

METRICS FOR EVOLVING SERVICES IN

SERVICE ORIENTED ARCHITECTURE

Thesis submitted to Jawaharlal Nehru University

in partial fulfillment of the requirement

for the award of the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

RACHNA KOHAR

Under the Supervision of

Prof. Parimala N.

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI- 110067,

INDIA

July 2017

ii

iii

iv

v

ABSTRACT

Service Oriented Architecture (SOA) is an architecture which uses a service as the

fundamental element for developing applications. A service has a very high reuse

capability to be reused in other applications. In SOA, there is a service provider who

describes the service and publishes it in a central repository from where service

consumer can invoke the service. The main aim of a service in SOA is to share

application logic across different systems having different operating systems and

development environments.

Services are aggregated to form a composite service in two different ways. The first is

orchestration in which there is a central coordinator to manage the flow among

services. Orchestration is achieved via Web Service Business Process Execution

Language (WS-BPEL). Composite service developed using WS-BPEL is also known

as WS-BPEL process. The second is choreography in which there is no central

coordinator over the services in service composition. Instead, there is a global

coordination between the services. Choreography is achieved via Web service

choreography description language (WS-CDL). Composite service developed using

WS-CDL is also known as WS-CDL process.

Services whether single or composite evolve over time. The evolution occurs due to

the changing demands of the market and due to the enhancements which the service

provider wants to incorporate to improve its performance. This evolution may affect

the service provider as well as the service consumer. Evolution comprises of changes

such as additions, deletions, modifications etc. Different changes may affect the

provider and the consumer in different ways. A provider may want to track different

phases of service evolution to identify the nature of changes and the amount by which

changes have taken place. A consumer may be interested in knowing whether the

usefulness of a service has changed for her/ him during service evolution. Therefore,

in this thesis, we propose metrics to measure evolution in services and the manner in

which this evolution affects the provider and the consumer. Metrics are proposed for

both a single service as well as a composite service.

vi

First, consider the case of a single service. A service provider may want to know how

much a service has evolved across versions. This quantitative measure is provided by

Service Evolution Metric (SEM). A service is invoked through service client code.

When a service evolves, the client code may have to adapt to these changes. Some

may be mandatory and some may be optional to incorporate. This impact of evolution

in client code is measured by Service Client-code Evolution Metrics (SCEMM,

SCEMO and SCEMT). For the service consumer, the usefulness of the service may

increase or decrease as the service evolves. The impact on the usefulness during

evolution is measured by Service Usefulness Evolution Metric (SUEM).

Now, consider the composite service. As discussed above, there are two ways in

which services are composed. Metrics are proposed for each of these.

Consider, first, composition through orchestration. A WS-BPEL process is an

executable process which is consumed by its consumer. Thus, metrics are proposed

for both the provider as well as the consumer of the process. A process interacts with

many partner (external) services in order to achieve the desired business

functionalities for its consumer. Also, it has some of its internal logic to coordinate

between these services. So, when it evolves, there may be external and/or internal

evolution. The nature and quantum of evolution is computed by the proposed metrics.

Two BPEL Evolution Metrics are proposed. One is for the external evolution (BEME)

and the other is for the internal evolution (BEMI). For a service consumer, BPEL

Process Usefulness Metric under Evolution in a positive sense (BUMEP) and BPEL

Process Usefulness Metric under Evolution in a negative sense (BUMEN) measures

the impact of process evolution on the usefulness for the consumer.

The second method of composing services is through choreography. A WS-CDL

process is not an executable process. It is used to specify interactions between the

involved participants in the choreography. Therefore, the perspective of the provider

is considered while proposing metrics. During evolution, new participants may be

added with new interactions and new roles or old participants may get deleted along

with their interactions with the existing ones. In this way, there are some changes

vii

which may account to increase the number of entities in the choreography i.e. they are

additive in nature and some changes may decrease the number of entities in the

existing choreography i.e. they are subtractive in nature. Therefore, the provider may

want to know which kinds of changes are made in the evolving choreography. The

proposed metrics to measure these changes are Additive Evolution Metric (AEM
+
)

and Subtractive Evolution Metric (SEM
-
). Moreover, the provider may also want to

know the overall amount of process evolution. This is measured using Evolution

Metric (EM).

All the proposed metrics in this thesis have been theoretically validated using Zuse

framework. All metrics are found to be above the ordinal scale. Empirical validation

of all the metrics is done using real time data wherever the data is available and with

simulated data wherever the data is not available.

To sum up, in this thesis we have proposed metrics for measuring evolution of

services. For a single service, metrics are proposed for measuring the impact on the

service client code and usefulness during evolution. Metrics are also proposed to

measure evolution and its impact on the usefulness of a WS-BPEL process across its

different versions. The proposed metrics for the WS-CDL process measure its

evolution in terms of the nature of changes.

viii

LIST OF PUBLICATIONS

1. Rachna Kohar and Parimala N., “A Metrics Framework for Measuring Quality of

a Web Service as it Evolves”, International Journal of System Assurance Engineering

and Management, Springer, DOI: 10.1007/s13198-017-0591-y011, pp. 1-15, Feb.

2017, ISSN No: 0976-4348 (SCOPUS, Emerging Sources Citation Index)

2. Parimala N. and Rachna Kohar, "A Quality Metric for BPEL Process under

Evolution", Eleventh International Conference on Digital Information Management

(ICDIM-2016), pp.197-202, 19-21 Sept. 2016. ISBN No: 978-1-5090-2641-8

(SCOPUS)

3. Parimala N. and Rachna Kohar, “Evolution Metrics for a BPEL Process”, Second

International Conference on Intelligent Computing & Communication, ICICC-2017,

(Accepted), To appear in Advances in Intelligent and Soft Computing (AISC) Series,

Springer.

4. Rachna Kohar and Parimala N., “A Metrics framework for a WS-CDL Process

under Evolution” (Communicated, 2017).

ix

LIST OF FIGURES

Figure 1.1 Basic entities of service oriented architecture..3

Figure 1.2 Single service evolution..6

Figure 1.3 Composite service evolution - Orchestration..7

Figure 1.4 Composite service evolution - Choreography...9

Figure 3.1 WSDL 2.0 Infoset...25

Figure 3.2 Graph showing correlation of SEM & SCEMM and SEM & SUEM..........39

Figure 3.3 Graph showing correlation of SEM & SCEMO and SEM & SUEM..........39

Figure 3.4 Graph showing correlation of SEM & SCEMT and SEM & SUEM..........39

Figure 5.1 WS-CDL Process Version 1...79

Figure 5.2 WS-CDL Process Version 2...80

Figure 5.3 WS-CDL Process Version 3...81

Figure 5.4 WS-CDL Process Version 4...82

Figure 5.5 WS-CDL Process Version 5...84

Figure 6.1 MCS Architecture...92

Figure 6.2 User Interface to initiate interaction with MCS..94

Figure 6.3 User Interface of MCS for a single service...95

Figure 6.4 User Interface of MCS for a single service - real world.............................96

Figure 6.5 Computed metrics for a single service - real world....................................97

Figure 6.6 User Interface of MCS for a single service - simulated..............................98

Figure 6.7 Computed metrics for a single service - simulated.....................................99

Figure 6.8 User Interface of MCS for a composite service..100

x

Figure 6.9 User Interface of MCS for a composite service - Orchestration...............101

Figure 6.10 Computed metrics for a composite service - Orchestration....................102

Figure 6.11 User Interface of MCS for a composite service - Choreography...........103

Figure 6.12 Computed metrics for a composite service - Choreography..................104

xi

LIST OF TABLES

Table 3.1 WSDL 2.0 description..25

Table 3.2 Categories for changes in Service Client Code..29

Table 3.3 Categories for changes for Usefulness of service..32

Table 3.4 Metrics for the real-world service..35

Table 3.5 Metrics for the simulated service...36

Table 3.6 Correlation among metrics...38

Table 3.7 Table showing evolution data for operation element...................................41

Table 3.8 Summarized Zuse Framework...42

Table 3.9 Summary of formal validation of metrics of a single service......................46

Table 4.1 WS-BPEL process activities..49

Table 4.2 Category of changes for a WS-BPEL process...50

Table 4.3 Category of changes for usefulness of a WS-BPEL process.......................53

Table 4.4 Basic Activities for Favorable Changes...54

Table 4.5 Basic Activities for Unfavorable Changes...57

Table 4.6 Description of the changes in the service and process.................................61

Table 4.7 Metrics for the Airline service and the Travel booking process..................61

Table 4.8 Metric values for a WS-BPEL process..62

Table 4.9 Table showing changes for invoke element...64

Table 4.10 Summary of formal validation of metrics for WS-BPEL process.............68

Table 5.1 WS-CDL process entities...70

xii

Table 5.2 Evolution description of version 1 to version 2 of the process....................80

Table 5.3 Evolution description of version 2 to version 3 of the process....................82

Table 5.4 Evolution description of version 3 to version 4 of the process....................83

Table 5.5: Evolution description of version 4 to version 5 of the process...................85

Table 5.6 Metric values of the WS-CDL process..85

Table 5.7 Summary of formal validation of metrics of a WS-CDL process...............90

