal
Publishers Pvt. Ltd., Delhi.

115

Shastri Charu Deva, 1991, ‘Panini : Re-interpreted’ Motilal Banarasidass, Delhi.

Singh, Jag Deva, 1991, ‘Panini: His Description of Sanskrit (An Analytical Study
of the Astadhyayr)’ , Munshiram Manoharlal, Delhi.

Stall, J. F., 1985, ‘A Reader on Sanskrit Grammarians’, Motilal Banarsidas, Delhi.
Troast, Harald. 2003, ‘Morphology’, in ‘The Oxford Handbook of Computational

Linguistics’, Edited by Ruslan Mitkov, Oxford University pfess, New York, pp.
25-47.

Vasu, Srisa Chandra (ed. & Translated into eng.), 1982, ‘The Siddhanta Kaumudi
of Bhattoji Diksita, Vol. II, MLBD. Delhi.

Whitney, William Dwigth, 1983, ‘Sanskrit Grammar’, MLBD, Delhi.

Whitney, William Dwigth, 2004, ‘Sanskrit Grammar: Including both the

Classical Language, and the older Dialects, of Veda and Brahmana’, Munshiram

Manoharlal Publishers, Delhi, Reprint from the second edition of 1889.

Williams, Monier, ‘A Practical Grammar of the Sanskrit Language’, Clarendon
Press, Oxford

Wilson, H. H., 1841, ‘An Introduction to the Grammar of the Sanskrit Language’,
J. Madden & Co., London.

Articles and Papers

Bharati Akshar, Amba P. Kulkarni Vineet Chaitanya, 1996, ‘Challenges in

developing word _analyzers for Indian languages’, Presented at Workshop on

Morphology, CIEFL, Hyderabad.

Bharati, A., Sangal R., 1990, ‘A karaka based approach to parsing of Indian

languages’, proc of the 13 ™ COLING vol 3, pp 30-35, Finland.

Bharati, Akshar and Rajeev Sangal, ‘Parsing free word order languages using the

Paninian framework’, In ACL93: Proc.of Annual Meeting of Association for

116

Computational Linguistics, Association for Computational Linguistics, New York,

1993.

Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal, ‘A _computational

framework for Indian languages’, Technical Report TRCS-90-100, Dept. of CSE,

IIT Kanpur, July 1990b. (Course Notes for Intensive Course on NLP for Linguists,

Vol.1)

Bharati, Akshara, Amba Kulkarni and V. Sheeba, ‘Building a wide Coverage

Sanskrit Morphological Analyzer: A Practical approach, MSPIL-06.

Bhate, Saroja and Subbash Kak, 1993, ‘Panini’s Grammar and Computer

Science’ Annals of the Bhandarkar Oriental Research Institute, vol. 72, pp. 79-94.

Cardona, George, 2004, ‘Some Questions on Panini’s Derivational system’ In

SPLASH proc. of iSTRANS, pp. 3.

G.V. Singh, Girish Nath Jha, ‘Indian theory of knowledge: an Al

perspective’ proc. of seminar, ASR, Melkote, Mysore, 1994

Houben, Jan E. M., ‘Panini’s Grammar and its Computerization: A Construction

Grammar _Approach’, in Third International Symposium of Sanskrit

Computational Linguistics, Springer, LNAI-5406, p.p. 6-25

Huet, Gerard, ‘Towards Computational Processing of Sanskrit’

Hymen, Malcolm D., 2007, ‘From Paninian Sandhi to Finite State Calculus’ in

proceedings of FISSCL, INRIA, Paris, p.p. 13-21

Jha Girish N, 1994, ‘Indian theory of knowledge: an Al Qerspective" (proc. of

national seminar on “Interface Mechanisms in Shastras and Computer Science”,

Academy of Sanskrit Research, Melkote, Mysore, April, 1994)

117

Jha Girish N, 1995, ‘Proposing a computational system for Nominal Inflectional

Morphology in Sanskrit’ (Proc. of national seminar on “Reorganization of Sanskrit
Shastras with a view to prepare their computational database”, January, 1995)
Jha Girish Nath, Mishra, S K, Chandrashekar R, Subash, August, 2005,

‘Developing a Sanskrit Analysis System for Machine Translation’ presented, at the

National Seminar on Translation Today: state and issues, Deptt. of Linguistics,
University of Kerala, Trivandrum.

Jha Girish Nath, November, 2005 ‘Language Technology in India: A

survey’ Issue of C.S.I. magazine

Jha Girish Nath, October 2003, ‘A_Prolog Analyzer/Generator for Sanskrit

Subanta Padas’, Language in India, Volume 3: 11.

Jha Girish Nath, February 2004, ‘The System of Panini’, Language in India,

volume 4:2

Jha Girish Nath, March 2004, ‘Generating nominal inflectional morphology in

Sanskrit’ SIMPLE 04, IIT-Kharagpur Lecture Compendium, Shyama Printing
Works, Kharagpur, WB,

Jha, Girish Nath, December, 2003, ‘Current trends in Indian languages

technology’, Langauge In India, Volume December.

