
Evaluation of the effect of Queuing, Scheduling and Dropping
techniques on the QoS (quality of service) in DiffServ

environment using simulation

Dissertation
Submitted in the partial fulfillment of the requirement for the

award of Degree of

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE & TECHNOLOGY

BY
MANISH BANSAL

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI-110067

January 2004

1

CERTIFICATE

This is to certify that the thesis entitled "EvaJuation of the effect of Queuing,

Scheduling and Dropping techniques on the QoS (quality of service) in DiffServ

environment using simulation", being submitted by Mr~ Manish Bansal to the School

of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi in partial

fulfillment of the requirement for the award of the degree of Master of Technology in

Computer Science & Technology, is a bonafide work carried out by him under the

guidance and supervision of Prof. G. V. Singh, during the Monsoon Semester, 2003.

The matter embodied in this dissertation have not been submitted in part or full to any

other University or Institution for the award of any degree etc.

~J
MANISHBANSAL

(Student)

Pro~u Prof. G.~:;;'~
Dean, SC&SS,

JNU, New Delhi-110067

(Supervisor)

b~of/2()04

3

... dedicated to ·

my beloved brother

ACI(NOWLEDGEMENT

I would like to pay obeisance at the feet of my parents for their blessings that are always

with me in all my aspirations including my academics. I would like to sincerely thank

my supervisor Prof. G.V. Singh, School of Computer and Systems Sciences, Jawaharlal

Nehru University for his able guidance, encouragement and support provided in

successful completion of this project.

I would like to forward my sincere thanks to the dean, Prof. Karmeshu for providing the

necessary facilities. My special thanks go to Mr. Jugal Kishore for his kind and

consistent help throughout the making of this dissertation. I will acknowledge the

efforts and knowledge put by the development team of VINT project team at UC

Berkeley, for developing the network simulator and making its source code available on

the Internet as a freeware. I take this opportunity to thank all the faculty members and