xiii

LIST OF ABBREVIATIONS

SOA - Service Oriented Architecture

WSDL - Web Service Description Language

SOAP - Simple Object Access Protocol

WS-BPEL - Web Service - Business Process Execution Language

WS-CDL - Web Service - Choreography Description Language

SEM - Service Evolution Metric

SCEM - Service Client-code Evolution Metric

SUEM - Service Usefulness Evolution Metric

BEM - BPEL Evolution Metric

BUME - BPEL Process Usefulness Metric under Evolution

AEM
+
 - Additive Evolution Metric

SEM
-
 - Subtractive Evolution Metric

EM - Evolution Metric

ED - Evolution Data

CS - Compute and Store

MC - Metrics Computation

xiv

TABLE OF CONTENTS

DECLARATION………………………………………………………….…………..ii

CERTIFICATE……………………………………………………………….............iii

ACKNOWLEDGEMENT .. iv

ABSTRACT………………………………………………………….………………..v

LIST OF PUBLICATIONS……………………………………………….………...viii

LIST OF FIGURES .. ix

LIST OF TABLES .. xi

LIST OF ABBREVIATIONS ...xiii

Chapter 1 Introduction ... 1

1.1 Service Oriented Architecture (SOA) .. 2

1.2 Evolution in SOA ... 4

1.2.1 Single Service ... 4

1.2.2 Composite service - Orchestration .. 5

1.2.3 Composite Service - Choreography .. 5

1.3 Problem Statement and Motivation ... 5

1.3.1 Single Service ... 5

1.3.2 Composite Service .. 7

1.3.2.1 Composite Service - Orchestration .. 7

1.3.2.2 Composite Service - Choreography ... 8

1.4 Thesis Contribution .. 10

1.4.1 Single Service ... 10

1.4.2 Composite Service - Orchestration ... 10

1.4.3 Composite Service- Choreography ... 11

Chapter 2 State of the Art .. 13

2.1 Introduction .. 13

2.2 Metrics ... 14

2.3 Metrics for a single service .. 15

2.4 Metrics for a composite service ... 19

2.5 Summary .. 22

Chapter 3 Metrics for an Evolving Single Service .. 23

3.1 Introduction .. 23

3.2 Service Interface .. 24

3.3 Proposed Metrics for a Single Service ... 26

3.3.1 Service Evolution Metric (SEM) .. 26

3.3.2 Service Client- code Evolution Metric (SCEM) ... 28

3.3.3 Service Usefulness Evolution Metric (SUEM) ... 31

3.4 Experiments and Analysis .. 34

3.5 Time Complexity ... 40

3.6 Metrics Formal Validation ... 41

3.7 Summary .. 46

xv

Chapter 4 Metrics for an Evolving Composite Service – Orchestration 47

4.1 Introduction .. 47

4.2 WS-BPEL Process ... 49

4.3 Proposed Metrics for a Composite Service – Orchestration 50

4.3.1 BPEL Process Evolution Metrics (BEMI and BEME) 50

4.3.2 BPEL Process Usefulness Metric under Evolution (BUMEP & BUMEN)..54

4.4 Experiments and Analysis .. 60

4.5 Time Complexity ... 63

4.6 Metrics Formal Validation ... 64

4.7 Summary .. 68

Chapter 5 Metrics for an Evolving Composite Service -Choreography 69

5.1 Introduction .. 69

5.2 WS-CDL Process ... 70

5.3 Proposed Metrics for a Composite Service - Choreography 71

5.3.1 Metrics for interaction entity .. 73

5.3.2 Metrics for role entity ... 75

5.3.3 Metrics for participant entity .. 76

5.3.4 Additive/Subtractive Evolution Metric (AEM
+
/SEM

-
) 78

5.3.5 Evolution Metric (EM) ... 78

5.4 Experiments and Analysis .. 79

5.5 Time Complexity ... 86

5.6 Metrics Formal Validation ... 86

5.7 Summary .. 90

Chapter 6 Implementation.. 91

6.1 Architecture of MCS .. 91

6.2 MCS User Interface ... 94

6.2.1 Using MCS for a Single Service ... 95

6.2.1.1 Real world data .. 96

6.2.1.2 Simulated data .. 98

6.2.2 Using MCS for a Composite Service .. 100

6.2.2.1 Orchestration .. 101

6.2.2.2 Choreography ... 103

6.3 Implementation of MCS .. 105

6.3.1 Single Service - Real World Data ... 105

6.3.2 Single Service – Simulated Data... 106

6.3.3 Composite Service - Orchestration ... 107

6.3.4 Composite Service - Choreography .. 108

6.4 Summary .. 109

Chapter 7 Conclusion ... 110

7.1 Future Work ... 111

References..112

1

Chapter 1 Introduction

Service Oriented Architecture (SOA) is an architecture which guides the creation and

usage of services [1]. One of the important aspects of SOA is that the implementation

of a service is independent of its interface [2]–[4]. The service interface exposes

functionalities provided by the service provider. It is expressed using Web Service

Description Language (WSDL) which is based on Extensible Markup Language

(XML) [5].

Service composition is defined as the process of assembling the existing services to

make a composite service [1], [6]. A composite service is also known as a business

process because it involves coordination/collaboration among services to achieve a

specific business goal [7]. It is usually meant for complex or large applications. It can

be achieved in two ways. The first is orchestration in which there is a central process

which controls and coordinates the services. Web Service Business Process Execution

Language (WS-BPEL) is a de facto language to represent web based business

processes [8], [9]. A composite service realized using WS-BPEL is also known as a

WS-BPEL process. Another way of service composition is through choreography in

which there is no single process to control the flow of messages between web

services. It describes the collaboration of services to achieve a common business goal.

Web service Choreography Description Language (WS-CDL) is a standard language

used for choreography specification [10]. Composite service realized by WS-CDL is

also known as a WS-CDL process [1], [11], [12].

The layout of this chapter is as follows.

Section 1.1 describes the basics of SOA. Evolution in a single service and a composite

service is discussed in Section 1.2. Section 1.3 defines motivation and objective of the

thesis. The contribution of the thesis is defined in Section 1.4.

2

1.1 Service Oriented Architecture (SOA)

SOA provides business functionalities as a service which is reusable and platform

independent [13], [14]. According to [15], a service is central to represent the logic of

the business functionality to be provided. It enhances the efficiency and productivity

of an organization. The design principles of SOA are discussed below [15], [16].

Loose coupling - ensure that the service is not tightly coupled to the underlying

service logic and implementation.

Service contract - comprises of one or more documents that express its technical

interface (to specify the offered functionalities), service level agreement (to describe

the quality of service features) etc.

Autonomy - ensures that services have control over their underlying logic and

execution environment.

Abstraction - means that the essential information is described in the service contract

and its logic remains hidden.

Reusability - intends to reuse the service in other functional contexts.

Composability - different services are assembled together to form composite service,

generally, for large complex applications.

Statelessness - minimizes resource consumption by not maintaining the service state.

Discoverability - Services are designed to be outwardly descriptive so that they can be

found and accessed via available discovery mechanisms.

Figure 1.1 shows the basic entities of SOA which are service consumer, service

provider and a service repository. A service provider publishes a service in the central

repository which is consumed by the service consumer [17].

3

Figure 1.1: Basic entities of service oriented architecture

Now, the basic standards of SOA are discussed.

1) Web Service: A web service is defined by World Wide Web Consortium (W3C)

which is an international standards organization to develop open standards for the

World Wide Web.

“A web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the web

service in a manner prescribed by its description using SOAP messages, typically

conveyed using HTTP with an XML serialization in conjunction with other web-

related standards.”[18]
1

Services are the basic building blocks of SOA. They are self-contained units to

perform specific tasks. They have an interface to describe service functionalities.

1 https://www.w3.org/TR/ws-arch/
"Copyright © [$11 February 2004] World Wide Web Consortium, (MIT, ERCIM, Keio, Beihang).

http://www.w3.org/Consortium/Legal/2015/doc-license"

This section describes the status of this document at the time of its publication. Other documents may supersede this document.
A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index

at http://www.w3.org/TR/. This is a public Working Group Note produced by the W3C Web Services Architecture Working

Group, which is part of the W3C Web Services Activity. This publication as a Working Group Note coincides with the end of the
Working Group's charter period, and represents the culmination of the group's work. Discussion of this document is invited on

the public mailing list www-ws-arch@w3.org (public archives). A list of remaining open issues is included in 4 Conclusions.

Patent disclosures relevant to this specification may be found on the Working Group's patent disclosure page. Publication as a
Working Group Note does not imply endorsement by the W3C Membership. This is a draft document and may be updated,

replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

Other documents may supersede this document.

Service Repository

Service

Consumer

Service

Provider

Find Publish

Invoke

4

2) Web Service Description Language (WSDL): Interface of a web service is

described using WSDL. WSDL is an XML based language which describes a service

as a set of endpoints, operations and messages to be exchanged between service

provider and consumer [19].

3) Simple Object Access Protocol (SOAP): It is a XML based communication

protocol which is used to exchange messages among services [20]. A SOAP message

is exchanged in different ways: one-way, two-way (request-response), two-way with

fault message etc [21].

4) Web Service Business Process Execution Language (WS-BPEL): It is a

standard language to represent web based business processes. It specifies the business

process behavior to perform tasks to achieve a business goal. It is used to accomplish

the service composition through orchestration [9], [22].

5) Web Service Choreography Description Language (WS-CDL): It is a standard

language which is used for choreography specification. It is used to describe multi-

party interactions based on web services from a global point-of-view [11], [23].

1.2 Evolution in SOA

In today’s fast growing environment, services evolve over time. There are many

factors which drive these changes. One is the changing demands of the market and

another is the desire of business entrepreneurs to enhance the productivity and to

increase the value of their services [24], [25].

1.2.1 Single Service

A service is described by its interface. A service interface contains various elements

such as operations which could be invoked by the consumer, messages which are

exchanged between consumer and provider, service address etc. When a service

evolves, its interface may also evolve. The changes that may occur in its elements are

addition, deletion, modification, split or merge [26]–[28].

5

1.2.2 Composite service - Orchestration

A composite service realized through WS-BPEL consists of two types of activities:

basic and structured. Basic activities are used to perform basic steps such as to invoke

a service, to receive input from a service etc. Examples of basic activities are invoke,

receive, reply activities. Whereas structured activities describe the order of execution

of activities. If, while, etc. are some of the structured activities. Changes that can

occur in a process could be addition, deletion, modification, split and merge in these

different activities [29]–[33].

1.2.3 Composite Service - Choreography

A composite service realized using WS-CDL aims to describe interactions among

different participants having different roles. It comprises of different entities such as

interaction, role, participant etc. WS-CDL process may evolve over time. During this

evolution changes such as addition of new participants in the choreography or some

interactions being deleted from the existing choreography etc. may occur [34]–[37].

1.3 Problem Statement and Motivation

In SOA, evolution occurs both at a single service level and at a composite service

level. At both levels, there is a service provider and a service consumer. Whenever

there is a change in the service, it may impact both service consumer as well as

service provider. We now discuss this impact at each level in detail.

1.3.1 Single Service

When a service evolves, the service provider is concerned with the impact on its

interface in which offered functionalities are described. She/he is interested in

analyzing the evolution phases to improve the service interface for the service

consumer. On the other hand, a service consumer is concerned with the impact of

service evolution on its client code which is used to invoke the service. Also, she/he

may also want to know the impact of this evolution on the usefulness of the service.

6

Figure 1.2 depicts these different aspects of service evolution for the consumer and

provider.

Figure 1.2: Single service evolution

Consider an order placing service, Sorderv1, which provides ‘place order offline’, and

‘cancel order’ functionalities. Suppose the service changes and its new version is

created, Sorderv2. Assume that there are three changes in the new version which are

addition of ‘place order online’ (to support green energy) and ‘change order’

functionalities and removal of ‘cancel order’ functionality. In this example, clearly,

the service interface would change. The functionalities of a service are realized by

operations in the service interface. When the functionalities change, service interface

operations and other corresponding interface elements also change. The service

provider is interested in knowing the impact of this evolution on the service interface.

Now, consider from the perspective of service consumer. She/he may add the

invocation statements for the newly added functionalities and/or may remove the

invocation statements for the deleted functionality from the client code. These

changes have also changed the usefulness of the service because new functionalities

are now offered to the consumer and a previously offered functionality has been

removed. Therefore, the service consumer wants to know the impact of this evolution

on the service client code and on the service usefulness.

7

1.3.2 Composite Service

Service composition achieved through orchestration or through choreography may

evolve over a period of time. First, we discuss evolution and its impact in a composite

service achieved through orchestration.

1.3.2.1 Composite Service - Orchestration

Here, we discuss evolution from the perspectives of both the provider as well as the

consumer. First, consider the provider. A WS-BPEL process could evolve due to the

change in its internal logic such as addition of wait activity or deletion of If activity.

Another kind of evolution may involve changes in the interactions with the external

service partners such as addition of invoke or receive activity. The provider may want

to analyze the kind and quantum of evolution that has taken place. Now, consider the

process consumer perspective. A WS-BPEL process is an executable process which

has a consumer who uses its functionalities. Evolution in the process may have an

impact on its usefulness for the consumer. Therefore, the consumer may want to make

a decision about its further consumption based on the quantum of impact on its

usefulness. Figure 1.3 shows these aspects of process evolution.

Figure 1.3: Composite service evolution - Orchestration

8

As an example, consider a Purchase Order (PO) WS-BPEL process which coordinates

with the consumer, process order and payment services. Let the activities present in

PO version 1 (POv1) be ‘receive PO’, ‘invoke process order service’, ‘invoke

payment service’, ‘receive change order request’, ‘invoke process order service’ (to

change order), ‘reply PO Confirmation’. Assume that the process changes and its new

version is created, PO version 2 (POv2). The changes done in this version are deletion

of ‘receive change order request’ activity, addition of ‘receive order relay coupon

request’ activity and ‘wait’ activity for this newly added activity. Clearly, this

evolution from POv1 to POv2 has an internal change i.e. addition of ‘wait’ activity

and rest of the changes are external changes. The process usefulness has also changed

because a new functionality is now offered to the consumer in POv2 and one offered

functionality has been removed from POv1.

