
Observation on Task Partitioning Using
Genetic Algorithm in Parallel/Distributed

System

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY
IN

COMPUTER SCIENCE AND TECHNOLOGY

By

ARUNKUMAR

UNDER THE SUPERVISION OF

Dr. D. P. Vidyarthi

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI-110067, INDIA

JULY, 2007

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JA WAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067, INDIA

CERTIFICATE

This is to certify that the dissertation titled "Observation on Task Partitioning

Using Genetic Algorithm in Parallel/Distributed System", which is being submitted

by Mr. ARUN KUMAR to the School of Computer & Systems Sciences, Jawaharlal

Nehru University, New Delhi, in partial fulfillment of the requirements for the award of

Master of Technology in Computer Science & Technology is a bonafide work carried

out by his under the supervision of Dr. D. P. Vidyarthi. The matter embodied in the

dissertation has not been submitted for the award of any other degree or diploma.

~~,,
Prof Parimala N:

Dean
Schr>0l of Comp & S

JAW H ., .. u .:r . ysterns Sciences
D·~an'hL"L Nt:HRU UNIVERSITY

NEW Db.LH!-110067
SC&SS
Jawaharlal Nehru University
New Delhi-11 0067

~~
Arun Kumar
(Student)

Dr.D~~~
SC&SS
Jawaharlal Nehru University
New Delhi-110067

Dedicated to

My Dear Grandfather

11

ACKNOWLEDGEMENT

I am thankful to all who supports me to do this work. I want to thanks Dr. D. P

Vidyarthi, my supervisor, who guided me excellently, provided support, guidance,

encouragement and raw materials, which are needed to me during the dissertation in past

one year. For fruitful discussion and helpful idea I would like to express my gratitude to

him.

I am also thankful to Dean, Faculty members and staff of SC&SS for their support and

help for project.

I am also thankful to my friend Akhilesh, Manish, Pratibha and Sushi! and colleges for

their support, help and encouragement during dissertation and difficulties in life in past

one year.

Finally I am also grateful to my parents, my lovely younger brother Ashish and sister

Suman and family members, for their love, inspiration and encouragements during each

phase of dissertation and life.

Arun Kumar

lll

ABSTRACT

Parallel/distributed system allows the concurrent execution of tasks. Both Parallel and

Distributed system are same in execution scenario. The difference between them is

whereas parallel systems are single system with multiprocessor and distributed systems

give appearance of single system having collection of autonomous computer systems.

The main advantages of theses systems are resource sharing, openness, higher throughput

and shorter response time, etc.

Task scheduling in parallel and distributed system is done by partitioning the task into

sub-tasks and these sub-tasks are executed on different processors or systems. The groups

of sub-tasks are allocated to the system and execute. Allocation methods of these task

modules are an NP-hard problem.

Genetic algorithm (GA) is used for solving the task allocation problem. GA is adaptive

heuristic search algorithm based on the evolutionary ideas of natural selection and

genetics. GAs simulates the survival of the fittest among individuals over consecutive

generation for solving a problem. Genetic algorithms operators partial matched crossover

(PMX) and ordered crossover (OX) are used to solve task allocation problem in parallel

and distributed system.

In this dissertation, we focus on partitioning and grouping the task modules in such a

manner that these groups of the task can allocated in its entirety to the nodes of the

system. The grouping will be done in such a manner so that the execution time difference

amongst the modules of the group is minimum. We have tested two crossover operators

for this i.e. PMX and OX. The C language is used for the implementation of the whole

model.

In first chapter, parallel and distributed system, models of distributed system and

execution scenario of parallel and distributed system are discussed.

lV

Second chapter contains scheduling of parallel and distributed system, task

preprocessing, and task partitioning and general idea about genetic algorithms.

Third chapter of dissertation contains the proposed model and genetic algorithm

operators PMX and OX, which are uses to solved the problem.

Fourths chapter contains the observation of PMX and OX operator and comparisons

between them.

Fifth chapter has the conclusion and the future work.

v

ALU

BSF

CPU

cu
ex
DCS

DFS

GA

IO

ISO

MIMD

MISD

ox
PE

PMX

RM-ODP

SISD

SIMD

TSP

ABBREVIATIONS

Arithmetic and Logic Unit

Breadth First Search

Central Processing Unit

Control Unit

Circular Crossover

Distributed Computing System

Depth First Search

Genetic Algorithm

Input/Output

International Standards Organization

Multiple Instruction stream and Multiple

Data Stream

Multiple Instruction stream and Single

Data Stream

Ordered Crossover

Processing Unit

Partial Matched Crossover

Reference Model for Open Distributed

Processing

Single Instruction stream and Single Data

Stream

Single Instruction stream and Multiple

Data Stream

Traveling Sales Man Problem

VI

TABLE OF CONTENTS

Certificate

Dedication

Acknowledgement

Abstract

Abbreviations

Chapter 1 Introduction

1.1 Parallel System

1.1.1 General purpose Computers

1.1.2 Special Purpose Computers

1.2 Distributed System

1.2.1 Distributed System Models

1.3 Execution Scenario in Parallel and Distributed System

1. 3 .1 Grain Size

1.3.2 Latency

1.4 Organization of Dissertation

Chapter 2 Scheduling in Parallel and Distributed System

2.1 Static scheduling

2.2 Dynamic Scheduling

2.3 Task Preprocessing

2.3.1 Component of Preprocessing

2.4 Task Partitioning

2.4.1 Perfect Decomposition

2.4.2 Domain Decomposition

2.4.3 Control Decomposition

2.5 Genetic Algorithms

2.5.1 Search Space

Vll

Page No.

ii

iii

iv

vi

1

2

3

4

5

7

8

8

8

9

10

10

11

11

12

13

13

13

14

15

16

2.5.2 Genetic Algorithms Components

2.5 .2.1 Selection

2.5.2.2 Crossover

2.5.2.3 Mutation

2.5.2.4 Effect of Operators

2.5.2.5 Fitness Function

Chapter 3 The Proposed Model

3.1 Partitioning

3.2 Partial Matched Crossover (PMX) Operator

3.2.1 Algorithms for PMX

3.2.1 Flow Chart for PMX

3.3 Ordered Crossover (OX) Operator

3.3.1 Algorithms for OX

3.3.2 Flow Chart for OX

Chapter 4 Observations

4.1 Observation Using PMX Operator

4.2 Observation Using OX Operator

4.3 Comparison between Results of PMX and OX Operator

Chapter 5 Conclusion and Future Work

5.1 Conclusion

5.2 Future Work

References

Vlll

17

17

18

19

19

19

21

22

23

24

25

26

27

28

29

29

31

34

36

36

37

38

Chapter 1

Introduction

Parallel and distributed systems are similar in nature as far as execution is concerned. The

difference lies in the hardware architecture. A distributed system is a collection of

autonomous computers and parallel system is a single computer with many processors.