friends for their help and encouragement during the course of the project.

~~~~' 
Manish Hansal 

· (Student) 

4 



ABSTRACT 

In this dissertation work, the simulation study of effects of various queuing, scheduling 

and dropping techniques on the quality of service in DiffServ environment has been 

done by using network simulator NS2 devepoled at UC Berkeley. NS2 provides the 

simulation environment for the DiffServ networks. A Tel script specifying the network 

configuration, data rate and packet size is given as the input to the simulator. Various 

policies and resource management techniques are used to control the end to end traffic. 

NS2 supports various algorithms for the simulation of the DiffServ traffic. These 

algorithms are used to analyze the different combinations of the traffic with the above 

mentioned parameters. The traffic is traced and 'viewed using the Nam network 

animator. After the simulation process the resulted data have been analyzed for the 

different output parameters such as number .of lost/dropped packets, delay measurement 

and bandwidth utilization. 

The simulation study shows that it is possible to implement the DiffServ architecture to 

provide the QoS in the Internet. These QoS can be grouped in to various categories 

depending on the user's SLA (Service Level Agreement) with the ISP (Internet Service 

Provider). 

5 



CONTENTS 

1 INTRODUCTION 8 

1.1 Background ................................................................. 8 

1.2 Various mechanisms to provide the QoS over Internet ............ 9 

1.2.1 Integrated Services and RSVP ................................................... 11 

1.2.2 Differentiated Services (DS) .................................•.................... 13 

1.3Basic building blocks of DS architecture ............................. 15 

1.3.1 DS code-point ..........................................••....................•...•... lS 

1.3.2 DS domain ............................................................................ 16 

1.3.3 Per HopBehavior ................................................................... 16 

1.4Conceptual functioning of DiffServ architecture ................... 18 

1.5The security aspect of DS architecture ............................... 19 . 

1.6 Problem Definition .....•......................•.......................... 20 

2 PACKET FORWARDING MECHANISM FOR THE 

SIMULATION: ASSURED FORWARDING 21 

3 ALGORITHMS/METHODOLOGY USED FOR THE 

SIMULATION 23 

3.1 WRR (Weighted Round Robin) Algorithm ......•.•.....•.•........ 23 

3.2 Class Based Queuing (CBQ) .......................................... 24 

3.3 Drop Tail Queuing ..•...................................•............... 24 

3.4 RED Queuing ..............................................•.............. 25 

3.5 Priority Queuing (PQ) ..................................••............... 25 

3.6 Custom Queuing .......................................................... 27 

6 



3. 7 Weighted Fair Queuing (WFQ) ...............•............•.......... 28 

3.8 Packet-based Generalized Processor Sharing (PGPS) ............ 29 

3.9 WRED Queuing ........................................................... 29 

3.10 RIO (RED with In and Out) Queuing .............................. 30 

3.11 Token Bucket Algoritbm .••.....•.... , ..•.••••.•••.••.•............... 30 

4 SIMULATION ENVIRONMENT 33 

4.1 Introduction to NS ....................................................... 33 

4.2 Tel Scripts ................................................................. 33 

4.3 Software Architecture ................................................... 34 

4.4 Adding a New Module ............ , ..................................... 35 

4.5 DiffServ Architecture NS Modules .................................. 37 

4.5.1 Introdt.iction ....... c ••••••••••••••••••••••••••••••••••••••••••••••••••••••• • ••••••••••• 37 

4.5.2 dsRED Module ............................................... , ................•...... 37 

4.5.3 PHB Table ...................................................•........................ 39 

4.5.4 red Queue Class ....•...............•.......................................... · ...... 42 

4.5.5 Edge Module ...................................................•..•.•...........• .! ••• 43 

4.5.6 Policy ..• ,.~ .••.........•.. .-.. , ...•.•... ···~'--'1-~.·-· •.•••..•..•.•••.••....................... 43 

4.5. 7 Core Module .......................................................................... 48 

5 SIMULATION STUDY AND EXPERIMENTATION 49 

Conclusion And Future Work ................................... 52 

Bibliography ......................................................... 53 

Appendix ............... ,., ..............•........................... 54 

Table of results ............•.................................................. 54 

7 



CHAPTER! 

INTRODUCTION 

l.lBackground 

Today's Internet provides only the Best Effort Service. Traffic is processed as quickly 

as possible, but there are no guarantees as to timeliness or actual delivery. Vviith the 

· rapid transformation of the Internet into '! ... 9Qmmercial infrastructure, demands for . 

service quality have rapidly developed. It is becoming apparent that several service 

classes will likely be demanded. With the phenomenal growth of the Internet, as more 

hosts are connected, network service demands, eventually exceed capacity, but service 

is not denied. Instead it degrades gracefully. Although the resulting variability in 

delivery delays Gitter) and packet loss do not adversely affect typical Internet 

applications- email, file transfer and web applications-other applications can't adapt to 

inconsistent service levels. Delivery delays cause problems for applications with real 

time requirements, such as those that deliver multimedia, the most demanding of which 

are two-way applications like telephony. 

Increasing bandwidth is a necessary first step for accommodating these real-time 

applications, but it is still not enough to avoid jitter during traffic bursts. Even on a 

relatively unloaded IP network, delivery delays can vary enough to continue to 

adversely affect real-time applications. To provide adequate service -- some level of 

quantitative or qualitative determinism -- IP services must be supplemented. This 

requires adding some "smarts" to the net to distinguish traffic with strict timing 

requirements from those that can tolerate delay, jitter and loss. That is what Quality of 

Service (QoS) protocols are designed to do. QoS does not create bandwidth, but 

manages it so it is used more effectively to meet the wide range or application 

requirements. The goal of QoS is to provide some level of predictability and control 

8 



beyond the current IP "best-effort" service. One service class will provide predictable 

Internet services for companies that do business on the web. Such companies will be · 

willing to pay a certain price to make their services reliable and to give their users a fast 

feel of their web sites. Another service class will provide low delay and low jitter 

services to applications such as Internet telephony and video conferencing. Companies 

will be willing to pay a premium price to run a high quality videoconference to save 

travel time and cost. Finally, the Best Effort Service will remain for those users who 

need connectivity only. 

1.2Various mechanisms to provide the QoS over Internet 

The Internet Engineering Task Force (IETF) has proposed many service models and 

mechanisms to meet the demand for QoS. Notably among them are the Integrated 

Services/RSVP model, the Differentiated Services (DS) model, MPLS, · Traffic 

Engineering and Constraint Based Routing. The Integrated Services model is 

cha~acterized by resource reservation. For real-time applications, before data are 

transmitted, the applications must first set up paths and reserve resources. RSVP is a 

signaling protocol for setting up paths and reserving resources. In Differentiated 

Services, packets are marked differently to create several packet classes. Packets in 

different classes receive different services. MPLS is a forwarding scheme. Packets are 

assigned labels at the ingress of an MPLS-capable domain. Subsequent classification, 

forwarding, and services for the packets are based on the labels. Traffic Engineering is 

the process of arranging how traffic flows through the network. Constraint Based 

Routing is to find routes that are subject to some constraints such as bandwidth or delay 

requirement. 

Notably among them are Integrated Services/RSVP and Differentiated Services models. 

Some basic terms and definitions, which will be used in the description of these 

architectures, are as follows-

9 



' 
Flow: A stream of packets with the same source IP ad~ress, source port number, 

destination IP address, destination port number·-and protocol ID. 

Service Level Agreement (SLA): A service contraCt between a customer and a service 

provider that specifies the forwarding service a customer should receive A customer 

may be a user organization or another provider domain (upstream domain). 

Traffic Profile: A description of the properties of a traffic stream such as rate and burst 

SIZe. 

Differentiated Services (DS) field: The field in which the Differentiated ~ervices class 

is encoded. It is the Type of Service (TOS) octet in the 1Pv4 header or the Traffic Class 

octet in the 1Pv6 header. 

Per-Hop-Behavior (PHB):. The externally observable behavior of a packet at a DS­

compliant router. 

Mechanism: A specific algorithm or operation (e.g., queumg discipline) that 1s 

implemented in a router to realize a set of one or more per-hop behaviors. 

Admission Control: The decision process of whether to accept a request for resources 

(link bandwidth plus buffer space). 

Classification: The process of sorting packets based on the content of packet headers 

according to defined rules. 

Behavior Aggregate (BA) Classification: The process of sorting packets based only 

on the contents of the DS field. 

10 



Multi-Field (MF) Classification: The process of classifying packets based on the 

content of multiple fields such as source address, destination address, TOS byte, 

protocol ID, source port number, and destination port number. 

Marking: The process of setting the DS field in a packet. 

Policing: The process ofhandling out of profile traffic, e.g., discarding excess packets. 

Shaping: The process of delaying packets within traffic stream to cause it to conform to 

some defined traffic profile. 

Scheduling: The process of deciding which packet to send first in a system of multiple 

queues. 

Queue Management: Controlling the length of packet queues by dropping packets 

when necessary or appropriate. 

Traffic Trunk: An aggregation of flows with the same service class that can be put into 

a MPLS Label Switched Path. 

TCB: Traffic Conditioning Blocks are collections of data-path elements performing 
some policy. 

1.2.1 Integrated Services and RSVP 

The Integrated Services model proposes two service classes in addition to Best Effort 

Service. They are: 

• 

• 
Guaranteed Service for applications requiring fixed delay bound . 

Controlled Load Service . 

11 



For applications requiring reliable and enhanced best effort service. The philosophy of 