1.3.2.2 Composite Service - Choreography

A WS-CDL process is not an executable process i.e. the aim of the process is to

describe peer-to-peer collaborations (interactions) among the participants and to serve

an abstract purpose of defining abstract interactions among participants (services)

[38]. The process evolves over time due to different types of changes in its entities i.e.

participants/ roles/ interactions. Here, some changes are additive in nature such as

addition of new participants and some are subtractive in nature such as merging of

various interactions in the existing choreography. Therefore, the provider may want to

know the nature of evolution and the quantum of change. Figure 1.4 depicts the

evolution in composite service using choreography.

9

Figure 1.4: Composite service evolution - Choreography

Summarizing, evolution occurs both at a single service level and at a composite

service level. At both levels, there is a service provider and a service consumer. The

service provider may want to know the nature and quantum of evolution that has

taken place in the service. The service consumer may be interested in knowing how

much impact the evolution has on service usefulness. Therefore, there is a need to

have a measure for evolution in services.

Metrics are a standard of measurement which provides a measure of progress or

quality of a process or a product [39]–[43]. Authors have proposed metrics to analyze

the evolution in a software and to consider the impact of evolution from an internal

(structural) perspective i.e. methods and classes [44]–[49]. We also consider the

structure of services to measure the service evolution and its impact on the provider

and the consumer. To do so, we propose metrics.

In SOA, metrics have been proposed for a single service [50]–[59] as well as for a

composite service (orchestration) [60]–[66]. However, the existing metrics are

proposed either:

a) for the quality attributes such as availability, reliability, performance, security,

etc.

b) or for the structure of a service.

10

In other words, for a single service and a composite service (orchestration), metrics

for evolution or its impact on the service provider and the service consumer have not

been proposed. Moreover, we are not aware of any metrics proposed for a composite

service (choreography).

In order to address the aforementioned research gap, we propose metrics for evolving

services in SOA.

1.4 Thesis Contribution

In this thesis, we propose metrics framework for a single service and a composite

service to provide a measure of the evolution and its impact. The proposed metrics

framework aims to measure the totality of the changes both for the service provider

and consumer.

1.4.1 Single Service

We propose a suite of metrics for a single service using its interface i.e. WSDL

document. The suite consists of Service Evolution Metric (SEM), Service Client-Code

Evolution Metrics (SCEMM, SCEMO and SCEMT) and Service Usefulness Evolution

Metric (SUEM) which measures service evolution for the service provider, impact of

service evolution on the client code and on the usefulness for the service consumer

respectively. The study of correlation between these metrics is conducted which

indicates to the service provider whether the changes made in the service have

tangible benefits for the consumer. The proposed metrics are empirically validated

using real world services of Amazon and also using simulated data. Theoretical

validation of the metrics is done using Zuse framework [67].

1.4.2 Composite Service - Orchestration

We propose a metrics framework for a composite service when composition of

different services occurs through orchestration. WS-BPEL process document is used

to compute metrics. Metrics are proposed both, for the provider as well as the

consumer. For the provider, WS-BPEL Evolution Metrics are proposed to provide a

11

measure of evolution. The metric BEME provides a measure of the quantum of

evolution due to the changes in the interactions with the external partner services. On

the other hand, BEMI metric measure evolution due to change in the internal logic in

the process. For the consumer of the process, BPEL Process Usefulness Metric under

Evolution in a positive sense (BUMEP) and BPEL Process Usefulness Metric under

Evolution in a negative sense (BUMEN) are proposed to measure the impact on the

usefulness for the consumer when it evolves. A WS-BPEL process is a consumer of

the partner services. Therefore, when a service evolves, the process may also evolve.

Thus, we show that the proposed metrics for the process truly reflect the cohesiveness

of changes in a process vis-a-vis changes in services. Proposed metrics are

empirically validated. They are also theoretically validated using Zuse framework

[67].

1.4.3 Composite Service- Choreography

The entities of the WS-CDL process document are used while defining metrics for a

composite service via choreography. Additive Evolution Metric (AEM
+
) and

Subtractive Evolution Metric (SEM
-
) are proposed to provide the measure for the

changes in WS-CDL entities which are additive in nature such as addition of

participants and for those changes which are subtractive in nature such as deletion of

participants. Evolution Metric (EM) is proposed to measure the overall evolution for

the provider. All the proposed metrics are empirically validated using a case study.

Theoretical validation using Zuse framework [67] shows that the metrics are above

the ordinal scale level.

To summarize, the contribution of the thesis is as follows:

a) Metrics (Service Evolution Metric (SEM), Service Client-Code Evolution Metrics

(SCEMM, SCEMO and SCEMT) and Service Usefulness Evolution Metric (SUEM))

are proposed for a single service. SEM provides a measure of service evolution for the

provider, SCEM and SUEM measures the impact on the client code and usefulness of

the service for the consumer.

12

b) Metrics (BEMI, BEME, BUMEP and BUMEN) are proposed for a composite

service, which is achieved through orchestration, to measure the evolution for the

provider and the impact on its usefulness for the consumer.

c) Metrics (AEM
+
, SEM

-
 and EM) are proposed for a composite service, which is

achieved through choreography, to measure the evolution in a composite service

(choreography) as it evolves for the provider.

d) All metrics are theoretically validated using Zuse framework and are found to be

above ordinal scale.

e) All metrics are empirically validated using real time data wherever it is available

and using simulated data wherever it is not.

The layout of the thesis is as follows:

Chapter 2 provides an overview of the literature on metrics for services. The metrics

proposed both for a single service and composite service are discussed.

Chapter 3 discusses the proposed metrics framework for an evolving single service.

Metrics are proposed for both the service provider and the consumer.

Chapter 4 discusses the metrics proposed for an evolving composite service achieved

through orchestration. Metrics are proposed for both the provider and consumer.

Chapter 5 discusses the proposed metrics framework for an evolving composite

service achieved through choreography. A case study is given to analyze the metrics.

Chapter 6 provides conclusion of the thesis, with possible further studies.

13

Chapter 2 State of the Art

2.1 Introduction

As brought out in chapter 1, in SOA, evolution occurs both in a single service as well

as in a composite service. In this thesis, the evolution in services is studied via

metrics. In this chapter, we review the work which is done on metrics in SOA.

Metrics, in general, are vastly used to provide a quantitative measure of the evolution

in software. Metrics have been proposed by authors considering the structural

perspective of software. In these metrics, the structure of a software is considered in

terms of the classes, methods etc. The successive versions of software are used while

proposing metrics. Similarly, in this thesis, we consider the structure of services

across its different versions while proposing metrics.

In SOA, a number of efforts have been made to propose metrics for a single service

and for a composite service achieved via orchestration. For a composite service using

choreography, we are not aware of any work that proposes metrics.

For a single service, metrics are proposed to measure different service attributes.

Availability, reliability, performance, security, reputation, resource quality,

granularity, complexity, coupling and cohesion etc. are such attributes which are

considered by different authors for proposing metrics [50]–[59].

For a composite service via orchestration, authors have used various attributes such as

performance, reusability, reliability, complexity, availability etc. [60]–[66]

The layout of this chapter is as follows. Metrics, in general, are discussed in section

2.2. In this section, the importance of metrics, in general, as well as in the context of

SOA is mentioned in this section. In section 2.3, metrics proposed for a single service

are discussed in detail. Subsequently, review of state of the art of the work done in

14

proposing metrics for a composite service via orchestration is discussed in section 2.4.

Finally, section 2.5 is the concluding section.

2.2 Metrics

Formally, a measure is a number which is assigned to an entity to characterize its

attributes [68][69][70]. In general, a measure is used because without a measure one

has views or assumptions. A measure may be used to evaluate, control or improve.

Software measurement is a key aspect of good software engineering practice

[71][72][73]. It is used to numerically define the attributes, characteristics or

properties of a software. It provides a scientific base in the field of software

engineering to analyze the software development and maintenance process. Analysis

of the measures is done to understand the collected data. Measurement analysis is

performed to make or to revisit the decisions that are taken during the software

development. Therefore, measurement and its analysis help to understand the software

processes. It also provides a way to evaluate the process so as to make decisions about

improvement in the process [74].

Metrics are used for software measurement and analysis. A metric represents standard

quantitative measurement for the assessment of quality, progress or performance of a

software product or a process. They help to determine whether or not we are

progressing towards the goal.

In the context of evolution in software, metrics can be used to understand and analyze

the evolution in a software system. The internal (structural) perspective of a software

across its successive releases [44]–[49] is used while proposing metrics. Software

quality from an internal (structural) perspective i.e. methods and classes of a software

is considered in [44]. Metrics help to identify the high-risk and low-risk classes of

software. The author has performed an empirical analysis of the proposed metrics

using successive released versions of software systems. The progress of software

development is viewed as a sequence of changes in [45]. Metrics are proposed in

order to analyze the development patterns when a software evolves. In [46], the

15

author has discussed various approaches which are used to understand and improve a

software evolution process via metrics. The work done in [47] uses metrics to analyze

the evolution in software by detecting relationship between the quantum of change, its

type and the time of occurrence of these changes. Evolution in a software system is

analyzed using metrics in [48]. Changes in classes e.g., additions or deletions are

considered. Metrics are used to compare different versions of a software to analyze

whether the decisions taken during software design erodes during evolution or not

[49].

In the context of SOA, several metrics have been proposed for different attributes of a

service. Metrics may help to know the value of the services of an organization. They

can be a powerful tool for informing and guiding decision making at all levels of an

organization. Metrics may be useful for both the service provider as well as to the

service consumer. A service provider wants to know about the progress of its services

and on the other hand service consumer wish to know about the status of the offered

functionalities.

In the next section, we discuss different metrics which are proposed for a single

service.

2.3 Metrics for a single service

Metrics have been proposed for a single service to measure its attributes such as

availability, reliability, performance, security, reputation, resource quality,

granularity, and cohesion [50]–[59].

Different requirements of service consumer and service provider have been taken care

of while developing a quality metrics model in [50]. Metrics are presented for the

service provider for availability and throughput. For the service consumer, the quality

attributes for which metrics are proposed are response time and reliability. Metric

proposed for a consumer to measure the response time is given below.

16

 Response Time = Completion time of receiving responses from the service -

Completion time of sending the request to the service (2.1)

The quality attribute for the provider, Availability, is defined as

Availability = Uptime / (Uptime − Downtime) (2.2)

where Uptime is the total time in which service is available during the time of

measurement and the Downtime is the total time that the service is down during

measurement time.

In [51], a set of metrics is proposed for the single service taking into account quality

features such as availability in terms of time, reliability in terms of process requests,

and performance to measure throughput, discoverability etc. The authors have

proposed metrics keeping in mind that services in good quality should be published

for the service consumer. For example, proposed metric for measuring reliability is

RRR = NumberofReliableResponses / TotalNumberofRequests (2.3)

Availability of Web Service (AWS) is defined as

AWS = WSOT / (WSOT + WSRT) (2.4)

where WSOT represents web service operating time and WSRT represents web

service repairing time.