Both have common goal to achieve i.e. the parallelism in system at the different levels.

Parallel systems are having three memory architecture; shared memory, distributed

memory and hybrid shared distributed memory. The main advantages of these systems

are higher throughput and sharing of resources. In Parallel system communication is

through memory whereas in the distributed system the communication is done by

message passing. [6, 11, 12]

Task scheduling in parallel and distributed system is a challenging area in computer

science research. The task scheduling on these system is done in such a manner that the

execution time of the task is minimized. Scheduling deals with the allocation of group of

tasks (or modules) to the system (CPU or resources). Task is divided into a number of

modules (subtask). The modules are allocated to the system for concurrent execution. In

the parallel and distributed system, allocation methods of these task modules are the NP­

hard problem that is solved using various heuristic algorithms. [13, 14, 26]

Module formation and groupmg is an important activity m task allocation. Better

grouping of modules will lead to better allocation. We are using genetic algorithms to

solve this problem [19]. Genetic algorithms are better search approach to solve an NP­

hard problem. Genetic Algorithms works as a natural process of evaluation and is applied

to solve problem based on the principle of"survival of the fittest". GA uses reproduction,

mutation and recombination to generate solution for the problem. Genetic algorithms

generate population with the group of individuals. The individual in population is

evaluated; that evaluated individual gives fitness score in the population, higher fitness

1

score gives higher chance to select individual. Mutation operation is also applied on the

individual occasionally.

There are many genetic operators for crossover operation. We have used genetic

operators partial-matched crossover (PMX) and ordered crossover (OX) to observe the

task module formation. Applying these operators we find the better execution order of the

module. The method of partitioning the task into number of subtasks is the preprocessing

step of the task scheduling in Parallel/Distributed System.

Genetic Algorithms (GA) has been used for the task scheduling in parallel and distributed

system since quite some time. We use particularly have observed genetic algorithms

crossover operator PMX and OX for the task partitioning and execution of modules in

parallel and distributed system environment. PMX and OX operators are based on the

exchange operation. [15, 16]

1.1 Parallel System

This is higher speed computing era in which much more fast execution of task is needed.

Parallel System is single computer with multiple processors which are used for executing

more than one instruction simultaneously. Execution of more than one instruction on

multiprocessor is known as parallel processing. In parallel processing task is divided into

number of modules (sub tasks) and execute on the processors of the system. The

Advantage of parallel processing is higher throughput, computation power and better

performance than the single-processor system. These parallel systems are mainly

classified into tow categories General purpose and Special purpose computer systems ..

General purpose computer system is Pipeline computers, Asynchronous multiprocessors

and Data flow computers. Special purpose computers are Synchronous multiprocessors

(Array Processors), Systolic Array and Neural Network. The main advantages of

developing parallel system are to improve throughput, flexibility, reliability and

availability. [6, 7, 21]

2

1.1.1 General Purpose Computers

The general purpose computers are based on Pipeline computers, Asynchronous

Multiprocessors and Data flow computers. [6, 21]

Pipeline computing is a technique that is based on the sequential execution of

instructions into sub operations. These operations are performed into a specified segment

concurrently. There are several pipelines of various purposes. Arithmetic pipelining: the

ALU of a computer can be segmented for pipeline operations in a variety of data formats.

Instruction Pipelining: the execution of set of instructions can be pipelined by

overlapping the execution. Processor pipelining: the same data can be processed by

cascade of processors. Depending upon functionality there are two type of pipelining

Unifunctional Pipelining: A pipeline with set and committed function is unifunctional

pipeline. Multifunctional pipeline: may perform different types of functions. Some other

categories are Linear pipeline: linearly performed with fixed operations over a instruction

stream flowing to one end point to another; Dynamic pipeline: designed to perform

different type of variable function and it allows to feed forward and feed backward

connections so that known as Nonlinear pipeline; Scalar pipeline: designed for operating

scalar operations; Vector pipeline: It handles vector instructions. Pipeline throughput is

defined by the average number of task instructions generated in per clock cycle and

pipeline efficiency is related to throughput of pipeline which is the collection rate of all

stage utilization of pipeline. Stage utilization is the percentage time used to perform a

task. [6, 21]

In Asynchronous Multiprocessor system all CPU works independently and task

execution is done by partitioning the task into number of subtasks and allocated to

different CPU s. These sub-tasks are having low communication and synchronization

requirements. In asynchronous system communication and synchronization is done by

shared memory and message passing. Shared Memory Multiprocessors, Message Based

3

Multiprocessor and Hybrid Approach are the possible asynchronous multiprocessors. [6,

21]

In Data Flow Computers, basically execution is done if data is available. This method is

derived by data-driven. In data flow computers, the execution data not follow any order

rather depends on the availability of data operands. Data are seized in instruction instead

of storing in shared memory. [6, 21]

1.1.2 Special Purpose Computers

The special purpose computers are Synchronous multiprocessors (Array processors),

Systolic Arrays and Neural Networks. [21]

Synchronous Multiprocessors (Array Processors) are collection of multiple ALU's.

These ALU's are called processing elements (PE), which can work in parallel in lock­

step fashion. An ALU, register and a local memory is part of a processing element (PE)

and each PE connected with data routing network. All PE's are connected to control unit

(CU), which control all operation ofPE's. [6]

Systolic Arrays are special purpose computing based on multidimensional pipeline and

mapped on fixed architecture. This is specially designed for matrix multiplication. [21]

Neural Network is different from conventional computer. It is like human brain and is

highly complex, nonlinear and parallel information processing. The main advantages of

neural network are nonlinearity, adaptivity, 10 mapping, fault tolerance and uniformity

analysis and design, etc. [21]

Parallel computers are based on three type of memory architecture: Shared Memory,

Distributed Memory and Hybrid Distributed Shared Memory.