this model is that "there is an inescapable requirement for routers to be able to reserve 

resources in order to provide special QoS for specific user packet streams, or flows. 

This in tum requires flow-specific state in the routers". RSVP was invented as a 

signaling protocol for applications to reserve resources. The signaling process is 

illustrated in Fig. I. The sender sends a PATH Message to the receiver specifying the 

characteristics of the traffic. Every intermediate router along the path forwards the 

PATH Message to the next hop determined by the routing protocol. Upon receiving a . 

PATH Message, the receiver responds with a RESV Message to request resources for 

the flow. Every intermediate router along the path can reject or accept the request of the 

RESV Message. If the request is rejected, the router will send an error message to the 

receiver, and the signaling process will terminate. If the request is accepted, link 

bandwidth and buffer space are allocated for the flow and the related flow state 

information will be installed in the router. 

Integrated Services is implemented by four components: the signaling protocol (e.g. 

RSVP), the admission control routine, the classifier and the packet scheduler. 

Applications requiring Guaranteed Service or Controlled-Load Service must set up the 

paths and reserve· resources before transmitting their data. The admission control 

routines will decide whether a request for resources can be granted. When a router 

receives a packet, the classifier will perform a Multi-Field (MF) classification and put 

the packet in a specific queue based on the classification result. The packet scheduler 

will then schedule the packet accordingly to meet its QoS requirements. 

12 



(111PA 
send&r (S) RES 

Figure L RSVP )tgnaling 

The probiems with the Integrated Services architecture are: 

1) The amount of state information increases proportionally with the number of flows. 

This places a huge storage and processing overhead on the routers. Therefore, this 

architecture does not scale well in the Internet core. 

2) The requirement on routers is high. All routers must implement RSVP, admission 

control, MF classification and packet scheduling. 

3) Ubiquitous deployment is required for Guaranteed Service. Incremental 

deployment of Controlled-Load Service is possible by deploying Controlled-Load 

Service and RSVP functionality at the bottleneck nodes of a domain and tunneling 

the RSVP messages over other part of the domain. 

1.2.2 Differentiated Services 

Because of the difficulty in implementing and deploying Integrated Services and RSVP, 

Differentiated Services (DS) is introduced. IPv4 header contains a TOS byte. 

Differentiated Services defines the layout of the TOS byte (termed DS field) and a base · 

set of packet forwarding treatments (termed Per-Hop Behaviors, or PHBs). By marking 

the DS fields of packets differently and handling packets based on their DS fields, 

several differentiated service classes can be created. Therefore, Differentiated Services 

is essentially a relative-priority scheme. In order for a customer to receive 

13 



Differentiated Services from its Internet Service Provider (ISP), it must have a Service 

Level Agreement (SLA) with its ISP. A SLA basically specifies the service classes 

supported and the amount of traffic allowed in each class. A SLA can be static or 

dynamic. Static SLAs are negotiated on a regular, e.g. monthly and yearly, basis. 

Customers with Dynamic SLAs must use a signaling protocol, e.g. RSVP, to request for 

services on demand. Customers can mark DS fields of individual packets to indicate the 

desired service or have them marked by the leaf router based on MF classification. At 

the ingress of the ISP networks, packets are classified, policed and possibly shaped. The 

classification, policing and shaping rules used at the ingress routers are derived from the 

SLAs. The amount of buffering space needed for these operations is also derived from 

the SLAs. When a packet enters one domain from another domain, its DS field may be 

re-marked, as determined by the SLA between the two domains. Using the 

classification, policing, shaping and scheduling mechanisms, many services can be 

provided. For example: 

1 Premium Service: It is for applications requiring reliability, low delay and 

low jitter service. Real-time traffic (e.g. VoiP and video conferencing) and 

mission-critical traffic (e.g. financial traffic) can benefit from such a 

service. 

2 Assured Service: It is for applications requiring better reliability than Best 

Effort Service. Non-real time VPN service traffic can benefit from it. 

3 Best effort service: It is the traditional Internet service. 

A customer can choose the appropriate service based on the nature of its traffic (e.g., 

real-time or interactive or non-interactive). But what service an application will receive 

is eventually determined by the customer's willingness to pay. So it is possible that one 

customer's email traffic receives Assured service while another customer's video­

conferencing traffic receives Best Effort service. 

14 



Note that the Differentiated Services only defines DS fields and PHBs. It is the ISPs' 

responsibility to decide what services to provide. Differentiated Services is significantly 

different from Integrated Services. First, there are only a limited number of service 

classes indicated by the DS field. Since service is allocated in the granularity of a class, 

the amount of state information is proportional to the number of classes rather than the 

number of flows. Differentiated Services is therefore more scalable. Second, 

sophisticated classification, marking, policing and shaping operations are only needed at 

boundary of the networks. ISP core routers need only to implement Behavior Aggregate 

(BA) classification. Therefore, it is easier to implement and deploy Differentiated 

Services. There is another reason why the second feature is desirable for ISPs. ISP 

networks usually consist of boundary routers connected to customers and core 

routers/switches interconnecting the boundary routers. Core routers must forward 

packets very fast and therefore must be simple. Boundary routers need not forward 

packets very fast because customer links are relatively slow. Therefore, they can spend 

more time on sophisticated classification, policing and shaping. Boundary routers at the 

Network Access Points (NAPs) are exceptions. They must forward packets very fast 

and do sophisticated classification, policing and shaping. Therefore, they must be well 

equipped. 

1.3 Basic building blocks of DS architecture 

1.3.1DS code point 

When mapping a traffic packet to a PHB, the most significant input data is the code 

point in the DS field of the IP packet header. Below is the descripti9n of the DS field 

octet. 

15 



0 1 2 3 4 5 6 7 

'- .-/ 
--------------~------------- ~ 

DSCP CU 

Figure 2. DS Field 

As seen, six bits of the OS field are called as the code point (OSCP) and the remaining, 

which are currently unused, are reserved for the future. 

1.3.2 DS domain 

When the packets inside the network are forwarded to their destination, each of the 

packets gets treated only per hop basis during the forwarding path within the network 

region. It is noteworthy that the per-hop treatment is identical within the OS domain, 

however the mapping from the DS code-point to PHB may be different in pifferent DS 

domains. A Ds domain i.e. a set of DS nodes, which operate according tb a common 

service provisioning policy and has a common set of PHBs, is the entity that provides a 

coherent set of PHBs in the network domain. The OS domains may form a OS region 

that has the ability to support PHBs that are covering a wider area of domains within 

the DS region. 

1.3.3 Per Hop Behavior (PHB) 

A PHB is a description of the externally observable forwarding treatment applied at 

DS-compliant_ node to a Behavior Aggregate (BA). The concept of forwarding behavior 

can be interpreted to mean those aggregate actions that interior nodes perform with 

packets having a similar code point in the OS field. PHBs are usually needed in cases 

16 
I 

,•' 

/ 



when several BAs are competing on resources in a node, which is then able to make 

service discrimination based on defined PHBs in that OS node. For a node, the PHB is 

foremost the means that can be used allocating resources for different behavior 

aggregates. PHBs can be identified according to how they prioritize the resources, such 

as buffers and bandwidth or according to how different PHBs are prioritized or how the 

traffic can be observed in terms of delay and loss. Also PHBs can be used as resource 

allocation building blocks and thus be grouped together. PHBs are implemented in 

boundary and interior nodes, usually by means of existing buffer management and 

scheduling algorithms. Also, in a node, here are possibly more than one PHB 

implementations that can be grouped together into aggregates or may be separate to 

each other. This basically implies that the PHB implementations need to be such that 

they do not prevent others to be operable. 

1.3.4 PHB standardization 

With respect to PHB standardization, the characteristics of PHBs are the subject to be 

standardized, not the actual algorithms that implement the PHBs. As the DSCP (DS 
i 

Code Point) is an octet, there is a total no. of 64 code-points available to be used as 

PHB standardization. The code point space consists of three pools as follows-

Pooll:A pool of32 recommended PHBs to be assigned to standard actions. 

Bit pattern: 'xxxxxO'. 

Pool 2: A pool of 16 code points to be reserved for experimental or local use. 

Bit pattern: 'xxxxll '. 

Pooi3:A pool of 16 code points that can be used for experimental or local use, but 

w~ich should be used for standardization use in case pool 1 gets overloaded. 

Bit pattern: 'xxxxOl '. 

17 

/ 



Examples of standardized PHBs: 

1. Assured Forwarding (AF) PHB group: AF PHB group provides 

forwarding of IP packets in N independent AF classes, in which there are M 

different levels of drop precedence. 

2. Expedited Forwarding (EF) PHB group: The EF PHB group can be used for 

providing services like 'virtual leased line' in which characteristics such as low 

loss, low latency, low jitter and assured bandwidth play significant role. 

These kinds of services have two parts: 

1. Possibility to configure the DS nodes in a manner that enables minimum 

departure rate. 

2. Policing and shaping the PHB aggregate so that its arrival rate at any DS 

node is always less than that DS node's configured minimum departure 

rate. 

1.4 Conceptual functioning of DiffServ architecture 
l 

. We have four QoS control functions in the data-path on traffic in each direction (figure 

3). First we have the classification of messages according to some set of rules. The 

second action determines whether the data stream of the message is within or outside its 

rate by performing measurements on the stream. ~n addition, based on these 

measurements the router can perform a set of resulting actions according to drop policy, 

and mark the traffic with a Differentiated Services field. The traffic must be enqueued 

for output in the appropri-ate queue. The queue may shape the traffic or forward it with 