Authors define metrics in [52] to measure the quality of service resources. Here,

throughput and utilization for a service provider are measured in terms of how many

versions of a service have been made and what is the total lifespan of the service. For

measuring the utilization of a service in SOA, metrics proposed by the authors is

AUO[m] - average utilization of Operation m (2.5)

AIMSO[m] – Average Input Message Size for Operation m (2.6)

17

AOMSO[m] – Average Output Message Size for Operation m (2.7)

The metrics defined in [53] measures the quality of a web service in SOA. The first

quality factor is business value in which service price, reputation, recognition etc. are

used to define the metrics. Business value of web services represents the financial

growth achieved by offering web services in a particular business. The other quality

factor for which authors have proposed metric is for the service consumer. This metric

is termed as Service measurement. Response time, throughput and accessibility etc.

are the sub-quality factors which are defined under this factor. One such metric

proposed by the authors is MaximumThroughput which is defined as

max(NumberofRequestsProcessedbyServiceProviderInMeasuredTime)/ MeasuredTime

(2.8)

Service cohesion metrics are presented in [54]. The authors have extended the notion

of the cohesion of object oriented design while proposing metrics. Some of the

metrics are given below:

Service Interface Usage Cohesion (SIUC) represents the cohesion level of a service in

terms of its behavioural communication with its consumers.

SIUC: INV(clients, SO(sis) / (num_clients * |SO(sis)|) (2.9)

where SO(sis) represents the set of all the operations present in the service s; INV is a

function to count the number of operations which are invoked by a consumer and

num_clients is the count of clients of s.

Service Interface Data Cohesion (SIDC) represents the level of cohesiveness of the

service operations with other services in terms of how many parameters they share

with each other.

SIDC (s) = |Common(Param(so ∈ SO(sis)| / totalParamTypes (2.10)

18

Cohesion metrics, defined in [55], are a measure of how much a service provides

agnostic or non-agnostic functionalities. Author has defined agnostic functionality as

a generalized functionality i.e. it can be used in other contexts. One of the proposed

metrics is DANF (Division of agnostic and non-agnostic functionality). This metric is

a measure of how much a service provides agnostic or non-agnostic functionalities.

The desired value of the metric is either 0 or 1.

DANF = | AF (O (RI (SI(s)))) | / | O (RI (SI(s)))| (2.11)

where s is service; SI is service interface; RI is realized interface; AF is Agnostic

functionality; O is total number of operations.

Lack of cohesion metrics, proposed by authors in [56], provides a measure which is

the complement of the average sequential and communicational similarity between

the pairs of operations in service. A service interface is said to be sequentially

cohesive when it has pairs of operations which comprise of common elements in their

input and output message. The proposed metric for the sequential cohesion is Lack of

sequential cohesion (LoCS(si)) metric. The metric is the complement of the average

sequential similarity between the pairs of operations that belong to CS(si).

LoCS(si) = 1 – [∑∀(opi,opj) ∈CSsi OpSseq(opi, opj)] / ([|si.O|*(|si.O|−1)] / 2) (2.12)

where si.O is the service operation, opi and opj are the operations, OpSseq(opi, opj) are

the operations that are operations that are sequentially related to each other i.e. input

message of a service is the output message of other service.

Authors in [57] have presented service coupling metrics. The notion of the coupling

of object oriented design is used in the work to propose coupling metrics in service-

oriented design. Metrics such as Weighted Intra-Service Coupling between Elements

(WISCE), Weighted Extra-Service Incoming Coupling of an Element (WESICE),

Weighted Extra-Service Outgoing Coupling of an Element (WESOCE) etc. are

proposed. Authors have used implementation elements of a service interface i.e. OO

class, interface, package and business scripts.

19

In [58], metrics are proposed for service reputation in terms of how trustworthy a

service provider has been in complying with the agreed SLA levels. The metrics are

defined for service verity, service compliance and service reputation. Service verity is

the amount of variance among all the compliance levels of services provided by the

service provider. It is defined by the authors as

SPLverity = ∑ (WSL
i
compl−μ)

2
 / n (2.13)

where WSL
i
compl is the local compliance of an i

th
 service and n is the count of services.

Compliance of a service provider is the average of the SLA compliance values of the

offered web services. Reputation is used as a parameter for user ranking.

Reusability of services is evaluated using a quality model in [59]. The model is

developed for the service reusability features: business commonality, standard

conformance, discoverability etc. One of the proposed metrics for a service measures

functional commonality (FCOpi) of an operation of a service. It is defined as below

FCOpi=NumConsumerRequiringFRofOpi / NumTotalConsumers (2.14)

where NumConsumerRequiringFRofOpi is the count of consumers who want to invoke the

functionality offered via operation i of the service and NumTotalConsumers is the count of

total number of service consumers.

From the foregoing, we conclude that metrics have not been proposed to provide a

measure of the service evolution and its impact across its different versions.

Moreover, there is a lack of metrics which covers both perspectives of service

consumer as well as of the provider. In the next section, we discuss metrics for a

composite service.

2.4 Metrics for a composite service

In SOA, metrics have been proposed for a composite service via orchestration [50],

[60]–[66]. Authors have used WS-BPEL process to measure its performance,

granularity, coupling etc.

20

In [50], metrics are defined for measuring the quality of the composite service quality.

The quality attributes which are considered while proposing metrics are availability,

composability, performance etc. Availability of Business Process (ABP) is a metric

proposed for availability is given below.

ABP = BPOT / BPOT+BPRT (2.15)

Where BPOT represents operating time of the composite service; BPRT means

repairing time for the composite service after a failure has occurred. Values of these

metrics are collected by using log files obtained from the BPEL engine.

Metrics proposed in [60] considers service level agreement between consumer and

provider of the composite service to measure how much performance, reliability and

availability are actually met. A metric latest start time (LST) is defined to measure the

time required to start processing the requests. It is given below.

LSTi = RSLA− (RSLAx/Cmax) (2.16)

where RSLA is the maximum response time and Cmax is the estimated completion time.

A metric is defined in [61] to quantitatively measure the granularity appropriateness

of a composite service. In order to determine this, attributes of granularity such as

business value, reusability, context independency etc. are considered. The proposed

metric Weighted Granularity Level Appropriateness (WGLA) is defined as below.

WGLA = ((w1×SBV)×(w2×SR)×(w3×SCI)) / (w4×SCo) (2.17)

where SBV is the business value of a service, SR is service reusability, SCI is service

the value for the attribute context-independency and SCo is the service complexity

value.

A WS-BPEL process performance monitoring model is developed in [62]. In this

model, performance metrics are computed at the run time of the process. These

21

metrics are Instance and Aggregate metrics. Their computation is based on duration,

state, time etc parameters of a BPEL process instances during the run-time.

The work in [63] provides metrics for measuring decoupling of a process taking into

account the factors of how many operations of web services are invoked and how

many services are present in a process. Their computation is based on duration, state,

time etc parameters of a process instances during the run-time. One of the coupling

metrics is Average Required Services Dependency Metric (ARSD) which is defined

as follows.

ARSD = ∑Ri / n (2.18)

 where Ri is the count of services which a given service needs to complete its

functionalities and n is the total number of services available in a business domain.

Authors have proposed coupling metrics to measure the number of relationships

between services in [64] in a service composition achieved through orchestration.

Degree of coupling within a given set of services metric (DCSS) is defined by the

authors in terms of a graph drawn for the service connectivity in the system and is

calculated by the below formula.

DCSS = [Max - ∑∑d(u,v)] / Max- Min (2.19)

where d(u,v) is number of calls from node u to v for all the services in system.

Authors in [65] have defined metrics for measuring the quality of a composite service

in terms of coupling and granularity (i.e. based on principles of service design). The

proposed metrics are based on information-theory. They have considered two types of

elements in a composition. One is atomic and the other is complex. An atomic

element is a service operation and the complex element is a composite service. The

information entropy H(Si) metric defined for a complex element Si is as follows.

H(Si) = p∑ (−log(PL(j))) = ∑j (−log(PL(j))) / n (2.20)

22

where PL(j) represents the probability of invocation of atomic j
th

 element (service) by

the complex element (composite service). If a composite service invokes a service,

then the coupling index is high for the composite service. As per the service design

principles, coupling should be as low as possible. The metric reflects that how much

is the coupling index.

The work in [66] has used metrics for the service provider to monitor the SLA

violations in a service composition. One of such metric is Mean Prediction Error (e¯)

which is the average of the differences between predicted (pi) and monitored (mi)

values for a given number of instances (n).

e¯= (∑|mi−pi|) / n (2.21)

From the aforementioned, it could be seen that the existing metrics do not measure

evolution across different versions of a composite service in SOA. Also, there is a

lack of metrics proposed for both consumer as well as of the provider of the

composite service.

2.5 Summary

In this chapter, we have described a general definition of metrics. We discussed the

existing proposed metrics for a single service and a composite service in SOA.

We found that the existing metrics do not cover the aspect of evolution in single as

well as composite service.

As mentioned in chapter 1, we now propose the metrics framework for both the

composite and non-composite service in the coming chapters of the thesis. In the next

chapter, we discuss the metrics framework for a single evolving service in detail.

23

Chapter 3

Metrics for an Evolving Single Service

3.1 Introduction

In SOA, a service is provided by a service provider and consumed by a service

consumer. In today’s fast growing environment, service evolves over time [24], [25].

These changes in a service are studied via metrics in this chapter. Further, the

perspectives of both the service provider and service consumer have been taken care

of while defining metrics.

Consider a service which is expressed via an interface. The service interface contains

operations, messages, service address etc. Changes that can occur in the service

interface are addition, deletion, modification, split or merge [26]–[28].

Changes in a service need to be carefully analyzed by the service provider because the

changes which are accumulated through its successive versions may affect the service

consumer as well as the provider. As an example, consider an order placing service as

mentioned in the section 1.3.1. In this example, the questions that need to be answered

are what and how much is the

1. impact on the service interface?

2. impact on the service client code?

3. impact on the usefulness of a service?

In this chapter, metrics to answer the above three questions are proposed. The first

metric, Service Evolution Metric (SEM), is an answer to the first question. It is a

quantitative measure to represent the amount of evolution in different versions of a

service interface. The second metric, Service Client-code Evolution Metric (SCEM),

is a measure for the impact on client code when a service undergoes changes. The last

24

metric, Service Usefulness Evolution Metric (SUEM) is a measure of usefulness of

the service for the consumer when a service changes.

The layout of this chapter is as follows. Section 3.2 defines the service interface

(WSDL document). The service evolution metric (SEM), service client code evolution

metrics (SCEM) and service usefulness evolution metric (SUEM) are presented in

section 3.3. Time complexity of metrics is given in section 3.4. In section 3.5,

experiments and analysis are shown. The formal validation of metrics using Zuse

framework is presented in section 3.6. Finally, the chapter is concluded in section 3.7.

3.2 Service Interface

The interface of a service is described as a WSDL document. A WSDL document is

based on XML which contains a set of operations with inputs/outputs which are

exchanged when the operations are invoked [19]
2
. The WSDL 2.0 is defined in terms

of XML Infoset in Figure 3.1. This WSDL 2.0 Infoset is described in Table 3.1. It is

used to compute the metrics.

2 https://www.w3.org/TR/wsdl20-primer/
"Copyright © [$26 June 2007] World Wide Web Consortium, (MIT, ERCIM, Keio, Beihang).

http://www.w3.org/Consortium/Legal/2015/doc-license"

This section describes the status of this document at the time of its publication. Other documents may supersede this document.
A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports

index at http://www.w3.org/TR/. This is the W3C Recommendation of Web Services Description Language (WSDL) Version 2.0

Part 0: Primer for review by W3C Members and other interested parties. It has been produced by the Web Services Description
Working Group, which is part of the W3C Web Services Activity. Please send comments about this document to the

public public-ws-desc-comments@w3.org mailing list (public archive). The Working Group released a test suite along with

an implementation report. A diff-marked version against the previous version of this document is available. This document has
been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by

the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another

document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread
deployment. This enhances the functionality and interoperability of the Web. This document is governed by the 24 January 2002

CPP as amended by the W3C Patent Policy Transition Procedure. W3C maintains a public list of any patent disclosures made in

connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has
actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in

accordance with section 6 of the W3C Patent Policy.