4

The key term in parallel processing is efficiency of parallel processing which is derived

by speedup(S). Suppose that in parallel system there is N number of processor then

speedup of parallel system is [6]

S= execution time for one processor
execution time for N processor

1.2 Distributed System

Distributed Computing System (DCS) is the collection of autonomous computers which

give the appearance of a single computer system. Distributed system is collection of

multiple systems but components are not shared among systems. In computer network a

component which communicates and coordinates their action by passing messages is

called a distributed system. This defines following characteristics of distributed systems;

concurrency of component, lack of global clock and independent failure. Concurrency of

component means concurrent execution of any application in the system if there is any

need to share any resource for execution then it is allowed. Distributed systems

synchronize their clock when communication and coordination is needed. Then there is

no need for global clock. In the Distributed system, there is independent machines

connected to each other and they do not affect functionality of any other when any

application is executed. [11, 12, 26]

The goals of distributed system are resources sharing, heterogeneity, openness, security,

scalability, concurrency, fault tolerance and transparency. [11, 12]

Resources Sharing is main goal of distributed system which means shares any resource

of system which is hardware, software or any data which resides where any in the system.

Resources sharing also provide interaction among users of the system. Hardware

resources such as CPU, printers and data resource are files, database. The sharing of

resource is also economically advantageous due to reduction of cost of devices. A

5

computer access physically encapsulated resource of other system by message passing. A

resource manager provides a reliable and consistent access and update of resource by

enabling communication interface. Resource manager is a program having responsibility

of sharing resources and provides proper communication among recourses. The client­

server and object based model of resource sharing give guidelines for how to provide and

use resources. [11]

Heterogeneity defines tpe distributed system computers are having different type of

architecture, application program, operating system, run time environment, network and

network protocols, but it is masked by middleware.[11]

Openness is the characteristics of distributed worried about the ways of re-implementing

and extend the system. The system is governed by a set of protocol which illustrate the

syntax and semantic of system service. Flexibility of system is most important which

shows the components of system are from different configuration and also developed by

distinct developers, when they are added to system or replaced to old one that is simply

adapted by the system, that component is a hardware or software or any file system.[11]

Security is an important in distributed system, because in distributed system data is

transmitted among different systems, so that there is need to keep some data secret when

it is transmitted. Encryption can be used for the securing the data from intruders. [12]

Scalability is term which is used for defining the system adaptability means if there are

many users and component of are increased in system then it is also work successfully.

Controlling the cost of physical resource maintains the performance of system and

prevents software resources running out are the major challenges arises to design a

scalable system. [12]

Concurrency defines the concurrent execution of process in system, in distributed

system resources are shard among the computers, they are requested for the resource

6

some time it may be happen two or more computer are request for same resource, to

avoid such circumstances algorithm are developed and it ensures that execution is in

concurrent environment. [12]

Fault Tolerance means to avoid the failure of any system. Distributed system contains

number of components (which are hardware or software) there is interrupt of fault cause

by any component, to avoid such failure of component some techniques can be used.

These techniques are detecting failure, masking failure and other oneis tolerating failure.

Recovery from failure and redundancy are the techniques which are used to accomplish

the fault tolerance in distributed system. [12]

Transparency is defined to distributed system seem as a single system rather than

collection of number of cooperative autonomous system. The ANSA Reference Manual

[ANSA 1989] and the International Standards Organization's Reference Model for Open

Distributed Processing (RM-ODP) [ISO 1992] gives following transparency: Access

transparency, Location transparency, Migration transparency, Relocation transparency,

Replication transparency, Concurrency transparency, Failure transparency and

Persistence transparency. [11]

1.2.1 Distributed System Models

The basic models of distributed system are:

• Minicomputer Model- In minicomputer model of distributed system number of

minicomputers are connected to a network, each with some terminals.

• Workstation Model- Many work station are connected to network and make

distributed system to useful when user uses remote workstation.

• Workstation server Model- Its is very advantageous due to sharing of several

servers like file server, printer server etc.,

• Processor Pool Model- Pool of processors connected to network. [11, 12]

7

1.3 Execution Scenario in Parallel and Distributed System

In the parallel and distributed system the task execution is done by partitioning the task

into number of sub-tasks and these sub-tasks are allocated and executed on the nodes of

the system. The crucial issue of partitioning is based on the grain size. [6]

1.3.1 Grain Size

For any task execution there is some software computation involved. This computation

contains basic segment of parallel processing and are measured by grain size

(granularity). Grain size defines fine, medium and course grain.

Fine Grain is the lowest level grain size which contains less than 20 instructions in the

grain. Some times fine grain size varies up to thousand which depends upon the program.

Medium Grain contains procedures and subprograms up to 2000 instructions. In MIMD

execution mode medium grain size is involved. Coarse Grain corresponds at parallel

execution of job and it contains ten thousand or more instruction in a single program.

Message passing in system uses medium and coarse grain. [6, 22]

1.3.2 Latency

For any program execution in parallel and distributed system there is the communication

between computers. The time taken is measured by latency. Memory Latency is time

taken to access memory by processor and Synchronization Latency is time taken to

synchronize to two processors with each other. [6]

8

1.4 Organization of the Dissertation

The thesis is organized in five chapters.

First chapter of our dissertation describes parallel system, distributed system, and

execution scenario of parallel and distribute system.

Second chapter gives the idea of task preprocessmg, task portioning and genetic

algorithms.

Third chapter define proposed work and genetic algorithm operators PMX and OX.

Fourth Chapter contains observation using PMX and OX operators.

Conclusion and future work is given in Fifth Chapter.

9

Chapter 2

Scheduling in Parallel and Distributed System

In parallel computing environment non-preemptive scheduling is a NP-Hard problem and

gives good throughput. But most distributed/parallel processing use static scheduling but

dynamic scheduling is very important and natural for such system. [23, 25]

Three cases arise in the scheduling in the parallel/distributed system. Let us suppose that

there are m processing nodes and n tasks. If the numbers of tasks are larger than the

number of processing nodes then, for optimal execution, the task execution time is known

in advanced. Though, practically it is not possible for all the cases. The second algorithm

is Round Robin algorithm also known as distributed, fault tolerance round .robin

algorithms. Here the number of processors are less than the number of tasks, and the

execution is done according to there time quantum. For each time quantum a task is

scheduled according to its priority. Third algorithm is Preemptive Task Bunching. In this

n tasks are bunched and assign to all m processors. For coarse-grained and fine-grained

task, preemptive task bunching algorithm works well. [1, 10, 24, 26]

2.1 Static scheduling

In static scheduling, grain determines optimize scheduling. To schedule a task following

steps are required [6].

• Construct a graph according to grain value.

• Fine grain computation is scheduled in processor.