some minimum rate or maximum latency. This section presents the functional data-path 

elements in the conceptual Diffserv model and how they can be interconnected and 

eonfigured. 

18 

·' 



--. 

._. 

Interface A Interface B 

Ingress interface Egress interlace 
Classify. meter. r+ f-+ 

Classify! tneter. 
action. queuing action~ queuing 

routing core 

E2ress intertace ... Ingress intetface 
classifv. 

f-4-- r-t-
Classify. tneter. . 

1\'leter. action. action. queuing 
queumg 

Figure 3. Data-path in both directions 

between ingress and egress interface. 

1.5 The ~ecurity aspect of DS architecture 

The security aspects of DSCP can be divided into two categories: theft and denial of 

services, and IPSec and tunneling interactions. The theft and denial of service defense 

takes place in the boundar; nodes, and therefore DS domain boundary nodes must 

ensure that all traffic entering the domain is m~rked with code point values appropriate 

to the traffic and the domain. In IPSec tunneling, packet contains two IP headers: an 

outer header supplied by the tunnel ingress node and an encapsulated inner header 

supplied by th(;--uriginal source of the packet. In this case, the intermediate tunneling 

nodes operate on outer headers. When the tunneling packet enters the egress node, the 

IPSec processing removes the outer header and continues to forward the inner header to 

ingress nodes. 

19 

f-+ 

__. 



In the Differentiated Services model, incremental deployment is possible for Assured 

Service. DS incapable routers simply ignore the DS fields of the packets and give the 

Assured Service packets Best Effort Service. Since Assured Service packets are less 

{ikely to be dropped by DS-capable routers, the overall performance of Assured Service 

traffic will be better than the Best Effort traffic. 

1.6 Problem definition 

While the traffic traverses from the source to the destination, the main issues which are 

to be addressed and measured to evaluate the QoS are the following: 

1. Proper bandwidth utilization 

2. Delay measurement 

3. Packetloss 

4. Sequential delivery 

5. Smooth flow of the traffic 

There must be proper bandwidth utilization by the traffic and if some bandwidth can be 

given to another requiring queue of the traffic then the provisions should be made to 

share the bandwidth. There are services, which require low delay and low jitter. Traffic 

rate is controlled in such a way to give the best service to the user. There is a counter at 

each DS node to count the number of lost packets. For guaranteeing the sequential 

delivery, the appropriate routing algorithms are used to avoid any reordering. Buffer 

storage at the DS nodes is utilized properly in order to maintain the smooth flow of the 

traffic. 

20 



CHAPTER2 

PACKET FORWARDING MECHANISM FOR THE 

SIMULATION: ASSURED FORWARDING 

In this simulation model, the packets are forwarded from end to end to provide QoS 

over and above the current best effort service. The AF is intended to assure a minimum 

level of throughput. To assure this minimum throughput, which is referred to as the 

target rate or committed information rate (CIR), AF introduces two components; a 

packet marking mechanism administrated by profile meters or traffic conditioners at 

edge routers and a queue management mechanism at core routers. The packet marking 

mechanism, monitors and marks packets according to the service profile at the edge of a 

network. If the measured flow conforms to the service profile, the packets belonging to 

this flow are marked with a high priority and receive better service. Otherwise, the 

packets belonging to the non-conformant part of a flow are marked with a low priority 

and receive best effort service. The queue management mechanism, deployed at core 

routers, provides preferential treatment for packets that have high priority. During times 

of congestion, high priority packets are forwarded preferentially and low priority 

packets are dropped with higher probability. This service guarantees a timely 

forwarding of packets within an agreed time frame. 

In this service environment the IP packets are forwarded inN independent AF classes, 

in which there are M different levels of drop precedence. Therefore, the code-points 

with the classes and drop precedence form a matrix AFij, where 1 ~ i ~Nand 1 ~j ~ M. 

The values of N and M can be suitably chosen. In this simulation study the values are 

chosen to be four classes (N=4) with three drop-precedence (M-3). DS nodes must not 

aggregate two or more classes together i.e. two packets with the same class code-point 

but different drop precedence will be treated differently. There are following 

considerations which must be supported: 

21 



AF class must be configurable to receive more forwarding resources than 

m1mmum. 

2 . DS node must not break the precedence order within an AF class. 

3 All three drop-precedence code-points must be accepted in each of the AF 

classes. 

4 . Code-points must not supersede the ordering in drop-precedence order. 

5 . The DS node must not reorder the packets in the AF micro-flow ·(the end to end 

traffic). 

6 . The DS node must minimize the long-term congestion while short-term bursts 

should be allowed. 

7 . The dropping algorithm applied must be insensitive to short-term traffic 

characteristics, and treat packets in similar classes and code-points identically. 

8 The dropping must be gradual, instead of abrupt one. 

9 . The dropping algorithm parameters must be configurable. 

The recommended code-points are as follows: 

AF I I = '00 I 0 I 0' AF 12 = '00 II 00' AF 13 = '00 Ill 0' 

AF21 = '010010' AF22 = '010100' AF23 = '010110' 

AF31 = '011010' AF32 = '011100' AF33 = '011110' 

AF41 = '100010' AF42 = '100100' AF43 = '100110' 

In the Differentiated Services model, incremental deployment is possible for Assured 

Service. DS incapable routers simply ignore the DS fields of the packets and give the 

Assured Service packets Best Effort Service. Since Assured Service packets are less 

likely to be dropped by DS-capable routers, the overall performance of Assured Service 

traffic will be better than the Best Effort traffic. 

22 



CHAPTER3 

ALGORITHMS/METHODOLOGY 
USED IN THE SIMULATION 

Queuing systems store packets, they modulate the departur~ of packets of different 

streams and they selectively discard packets. Tht: model decomposes the queuing block 

into the component elements that perform each of these functions: Queues, Schedulers 

and Algorithmic Droppers. These elements can be combined to a TCB containing one 

or more Queue and Scheduler elements and zero or more Algorithmic Droppers. 

Queues are simply places to store traffic until it can be transmitted. A Scheduler has 

one or more inputs and exactly one output and it schedules the departing order of the 

packets according to some algorithm. The Algorithmic Dropper selectively discards 

packets that go through it based on its discarding algorithm. The queuing Block is 

constructed from these three functional data-path elements and they may appear more 

than once in parallel or in series. In this simulation model, different queuing, 

scheduling, and dropping algorithms are used to evaluate their effect on QoS. Few of 

them frequently used are described below: 

3.1 WRR (Weighted Round Robin) Algorithm 

WRR algorithm is the extension of basic Round-Robin algorithm. In the Round Robin 

algorithm queues are served or allocated resources in a round robin fashion depending 

upon a fixed time slot. A particular queue will be serviced during its slot period after 

which it will have to give in the way to the next queue in the line. Next time it will be 

serviced only after all the queues are serviced in the round in the similar fashion. In 

Wk.R algorithm weights are assigned to each queue, which means that different queues 

can have different time slots a11d they are serviced during these time slots. Jn this way a 

priority can be assigned to each queue. 

23 



3.2 Class Based Queuing (CBQ) 

It provides a unique solution for the traffic management by providing bandwidth­

controlled QoS. class-based queuing offers a flexible approach to sharing link 

bandwidth across a hierarchy of traffic types. Each class can represent an aggregation of 

traffic or an individual connection. There are two basic attributes supporting the 

working of CBQ: 

3.2.1 Priority levels 

It allows higher priority queues to be serviced first within the limits of their bandwidth 

allocation so that the delay for more sensitive real-time traffic classes is reduced. 

3.2.2 Borrowing privileges 

It is an explicit class-based queuing mechanism for distribution of excess bandwidth. A 

class with borrowing privileges may initiate a borrowing request when it needs more 

bandwidth. If another class is not using its full bandwidth, synchronization features 

indicate that bandwidth is available. sbrrowed bandwidth is granted to higher-priority 

classes before lower-priority classes. 

3.3 Drop Tail Queuing 

The basic queue algorithm for routers is the Drop Tail queuing algorithm. Drop Tail 

queues simply accept any parket that arrives when there is sufficient buffer space and 

drop any packet that arrives when there is insufficient buffer space. In this way, Drop 

Tail queuing poses a strict boundary limit on the no. of allowed packets in a link. 

24 



3.4 RED Queuing 

RED (Random Early Detection) is a congestion avoidance algorithm that can be 

implemented in routers. RED gateways attempt to detect congestion by computing a 

weighted average queue size, since a sustained long queue is a sign of network 

congestion. For a RED gateway the following three phases sum up its algorithm: 

Phasel: Normal Operation 

If the average queue size is less than the minimum threshold, no packets are dropped. 

Phase2: Congestion Avoidance 

If the average queue-size is between the minimum and maximum thresholds, packets 

are dropped with a certain probability. This probability is a function of the average 

queue size, so that larger queues lead to higher drop probabilities. 

Phase3: Congestion Control 

If the average queue size is greater than the maximum threshold, all incoming packets 
i 

are dropped. Upon packet arrival, a RED gateway checks the weighted average queue 

size against specified minimum and maximum thresholds. If there is congestion, it 

notifies, either by dropping a packet or by setting a bit in a header field of the packet, 

probabilistically. 

3.5 Priority Queuing (PQ) 

It ensures that important traffic is p1ocessed first. It was designed to give strict priority 

to a critical application, and is particularly useful for time-sensitive protocols such as 

SNA. Packets can be prioritized based on many factors, including protocol, incoming 

interface. packet size, and source or destination address. Priority queuing is especially 

appropriate in cases where WAN links are congested from time to time. If the WAN 

links are constantly congested, the customer should investigate protocol and application 

25 



inefficiencies, consider using compression, or possibly upgrade to more bandwidth. If 

the WAN links are never congested, priority queuing is unnecessary. Because priority 

queuing requires extra processing and can cause performance problems for low-priority 