25

Figure 3.1: WSDL 2.0 Infoset

Table 3.1: WSDL 2.0 description

S.No Elements with

their attributes

Description

1 Description Root element and all WSDL elements are nested inside this element.

2 Import Import XML Schemas or other WSDL documents.

3 Include Assemble contents of a given WSDL 2.0 namespace from several WSDL

2.0 documents that define elements for that namespace.

4 Types

A specification of the data types exchanged between client and service

5 Interface
 Operation
 Input
 Output
 InFault
 OutFault
 Fault

Describes what operations a service has, and what messages are

exchanged for each operation (input/output) and also describes possible

fault messages.

6 Binding
 Operation
 Fault

Describes how a service is accessed over the network. A

binding operation describes a concrete binding of an interface operation

to a concrete message format. A binding fault associates a concrete

message format with an abstract fault of an interface.

7 Service
 Endpoint

Describes where web service can be accessed on the network via a URL

(Endpoint).

8 Documentation Is optional and contain a humanly readable description of the service.

26

In the next section, the metrics are presented.

3.3 Proposed Metrics for a Single Service

As stated in section 3.2, the aim is to propose metrics for a service when changes

occur. In this section, we propose three metrics for an evolving service which are:

Service Evolution Metric (SEM), Service Client Code Evolution Metric (SCEM) and

Service Usefulness Evolution Metric (SUEM). These are explained below.

1. Service Evolution Metric (SEM): SEM gives a measure of how much a service

interface has changed. A service contains elements and sub-elements as depicted in

Figure 3.1. The metric measures the changes in the service vis-à-vis changes in these

elements and sub-elements.

2. Service Client Code Evolution Metric (SCEM): SCEM provides a measure of the

impact of changes in service on the service client code. The three types of changes are

categorized according to their impact on the client code: mandatory, optional and

trivial. The computation of the metric is based on this categorization so that the

consumer is provided with the measure of how much change he has to accommodate

in his code to access the service.

3. Service Usefulness Evolution Metric (SUEM): SUEM is meant to provide a

measure of the impact of changes in service on the usefulness for the consumer. The

changes are classified into three categories namely Favorable, Unfavorable and

Uncertain as per their impact on service usefulness and then define metrics for each of

them. The Usefulness Evolution metric is then computed by combining the individual

measures for the three categories using weights.

Next, the metrics are discussed in detail.

3.3.1 Service Evolution Metric (SEM)

In this section, metrics are defined to quantify the amount of changes in service

interface that have occurred. Changes in all the elements and their sub-elements listed

in Table 3.1 contribute to the computation of the metric.

27

Let, x and x+1 be two versions of a service and let, Tx,x+1 denote the table containing

the changes between them. Let i be an element /sub-element and Ci (Tx,x+1) be the

number of changes for that element in the table Tx,x+1. For example, the element

operation can undergo a number of changes such as addition, deletion etc. Suppose 5

operation elements are added in the table Tx,x+1, then the value for Ci is 5. When the

context of the changes is unambiguous, Tx,x+1 is not defined while defining the

metrics.

In general, when there is a change in an element, it may also bring about changes in

its sub-elements. For example, if an operation is added then the input and output and

even infault and outfault could be added.

In the WSDL 2.0 infoset, each element and it’s sub-element is at a certain depth. This

depth is used to assign a weight to the elements and sub-elements. Let Di be the depth

of an element. Its weight is ∏
1

Dj

i
j=1 . For example, the element operation is at depth 2,

its sub-elements input and output are at depth 3. The weight for the operation

element is 1/(1*2) and weight for its sub-elements input and output is 1/(2*3).

The Service Evolution Metric is computed as the summation of all the changes in

elements and sub-elements together with their respective weights.

SEM = ∑ (∏
1

Dj
)i

j=1 ∗ C𝑖
n
i=1 (3.1)

where n is the total number of changed elements and sub-elements.

For example, let n be 4 i.e. there is a total of four changed elements. Let these be

interface, operation, input and output. Let the number of changes for element

interface be 2, 5 for its sub-element operation, 8 for operations’ sub-element input

and 9 for output. Then, Service Evolution Metric is

SEM = (1/1)*2 + (1/(1*2)) *5 + (1/(1*2*3))*8+(1/(1*2*3))*9 = .5+.4+1.33+1.5

= 3.73

28

In the next section, we define metrics from the perspective of the service consumer.

3.3.2 Service Client- code Evolution Metric (SCEM)

A web service client code is required to invoke the service. This client code can be

developed in any language such as Java, .NET, C# etc. In Eclipse, web service client

code to invoke the service is developed using IDE which has Web Tools Platform

(WTP). The client is generated based on the WSDL document of the service.

The elements of the WSDL document which are required and used to develop the

client code are interface, port, operation and types [75]–[78]. Figure 3.2 shows that

changes in the WSDL document may introduce changes in the generated web service

client code. The changes are classified according to their effect on the client code.

These categories are discussed below.

1. Mandatory changes: These are the changes which a client has to include in the

code. An example of mandatory change is deletion of operation which necessitates

the client to remove the corresponding invocation in the code.

2. Optional changes: These are the changes which are not compulsory for a client

i.e. client may opt to include them in the code. Addition of operation in the service is

an example of optional change because it may make the client to use the provided

functionality and include the invocation in the code.

3. Trivial changes: These are the changes which are immaterial to include in the

code. Addition of import or include is an example of trivial change as it does not need

any modification in the client code because they are not used while writing the client

code; modification in the operation will not affect its invocation in the code.

This classification of changes is presented in Table 3.2 in detail. Now, metrics are

defined.

29

Table 3.2: Categories of changes for Service Client Code

S.No Category Description Changes

1 Mandatory Compulsory to

accommodate in

the client code

Delete: Types, Interface, Operation, Fault, Input,
Output, InFault, OutFault, Binding, BindingOperation,
BindingFault, BindingInput, BindingOutput,
BindingInFault, BindingOutFault Service, Endpoint

Split: Types, Interface, Operation, Fault, Input, Output,
InFault, OutFault,
Binding, BindingOperation, BindingFault, BindingInput,
BindingOutput, BindingInFault, BindingOutFault,
Service,Endpoint

Merge: Types, Interface,
Operation,Fault,Input,Output,InFault,OutFault,
Binding,BindingOperation,BindingFault, BindingInput,
BindingOutput, BindingInFault, BindingOutFault,
Service,Endpoint

2 Optional Not necessarily to

accommodate in

the client code

Add: Types, Interface,
Operation,Fault,Input,Output,InFault,OutFault,
Binding,BindingOperation,BindingFault, BindingInput,
BindingOutput, BindingInFault, BindingOutFault, Service,
Endpoint

3 Trivial Insignificant to

include in client

code

Add: Import, Include, Documentation

Delete: Import Include, Documentation

Modify: Import, Include, Types,
Interface,Operation,Fault,Input,Output,InFault,OutFault,
Binding,BindingOperation,BindingFault, BindingInput,
BindingOutput, BindingInFault, BindingOutFault, Service,
Endpoint
Import, Include, Documentation, Description,
Namespace
Split: Import, Include, Documentation

Merge: Import, Include, Documentation

Let CM be the total number of changes under the first category, CO be the total number

of changes under the second category and CT be the total number of changes under the

third category. The individual metrics for each category are computed. The weight is

computed as a proportion of the number of changes for each type of change within the

category to the total number of changes in the category.

30

The Service Client-Code Evolution Metric for the first category is computed as

SCEMM = ∑ 𝑛
𝑖=1 WMi

∗ CMi
 (3.2)

where n is the count of different types of changes in this category, CMi is the total

number of changes for i
th

 type of change within this category and WMi is the weight

for the i
th

 type of change. For example, if types and operations are deleted then there

are two types of changes i.e. n=2. If 5 types and 3 operations are deleted then CM1 is

5 &WM1 is 5/8 and CM2 is 3 &WM2 is 3/8. So, SCEMM = (5/8)*5 + (3/8)*3 = 4.25

The Service Client-Code Evolution Metric for the second category is computed as

SCEMO = ∑ WOj ∗ COj
𝑚
𝑗=1 (3.3)

where m is the total number of different types of changes in this category (listed in

Column 4 of Table 3.2) and COj is the total number of changes for j
th

 type of change

under this category and WOj is the weight for the j
th

 type of change. For example, if

types and operations are added then there are two types of changes i.e. m=2. If 4

types and 3 operations are added then CO1 is 4 &WO1 is 4/7 and CO2 is 3 &WO2 is 3/7.

So, SCEMO = (4/7)*4 + (3/7)*3 = 3.57

The Service Client-Code Evolution Metric for the third category is computed as

 SCEMT = ∑ 𝑙
𝑘=1 WTk ∗ CTk (3.4)

where l is the total count of different types of changes in this category, CTk is the total

number of changes for for k
th

 type of change CT and WTk is the weight for the k
th

 type

of change . For example, if import, include and documentation are added then there

are three types of changes i.e. l=3. If 1 import, 2 include and 5 documentation are

added then CT1 is 1 & WT1 is 1/8, CT2 is 2 &WT2 is 2/8 and CT3 is 5 &WT3 is 5/8. So,

SCEMT = (1/8)*1 + (2/8)*2 + (5/8)*5= 3.75

31

3.3.3 Service Usefulness Evolution Metric (SUEM)

Different changes have different impact on the usefulness for the consumer. Some

changes make the service favorable to the consumer; some do not and some are

neutral. Therefore, we first, categorize the changes as per their impact on usefulness

for the consumer.

The proposed three categories are discussed below.

1. Favorable changes: These changes make the service favorable to the consumer.

Addition of operation is a favorable change as a new functionality is added in a

service for the consumer, import or include are Favorable changes because they add

more elements in the service which make the service more advantageous for the

consumer; addition of documentation makes the service more understandable and

easy to use to the consumer.

2. Unfavorable changes: These changes make the service less favorable to the

consumer. For example, deletion of an operation deprives the consumer of the

functionalities that he may be using.

3. Indifferent changes: These changes have insignificant impact on the consumer i.e.

neither they make the service favorable nor they make the service unfavorable to the

consumer. For example, modification in the service address or merging of two

imports will not affect the consumer in the sense that the functionalities will still be

accessible to the consumer.

The classification of changes with respect to the impact on the usefulness of a service

in Table 3.3 is presented in detail.

32

 Table 3.3: Categories of changes for Usefulness of service

S.No Category Description Changes

1 Favorable Makes the service

more favorable to the

consumer

Add: Import, Include, Types, Interface,

Operation, Input, Output, InFault, OutFault,

Binding, BindingOperation, BindingFault,

BindingInput, BindingOutput, BindingInFault,

BindingOutFault, Service, Endpoint,

Documentation

2 Unfavorable Makes the service less

favorable to the

consumer

Delete: Import, Include, Types, Interface,

Operation, Input, Output, InFault, OutFault,

Binding,BindingOperation,BindingFault,

BindingInput, BindingOutput, BindingInFault,

BindingOutFault Service,Endpoint,

Documentation

3 Indifferent Have insignificant

impact on the

consumer

Modify: Documentation, Description, Namespace,

Service, Endpoint, Import, Include, Types,

Interface, Operation, Input, Output, InFault,

OutFault,

Binding,BindingOperation,BindingFault,

BindingInput, BindingOutput, BindingInFault,

BindingOutFault

Merge: Import, Include, Types, Interface,

Operation, Input, Output, InFault, OutFault,

Binding,BindingOperation,BindingFault,

BindingInput, BindingOutput, BindingInFault,

BindingOutFault Service,Endpoint,Documentation

Split: Import, Include, Types, Interface,

Operation, Input, Output, InFault, OutFault,

Binding,BindingOperation,BindingFault,

BindingInput, BindingOutput, BindingInFault,

BindingOutFault Service,Endpoint,Documentation

Consider, now, the metrics. Let CF be the total number of changes under the first

category, CUF be the total number of changes under the second category and CU be the

total number of changes under the third category.