• Coarse grain is produced by grain packing.

• On the basis of grain packed graph, generate parallel scheduling.

10

For static scheduling most of the scheduling parameters are known in advance i.e. prior to

make the scheduling decision.

2.2 Dynamic Scheduling

In real scheduling scenario, most of the parameters are not known and the decision is

differed at the time of execution. Dynamic scheduling takes place for such cases. Tasks

used to enter and exit the system dynamically. At any point of time, the decision can be

taken considering the availability at that particular time.[6]

In parallel and distributed system some other scheduling algorithms are Adapted First

Come First Serve (AFCFS), AFCFS-Blocking of Sequential Jobs (AFCFS-BS), Largest

Gang First Served I Shortest Sequential Job First Served (LG-SS) and .LG-SS-Blocking

of Sequential Jobs (LG-SS-BS).[1, 10, 24]

2.3 Task Preprocessing

Preparation of the raw data for taking further decision is known as task preprocessing.

There are many approaches to preprocess data. Task preprocessing is required to extract

the information before allocating a task on parallel/distributed system. The extracted

information helps to take further decision for allocation. In the task preprocessing there

are two observations: task creation and task synchronization. [2, 22]

Preprocessing is a method to analyze the task for mapping to processing nodes and

specify an order to follow to execute these tasks in a synchronized way. There are mainly

two types of preprocessing compile time and run time. [22]

In compile time preprocessing, the analysis and information collection done at compile

time. In runtime preprocessing approach two steps are involved. First to analyze the data,

optimize it, and generate information for second step. In second step actual computation

11

is performed. There are four phases in preprocessing. It is sensing, recognition, decision

and acting as depicted in fig. 2.1. [7]

Sensing

Recognition

Decision

Acting

Fig 2.1 The Preprocessing Phase

2.3.1 Component of Preprocessing

There are three components of preprocessing given as follows:

Controller is the task data manager and their responsibility is to collecting the

information from different components and distribute among the different components.

[7]

12

Authenticator is responsible for unauthorized access. It checks the policies and protocols

used to process the data. Correct data transportations is also the responsibility of the

authenticator. [7]

Obfuscator work is to store information. How to store the data and in which manner it

transfer. [7]

2.4 Task Partitioning

In parallel/distributed system environment, partitioning of the task into number of sub­

modules (sub-tasks) is required. It is so, so that not the task as a whole, rather the

modules of the task becomes the execution entity. Decomposition, mapping and tuning is

three required steps to program execution in parallel/distributed computing system. [5, 6]

2.4.1 Perfect Decomposition

In parallel processing the task is divided into number of sub-tasks (modules) and these

modules do not require a communication or a little communication among each other.

This is called Perfect decomposition. In this decomposition technique, least effort of

programmer is required and it balanced execution gives almost 100% efficiency. Perfect

decomposition condition not created when dependency between processes exist. The 1t

composition is a good example of a perfect decomposition in which only the partial sums

need to be communicated. [6]

2.4.2 Domain Decomposition

The regularity of data structure is the main feature of domain decomposition. Static Data

Structure, for example, matrix factorization for solving a large finite difference problem

on a system with a regular network topology. Dynamic Data Structure tied to a single

entity, for example, in a many body problem, subsets of bodies can be distributed to

13

different nodes. Fixed Domain with Dynamic Computations with various regions of the

domain, for example, a program those modules fluid vertices, where the domain stays

fixed but which pools move around; are three types of problems recognized for domain

decomposition. [6]

Three major steps are specified below to decompose the domain of a given applications:-

• At various nodes sub domain of data are distributed.

• Restrict the computation so that each node updates its own sub domains of

data.

• Put the communication in node programs.

2.4.3 Control Decomposition

When the domain of data is not suitable for domain decomposition and irregular behavior

of data structure and domain is found, then control decomposition is used. Control

decomposition technique is used for artificial intelligence and symbolic processing

problem. Functional decomposition and manager-worker approach gives idea about

control decomposition. [6]

• Functional Decomposition: -Computation and data structure is the key for the

control decomposition. Due to dependency on data structure and computation,

interface between different functional modules is needed.

• A Manager- Worker approach: - It is based on divide and conquers method.

Divide the application task into number of sub tasks which are not of the same

size, and one sub task behaves as manager and others like worker. Manager

performs dynamic load balancing to assign tasks to workers to improve the

performance of the system.

14

For the distributed computing system the combination of object oriented programming

with message passing technique gives an object decomposition technique. This technique

is beneficial for the parallel computers also and provide higher granularity and avoids use

of global variables. There is a layered decomposition technique, which uses different

decomposition at different layers for parallelism. [6]

2.5 Genetic Algorithms

Genetic algorithms (GAs) are evolutionary algorithm in which there is best solution is

chosen from the number of solutions. There are many search techniques available for

problem solving; these search techniques are [3, 4, 15, 16, 17].

• Calculus Base Techniques (Fibonacci, Sorting)

• Enumerative Techniques (DFS, BFS, etc)

• Guided Random Search Techniques (Hill Climbing, Simulated Annealing,

Evolutionary Algorithms, etc.)

Evolutionary Algorithm is basically Genetic Programming and Genetic Algorithms.

Genetic algorithms are generating number of population of solution and evaluate best

solution for the problem. GA is introduced by John Holland (1975) and his student

DeJong (1975) at the University of Michigan. The goal of this development is to give

details of natural system in thorough and preserve the mechanism of natural system by a

software designed for artificial intelligence system. GA uses the biological concept of

"Natural Selection" and "Genetic Inheritance" which is given by Darwin in 1859.

"Survivals of Fittest" is the best definition of GA. GA is beneficial where we have little

knowledge about problem solving approach, mostly for NP-Hard problems (e.g. TSP). A

genetic algorithm is based on regeneration and selection operations. These operations

help to generate new search population and apply evolution function on generated initial

population to find new final population. GA is different than some other search

techniques described as follows [15].

15

• GA mechanism applies on the coding of the parameter sets not only on the

parameters.

• Populations of points are used in searching in GA. It is not a method to use

single point for searching.

• The basic primary (or original) information is used in GA, no other information

like secondary knowledge and consequential information is used.

• GA use probabilistic transition operator instead of deterministic transition

operator.