traffic, it should not be recommended unless necessary. 

( A."O~Ih dl.•lin,•d 
h~ 4HC"tK" iimh 

CLt-. ... ,!i~,.<.!lt•Jt! b~~·. (J'IJttJtul_;: 

• PH.llf.'"o.·nl ~~~~ H"X. hutk·r n~~un!\.·<i::'-. 
\ppldi•tk. S~A. 

d;l!. ';11, S 1. ;nd ,._, '.:nl 

l:1t-::orft~n' h .. rr~ll.\ an: 
•Ethcnx·1 
• ti-JUK Rcby 
•. ·\1"~! 
•S ... ·n.:\1 fmJ 

IJ:!Jd -lllh.'H~ 

Figure 4. The behavi.or of Priority Queue 

26 



3.6 Custom Queuing 

It was designed to allow a network to be shared among applications with different 

minimum bandwidth or latency requirements. Custom queuing assigns different 

amounts of queue space to different protocols and handles the queues in round-robin 

fashion. A particular protocol can be prioritized by assigning it more queue space. 

Custom queuing is more "fair" than priority queuing, although priority queuing is more 

powerful for prioritizing a single critical application. You can use custom queuing to 

provide guaranteed bandwidth at a potential congestion point. Custom queuing lets you 

assure each specified traffic type a fixed portion of available bandwidth, while at the 

same time avoid any application achieving more than a predetermined proportion of 

capacity when the link is under stress. 

( 

Custom Queueing 

-----y---~ 

Classification by: 
• Protocol (JP, IPX. 

EJJ!s% 
EJJI30% 

L5J I 
EflE:j joo% 

D1BE5JI 
: Up to 16 • 
~ 
Lenglh definoo 
by queue limit 

T 
Queueing 

buffer resources 
Apple Talk. SNA. 
DECnet Bridge, etc. ) 

• Source interface 
(EO. SO. S1. etc.) 

27 

Percent of 
length bandwidth 

Transmit Outgoing 
queue packets 

·~DJIUDJDJf> 

Interlace hardware 
• Ethernet 
• Frame Relay 
•ATM 
• Serial link ~ 

(and o!hers) ~o 



3. 7 Weighted Fair Queuing (WFQ) 

It is an algorithm designed to reduce delay variability and provide predictable 

throughput and response time for traffic flows. A goal of WFQ is to offer uniform 

service to light and heavy network users alike. WFQ ensures that the response time for 

low-volume applications is consistent with the response time for high-volume 

applications. Applications that send small packets are not unfairly starved of bandwidth 

by applications that send large packets. Unlike custom and priority queuing, WFQ 

adapts automatically to changing network traffic conditions and requires little to no 

configuration. 

Weighted Fair Queueing 

• • • 

Dl 
EIJI 

~ 

---------y---

Configurable 
nurnber of queues 

Fiow·b3sed Queueing 
classifi<:afion: buffer resOtJ1Ces 
• Source and 

destination 
address 

• Protocol 
• Session iOOntifiEif' 

(portlsockel) 

28 

Transmit Outgoing 
packets 

=.=-~OJ I DLBBt 

N Weighted fair scheduling 

Weight determined by. 
• Required QoS 

(IP procedure. RSVP) 
• Flow throughput inversely 

proportional 
• Frame Relay FECN. BECN. 

DE (ror FR traffic) 



For applications that use the IP precedence field in the IP header, WFQ can allot 

bandwidth based on precedence. The algorithm allocates more bandwidth to 

conversations with higher precedence, and makes sure those conversations get served 

more quickly when congestion occurs. WFQ assigns a weight to each flow, which 

determines the transmit order for queued packets. IP precedence helps determine the 

weighting factor. 

3.8 Packet-based Generalized Processor Sharing (PGPS) · 

Weighted fair queuing (WFQ) is considered to be one of the critical components in 

realizing the DiffServ model. It defines the scheduling policy for the out going link 

bandwidth being shared among all the classes. The goal of the WFQ is to provide> a 

packet-based approximation of the Generalized Processor Sharing (GPS). A GPS 

scheduler can be regarded as the limiting form of a weighted round robin policy, where 

traffic from each session is treated as infinitely divisible fluid. It is characterized by 

positive weights wl, w2, ...... , wN, for given N different classes. If the bandwidth of 

the out-going link is W, backlogged class i is guaranteed a rate r; = v; W where v; is 

equal to w; divided by the sum of weights of the all backlogged queues. 

3.9 Weighted Random Early Detection (WRED) 

WRED is Cisco's implementation of RED. WRED combines the capabilities of the 

standard RED algorithm with IP precedence. This combination provides for preferential 

traffic handling for higher-priority packets. It selectively discards lower-priority traffic 

when an interface starts to get congested, rather than using simply a random method. 

29 

/ 



3.10 RIO algorithm 

Another popular uses for RED is Random Early Detection with In/Out bit (RIO), which 

uses some form of packet tagging to indicate the drop priority of the packet to the core 

network routers. Each user (or traffic flow, depending upon the granularity) is assigned 

a service profile by the.ISP based on the expected bandwidth utilization by the user. At 

the edge of the network domain, managed by the ISP (i.e., at the ingress points), user 

traffic is monitored by a profile meter to ensure that it stays within the profile. Any 

packets that are out of profile are marked as "out" while those that conform to the user 

profile, are marked as "in". In the network core, the "in" and "out" packets are treated 

with different drop priorities using RED. In short, "in" packets start being dropped only 

when the queue size crosses a higher threshold than in the case of "out" packets and get 

dropped with a lower probability than "out" packets. This ensures that in-profile traffic 

has less chance of getting dropped than out-of-profile traffic, and therefore gets 

predictable levels of service so long as it stays within profile (even when congestion 

occurs). The RIO scheme also makes it possible to use statistical multiplexing to utilize 

any excess bandwidth that may be available since it does not prevent out-of-profile 
i 

packets from entering the network. 

For the smooth flow of the traffic token bucket algorithm is used which is described 

below-

3.11 Token Bucket Algorithm 

A token bucket algorithm is used to control the flow rate of the traffic. A token bucket 

is a formal definition of a rate of transfer. It has three components: a burst size, a mean 

rate, and a time interval. Although the mean rate is generally represented as bits per 

st:cond, any two values may be derived from the third by the relation shown as follows: 

mean rate = burst size I time interval 

Here are some definitions of these terms: 

30 

i 



• Mean rate-Also called the committed information rate (CIR), it specifies how much 

data can be sent or forwarded per unit time on average. 

• Burst size-Also called the Committed Burst size (CBS), it specifies in bytes per burst 

how much traffic can be sent within a given unit of time to not create scheduling 

concerns. For a shaper, it specifies bits per burst; for a policer. it specifies bytes per 

burst. 

• Time interval-Also called the measurement interval, it specifies the time quantum in 

seconds per burst. 

By definition, over any integral multiple of the interval, the bit rate of the interface will 

not exceed the mean rate. The bit rate, however, may be arbitrarily fast within the 

interval. A token bucket is used to manage a device that regulates the data in a flow. For 

example, the regulator might be a traffic police~ or a traffic shaper. A token bucket itself 

has no discard or priority policy. Rather, a token bucket discards tokens and leaves to 

the flow the problem of managing its transmission queue if the flow overdrives the 

regulator. 

In the token bucket algorithm, tokens are put into the bucket at a certain rate. The 

bucket itself has a specified capacity. If the bucket fills to capacity, newly arriving 

tokens are discarded. Each token is permission for the source to send a certain number 

of bits into the network. To send a packet, the regulator must remove from the bucket a 

number of tokens equal in representation to the packet size. If not enough tokens are in 

the bucket to send a packet, the packet either waits until the bucket has enough tokens 

or the packet is discarded or marked down. If the bucket is already full of tokens, 

incoming tokens overflow and are not available to future packets. Thus, at any time, the 

largest burst a source can send into the network is roughly proportional to the size of the 

bucket. Note that the token bucket mechanism used for traffic shaping has both a token 

bucket and a data buffer, or queue; if it did not have a data buffer, it would be a policer. 

For traffic shaping, packets that arrive that cannot be sent immediately are delayed in 

the data buffer. For traffic shaping, a token bucket permits burstiness but bounds it. It 

31 
/ 



guarantees that the burstiness is bounded so that the flow will never send faster than the 

capacity of the token bucket plus the time interval multiplied by the established rate at 

which tokens are placed in the bucket. It also guarantees that the long-term transmission 

rate will not exceed the established rate at which tokens are placed in the bucket. 

32 



CHAPTER4 

SIMULATION ENVIRONMENT 

4.1 Introduction toNS 

The simulation environment for the implementation of the DS architecture is chosen to 

be the NS network simulator. NS is a free network simulation program that can be 

downloaded from the Internet and is compatible with a number of operating systems. 

The tool has substantial functionality for simulating different network topologies and 

traffic models. NS also has an open architecture that allows users to add new 

functionality. NS has been developed at the Lawrence Berkeley National Laboratory 

(LBNL) of the University of California, Berkeley (UCB). The extensibility of ns makes 

the tool very dynamic. ns is an event-driven network simulator. It has an extensible 

background engine implemented in C++ that uses OTcl (an object oriented version of 

T cl ) as the command and configuration interface. Thus, the entire software hierarchy is 

written in C++, with OTcl used as a front end. Nam is the network simulator, which 

provides visual views of the network simulation. Xgraph is used to obtain statistics and 

produce graphical results under the Unix/Linux platform. Alternatively, Tracegraph is 

used with Windows platform for the same purpose. 

4.2 Tel Scripts 

A simulation is defined by an OTcl script. Running a simulation involves creating and 

executing a file with a ".tel" extension, such as "simfile.tcl." 

33 



A Tel ns script: 

a. . Defines a network topology (including the nodes, links, and scheduling and 

routing algorithms of a network). 

b. . Defines a traffic pattern (for example, the start and stop time of an FTP session). 

c. . Collects statistics and outputs the results of the simulation. Results are usually 

written to files, including files for Nam, the Network Animator program that 

comes with the full ns download. 

NS is an event-driven simulator that derives its functionality through an OTcl 

inte~preter, which runs in the background. This interpreter translates each statement in 

the Tel file into an event. For example, the statement: 

$ns at 0.5 "$tcp start" 

is translated into event, which at 0.5 seconds into the simulation, starts up a TCP source. 

4.3 Software Architecture 

NS is an object-oriented simulator written in C++. This code serves as a backbone for 

the whole simulation process. The entire class hierarchy is implemented through this 