33

The Service Usefulness Evolution Metric for the first category is computed as

SUEMF = ∑ 𝑛
𝑖=1 WFi ∗ CFi (3.5)

where n is the total number of different types of changes in this category (listed in

Column 4 of Table 3.3) , CFi is the total number of changes for i
th

 type of change

within this category and WFi is the weight for the i
th

 type of change. For example, if

types and operations are added then there are two types of changes i.e. n=2. If 2

inputs and 3 outputs are added then CF1 is 2 & WF1 is 2/5 and CF2 is 3 &WF2 is 3/5.

So, SUEMF = (2/5)*2 + (3/5)*3 = 2.6.

The Service Usefulness Evolution Metric for the second category is computed as

SUEMUF = ∑ WUFj ∗ CUFj
𝑚
𝑗=1 (3.6)

where m is the count of different types of changes in this category and CUFj is the total

number of changes for j
th

 type of change under this category and WUFj is the weight

for the j
th

 type of change. For example, if types and operations are deleted then there

are two types of changes i.e. m=2. If 1 fault and 2 operations are deleted then CUF1 is

1 &WUF1 is 1/3 and CUF2 is 2 &WUF2 is 2/3. So, SUEMUF = (1/3)*1 + (2/3)*2 =

1.67

The Service Usefulness Evolution Metric for the third category is computed as

SUEMI= ∑ WIk ∗ CIk
𝑙
𝑘=1 (3.7)

where l is the count of different types of changes in this category, CIk is the total

number of changes for k
th

 type of change within this category and WIk is the weight

for the k
th

 type of change. For example, if operations are merged and documentation is

changed, then, there are two types of changes i.e. l=2. If 2 operations are merged and

5 documentation are changed then CI1 is 2 &WI1 is 2/7, CI2 is 5 &WI2 is 5/7. So,

SUEMI = (2/7)*2 + (5/7)*5 = 4.14.

34

Now, we compute the Service Usefulness Evolution Metric of a service by combining

all the above defined metrics. We combine these metrics because a consumer is

always interested in knowing the impact on the overall usefulness when a service

evolves. Weights are assigned to each category bearing in mind that each category has

different significance in terms of the impact of evolution on the usefulness of service

for the consumer.

wF*, wUF*, wI* denotes the weights of first, second and third category respectively.

The weights are: wF* = .6, wUF* = .3, wI* = .1 so that wF* + wUF* + wI* = 1. The

Service Usefulness Evolution Metric is defined as

SUEM = wF* *SUEMF + wUF* * SUEMUF + wI* * SUEMI (3.8)

In the example taken above, SUEMF is 2.6, SUEMUF is 1.67 and SUEMI is 4.14 so,

SUEM = (.6 * 2.6) + (.3 * 1.67) + (.1 * 4.14) = 1.56 + 0.501 + .414 = 2.475

3.4 Experiments and Analysis

The metrics are evaluated using the real world service- “Amazon Elastic load

balancing”. The changed versions of the WSDL documents of the service are

available at the link:

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/Document

History.html. The versions are identified by the “release date”, mentioned in Table

3.4. Version 1 of the service is the one with the oldest “release date” and the

subsequent versions are assigned in increasing numbers thereafter. The subsequent

versions are compared and the changes are identified manually. The metrics are

computed and results are shown in Table 5. The Pearson correlation coefficient

between SEM and SCEMM is 0; SEM and SCEMO is 1; SEM and SCEMT is .74 and

SEM and SUEM is 1. It can be seen from the correlation values between the metrics

that even though the client code need not necessarily change as the service evolves,

the usefulness of the service for the consumer increases.

35

Table 3.4: Metrics for the real-world service

Ser

vice

Versio

ns

Number of

changes

SEM SCEM SUEM

SCEMM SCEMO SCEMT
A

m
az

o
n

 E
la

st
ic

 L
o

ad
 B

al
an

ci
n

g

1 & 2 None 0.00 0.00 0.00 0.00 0.00

2 &3 Add Types-20,

Modify

Namespace-1,

Add Operation-4,

Add Input-4,

Add Output-4

24.32 0.00 14.00 1.00 8.50

3&4 None 0.00 0.00 0.00 0.00 0.00

4&5 Add Types-15,

Modify

Namespace-1,

Add Operation-3,

Add Input-3,

Add Output-3

18.49 0.00 10.50 1.00 6.40

5&6 None 0.00 0.00 0.00 0.00 0.00

6&7 None 0.00 0.00 0.00 0.00 0.00

7&8 Add

Documentation-15

15.00 0.00 0.00 15.00 9.00

8&9 Add Types-20,

Modify

Namespace-1,

Add Operation-4,

Add Input-4,

Add Output-4

24.32 0.00 14.00 1.00 8.50

9&10 None 0.00 0.00 0.00 0.00 0.00

10&11 Add Types-15,

Modify

Namespace-1,

Add Operation-3,

Add Input-3,

Add Output-3

Add

Documentation-8

26.65 0.00 10.50 7.22 6.03

11&12 None 0.00 0.00 0.00 0.00 0.00

12&13 Modify

Namespace-1,

Add

Documentation-1

1.50 0.00 0.00 1.50 1.50

13&14 None 0.00 0.00 0.00 0.00 0.00

14&15 None 0.00 0.00 0.00 0.00 0.00

15&16 None 0.00 0.00 0.00 0.00 0.00

16&17 None 0.00 0.00 0.00 0.00 0.00

Some limitations can be observed in the above real world data in Table 5 which

makes the metrics hard to analyze. For example, sparsity in the table for the changes

hinders the extensive analysis of the SCEM metric vis-à-vis changes. To analyze

36

SCEMM, there are no mandatory changes in the available versions of the service.

Therefore, SCEMM cannot be analyzed. Similarly, to analyze SUEM, there are no

unfavorable changes in the available versions of the service. Moreover, the table has

mostly the same number of changes. This means that using Table 3.5, the effect of

varying changes cannot be studied and therefore relation among the metrics cannot be

found. Therefore, to overcome the above limitations, the simulated data is used and

then the metrics are analyzed. Subsequently, the correlations among the metrics are

analyzed.

All the changes (additions, deletions, change, split and merge) are simulated for all

elements and sub-elements of a service and its 100 versions are generated. The

changes are generated randomly in 10 sets each containing 10 versions of the service.

The sets are denoted as SET 1, SET 2, ….SET 10. The information of all the changes

in these sets is stored in their respective tables. The metrics are computed and are

shown in Table 3.5.