GA is based on the resemblance of genetic structure and behavior of chromosomes within

population of single units. A Chromosome structure (genotype) is sequence of genes and

genes are the fundamental instructions for building an organism. The complete

chromosome derived the solution of problem with the help of particular chromosome

(phenotype). Phenotype is an organism made by genotype which contains all the

information and take part to generate fitness function. [4]

2.5.1 Search Space

The feasible solution of population of individuals in GA is maintained in search space. In ·

search space each individual is represented by finite length vectors or variables. These are

any alphabets but we use binary number alphabet { 0, 1} .An individual of population

participate to generate fitness score of each solution. The most favorable fitness score is

required. GA maintains population of 'n' chromosomes with there fitness score. The

parents are able to select their mate on the basis of their fitness score and use

reproductive map to produce offspring. In reproduction highly fit fitness score solutions

are given more opportunity and they arrive to replace old one in population which is least

fit among reproduced solution. [9, 16]

16

New generation of solution during reproduction gives better genes than previous

solutions and more successive generation produce better partial solution than previous

generation gives.

2.5.2 Genetic Algorithms Components

Genetic algorithms have following four basic components [17]

• Selection: For the reproduction, the mechanism of selecting an individual

according to their fitness value .

. • Crossover: represents mating between individuals, so that two parents produce

good children.

• Mutation: the random modification of genetic population.

• Sampling: Generation of new offspring from old offspring.

2.5.2.1 Selection

The Key idea behind selection operator is to give preference to better individuals and

integrity of individuals is dependent on there fitness score. Generation of next genes is

dependent on their fitness score. Suppose that there are four populations A, B, C and D

having their fitness score 4, 6, 2 and 8 respectively. The roulette wheel for selection these

populations are as given in Fig. 2.2. [3, 16]

17

Fig2.2 Roulette Wheel representation of Selection Operation

2.5.2.2 Crossover

The crossover mechanism is like real world sexual reproduction when genetics of two

parents are mixed. Then the chromosomes is split and merged and the genes of child are

mixture of genes of parents. Crossover operators are categorized in Fig. 2.3. [8, 9, 14]

Parentl:

Parent2:

Child1:

Child2:

11111111111111

00000000000000

11111110000000

00000001111111

Fig2.3 Crossover Operator

1-point crossover is the methods in which the chromosomes are cut at a selection cut

point and exchange the genes on that point. 2-point crossover (Multi-point crossover)

crossover exchange genes like 1-point crossover but here two selection cut points (Multi

18

selection cut points). Uniform crossover is process of masking, where random crossover

masks are chosen and copy genes of parents to exchange in parents to generate child.

2.5.2.3 Mutation

Mutation is important through applied with low probability. It provides search space

when locality of population is very large. Mutation is responsible for reproducing genes

and preventing them. Mutation combine with selection gives a hill climbing search

algorithm. [9]

2.5.2.4 Effect of Operators

The selection operator generates the better population from the old population and

combined with crossover operator it produced well but sub-optimal solution to

population. The combination of selection and mutation operator creates parallel, noise­

tolerant and hill climbing algorithms for solve the problem. Hill climbing algorithms

produce set of solutions and then optimize solution again and again then produce good

solution. Lonely mutation operator produces a random walk search space. [8, 14]

2.5.2.5 Fitness Function

A fitness function is the objective function, which is to be optimized using the GA.

Genetic Algorithm ()

1. Randomly generate the population of solutions

2. Evaluate the fitness of each individual against the fitness function.

3. While termination condition does not hold

• Replicate individuals based on their fitness

• Transform the individuals in the population

19

1. Randomly pick two parents from the population

ii. Crossover the parents (pick a random point in the strings and

exchange their top parts) to produce offspring

111. Mutate each offspring (randomly decide whether to flip each bit in

the string) optionally flip each bit)

• Evaluate the fitness of each new individual

20

-

Chapter 3

The Proposed Model

The model proposed in this work partitions the task into modules and groups it so that it

become such an execution entity that groups the modules making it almost the equal load.

It is assumed that execution times of module and communication among the modules are

given. The task partitioning problem takes the task graph and its different modules with

their execution time as input. Different modules are grouped such that the differences of

the sum of the execution times of groups are minimized. [19, 27]

In the proposed problem for the n modules; each is represented by a distinct integer

number from the range { 1, 2, ---- n}. These are partitioned into k groups of equal or

unequal length. The idea, borrowed from the traveling salesman problem (TSP), is

applied. Two types of crossover PMX (Partially Matched Crossover) and OX is applied.

As observed PMX is most suited crossover for this type of problem although order

crossover (OX) is also applied. The Evaluation function is as follow [27]

Let us assume that there are 'm' modules in a group and ej is the execution time of jth

modules. Si is the sum of the execution time ofthis ith group then

m

S;= L e1
j = I

Difference in sum of the execution times of ith and /h group is

Where i= 1, 2, -----------k

21

And j = 1, 2, 3--------k- j

These differences should approach to zero. The operators are applied until the evaluation

function reaches almost to zero.

Fig. 3.1 Task Graph

3.1 Partitioning

As the task partitioning is an NP-class of problem, we use GA for task partitioning. Often

the problem is given in a form of a task graph shown Fig. 3.1. Depending on the length of

the problem there may be number of modules in a task graph. At one end each instruction

of the problem is treated as one module whereas at the other end the whole task may be

assumed to be one module. For the latter, which is also known as coarse grain, the

inherent parallelism of the Parallel I Distributed system can not be utilized. In the former

(fine grain) the number of modules may be, uselessly, quite large. Moreover different

modules in the fine grain may require each other for the execution i.e. there may be the

22

precedence among the modules of the task. [18, 20] Partitioning involves grouping of

these fine grain modules.

3.2 Partial Matched Crossover (PMX) Operator

The PMX (Partial Matched Crossover) is developed by Goldberg, Davis Lingle and

Smith to describe the construction of reordering operators that combine features of

inversion and crossover into a single operator. In PMX there is two crossover points

which define matching section for the population and position by position exchange

operation of genes (string site unit) completed. [15]

Let us assume for the two initial populations

P1 = (1234 I 567 I 89)

P2 = (1258 I 369 I 47)

PMX would produce offspring in the following way. First the sequence between the end

points is swapped.

01 = (* * * *I 369 I**)

02 = (* * * *I 567 I**)

At present* is unknown (represent holes) and there is defines a series of mappings

We can further fill other objects from the original parent for which there is no conflict.

01 = (12 * 4 I 369 I 8*)

23

02 = (12 * 8 I 567 I 4 *)

Finally the third object in 01 which should be 3 but due to conflict will be replaced by 5.

It is because of mapping 3 +-4- 5. Similarly the last object 9 will be replaced by 7.