code and the classes provide a wide array of network features. New classes or modules 

can be added by extending the current class hierarchy. Each class consists of the 

following components: 

4.3.1 Configuration parameters 

Configuration parameters are class attributes that can be set and queried dynamically 

through the Tel scripts. These simulation parameters are usually constant during the 

entire simulation, but they can be changed dynamically as desired. For example, the 

bandwidth of a link is usually set only at the start of a simulation. On the other hand, a 

traffic source can be configured to transmit packets of different sizes at different times. 

34 .. 



4.3.2 State variables 

Each class has a set of variables, many of which may be queried in a Tel script to 

determine the state of that object. Usually, they are modified explicitly only when the 

object needs to be reset for another simulation run. For example, the length of a packet 

queue changes over time; and the instantaneous size of that queue can be queried 

through a Tel command or used by a C++ method. 

4.3.3 Methods 

The methods associated with each class specify the actions that can be performed by 

that object. For example the enqueO method for the RED gateway class specifies the 

enqueuing method for that object. 

4.4 Adding a New Module 

This section outlines the process of creating and adding new classes to the ns software 

hierarchy. Adding a new module tons consists of three steps: 

4.4.1 Determining the need 

The Diffserv functionality is captured in a Queue object. It is an alternative to other 

queue types such as DropTail, CBQ, and RED. A Diffserv queue requires: 

a. . The ability to implement multiple physical RED queues along a single link. 

b. . The ability to implement multiple virtu~! q'.:!eues on each physical queue,. with 

independent sets of parameters for each virtual queue. 

c. . The ability to determine in which physical and virtual queue a packet is 

enqueued, depending upon user specifications. 

"35 



4.4.2 Determining the class hierarchy positioning 

Since this new class implements the generic Queue functionality and extends it with 

new methods and attributes, it is placed beneath the class Queue in the object hierarchy. 

4.4.3 Writing code 

Writing the code for the new module requires three or four steps, depending on 

the class: 

Step 1: Creating the header file ("dsred.h") 

This file includes class specifications, as well as other definitions needed by the new 

class. 

Step 2: Creating the main C++ file ("dsred.cc") 

This file includes implementations of each of the new class's methods. To incorporate 

the new class into ns and make it accessible through Tel scripts, the class must be linked 

to the ns class hierarchy. The following code is used in "dsred.cc" to add dsREDCla~s 

to the class hierarchy: 

static class dsREDClass : public TclClass { 

public: 

dsREDClassO : TclClass("Queue/dsRED") {} 

TclObject* create(int, const char*const*) { 

return (new dsREDQueue); 

} 

} class dsred; 

Step 3: Modifying "Makefile" 

· The third step is to add a reference to the new module in "Makefile," so that when the 

make command is invoked the compiler generates a binary version of the new code and 

includes it in the ns compilation. The reference is added to the object files section of 

"M0kt"'fi!e": dsred.o. 

36 



Step 4: Specifying default parameters for bound variables 

A fourth step is necessary if configuration parameters are bound in the class constructor 

method. In that case, default values for all bound parameters should be added to the file 

"/ns-2/tcl/lib/ns-default.tcl." For example, the dsREDQueue constructor contains the 

binding: 

bind("numQueues _", &numQueues _); 

and the parameter is assigned default values in "/ns-2/tcl/lib/nsdefault.tcl": 

Queue/dsRED set numQueues 4 

After completing those steps and recompiling ns with the make command, Tel 

scripts can use the new class. 

The Assured Forwarding scheme has been proposed as a potential user of Diffserv. 

Assured Forwarding provides differential treatment of traffic by discarding more low 

priority packets during times of congestion than high priority packets. Although the 

Assured Forwarding mechanism does not explicitly require a particular queue type, it is 

suited for RED. 

4.5 Diffserv Architecture NS Modules 

4.5.1 Introduction 

In order to design and implement the Diffserv architecture inns, five modules had to be 

added to the class hierarchy: one for the base Diffserv router functionality (dsRED), one 

each for the edge and core routers, one for RED-based queuing and one for policing. 

Each module defines a single class. 

4.5.2 dsRED Module 

37 



The dsRED module is the base module for the Diffserv implementation. It defines the 

dsREDQueue class, which is the parent class for the edgeQueue and coreQueue classes. 

The dsRED module is contained in the files "dsred.h" and "dsred.cc." 

4.5.2.1 Purpose 

The dsREDQueue class is the parent class for the edgeQueue and coreQueue classes. It 

implements all functionality and declares all parameters that are common to edge and 

core Diffserv routers. 

4.5.2.2 Class hierarchy positioning 

The dsREDQueue class extends the Queue class. 

4.5.2.3 Graphical representation 

A dsREDQueue uses the redQueue class, to form the following queue structure: 

The queue structure consists of four physical queues, each containing three virtual RED 

queues, referred to as precedence levels. Each Jhysical queue corresponds to a class of 

traffic; and each combination of a queue and precedence number is associated with a 

code point (or a drop preference). 

38 



4 Phystcal Queues 

~----------------~----------------
/ ~ 

l 
3 Vu1ual Queues per Phystcal Queue 

Figure 5. A dsREDQueue Instance 

Packets are enqueued in a certain queue and precedence number according to their code 

point marking. They are treated according to the corresponding parameters for that 

queue and precedence number; thus, a code point specifies a certain level of service. 

Not all physical and virtual queues rieed be used, the user may configure a dsRED 

instance to have fewer physical or virtual queues through the Tel script. These values 

may not be exceeded, however, without first altering the constants defined in "dsred.h" 

and recompiling ns. 

4.5.3 PHB Table 

The dsREDQueue class contains a data structure known as the PHB Table (per hop 

behaviour table). Edge devices handle marking packets with code points and 

core devices simply respond to ex1stingcode points. However, both devices need 

to determine how to map a code point to a particular queue and precedence level. The 

PHB Table handles this mapping by defining an array with three fields: 

• . Code point 

39 



• . Class (Physical Queue) 

• . Precedence (Virtual Queue) 

4.5.3.1 Tel Configuration 

The configuration commands listed in this section apply to edgeQueue and coreQueue 

instances, since both classes are children of dsREDQueue. Router configuration must be 

handled in the simulation before the arrival of any traffic. The dsREDQueue class has 

one bound variable: numQueues _. The default value for rtumQueues _ is set in the file 

"/ns-2/tcl/lib/ns-default.tcl" as 4. This value can be changed inside Tel scripts as 

follows, assuming that dsredq is a Tel variable referring to a dsREDQueue (or child) 

object: 

$dsredq set numQueues_ 1 

numQueucs _refers to the number of physical queues. 

The number of virtual queues is not a bound variable, but can be configured with the 

command: 

$dsredq setNumPrec 2 

The numbers of physical and virtual queues are limited by constants inside the file 

"dsred.h," which should ·not be exceeded. No error checking is performed on the 

numQueues _ variabl,e; it is assumed that the user will not exceed 4 physical queues. In 

general, only limited error-checking is performed on the Tel configuration commands. 

$dsredq configQ 0 I I 0 20 O.I 0 

This command configures the RED parameters for one virtual queue. The above 

example specifies that physical queue 0/virtual queue 1 has a minth value of 10 packets, 

a maxth value of 20 packets, and a :rnaxp value of 0.1 0. For Drop Tail queues, only the 

first three parameters are required and the second is disregarded because there is no 

notion of precedence level for a DropTail queue. 

$dsredq addPHBEntry 1I 0 I 

The addPHBEntry command adds an entry to the PHB Table; in this example, code 

point 11 is mapped to physical queue 0 and virtual queue 1. In ns, the packets are 

40 



defaulted to a code point of zero. Therefore, to handle best effort traffic one must add a 

PHB entry for the zero code point. 

$dsredq meanPktSize 1500 

Thi~ command specifies the mean packet size (in bytes), which is used for RED 

calculations. In addition, commands are available which allow the user to choose the 

scheduling mode between queues. 

$dsredq setSchedularMode WRR 

$dsredq add Queue Weights 1 5 

The above pair of commands sets the scheduling mode to Weighted Round Robin and 

then sets the queue weight for queue 1 to 5. Other scheduling modes supported are 

Weighted Interleaved Round Robin (WIRR), Round Robin (RR), and Priority (PRI). 

The default scheduling mode is Round Robin. 

For Priority scheduling, priority is arranged in sequential order with queue 0 having the 

highest priority. Also, one can set a limit on the maximum bandwidth a particular queue 

can get using the addQueueRate command. 

$dsredq setSchedularMode PRI 

$dsredq addQueueRate· 0 5000000 

For example, the above set of commands set the scheduling mode to Priority and puts a 

limit on the queue 0 bandwidth to 5 Mbps. 

4.5.3.2 Tel Querying 

· The values of the bound variables may be checked from a script; and the dsREDQueue 

Tel interface also interprets three additional queries: 

$dsredq printPHBTable 

This command prints the entire PHB Table, one line at a time. 

$dsredq printStats 

This command is meant to be a debugging tool that can be altered as needed. Currently, 

it prints the defined number of physical and virtual queues. 

$dsredq getA verage 0 

41 



This query returns the RED weighted average size of the specified physical queue. 

4.5.4 redQueue Class 

redQueue class defines a physical RED queue composed of multiple virtual queues. The 

dsRED module is contained in the files "dsredq.h" and "dsredq.cc." The redQueue class 

implements a single physical RED queue that contains multiple virtual queues~ One 

underlying physical queue incorporates multiple virtual RED queues, each of which has 

a distinct set of RED parameters. 

4.5.4.1 Purpose 

The purpose of the Diffserv architecture is to provide different treatment to different 

traffic. The redQueue class enables that differentiation by defining virtual RED queues, 

each of which has independent configuration and state parameters. For example, the 

length of each virtual queue is calculated only on packets mapped to that queue. Thus, 

packet dropping decisions can be applied based on the state and configuration 

parameters of the virtual queues. The redQueue class is not equivalent to the 

REDQueue class, which was already present in ns. Instead, it is a modified copy of that 

class that includes the notion ofvirtual queues. 

4.5.4.2 Tel Configuration and Querying 