Table 3.5: Metrics for the simulated service

 SET 1

Metric V1&2 V2&3 V3&4 V4&5 V5&6 V6&7 V7&8 V8&9 V9&10 V10&11

SEM 276.43 239.97 272.74 291.70 256.04 286.36 277.43 279.05 273.78 285.62

SCEM

m

7.04 5.99 7.22 7.11 7.51 6.89 6.75 7.55 7.49 6.87

SCEMo 5.20 5.32 5.02 6.88 5.80 8.14 5.34 6.30 6.65 5.98

SCEMt 0.91 1.00 1.03 1.06 0.99 0.97 0.94 0.93 0.97 0.95

SUEM 6.81 6.15 6.93 6.93 6.34 7.90 6.41 7.08 7.28 6.94

SET 2

Metric V11&1

2

V12&1

3

V13&1

4

V14&1

5

V15&1

6

V16&1

7

V17&1

8

V18&1

9

V19&2

0

V20&2

1

SEM 253.92 232.25 243.58 293.09 265.71 261.75 289.92 270.23 265.43 288.72

SCEMm 7.42 7.08 6.96 6.93 7.21 6.88 7.02 7.52 7.33 7.15

SCEMo 6.37 6.00 5.19 7.86 5.40 6.59 6.59 6.09 5.60 5.05

SCEMt 1.03 0.91 0.97 0.98 0.93 1.01 0.94 0.93 1.05 0.97

SUEM 7.37 6.40 6.82 7.78 6.60 7.39 6.91 7.51 6.84 6.68

SET 3

Metric

V21&2

2

V22&2

3

V23&2

4

V24&2

5

V25&2

6

V26&2

7

V27&2

8

V28&2

9

V29&3

0

V30&3

1

SEM 278.92 284.27 249.14 248.73 303.09 269.22 242.33 264.60 248.02 261.23

SCEM

m 6.75 7.24 6.56 6.06 7.60 7.64 6.53 6.80 6.83 7.18

SCEMo 6.09 6.11 7.32 6.37 5.74 6.70 6.06 6.91 6.28 6.37

SCEMt 1.03 0.96 0.93 1.02 0.98 1.02 1.04 0.92 0.99 1.00

SUEM 6.95 6.96 7.08 6.89 6.86 7.69 6.38 6.88 6.85 7.20

37

SET 4

Metric

V31&3

2

V32&3

3

V33&3

4

V34&3

5

V35&3

6

V36&3

7

V37&3

8

V38&3

9

V39&4

0

V40&4

1

SEM 273.90 266.85 266.77 292.42 263.61 264.53 293.25 282.22 286.93 251.20

SCEM

m 7.53 7.22 6.12 6.81 6.98 7.35 7.01 6.92 7.44 6.84

SCEMo 4.95 6.24 6.51 6.54 6.35 6.71 6.12 5.84 5.94 6.28

SCEMt 0.98 0.93 0.92 0.99 0.94 1.06 1.01 0.91 0.96 1.00

SUEM 6.56 7.32 6.87 7.04 7.27 7.55 7.35 6.90 6.77 6.69

SET 5

Metric

V41&4

2

V42&4

3

V43&4

4

V44&4

5

V45&4

6

V46&4

7

V47&4

8

V48&4

9

V49&5

0

V50&5

1

SEM 289.42 233.94 265.26 267.61 244.06 272.94 267.56 247.88 277.75 266.26

SCEM

m 7.21 6.70 7.03 7.24 6.71 6.70 7.19 7.05 6.51 6.87

SCEMo 7.43 5.48 5.24 5.69 6.63 6.43 6.92 4.67 5.59 6.90

SCEMt 0.96 0.99 0.97 0.94 0.97 1.03 0.98 0.99 1.02 0.96

SUEM 7.39 6.29 7.33 7.20 6.60 6.44 7.44 6.65 6.96 7.24

SET 6

Metric

V51&5

2

V52&5

3

V53&5

4

V54&5

5

V55&5

6

V56&5

7

V57&5

8

V58&5

9

V59&6

0

V60&6

1

SEM 280.08 267.26 274.20 239.65 289.18 299.06 261.26 258.28 268.26 282.93

SCEM

m 7.15 7.48 6.71 6.61 7.56 7.51 6.61 6.80 7.46 7.02

SCEMo 6.77 5.94 5.85 3.68 5.19 4.95 7.63 6.15 5.49 5.73

SCEMt 1.00 1.00 0.98 0.97 1.00 1.03 1.06 0.98 0.92 0.93

SUEM 6.81 6.70 7.10 6.31 7.33 6.88 7.07 6.69 6.81 6.64

SET 7

Metric

V61&6

2

V62&6

3

V63&6

4

V64&6

5

V65&6

6

V66&6

7

V67&6

8

V68&6

9

V69&7

0

V70&7

1

SEM 235.80 237.89 285.60 278.86 252.38 263.33 226.52 272.57 290.65 235.57

SCEM

m 6.07 6.34 7.22 7.72 6.04 6.56 7.19 7.29 7.05 6.77

SCEMo 6.77 7.01 5.12 6.31 6.48 5.51 7.70 5.79 7.61 7.01

SCEMt 0.94 0.98 0.98 1.00 0.91 1.01 1.05 0.95 0.96 1.00

SUEM 6.72 6.96 6.83 7.19 6.63 6.47 7.29 6.59 7.44 7.18

SET 8

Metric

V71&7

2

V72&7

3

V73&7

4

V74&7

5

V75&7

6

V76&7

7

V77&7

8

V78&7

9

V79&8

0

V80&8

1

SEM 287.43 296.60 281.55 239.66 238.91 297.76 241.74 259.26 293.87 262.89

SCEM

m 6.16 7.61 7.66 5.82 6.28 7.08 7.23 7.21 7.50 6.38

SCEMo 6.13 6.11 5.07 6.13 7.47 5.78 5.55 6.12 6.70 6.38

SCEMt 1.02 1.00 1.04 0.97 0.93 0.99 1.03 0.87 0.94 1.07

SUEM 6.72 7.10 6.62 6.34 7.18 7.38 7.39 6.83 7.89 7.37

SET 9

Metric

V81&8

2

V82&8

3

V83&8

4

V84&8

5

V85&8

6

V86&8

7

V87&8

8

V88&8

9

V89&9

0

V90&9

1

SEM 216.68 247.79 259.70 284.10 298.56 258.46 297.80 284.53 217.65 245.63

SCEM

m 7.58 6.91 7.37 6.74 6.87 7.68 6.75 7.77 6.01 6.99

SCEMo 6.33 6.74 5.34 6.20 6.04 5.41 6.60 5.44 6.37 6.23

SCEMt 0.95 0.89 0.99 1.07 0.99 0.93 1.01 1.09 1.02 0.86

SUEM 7.10 6.55 7.15 7.02 7.28 6.86 7.11 6.92 6.31 6.27

SET 10

Metric

V91&9

2

V92&9

3

V93&9

4

V94&9

5

V95&9

6

V96&9

7

V97&9

8

V98&9

9

V99&10

0

V100&10

1

SEM 232.96 256.57 289.93 271.58 238.22 243.10 292.60 237.09 264.94 264.57

SCEM

m 6.70 6.46 6.63 6.88 7.39 6.68 7.39 7.11 7.02 6.89

SCEMo 6.01 5.65 6.61 6.62 5.19 5.85 6.30 5.75 6.35 5.75

SCEMt 0.99 0.96 1.00 1.06 0.97 1.05 0.95 0.88 1.02 0.98

SUEM 6.67 6.64 7.33 7.19 6.93 6.70 7.18 6.50 6.12 6.82

38

Figure 3.3 shows the correlation between SEM and SCEMO, and between SEM and

SUEM and Figure 3.4 shows the correlation between SEM and SCEMT, and between

SEM and SUEM. It may be noted that usefulness is positively correlated with the

changes in both the cases. The graphs show the correlation between SEM and SCEMO

and SEM and SCEMT as well. Since the client need not make any modifications to the

code for SCEMO and SCEMT, the further study of correlation is not done.

The values are depicted in a line graph in Figure 3.2 (correlation between SEM and

SCEMM, and between SEM and SUEM), Figure 3.3 (correlation between SEM and

SCEMO, and between SEM and SUEM) and Figure 3.4 (correlation between SEM

and SCEMT, and between SEM and SUEM) so as to have an insight into the

correlation values of Table 3.6.

Table 3.6: Correlation among metrics

Metric SET

 1

SET

2

 SET

3

SET

4

SET

5

SET

6

SET

 7

SET

8

SET

9

SET

10

SEM

and

SCEMm

0.40 -0.08 0.71 0.13 0.28 0.66 0.53 0.53 0.10 0.06

SEM

and

SCEMo

0.50 0.36 -0.47 -0.19 0.47 0.11 -0.48 -.25 -0.19 0.71

SEM

and

SCEMt

-0.10 0.04 -0.09 -0.03 0.04 0.15 -0.24 0.17 0.46 0.20

SEM

and

SUEM

0.69 0.39 0.22 0.04 0.66 0.58 0.01 0.27 0.58 0.56

39

Figure 3.2: Graph showing correlation of SEM & SCEMM and SEM & SUEM

Figure 3.3: Graph showing correlation of SEM & SCEMO and SEM & SUEM

Figure 3.4: Graph showing correlation of SEM & SCEMT and SEM & SUEM

40

Now the analysis of Figure 3.2 is presented.

1. Phases where the correlation of SEM & SCEMM are on a rise but of SEM &

SUEM are on a fall: These phases of evolution such as service evolution from Set 8 to

Set 9, may be a concern for the service provider that needs to be looked-into as the

client code has to change without much tangible benefits in terms of usefulness.

2. Phases where the correlation of SEM & SCEMM are on a fall but of SEM &

SUEM are on a rise : These phases of evolution such as service evolution from Set 2

to Set 3 are a good indication of changes for the service provider as with very little

code change the usefulness has increased. The service provider may analyze the

corresponding versions of the service and use the same approach for further service

evolution which he has used in these versions.

3. Phases where the correlation of SEM & SCEMM and of SEM & SUEM both

rise/fall: These phases are not as good as the second phase but if usefulness increases

albeit with an increase in client code modifications, it is, probably, worthwhile to

make such changes.

3.5 Time Complexity

Evolution data of all the changes that occur between two versions of a service is

stored in a table in the database. There are five columns for each table. The column

headers of the table are

1. Service versions (versions for which data is to be stored)

2. Element (lists the elements of a WSDL document of the service)

3. Depth of the element

4. Number of changes (number of changes for each of additions/deletions/

modifications/split/merge of an element)

5. Change category (type of change for the client code and usefulness)

A row specifies the changes for each element of a WSDL document of the service.

Whenever a new version of service is created, a new table is created. All the

information of the changes that have occurred is inserted into the table.

41

Metrics proposed for the provider and the consumer uses different columns from the

table. The data from the table is accessed sequentially for the metrics computation and

computation of the metrics requires only the data which is stored in the table.

Therefore, if n is the number of rows in a table then the time complexity for the

metric’s computation is O(n). Therefore, the time complexity is linear of all the

proposed metrics. An example entry is shown in Table 3.7 for operation element.

Table 3.7: Table showing evolution data for operation element

Service

versions

Element Depth of the

element

Number of

changes

Change category

Version 7&8 operation 2 Add 1 Optional,

Favorable

Delete 2 Mandatory,

Unfavorable

Modify 0 Trivial, Indifferent

Split 0 Mandatory,

Indifferent

Merge 1 Mandatory,

Indifferent

3.6 Metrics Formal Validation

In this section, the formal validation of metrics using Zuse’s framework [67] is

presented. It is a software measurement framework in which there are three structures

to determine the scale of a metric using axiomatic approach. These structures are

shown in Table 3.8.

A metric is characterized in a measurement scale based on the accomplished category.

The scale of a metric helps in analyzing its values and empirical properties. There are

four measurement scales which are nominal, ordinal, ratio and absolute. The nominal

scale does not play a role in measurement because it just differentiates between the

items based on their names. Ordinal scale provides a degree of difference between the

values in terms of the order of values. Ratio between the values is allowed by the ratio

scale. It also provides exact difference between the metric values. The absolute scale

begins at a minimum point and extends in that direction only. This scale is used when,

42

with respect to zero point, precise values are required for comparison between the

values.

Table 3.8: Summarized Zuse Framework

Structure Axiom Description

MODIFIED

EXTENSIVE

STRUCTURE

ME1: (A, · >=) Axiom for weak order

ME2: A1 o A2 · >= A1 Axiom for positivity

ME3: A1 o (A2 o A3) ≈ (A1 o A2) o A3 Axiom for weak

associativity

ME4: A1 o A2 ≈ A2 o A1 Axiom for weak

commutativity

ME5: A1 · >= A2 ⇒ A1 o A · >= A2 o A

Axiom for weak

monotonicity

ME6: If A3 · > A4 then for any A1, A2, then

there exists a natural number n, such that A1o

nA3 · >A2 o nA4

Axiom for

Archimedean axiom

INDEPENDENCE

CONDITIONS

IC1: A1 ≈ A2 ⇒ A1 o A ≈ A2 o A and A1 ≈

A2 ⇒ A o A1 ≈ A oA2

Condition for weak

homomorphism

IC2: A1 ≈ A2 ⇔ A1 o A ≈ A2 o A and A1 ≈

A2 ⇔A o A1 ≈ A oA2

Condition for

homomorphism

IC3: A1 · >= A2 ⇒ A1 o A · >= A2 o A, and

A1 · >= A2 ⇒ A o A1 · >= A o A2

Condition for weak

monotonicity

IC4: A1 · >= A2 ⇔ A1 o A · >= A2 o A, and

A1 · >= A2 ⇔ A o A1 · >= A o A2

Condition for

monotonicity

MODIFIED

RELATION OF

BELIEF

MR1: ∀ A, B ε Ӟ: A · >= B or B · >= A Axiom for

completeness

MR2: ∀ A, B, C ε Ӟ: A · >= B and B · >= C ⇒

A · >= C

Axiom for transitivity

MR3: ∀A ⊆ B ⇒ A =<· B Axiom for dominance

axiom

MR4: ∀ (A ⊃ B, A ∩ C = ∅) ⇒ (A · >= B ⇒ A

U C · > B U C)

Axiom for partial

monotonicity

MR5: ∀ A ε Ӟ Á: A · >= 0 Axiom for positivity

Next, we discuss the formal validation of SEM.

SEM Metric Formal Validation

Let S1, S2,.……., Si, Si+1 be the versions of a service. The changes between any two

versions, say Sx, Sx+1 of a process are captured in a Diffx,x+1 table. Let Diffx,x+1 and

Diffy,y+1 denotes the tables containing the information of all the changes between these

versions. Let Diff be the set of all tables which store information of changes across

different versions of a service.

43

The measure SEM

is a mapping: SEM: Diff-> R such that the following holds for all

tables Diffx,x+1, Diffy,y+1 ε Diff: Diffx,x+1
.
>= Diffy,y+1 ⇔ SEM

(Diffx,x+1) >= SEM

(Diffy,y+1).

The combination rule of a metric determines the metric behavior when two values of

the metric are combined using the concatenation operation. This behavior is required

to validate the metric using different axioms of Zuse framework.

In the proposed metrics, the concatenation operation for combination rule is denoted

as follows.

SEM

(Diffx,x+1 o Diffy,y+1) = SEM

(Diffx,x+1U Diffy,y+1)

where Diffx,x+1 U Diffy,y+1 is the table containing all the distinct changes in the two

tables Diffx,x+1 and Diffy,y+1. In other words, if a change is common to both the tables,

then it appears only once in the concatenated table.

SEM

and the Modified Extensive Structure

ME1: The binary relation •>=is known to be weak order when it is transitive and

complete. Let Diff1,2, Diff3,4 and Diff5,6 be the three tables where Diff1,2 , Diff3,4 ,

Diff5,6 ε Diff. It is true for SEM that either SEM

(Diff1,2) >= SEM

(Diff3,4) or SEM

(Diff3,4) >= SEM

(Diff1,2). Thus, property of completeness is fulfilled. Now, consider

the transitivity property. If SEM

(Diff1,2) >= SEM

(Diff3,4) and SEM

(Diff3,4)>= SEM

(Diff5,6) then it is obvious that SEM

(Diff1,2)>= SEM

(Diff5,6). Thus, transitive

property is also accomplished. Therefore, SEM

fulfills ME1.