01 = (12541369187)

02 = (12381567149)

3.2.1 Algorithms for PMX

1. Take initial populations and two crossover points.

2. Replace bits with holes which do not reside between crossover points.

3. Swap the bits of offspring residing between crossover points.

4. Fill the holes created in step 2 with the help of initial population offspring

(parent) with no conflict.

5. Fill remaining holes with the help of exchange operation.

6. Find new populations.

24

3.2.2 Flow Chart for PMX

Initial population
and crossover points

Create Holes

Swap bits of offspring
according to their positions

Fill the remaining holes from
initial population without conflict

Apply Exchange operation to fill
remaining holes

Fig. 3.2 Flow Chart of PMX Operator

25

NO

3.3 Ordered Crossover (OX) Operator

The order crossover operator starts of in a manner similar to PMX. Starting with the

example strings p1 and p2 used to illustrate PMX; we select a matching section [15]

P1 = (1234 I 567 I 89)

P2 = (1258 I 369 I 47)

Like PMX, each string maps to constituent of the matching section of its mate. Order

crossover uses a sliding motion to fill the holes left by transferring the mapped positions.

When P2 maps to P1, the points 5, 6 and 7 leave holes in the offspring.

01 = (1234 I*** I 89)

02 = (12*8 I 3*9 I 4*)

Start with first value of second string 1 fills hole after 4 by sliding motion in circular

order and then hole created at place of I that hole is fill by 2 to slid.

01 = (1234 I*** I 89)

02 = (2**8 I 3*9 I 41)

The holes of string are filled by sliding motion of individuals.

01 = (1234 I*** I 89)

02 = (2389 I*** I 41)

26

The holes are then filled with the matching section from mate. Performing this operation

and completing the complementary cross we obtain the offspring 01 and 02 as follows:

01 = (1254 I 369 I 87)

02 = (2389 I 567 I 41)

3.3.1 Algorithms for OX

1. Take initial populations and two crossover points

2. Choose bits which reside between crossover points of one offspring and then

replace matching bits by holes of offspring (populations).

3. Create holes between crossovers points in offspring and with help of circular left

shift operation jill holes of offspring which not belong between crossover points.

4. Repeat process 3 until all holes of offspring not belong between crossovers points

are not jill.

5. Fill holes between crossover points with reaming unused bits without conflict.

6. Find new populations.

27

3.3.2 Flow Chart for OX

Initial population
and crossover points

Choose Bits of one of string
belonging between crossover points

Create holes in offspring by
matching with chosen bits where
conflict occur

Send every hole between
crossover points applying circular
left shift operation

YES

Fill remammg holes with unused
bits without conflict

Fig 3.3 Flow Chart of Ox Operator

28

NO

Chapter 4

Observations

In our observation we take number of modules as input apply crossover operators and

produce output in terms of gr.ouping and difference in execution time(among groups).

The PMX and OX operator are used to generate the output and up to 50 numbers of

modules are taken as input starting from 5 with the difference of 5. These inputs results in

different outputs.

4.1 Observation Using PMX Operator

We have given the number of modules in a task as the input. Also the execution times of

the modules have been generated randomly and are in the range of depending on the

number of modules in that task. The observation of PMX operator is given in Table 4.1.

The first column shows how many number of module are taken as the input and second ,

column shows the output with two sub columns showing the module group formation and

the difference of execution time (among groups).

~ OUTPUT

Number of Modules Groups of Modules Difference of Execution
Time (D) (among groups)

(in msec)
5 115 213 4 0

10 1 10 5 4 12 6 81 7 5
3 9

15 11 6 15 2 5 14 I 4 1 6
10 12 31 9 13 8 7

20 8 16 15 7 6 13 3 19 I 3
2 20 4 1 11 12 101 14

17 18 9 5

29

25 10 16 11 2 1 15 19 22 2
17 18 231 24 12 14 5

20 13 6 211 25 8 3 4
9 7

30 22 29 9 26 27 5 12 6 11
18 20 16 23 7 25 18 3

13 19 11 4 24 15 2 I
17 1 21 10 28 30 14

35 21 1 7 23 25 34 9 4 9
3 20 5 29 14 27 17 31
6 112 33 15 16 8 19 28
30 11 32 2 24 I 35 22

13 26 18 10
40 33 4 10 39 2 27 1 17 6

12 3 11 34 13 15 32
37 26 18 23 138 19 25

20 16 29 31 35 6 9 22
40 14 361 8 30 24 28

21 7 5
45 29 43 34 13 7 8 20 41 4

1 18 21 27 40 16 37 4
22 15 45 24 35 11 I 26
33 14 10 31 3 38 19
44 32 6 17 23 25 28 I
2 12 39 36 9 5 42 30

50 34 14 50 17 45 12 13 13
32 24 44 23 47 40 27

41 4 26 36 3 42 8 25
30 20 12 19 10 15 35

22 43 49 18 7 5 16 31
33 39 38 21111 28 29

.
6 1 9 37 46 48

Table 4.1 Observation Using PMX Operator

When input number of module is 5 then output difference of execution time among

groups is 0, it is according to our model which gives the difference of execution time

among groups of string. When the input string changes the output varies it may be

increase and decrease also. We see that when input value is 10 and 15 output D is 5 and 6

respectively it shows increasing value. When input is 20 then value of output D reduces

and gives output 3.

30

Observation Using PMX Operator

14

12

a 1o
(I)

E 8 j::
c
0

6 :0:::
:::s
u
(I)
>< 4 w

2

0

5 10 15 20 25 30 35 40 45 50

Number Of Module (N)

Fig. 4.1 Observation Using PMX Operator

In the graph of Fig. 4.1 graph X-axis represent number of module as input and Y-axis

represent difference of execution time.

4.2 Observation Using OX Operator

We have given the same input as in 4.1 applying the OX operator. The observation of OX

operator is given in Table 4.2. The first column shows how many numbers of modules

are taken as the input and the second column shows the group formation of the modules

and the difference in the execution times of the groups as the output.