Jha, Girish Nath. ‘Regional & linguistic perspective on internationalization: the

case of Hindi/Sanskrir’, 2007.

Jha, Girish Nath. 2007, ‘Introduction_to Computational Morphology’, Lecture

delivered on 5 January 2007 at CDAC, Noida.

118

Joshi, Shivram Dattatreya, ‘Background of Ashtadhyayi’ in Third International
Symposium of Sanskrit Computational Linguistics, Springer, LNAI-5406, p.p. 1-5

Kapoor, Kapil, 1996. ‘Panini's derivation system as a processing model’ (to

appear in the proc. of "A Symposium on Machine Aids for Translation and
Communication, 11-12 April, School of Computer & Systems Sciences, J.N.U.

New Delhi, 1996)

Kiparsky, P. and Stall, J. F., 1969, ‘Syntactic and Semantic Relation in_Panini’
(Foundations of Language, Vol.5, 83-117).

Mishra, Anand, 2009, ‘Modelling the Grammatical Circle of the Paninian system

of Sanskrit Grammar’ in Third International Symposium of Sanskrit

Computational Linguistics, Springer, LNAI-5406, p.p. 40-55

Mishra, Anand; 2007, ‘Simulating the Paninian System of Sanskrit Grammar’ in

proceedings of FISSCL, INRIA, Paris, p.p. 89-95

R.M.K. Sinha, 1989, ‘A Sanskrit based Word-expert model for machine

translation among Indian languages’, Proc. of workshop on Computer Processing

of Asian Languages, Asian Institute of Technology, Bangkok, Thailand, Sept.26-
28, 1989, pp. 82-91.12.

Ramakrishnamacharyulu, K.V., ‘Paninian Linguistics and Computational

Linguistics’, Samvit, Series no. 27. Pp. 52-62, Academy of Sanskrit Research,
Melkote, Karnataka (India), 1993.

Scharf, Peter M., 2007, ‘Modeling Paninian Grammar’ in proceedings of FISSCL,

INRIA, Paris, p.p. 77-87

119

Scharf, Peter M., 2009, ‘Levels in Panini’s Astadhyayi’ in Third International

Symposium of Sanskrit Computational Linguistics, Springer, LNAI-5406, p.p. 66-

71.

Thesis and Dissertations

Agrawal, Muktanand, 2007, ‘Computational Identification and Analysis _of

Sanskrit Verb-forms of bhvadigana’, submitted for M.Phil degree at SCSS, JNU.

Bhadra, Manji, 2007, ‘Computational Analysis of Gender in Sanskrit Noun

Phrases for Machine Translation’, submitted for M.Phil degree at SCSS, JNU.

Chandra, Subash, 2006, ‘Machine Recognition and Morphological Analysis of

Subanta-padas’, submitted for M.Phil degree at SCSS, JNU.

Chandrashekhara, R., 2006, ‘POS Tagging for Sanskrit’, submitted for Ph.D

degree at SCSS, INU.

Jha Girish N, 1993, ‘Morphology of Sanskrit Case Affixes: A Computational

analysis’ Dissertation of M.Phil submitted to Jawaharlal Nehru University, New
Delhi-110067.

Kumar, Sachin, 2007, ‘Sandhi Splitter and Analyzer for Sanskrit’ (with special

reference to aC sandhi), submitted for M.Phil degree at SCSS, JNU.

Mishra, Sudhir Kumar, 2007, ‘Sanskrit Karaka Analyzer for Machine Translation’,

submitted for Ph.D. degree at SCSS, INU.

Singh, Surjit Kumar, 2008, ‘Krdanta Recognition and Processing for Sanskrit’,

submitted for M.Phil degree at SCSS, JNU.

120

Web References

= Academy of Sanskrit Research, Melkote,

http:/fwww.sanskritacadenty.org/About.htm (accessed: 22 April 2009).

» Anusaaraka, http://www.iiit.net/ltrc/Anusaaraka/anu_home.htiml (accessed:

10April, 2009).

s AU-KBC Research Centre - http://www.au-kbc.org/frameresearch.htinl (accessed:

25 April 2009).

» Baraha, http.//www.baraha.com/BarahaIME.htm (accessed: 6 July 2009).

» Brown University research http://research.brown.edu/research/ (accessed: 15 June,

2009).

» C-DAC, lutp.//www.cdac. in/html/ihg/activity.asp (accessed: 20 April 2009).

» Computational Lingunistic R&D, J.N.U., Ahttp://sanskrit.jnu.gc.in/index.jsp
(accessed: 2 May 2009).
= Department of Sanskrit UOHYD >> sandhi

http://sanskrit.uohyd.ernet.in/~anusaaraka/sanskrit/samsaadhanii/sandhi/index.htm

1 (accessed: 20 April, 2009).