Instances of the redQueue class only exist inside instances of the dsREDQueue 

class. All user interaction with the redQueue class is handled through the 

command interface of the dsREDQueue class. 

42 



4.5.5 Edge Module 

The edge module implements a Diffserv edge router. It defines the edgeQueue class, 

which models an edge router. The edge module is contained in the files "edge.h" and 

"edge.cc." 

4.5.5.1 Purpose 

The edgeQueue class, as a child of the dsREDQueue class is responsible for 

maintaining multiple physical and virtual queues and processing those queues according 

to their parameters. Its additional responsibilities are: 

• . Marking packets with code points. 

• . Policing traffic aggregates. 

4.5.5.2 Class Hierarchy p(lsitioning 

The edgeQueue class is an extension of the dsREDQueue class. 

4.5.6 Policy 

The edgeQueue class contains an instance of the Policy class that handles all policy 

creation and enforcement. The Policy class is examined in Section 3.3 .2. The Policy 

class is used by the edgeQueue class to handle all policy functionality. The policy 

module is contained in the files "dsPolicy.h" and "dsPolicy.cc." 

4.5.6.1 Purpose 

The Policy class handles the creation, manipulation, and enforcement of edge router 

policies. A po!iry dt:-tt:-rmines the treatment that a traffic aggregate will receive at the 

43 
.· ~ 



edge device. Edge devices use policy information to determine with what code point to 

mark packets. 

4.5.6.2 Policy Overview 

A policy is established between a source and destination node. All flows matching that 

source-destination pair are treated as a single traffic aggregate. Each policy defines a 

policer type, a target rate, and other policer-specific parameters. As a minimum, each 

· policy defines two code points, and the choice of code point depends on a comparison 

between the aggregate's target rate and current sending rate. 

4.5.6.3 Policy Table 

The Policy class uses a Policy Table to store the policies of each traffic aggregate. This 

table is an array that includes fields for the source and destination nodes, a policer type, 

a meter type, an initial code point, and various state information. For each policer type, 

only some of the state variables are used. The wasted memory space taken up by the 

unused fields is not considered significant. The fields of the Policy Table are: 

• Source node ID 

• Destination node ID 

• . Policer type 

• . Meter type 

• . Initial code point 

• . CIR (committed information rate) 

• . CBS (committed burst size) 

• . C bucket (current size ofthe committed bucket) 

• . EBS (excess burst size) 

• . E bucket (current size of the excess bucket) 

• . PIR (peak information rate) 

• . PBS (peak burst size) 

44 



• . P bucket (current size of the peak bucket) 

• . Arrival time of last packet 

• . Average sending rate 

• . TS W window length 

4.5.6.4 Policer Types 

The Policy class currently supports six policer types: 

TSW2CM (TSW2CMPolicer): uses a CIR and two drop precedences. The lower 

precedence is used probabilistically when the CIR is exceeded. 

TSW3CM (TSW3CMPolicer): uses a CIR, a PIR, and three drop precedences. The 

medium drop precedence is used probabilistically when the CIR is exceeded 

and the lowest drop precedence is used probabilistically when the PIR is exceeded. 

Token Bucket (tokenBucketPolicer): uses a CIR and a CBS and two drop 

precedences. An arriving packet is marked with the lower precedence if and only if it is 

larger than the token bucket. 

Single Rate Three Color Marker (srTCMPolicer): uses a CIR, CBS, and an EBS to 

choose from three drop precedences. 

Two Rate Three Color Marker (trTCMPolicer): uses a CIR, CBS, PIR, and a PBS to 

choose from three drop precdences. 

4.5.6.4 Meter Types 

45 

/ 



The metering and policing methods are decoupled inside "edge.cc", but currently each 

policer type maps to a specific policer. Each of the other policer types has its own 

associated meter. 

4.5.6.5 Policer Table 

Each policer takes an initial code point and chooses whether to retain it or downgrade it. 

The downgrading is consistent within a policer type. If two aggregates use the same 

policer and initial code point, each is downgraded to the same code point(s). The Policy 

class uses a Policer Table to store the mappings from a policy type and initial code point 

pair to its associated downgraded code point(s). This table is an array with four fields: 

• . Policertype 

• . Initial code point 

• . Downgraded code point 1 

• . Downgraded code point 2 

The last field is not used for policer types with only two drop precedences, and it should 

be set to the worst code point for policertypes with three drop precedences. 

4.5.6.6 Configuration 

The addPolicyEntry command is used to add an entry to the Policy Table. It takes 

different parameters depending on what policer type is used. The first two parameters 

after the command name are always the source and destination node IDs, and the next 

parameter is the policer type .. Following the policer type are the parameters needed by 

that policer as summarized below: 

• . TSW2CM Initial code point CIR 

• . TSW3CM Initial code point CIR PIR 

• . TokenBucket Initial code point CIR CBS 

• . srTCM Initial code point CIR CBS EBS 

• . trTCM Initial code point CIR CBS PIR PBS 

46 



The rates CIR and PIR are specified in bits per second, the buckets CBS, EBS, and PBS 

are specified in bytes. Consider a Tel script for which $q is a variable for an edge 

queue, and $s and $d are sourl:e and destination nodes. The following command adds a 

TSW2CM policer for traffic going from the source to the destination: 

$q addPolicyEntry [$s id] [$d id] TSW2CM 10 2000000 

The following parameters could be used in place of "TSW2CM ... " to use a different 

policer: 

TSW3CM I 0 2000000 3000000 

TokenBucket 10 2000000 10000 

srTCM I 0 2000000 10000 20000 

trTCM 10 2000000 10000 3000000 10000 

Note, however, that only one policy can be applied to any source-destination pair. The 

following command adds an entry to the Policer Table, specifying that the trTCM initial 

(green) code point 10 should be downgraded to yellow code point 11 and red code point 

12: 

$dsredq addPolicerEntry trTCM 10 11 12 

There must be a Policer Table entry in place for every policer type/initial code point 

pair. 

4.5.6. 7 Querying 

Four queries are interpreted by an edge Queue class instance: 

$dsredq printPolicyTable 

· This command prints the e!ltire Policy Table, one line at a time. 

$dsredq printPolicerTable 

This command prints the entire Policer Table, one line at a time. 

$dsredq getCBucket 

This query returns the current size of the C Bucket, in bytes. 

47 



4.5.7 Core Module 

4.5.7.1 Purpose 

This class emulates the core router in the Diffserv architecture; thus, is intended to work 

downstream from an edge router. It forwards packets according to the marking done on 

them by the edge router. Packets having code points signifying low priority are dropped 

at a considerably higher rate than packets marked with code points of high priority. The 

core module is contained in the files "core.h" and "core.cc." 

4.5.7.2 Class hierarchy positioning 

This class inherits its behaviour from dsREDQueue class, therefore it is positioned 

below dsREDQueue class. 

After having a grasp of the basic nitty-gritty of the NS simulator, we can move on to 

work implemented here in this dissertation. 

48 



CHAPTERS 
SIMULATION STUDY 

This simulation simulates the DiffServ traffic to measure and analyze the quality of 

service. In this simulation, traffic is created using the Tel scripts. These Tel scripts are 

run under the NS simulator, which is an event driven program, being supported by 

various operating systems. 

The set -up of the simulation can be described as below-

First the network topology is created to include the source nodes, destination nodes, 

DiffServ edge routers, and core routers with their ids. Next queues are created with 

specified traffic rate, delay time, packet size, bandwidth etc. among other inputs. In this 

simulation there is a CBR (Constant Bit Rate) conner.tion between every source and 

destination node. Token Bucket and TSW3CM policers are used for policing the traffic. 

Now parameters are set for every queue including the number of physical and virtual . 
queues, policer, scheduler, etc. Virtual queues are configured independently also with 

PHB entry added for each virtual queue. After configuring the queues, traffic agents are 

attached to the source nodes and connected with the destination nodes to carry the 

traffic. Finally the NS interpreter is called to run the entire set-up. Nam animator is used 

for the visual analysis of the traffic. The resulted data are printed using the appropriate 

constants. 

Applying the various queuing techniques, it is observed that RED queuing is as much 

good as DropTail queuing. For scheduling the queues, WRR (Weighted Round Robin) 

is more efficient than PQ (Priority Queuing). WIRR (Weighted Interleaved Round 

Robin) algorithm is equally good with WRR. Policer's behavior is variable, sometimes 

Token Bucket is better and sometimes TSW3CM (Time Sliding Window with 3 Color 

Mode). The behavior of a policer is also dependent on a scheduling algorithm. The 

network topology after the simulation is shown below-

49 



v 

file ~ews t\nalysls : ........ 

f\ 
i i 

II 
l! 
i I 
I i 
jl 
I J 

I 1 
\ i 
! t 

I! 

i .' 

; \ 
I' 

iiTtffi;',~;J;;;,.,t;;;rlllt;t~~-~f,·,;·tJJ;~I;;;,J,,,;J;~;,;;;;~D;~;;;CJ~J;~CJj;;;[;;;J~I;;;j;;-~~~~T;;:tt;;;;J·t,;J;J;;;rJ;J;,;,tl!;Jitl;t;,t,,;JJ;JJ]ItJJJ;.,t;f,,;;;;;;,Gu.t;t·J·;;J;t~;;;J;;rr;;;J;;,jJ· ..... r--------- - - . 
; r···-·-·-·· ········-······ ·--·····-······-··-··· ---·---------··-·-------·····-···-------------······-··--------------···---------··------------·------

:.,;~~~~ ~·G8 . Giili:H rj. :;; ¥\ 
o--~v 

.... . ............................... . 

Figure 7. Network topology used in the simulation 

50 

sun Jan 04 
5:40PM 



Here nodes 0, 1, 2 are the source nodes, nodes 3, 4 and 6 are the edge router nodes, 

node 5 is the core node and node 7 is the destination node. Testing time for the 

simulation is chosen to be 20.0-second units. The traffic from the source node 1 is 

stopped during the period 5.0 to 10.0 and restarted at 10.0 time units. The behavior of 

the various queuing and scheduling algorithms can be seen in the Index of result tables. 

Though results here show a few algorithms being used, others can also be used. 

51 



·CONCLUSION AND FUTURE WORK 

This dissertation work shows the effect of various queuing, scheduling and dropping 

methods on the QoS of the Internet. Different algorithms for different queue sizes, 

traffic patterns and traffic rates, bandwidth were used to measure and analyze the end­

to-end delay, number of packets successfully transmitted and also the packets dropped 

during the delivery. For simulation analysis, Nam network animator was used. It 

showed the visual description of the network topology, flow of the traffic, dropping of 

the packets, etc. The environment used was Linux operating system. 

Simulation results showed that delay increases if the traffic is overloaded i.e. there are 

more flows between source and destination nodes. Less packets are dropped when 