31

~ OUTPUT

Number of Modules Groups of Modules Difference of Execution
Time(D) (among groups)

(in msec)

5 214 511 3 1

10 2 8 10 3 I 7 5 9 I 4 3
6 1

15 7 15 14 4 10 5 111 6 0
13 1 2 I 9 8 12 3

20 2 3 20 11 5 13 18 4 3
11 19 8 10 12 7 141 16

6 17 9 15
25 7 24 5 22 25 2 23 4 4

3 14 17 I 15 20 11 9 19
8 13 21 I 6 16 18 12

10 1
30 3 14 23 13 6 4 24 16 1

7 25 9 5 20 11 127 22
2 15 12 19 8 17 29 I 1

30 18 26 28 10 21
35 2 19 29 6 11 26 28 9 6

12 1 10 5 13 18 22 16
27 132 3 14 31 21 30
24 20 34 25 4 151 33

8 15 7 23 35

40 1 21 33 36 5 9 27 38 2
13 39 7 34 26 4 25 2
35 19 20 140 15 3 37
10 16 8 17 24 22 30

32 23 281 29 14 6 11
31 18 12

45 10 9 23 45 33 17 1 35 2
40 21 12 27 43 3 31 4
39 16 22 36 15 29 114
28 37 5 38 18 11 41
30 24 42 2 34 44 8 I

26 25 7 32 6 19 20 13

32

50 37 14 28 46 4 23 36 3 5
6 48 29 32 9 40 25 11
2 10 15 22 7 5 16 311
34 33 50 17 45 12 13
24 27 18 49 43 21 42
19 35 20/ 1 38 39 47

8 26 30 44 41

Table 4.2 Observation Using OX Operator

In our proposed model we find the D difference between sums of execution time of

groups of string, in a string number of modules make permutation. When input number of

module is 5 then output D is 1, 1 is the difference of execution times among groups.

When input value N increasing then the output value D may increases and decreases also,

at input 15 it goes to 0. When input value number of modules increases the difference

between execution times value increases and it also decreases to increasing number of

modules.

In the graph of Fig. 4.2 graph X-axis represent number of module as input and Y -axis

represent difference of execution time according to our model.

Observation Using OX Operator

14

12
c
- 10 Cl)

E
j:: 8
1:
0 6 ..
:2
(.)

4 Cl)
>< w

2

0
5 10 15 20 25 30 35 40 45 50

Number Of Module (N)

Fig. 4.2 Observation Using OX Operator

33

4.3 Comparison between Results of PMX and OX Operator

In the table 4.3 the differences of execution time of groups according to PMX and OX

operator are given. Both Operators provide different set of values of execution time. OX

operator gives less value than the PMX operator. Most of the value of execution time in

OX operator is nearly to zero but in PMX operator not like OX operator.

Difference of Difference of
Number of Modules Execution Time(D) Execution Time(D)

(among groups) (in (among groups) (in
msec) msec)

Using PMX Using OX

~ 0 1

10 5 3

15 6 0

20 3 3

25 2 4

30 11 1

35 9 6

40 6 2

45 4 2

50 13 5

Table 4.3 Comparison

34

The graph of Fig. 4.3 shows OX Operator provides better solution than the PMX

operator. In graph of Fig. 4.3 dotted line represent OX operator and solid line represent

PMX operator value. In the graph of Fig 4.3 initially OX operator takes greater value

than the PMX but after that its goes bellow to PMX line. At input range 20-25 OX line

again goes above to PMX line. OX line close to axis than the PMX line, in our proposed

model we require the difference of execution time of groups goes towards zero gives

good solution. According to proposed model OX operator gives better solution than the

PMX operator.

Comparison between PMX and OX Operator

14

12

- 10 e.
Cl)

E 8 i=
c
0
:w 6
::I
CJ
Cl)
)(

4 w

2

0
5 10 15 20 25 30 35 40 45 50

Number of Module (N)

Fig. 4.3 Comparison between PMX and OX operator

35

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In our dissertation task partitioning and grouping of the modules are supposed to provide

better solutions if number of module are very large. PMX operator and OX operator both

provides a better task sequence for execution in multiprocessor and multi-computer

system. Our result show OX operator provides solution better than the PMX operator. We

do not use CX (circular crossover) operator but it also provides a better solution for task

partitioning. Observation of execution of task modules in parallel and distributed system

provides help to develop a better operating system for parallel and distributed computing

environment.

Graph of Fig. 4.1 represents Observation using PMX Operator. X-axis represent number

of module as input and Y -axis represent difference of execution time among modules.

Initially 5 numbers of modules taken as input and it gives D 0, at 1 0 numbers of modules

the graphs takes value D 4 and for 15 D is 6 after that graph nature is decreasing up to 25

numbers of modules, and 30 its again goes to D value 11 and so on.

Graph of Fig. 4.2 represents Observation using OX Operator. X-axis represent number of

module as input and Y -axis represent difference of execution time among modules.

Initially 5 numbers of modules taken as input and it gives D 1, at 10 numbers of modules

the graphs takes value D 3 and for 15 D is 0 after that graph nature is increasing up to 25

numbers of modules, and 30 its decreases. At the input 35 number of modules graph of

Fig 4.2 takes D value 6 which is maximum, after that it decreases up to 2 for 40 and 45

and again increases for 50.

36

The comparison between PMX and OX operator observations are given in graph of Fig.

4.3. At initial value PMX operator produce better result means less value of D, after

increasing the value of N OX operator gives less value of D than the PMX operator. At

25 value of N PMX operator again gives less value of D than OX operator, but again

PMX operator gain value of D and shows higher value of D than the OX operator. In our

observation OX operator gives better result then the PMX operator.

5.2 Future Work

In our dissertation, we observe task partitioning and there execution in parallel/

distributed system. The proposed work is based on the decomposition and the execution

of task in parallel/distributed system. Our future work will be to generate modules by

graph- theoretic approach for the solution so that we obtain consequent regrouping of the

structure.

37

References

1) "A compile-Time Scheduling Heuristic for Interconnection-Constrained

Heterogeneous Processor Architectures,", G.C. Sih and E.A. Lee, IEEE Trans.

Parallel and Distributed Systems, vol. 4, no. 2, pp. 175-186, Feb. 1993.

2) " A comparison of heuristics for scheduling DAGS on multiprocessor" C.

McCreary, A Khan, J. Thompson, and M. McArdle, 8th International Parallel

Processing Symposium, 446-451, 1994

3) "A Genetic Algorithm for Multiprocessor Scheduling", Edwin S. H. Hou,

Member, IEEE, Ninvan Ansari, Member, IEEE, and Hong Ren, IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL.

5, NO.2, FEBRUARY 1994.

4) "A Genetic Algorithm Tutorial" by Darrell Whitley-Computer Science

Department Colorado State University; Fort Collins, CO 80523

5) "Adaptive load sharing m homogeneous distributed systems"- EAGER, D. L.,

LAZOWSKA, E. D., AND ZAHORIAN, J. IEEE Trans. Software

Engineering. 12 (1986), 662-675.