» Desika, hup://tdil.mit. gov.in/download/Desika. htm (accessed: 10 May, 2009).

n http:flenwikipedia.org/wiki/Clay_Sanskrit Library (accessed: 2 July 2009).

s htp:fdil.mit. gov.in/languagetechnologyresourcesapril03.pdf (accessed: 20 April

2009).

v httpfwww.acroterion.ca/Morphological _Analysis.htiml (accessed: 15 April 2009).

v hittp/fwww.cfilt.iith.ac.infwordnet/webhwin/wn.php (accessed: 25 April 2009).

» hnpffwww.comp.lancs.ac.uk/ucrel/claws (accessed: 20 April 2009).

121

http.:/f/www.languageinindia.com/feb2004/panini.html (accessed: 2 May 2009).

http:/fwww.sas.upenn.edu/~vasur/project.html (accessed: 18 April 2009).

http:/fiwww.sil.org/pckimmo/ (accessed: 18 April 2009).

1T, Bombay, http://www.cse.iith.ac.in (accessed: 25 April 2009).

Java Server Pages, http://java.sun.com/products/isp/ (accessed: 5 July, 2009).

Java, Servlet, http.//iava.sun.com/products/serviet/ (accessed: 5 July, 2009).

John Clay, http./fwww.claysanskritlibrary.org/ (accessed: 2 July 2009).

Language Processing Tools: TDIL website, http://tdil.mit.gov.in/niptools/ach-

niptools.htm (accessed: 20 April 2009).

Oflazer, Kemal http:/ffolli.loria.fr/cds/2006/courses/Oflazer. ComputationalMorph

ology.pdf (accessed: 15 April 2009).

Peter M. Scharf and Malcolm D. Hyman, http://sanskritlibrary.org/morph/

(accessed: 18 April, 2009).

RCILTS, School of Computer & System Science, http://rcilts.jnu.ac.in INU, New

Delhi. (Accessed: 20 April 2009).

RCILTS, Utkal University, http://www.ilts-utkal.org/nlppage.htm (accessed: 15

April 2009).

RSV Tirupati, http://rsvidyapeetha.ac.in and http://www.sansknet.org (accessed:

22 April 2009).

Sanskrit heritage site >> Sanskrit Reader http://sanskrit.inria.fr/DICO/reader.html

(accessed: 10 April, 2009).

The Web server, Apache Tomcat, htzp://www.apache.org/ (accessed: 5 July 2009).

Wikipedia, http:/fen.wikipedia.org/wiki/Natural language processing (accessed:
15 April 2009).)

	TH178060001
	TH178060002
	TH178060003
	TH178060004
	TH178060005
	TH178060006
	TH178060007
	TH178060008
	TH178060009
	TH178060010
	TH178060011
	TH178060012
	TH178060013
	TH178060014
	TH178060015
	TH178060016
	TH178060017
	TH178060018
	TH178060019
	TH178060020
	TH178060021
	TH178060022
	TH178060023
	TH178060024
	TH178060025
	TH178060026
	TH178060027
	TH178060028
	TH178060029
	TH178060030
	TH178060031
	TH178060032
	TH178060033
	TH178060034
	TH178060035
	TH178060036
	TH178060037
	TH178060038
	TH178060039
	TH178060040
	TH178060041
	TH178060042
	TH178060043
	TH178060044
	TH178060045
	TH178060046
	TH178060047
	TH178060048
	TH178060049
	TH178060050
	TH178060051
	TH178060052
	TH178060053
	TH178060054
	TH178060055
	TH178060056
	TH178060057
	TH178060058
	TH178060059
	TH178060060
	TH178060061
	TH178060062
	TH178060063
	TH178060064
	TH178060065
	TH178060066
	TH178060067
	TH178060068
	TH178060069
	TH178060070
	TH178060071
	TH178060072
	TH178060073
	TH178060074
	TH178060075
	TH178060076
	TH178060077
	TH178060078
	TH178060079
	TH178060080
	TH178060081
	TH178060082
	TH178060083
	TH178060084
	TH178060085
	TH178060086
	TH178060087
	TH178060088
	TH178060089
	TH178060090
	TH178060091
	TH178060092
	TH178060093
	TH178060094
	TH178060095
	TH178060096
	TH178060097
	TH178060098
	TH178060099
	TH178060100
	TH178060101
	TH178060102
	TH178060103
	TH178060104
	TH178060105
	TH178060106
	TH178060107
	TH178060108
	TH178060109
	TH178060110
	TH178060111
	TH178060112
	TH178060113
	TH178060114
	TH178060115
	TH178060116
	TH178060117
	TH178060118
	TH178060119
	TH178060120
	TH178060121
	TH178060122
	TH178060123
	TH178060124
	TH178060125
	TH178060126
	TH178060127
	TH178060128
	TH178060129
	TH178060130
	TH178060131
	TH178060132
	TH178060133
	TH178060134
	TH178060135
	TH178060136
	TH178060137
	TH178060138
	TH178060139