traffic is within the service parameters limit, more packets are dropped if the traffic rate 

is increased. Bandwidth allocation to a link is also important. A link can not handle 

packets with the more traffic rate than allowed. More packets are dropped midway if the 

bandwidth of the link is less than the traffic rate. 

Finally the simulation shows that it is possible to implement DiffServ architecture to 

provide QoS over Internet. 

}his simulation study can be extended to the real network to study the other hidden 

factors such as noise, power etc. which can influence the QoS of the network before the 

implementation in the public use. 

52 



1. 

2. 

"' -'· 

BIBLIOGRAPHY 

www.qosforum.com, "White Paper- QoS protocols & architectures". 

QoS forum,"Quality of Service: Glossary ofTerms", May 1999. 

IETF "Differentiated Services" working group. 

http://www.ietf.org/html.charters/diffserv-charter.html 

http://www.ietf.org/ids.by.wg/diffserv.html. 

See 

and 

4. J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, "Assured Forwarding PHB 

Group", RFC 2597, June 1999. 

5. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, "An 

Architecture for Differentiated Services", RFC 2475, December 1998. 

6. K. Nichols, S. Blake, F. Baker, D. Black, "Definition of the Differentiated 

Sen,ices Field (DS Field) in the !PV4 and Ipv6 Headers", RFC 2474, 

December 1998. 

7. Information on Class Based Queuing (CBQ) at 

http://www.aciri.orgifloyd/cbq.html 

8. Sasu Tarkoma, Informal Management Model for DiffServ Routers, October 

2000. 

9. Marko Luoma and Mika Ilvesmaki, Measurement based raffle classification 

in Differentiated Services. 

10. J. Wroclawski, "The use of RSVP with IETF Integrated Services", RFC 

2210, September 1997. 

11. Mikko Kolehmainen, "DiffServ Per Hop Behaviors (PHBs)", October 2000. 

12. X. Xiao & M. Ni. Lionel, Internet QoS: A Big Picture", IEEE Network 

Magazine, March 1999. 

13. William Stallings, "High Speed Networks and lnternets: Performance and 

quality of service ". Second Edition 2002. 

14. Douglas E. Komar, "Computer Networks and In~ernets". 

15. Andrew S. tanenbaum, "Computer Networks", 2000. 

16. NS manual and tutorial. 

53 



APPENDIX 

Tables of Results 

Output 1: DropTail (Queuing) and WRR (Scheduling) with Token Bucket policer. 

Policy Tablel: 

Flow (0 to 7): Token Bucket policer, initial code point 10, CIR 1000000.0 bps, CBS 

10000.0 bytes. 

Policer Table: 

Token Bucket policer code point 10 is policed to code point 11. 

Policy Table2: 

Flow (1 to 7): Token Bucket policer, initial code point 10, CIR 1000000.0 bps, CBS 

I 0000.0 bytes. 

Flow (2 to 7): Token Bucket policer, initial code point 20, CIR 1000000.0 bps, CBS 

10000.0 bytes. 

Policer Table: 

Token Bucket policer code point I 0 is policed to code point 11. 

Token Bucket policer code point 20 is policed to co~e point 21. 

54 



Packets Statistics at time 4.0 units 

============================ 

CP TotPkts TxPkts I drops edrops 

-- --------- -------- -------- --------
All 5984 5003 563 418 

IO IOI6 I016 0 0 

II 2974 I993 563 4I8 

20 508 508 0 0 

2I I486 I486 0 0 

Packets Statistics at time 6.0 units 

=========================== 

CP TotPkts TxPkts I drops edrops 

-------- -------- ------- --------
All 8490 7247 696 547 

10 1392 1392 0 0 

1I 4104 286I 696 547 

20 758 758 0 0 

2I 2236 2236 0 0 

55 

/ 



Packets Statistics at time 10.0 units 

=========================== 

CP TotPkts TxPkts I drops edrops 

-- --------- ---------

All 12490 11247 696 547 

10 1892 1892 0 0 

11 5604 4361 696 547 

20 1258 1258 0 0 

21 3736 3736 0 0 

Packets Statistics at time 15.0 units 

=========================== 

CP TotPkts TxPkts I drops edrops 

-- --------- --------
All 19985 . 17512 1431 1042 

10 3150 3127 23 0 

11 9341 6891 1408 1042 

20 1883 1883 0 0 

21 5611 5611 0 0 

Output 2: RED (Queuing)and WRR (Scheduling)with Token Bucket policer-. 

Policy Table 1: 

Flow (0 to 7): Token Bucket policer, initial code point 10, CIR 1000000.0 bps, CBS 

10000.0 bytes. 

~56 

/ 



Policer Table: 

Token Bucket policer code point 10 is policed to code point 11. 

Policy Table2: 

Flow (I to 7): Token Bucket policer, initial code point 10, CIR 1000000.0 bps, CBS 

I 0000.0 bytes. 

Flow 2 to 7: Token Bucket policer, initial code point 20, CIR 1000000.0 bps, CBS 

10000.0 bytes. 

Policer Table: 

Token Bucket policer code point 10 is policed to code point 11. 

Token Bucket policer code point 20 is policed to code point 21. 

Packets Statistics at time 4.0 units 

=========================== 

CP TotPkts TxPkts I drops edrops 

--------- -------- -------- --------

All 5984 5003 563 418 

10 1016 1016 0 0 

I 1 2974 1993 563 418 

20 508 508 0 0 

21 1486 1486 0 0 

57 



I-

Packets Statistics at time 6.0 units 

=========================== 

CP TotPkts TxPkts !drops edrops 

-- --------- -------- --------

All 8490 7247 696 547 

10 1392 1392 0 0 

11 4104 2861 696 547 

20 758 758 0 0 

21 2236 2236 0 0 

Packets Statistics at time I 0.0 units 

======================~=== 

CP TotPkts TxPkts I drops edrops 

-- --------- -------- --------
All 12490 11247 696 547 

10 1892 1892 0 0 

11 5604 4361 696 547 

20 1258 1258 0 0 

21 3736 3736 0 0 

Packets Statistics at time 15.0 units 

==~======================== 

CP TotPkts TxPkts I drops edrops 

-- --------- -------- --------
All 19985 17512 1431 1042 

10 3150 3127 23 0 

11 9341 6891 1408 1042 

58 



20 1883 1883 

21 5611 5611 

0 

0 

0 

0 

Output 3: RED (Queuing)and PRJ (Priority Queuing for scheduling) with Token 

Bucket policer. 

Policy Tablel: 

Flow (0 to 7): Token Bucket policer, initial code point 10, CIR I 000000.0 bps, CBS 

I 0000.0 bytes. 

Policer Table: 

Token Bucket policer code point 10 is policed to code point 11. 

Policy.Tabie 2: 

Flow (I to 7): Token Bucket policer, initial code point 10, CIR 1000000.0 bps, CBS 

10000.0 bytes. 

Flow (2 to 7): Token Bucket policer, initial code point 20, CIR I 000000.0 bps, CBS 

10000.0 bytes. 

Policer Table: 

Token Bucket policer code point 10 is policed to code point 11. 

Token Bucket policer code point 20 is policed to code point 21. 

59 .. 



Packets Statistics at time 4.0 units 

=========================== 

CP TotPkts TxPkts I drops edrops 

-- --------- -------- -------- --------
All 5984 500I 89I 92 

IO IOI6 IOI6 0 0 

II 2974 2974 0 0 

20 508 428 80 0 

2I 1486 583 8II 92 

Packets Statistics at time 6.0 units 

=========================== 

CP TotPkts TxPkts ldrops edrops 

-- --------- -------- ------- --------
~ 

All 8490 7243 III9 I28 

10 1392 1392 0 0 

11 4104 4104 0 0 

20 758 678 80 0 

21 2236 1069 1039 128 

Packets Statistics at time 10.0 units 

=========================== 

CP TotPkts TxPkts ldrops edrops 

-- --------- -------- --------

All 12490 11243 1119 128 

10 1892 1892 0 0 

II 5604 5604 0 0 

60 



20 1258 1178 80 0 

21 3736 2569 1039 128 

Packets Statistics at time 15.0 units 

=========================== 

CP TotPkts TxPkts ldrops edrops 

-- --------- -------- --------
All 19985 17511 2242 232 

10 3150 3150 0 0 

11 9341 9341 0 0 

20 1883 1803 80 0 

21 5611 3217 2162 232 

Output 4: RED (Queuing)and WIRR (Scheduling) with Token Bucket policer 

Policy Table 1: 

Flow (0 to 7): Token Bucket policer, initial code point 10, CIR 1000000.0 bps, CBS 

10000.0 bytes. 

Policer Table: 

Token Bucket policer code point 10 is policed to code point 11. 

Policy Table2: 

Flow (1 to 7): Token Bucket policer, initial code point 10, CIR 1000000.0 bps, CBS 

10000.0 bytes. 

61 



Flow (2 to 7): Token Bucket policer, initial code point 20, CIR 1000000.0 bps, CBS 

10000.0 bytes. 

Policer Table: 

Token Bucket policer code point 10 is policed to code point 11. 

Token Bucket policer code point 20 is policed to code point 21. 

Packets Statistics at time 4.0 units 

=========================== 

CP TotPkts TxPkts ldrops edrops 

-- --------- --------
All 5984 5003 554 427 

10 1016 997 19 0 

11 2974 2012 535 427 

20 508 508 0 0 

21 1486 1486 0 0 

Packets Statistics at time 6.0 units 

=========================== 

CP TotPkts TxPkts ldrops edrops 

--------- -------- --------
All 8490 7244 694 552 

10 1392 1373 19 0 

11 4104 2877 675 552 

20 758 758 0 0 

21 2236 2236 0 0 

62 

/ 



Packets Statistics at time I 0.0 units 

=========================== 

CP TotPkts TxPkts I drops edrops 

-- --------- -------- --------
All I2490 II244 694 552 

10 I892 1873 19 0 

II 5604 4377 675 552 

20 1258 1258 0 0 

21 3736 3736 0 0 

Packets Statistics at time 15.0 units 

=========================== 

CP TotPkts TxPkts !drops edrops 

-- --------- -------- --------

All I9985 I7508 I418 1059 

10 3I50 3I3I 19 0 

11 9341 6883 1399 1059 

20 1883 1883 0 0 

2I 5611 5611 0 0 

Output 5: RED (Queuing) and WRR (Scheduling) with TSW3CM policer 

Policy Table 1: 

Flow (0 to 7): TSWJCM policer, initial code point 10, CIR 1000000.0 bps, PIR 

500000.0 bytes. 



Policer Table: 

TSW3CM policer code point I 0 is policed to yellow code point II and red code point 

I2. 

Policy Table2: 

Flow (I to 7): TSW3CM policer, initial code point I 0, CIR 1000000.0 bps, PIR 

1000000.0 bytes. 

Flow (2 to 7): TSW3CM policer; initial code point 20, CIR 1000000.0 bps, PIR 

1000000.0 bytes. 

Policer Table: 

TSW3CM policer code point I 0 is policed to yellow code point II and red code point 

12. 

TSW3CM policer code point 20 is policed to yellow code point 21 and red code point 

22. 

Packets Statistics at time 4.0 units 

=========================== 

CP TotPkts TxPkts I drops edrops 

--------- -------- --------
All 5984 5027 847 110 

io 1019 941 78 0 

12 2971 2383 513 75 

20 671 671 0 0 

64 



22 1323 1032 256 35 

Packets Statistics at time 6.0 units 

=========================== 

CP TotPkts TxPkts !drops edrops 

-- --------- --------
All 8490 7274 1074 142 

10 1285 1207 78 0 

12 4211 3444 672 95 

20 937 937 0 0 

22 2057 1686 324 47 

Packets Statistics at time 10.0 units 

=========================== 

CP TotPkts TxPkts !drops edrops 

-- --------- -------- --------

All 12490 11274 1074 142 

10 1506 1428 78 0 

12 5990 5223 672 95 

20 1435 1435 0 0 

22 3559 3188 324 47 

65 



Packets Statistics at time 15.0 units 

~========================== 

CP TotPkts TxPkts !drops edrops 

--------- --------
All 19985 17562 2145 278 

10 2617 2520 97 0 

12 9874 8280 1404 190 

20 2073 2073 0 0 

22 5421 4689 644 88 

~~ rf.J~ 
I ;-:.:~/~--., 6 ~ 
/ .:cr·,.r •• \~·; 
/,-} f ··- ...... y1,• l .... 

\,:~~\L!U! •" f,~ 
~"'~'· .,.......,.y .. ·· ,,~ .. 

~::~ -:~----// 

66 


	TH110950001
	TH110950002
	TH110950003
	TH110950004
	TH110950005
	TH110950006
	TH110950007
	TH110950008
	TH110950009
	TH110950010
	TH110950011
	TH110950012
	TH110950013
	TH110950014
	TH110950015
	TH110950016
	TH110950017
	TH110950018
	TH110950019
	TH110950020
	TH110950021
	TH110950022
	TH110950023
	TH110950024
	TH110950025
	TH110950026
	TH110950027
	TH110950028
	TH110950029
	TH110950030
	TH110950031
	TH110950032
	TH110950033
	TH110950034
	TH110950035
	TH110950036
	TH110950037
	TH110950038
	TH110950039
	TH110950040
	TH110950041
	TH110950042
	TH110950043
	TH110950044
	TH110950045
	TH110950046
	TH110950047
	TH110950048
	TH110950049
	TH110950050
	TH110950051
	TH110950052
	TH110950053
	TH110950054
	TH110950055
	TH110950056
	TH110950057
	TH110950058
	TH110950059
	TH110950060
	TH110950061
	TH110950062
	TH110950063
	TH110950064
	TH110950065
	TH110950066