6) "Advance Computer Architecture" Kai Hwang, Tata McGraw Hill Ed, 2001.

7) An architecture for distributed agent-based data preprocessing Petteri Nurmi,

Michael Przybilski, Greger Linden and Patrik Floreen Helsinki Institute for

Information Technology HilT, Basic Research Unit Department of Computer

Science, P.O. Box 68.

8) "An introduction to genetic-based scheduling in parallel processor systems."­

A. Y. Zomaya, F. Ercal, and S. Olariu, editors,Solutions to Parallel and

38

Distributed Computing Problems, chapter 5, pages 111-133. John Wiley and

Sons, 2001.

9) "An Overview of Genetic Algorithms: Part 2, Research Topics" by David

Beasley- Department of Computing Mathematics, University of Wales

College of Cardiff, Cardiff, CF2 4YN, UK; David R. Bully-Department of

Electrical and Electronic Engineering, University of Bristol, Bristol, BS8

1 TR, UK; Ralph R. Martinz-Department of Computing Mathematics,

University of Wales College of Cardiff, Cardiff, CF2 4YN, UK; University

Computing, 1993, 15(4) 170-181.

1 0) "Communication Contention in Task Scheduling"- Oliver Sinnen and Leonel

A. Sousa, Senior Member, IEEE, IEEE Transaction on Parallel and

Distributed System Vol. 16, No-6, June 2005.

11) Distributed system Concept and Design - George Coulouris, Jean Dollimore

and Tim Kindberg, Third Edition, Sixth Indian Reprint 2004, Publisher­

Pearson Education (Singapore) Pte Ltd.

12) "Distributed System - Principles and Paradigms" By AndrewS. Tenenbaum,

Maarten Van Steen, Pearson Education, Revised Edition 2006.

13) "Dynamic Scheduling of Computer Tasks Using Genetic Algorithms"- C.A

Gonzalez Pico and R.L Wainwright; Proc. First IEEE Conf. Evolutionary

Computation, IEEE World Congress Computational Intelligence, vol. 2, 1994,

pp. 829-833.

14)"EFFICIENT MULTIPROCESSOR SCHEDULING BASED ON GENETIC

ALGORITHMS" E. S. H. Hou, R. Hong, and N. Ansari Department of

39

Electrical and Computer Engineering New Jersey Institute of Technology

Newark, NJ 07102,087942-6004/90/1100-1239, 1990 IEEE.

15) "Genetic Algorithm - in search, optimization & machine learning", By David

E. Goldberg, Pearson Education, 2006.

16) "Genetic Alorithms- simulating nature's methods of evolving the best design

solution", Cezary Z. Janikow and Daniel St. Clair; Feb-March 1995 0278-

6648/95- 1995 IEEE.

17) "Genetic Algorithms: Theory and Application", Lecture Notes, Third Edition

-Winter 2003/2004 by Ulrich Bodenhofer.

18) "Genetic Scheduling for Parallel Processor Systems: Comparative Studies and

Performance Issues", AlbertY. Zomaya, Senior Member, IEEE, Chris Ward,

and Ben Macey; IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 10, NO. 8, AUGUST 1999.

19) "Observation on Using Genetic Algorithms For Dynamic Load-Balancing", Albert

Y. Zomaya, And Yee-Hwei, IEEE Transactions On Parallel And Distributed

Systems, Vol. 12, No.9, September 2001.

20) "Optimal scheduling strategies in a multiprocessor system" C. V.

Ramamoorthy et al IEEE Trans. Comput., vol. C-21, Feb.1972, pp. 137-146.

21) "Parallel Computing" by Moreshwer R. Bhujade, New Age International

Publishers, 2003.

22) "Parallelization of Fine-grained Irregular DAGs" by Frederic T. Chong,

Shamik D. Sharmay, Eric A. Brewer and Joel Saltzx -Massachusetts Institute

40

of Technology ,University of Maryland, College Park, University of

California, Berkeley.

23) "Practical Multiprocessor scheduling algorithms for efficient processing"- H

Kasahara and S. Narita; IEEE Trans, Com put. Vol. C-33 no. 11, pp. I 023-

1029, Nov 1984.

24) "Preemptive Scheduling for Distributed Systems" By - Donald McLaughlin­

Department of Computer Science and Engineering. Arizona State University,

and Shantanu Sardesai and Partha Dasgupta- Tandem Computers Inc. 19333

Vallco Parkway, Cupertino, CA.

25) "Scheduling a Job Mix in a Partitionable Parallel System" By - Helen D.

Karatza, Department of Informatics, Aristotle University of Thessaloniki,

54006 Thessaloniki, Greece and Ralph C. Hilzer, Computer Science

Department, California State University, Chico, Chico, California 95929-0410

USA; Proceedings of the 35thAnnual Simulation Symposium (SS.02)- 2002

IEEE.

26) "Task Assignment in a Distributed System: Improving Performance by

Unbalancing Load", Mark E. Crovella Department of Computer Science

Boston University Boston, , Mor Harchol~Balter Laboratory for Computer

Science MIT, NE43-340 Cambridge, MA 02139, Cristina D. Murtaz

Department of Computer Science Boston University Boston, MA 02215;

October 31, 1997 BUCS-TR-1997-018.

27) "Task partitioning using Genetic Algorithm" By Anil Kumar Tripathi, Deo

Prakash Vidyarthi and A. N. Mantri, Proceeding of International Conference

on Cognitive System, New Delhi, December 1997, pp. 248-254.

41

	TH140510001
	TH140510002
	TH140510003
	TH140510004
	TH140510005
	TH140510006
	TH140510007
	TH140510008
	TH140510009
	TH140510010
	TH140510011
	TH140510012
	TH140510013
	TH140510014
	TH140510015
	TH140510016
	TH140510017
	TH140510018
	TH140510019
	TH140510020
	TH140510021
	TH140510022
	TH140510023
	TH140510024
	TH140510025
	TH140510026
	TH140510027
	TH140510028
	TH140510029
	TH140510030
	TH140510031
	TH140510032
	TH140510033
	TH140510034
	TH140510035
	TH140510036
	TH140510037
	TH140510038
	TH140510039
	TH140510040
	TH140510041
	TH140510042
	TH140510043
	TH140510044
	TH140510045
	TH140510046
	TH140510047
	TH140510048
	TH140510049
	TH140510050