ME2: The positivity of the metric implies that the value of the metric when two tables

are combined is bound to be greater than the metric for each individual table. Thus,

SEM

(Diff1,2 o Diff3,4) >= SEM

(Diff1,2). Therefore, ME2 is fulfilled.

ME3: Applying the weak associativity rule to the proposed metric, the formulation of

the rule becomes, SEM

(Diff1,2 o (Diff3,4 o Diff5,6)) = SEM

((Diff1,2 o Diff3,4) o

Diff5,6). This means that SEM

(Diff1,2 U (Diff3,4 U Diff5,6)) = SEM

((Diff1,2 U

44

Diff3,4) U Diff5,6). It is obvious that this axiom is fulfilled because union operation is

associative.

ME4: The weak commutative axiom is stated as SEM

(Diff1,2 o Diff3,4) = SEM

(Diff3,4

o Diff1,2). This means that SEM

(Diff1,2 U Diff3,4) = SEM

(Diff3,4 U Diff1,2).

Therefore, this axiom is fulfilled because union operation is commutative.

ME5: The property of weak monotonicity is stated as SEM

(Diff1,2) >= SEM

(Diff3,4)

⇒ SEM

(Diff1,2 o Diff5,6) >= BEMI

(Diff3,4 o Diff5,6). This means that SEM

(Diff1,2 U

Diff5,6) >= SEM

(Diff3,4 U Diff5,6) (given SEM

(Diff1,2)>= SEM

(Diff3,4)) needs to be

proved. Suppose that the number of common changes between Diff3,4 and Diff5,6 are

more than the ones between Diff1,2 and Diff5,6. Since common identical changes

appear only once in the concatenated table, it may well be the case that SEM

(Diff3,4

U Diff5,6) >= SEM

(Diff1,2 U Diff5,6). Therefore, this axiom is not fulfilled.

ME6: To prove this axiom, the idempotent property needs to be considered. As per

the definition of the concatenation operation, the metric is idempotent i.e. SEM

(Diff1,2 o Diff1,2) = SEM

(Diff1,2). Therefore, this axiom is not fulfilled.

It is concluded that SEM

does not fulfill the modified extensive structure.

SEM

and the Independence Conditions

IC1: It has to be shown that SEM

(Diff1,2 o Diff5,6) = SEM

(Diff3,4 o Diff5,6) and SEM

(Diff5,6 o Diff1,2) = SEM

(Diff5,6 o Diff3,4) given SEM

(Diff1,2) = SEM

(Diff3,4). SEM

(Diff1,2 U Diff5,6) may be or may not be equal to SEM

(Diff3,4 U Diff5,6) as the

common changes may not be the same between Diff1,2 U Diff5,6 and Diff3,4 U Diff5,6.

The same is true between SEM

(Diff5,6 U Diff1,2) and SEM

(Diff5,6 U Diff3,4). Hence,

this condition is not fulfilled.

IC2: SEM does not accomplish the first condition therefore, it will also not fulfill the

second condition.

45

IC3: Due to non-accomplishment of the fifth axiom of the modified extensive

structure, this condition is not fulfilled.

IC4: As IC3 is not fulfilled, thus, IC4 cannot be accomplished.

It can be concluded that SEM

does not fulfill the independence conditions.

SEM

and the Modified Relation of Belief

MR1: SEM fulfills the weak order i.e. ME1 of modified extensive structure, therefore,

this axiom is satisfied.

MR2: If the metric fulfills the weak order i.e. ME1 of modified extensive structure

then, this axiom is also satisfied.

MR3: Suppose that all the changes of the table Diff3,4 are included in Diff1,2, then

SEM

(Diff1,2) >= SEM

(Diff3,4). Thus, this axiom is satisfied.

MR4: Suppose that all the changes of the table Diff3,4 are included in Diff1,2 and

Diff1,2 ∩ Diff5,6 = ∅. Then, SEM

(Diff3,4)>= SEM

(Diff1,2) ⇒ SEM

(Diff3,4 U Diff5,6)

>= SEM

(Diff1,2 U Diff5,6) needs to be proved. Due to the fact that SEM

(Diff3,4)>=

SEM

(Diff1,2) and that there are no common changes between Diff3,4 and Diff5,6 , the

value of SEM

(Diff3,4 U Diff5,6) will be more than SEM

(Diff1,2 U Diff5,6). Hence this

axiom is satisfied.

MR5: This axiom is also satisfied because the changes in a service cannot be less than

0.

Therefore, SEM

fulfills the modified relation of belief.

When a metric does not fulfill the axioms of the modified extensive structure and the

independence conditions but fulfills the modified relation of belief, it can be

characterized above the ordinal scale [87]. Therefore, SEM

is a measure above the

level of the ordinal scale.

46

We have validated other proposed metrics using Zuse framework. The results of

applying the framework to all metrics are shown in Table 3.9.

Table 3.9: Summary of formal validation of metrics of a single service

Metrics/

Axioms

SEM SCEMM SCEMO SCEMT SUEM

ME1 Y Y Y Y Y

ME2 Y Y Y Y Y

ME3 Y Y Y Y Y

ME4 Y Y Y Y Y

ME5 N N N N N

ME6 N N N N N

IC1 N N N N N

IC2 N N N N N

IC3 N N N N N

IC4 N N N N N

MR1 Y Y Y Y Y

MR2 Y Y Y Y Y

MR3 Y Y Y Y Y

MR4 Y Y Y Y Y

MR5 Y Y Y Y Y

Scale Above

ordinal

Above

ordinal

Above

ordinal

Above

ordinal

Above

ordinal

3.7 Summary

In this chapter, a suite of evolution metrics is proposed for a web service for

computing service evolution, its impact on client code and usefulness for its

consumer. Different versions of the WSDL document of a service are used while

proposing metrics. The proposed suite of metrics for evolving service, which is the

first effort of its kind, is expected to benefit both the service provider and consumer.

They are simple to compute. The proposed metrics have linear time complexity.

Experiments are conducted on the real world and simulated data to empirically

validate the metrics. The correlation between the proposed metrics is computed using

Pearson correlation coefficient. The experiments clearly demonstrated cases to the

provider whether the changes benefitted the consumer and also those cases where the

provider may have to re-consider the evolution. The metrics are validated

theoretically using Zuse framework and all the metrics are found to be above the

ordinal scale.

47

Chapter 4

Metrics for an Evolving Composite Service -

Orchestration

4.1 Introduction

Orchestration is a process to compose services [79][80]. In chapter 3, we proposed

metrics for a single service under evolution. In this chapter, we propose metrics for a

composite service (through orchestration) when it evolves. Both perspectives of the

provider and the consumer have been considered while defining metrics. WS-BPEL is

considered to be a de facto language to compose services via orchestration [8].

Therefore, we use WS-BPEL process document to define the metrics.

A WS-BPEL process has a set of activities to compose different web services [9]. The

changes that can occur in a process could be addition, deletion, modification, split and

merge in its different activities [29]–[33]. All these changes may impact the provider

as well as the consumer. First, consider the provider’s perspective. The provider may

be interested in knowing the nature and quantum of evolution that has taken place in

the process. The evolution in a process may involve changes in the interactions with

the external services or may involve changes in the internal logic of the process.

Therefore, changes in a process could be categorized, as per their nature, into External

and Internal changes. These changes are measured for the provider. Now, consider the

consumer’s perspective. Changes may affect the consumer in terms of the usefulness

of the process. This impact on the process usefulness is measured for the consumer.

Let us understand both of these perspectives with an example.

As an example, consider a Travel Booking process, TB version1 which coordinates

with the consumer, Employee and the Airline web service and provides the

functionality of booking the flight for an Employee. Activities in this version are

‘receive TB request’, ‘invoke Employee service’ (to retrieve Employee Travel

48

details), ‘receive Employee service’ (to receive travel status), ‘invoke Airline service

(for travel booking), ‘receive Airline service’ (receive booking details), ‘invoke

consumer’ (to reply travel booking confirmation)’. Let a Privilege functionality is

added in the Airline service, which provides the Employee an opportunity to book a

Hotel, rent a Car or subscribe for a magazine along with the discount given by the

Airline. The process accommodates the newly offered functionality by the Airline

service for the Employee. Therefore, in TB version2, ‘invoke Airline service’ (for

availing Privileges) activity and ‘invoke consumer’ (for returning Privilege

confirmation details) activity are added. These changes involve interactions with the

external partner services. In this sense, these changes are external changes. Now,

suppose a new version TB version3 is created in which a wait activity is added in the

process to wait for some duration to perform functionalities of TB version2. This is an

internal change in the process. Clearly, there are two types of process evolution, one

is external in nature and other is internal in nature. This shows the nature of evolution

which has taken place in the process for the provider. Now, let another version of the

process, TB version4, be created in which the offered functionalities in TB version2

are deleted. Due to this change, there is an impact on the usefulness of the process.

This is because the consumer was offered a new functionality in TB version2 but on

the other hand, this functionality is removed in TB version4. This shows the impact

on the usefulness of the process for the consumer.

Therefore, following questions arise.

1) “What” and “by how much” the process has changed?

2) How much is the process useful for the consumer?

To provide answers to the above questions, we propose BPEL process Evolution

Metrics (BEMI and BEME) for the provider to measure evolution in the process.

BPEL process usefulness metric is defined for the process consumer. BPEL Process

Usefulness Metric under Evolution in a positive sense (BUMEP) metric and BPEL

Process Usefulness Metric under Evolution in a negative sense (BUMEN) metric is

used to measure the impact on the usefulness of the BPEL process when it evolves.

49

The layout of this chapter is as follows. Section 4.2 defines the BPEL Process. In

section 4.3, BPEL evolution metrics for the provider and BPEL process usefulness

metrics for the consumer are presented. The time complexity of all the metrics is

discussed in section 4.4. Experiments and metrics analysis is given in section 4.5 for

all the proposed metrics. The formal validation of metrics using Zuse framework is

presented in section 4.6. Finally, the chapter is concluded in section 4.7.

4.2 WS-BPEL Process

WS-BPEL process is used to accomplish the orchestration of multiple web services. It

specifies the business process behavior to perform the tasks to achieve a business

goal. A process consists of two types of activities: basic and structured. We now

briefly discuss these activities in Table 4.1.

Table 4.1: WS-BPEL process activities

Type Definition Activities

Basic Used in performing basic steps of a BPEL

process
invoke: Invoking a web service.

receive: Waiting to receive a

message.

reply: Send a response in response of

the request sent previously.

assign: Manipulating data variables

throw: Signaling fault explicitly

wait: Specify a delay or wait until a

deadline is reached

empty: Do nothing

exit: Immediately end process

instance

rethrow: Used in fault handlers to

rethrow fault caught

Structured Describe the order of execution of the activities sequence: Contains activities that

will be performed in a sequence

flow: Defining a set of activities that

will be executed in parallel.

if: Implementing decisive behavior.

pick: Selecting one of a number of

alternative paths.

while: Defining loops.

repeatUntil: Executes a loop atleast

once

forEach: Executes a loop using

counter

50

We use BPEL 2.0 standard to compute the metrics. In the next section, we present the

metrics.

4.3 Proposed Metrics for a Composite Service – Orchestration

As discussed in section 4.1, metrics are proposed for both the provider and the

consumer. First, we define metrics from the provider’s perspective.

4.3.1 BPEL Process Evolution Metrics (BEMI and BEME)

The evolution metrics are proposed to provide a measure of the nature and quantum of

evolution that has occurred in a process for the provider. The evolution of a BPEL

process is analyzed along internal and external changes. These changes are

categorized as below.

1. Internal Changes: Changes in BPEL activities such as If, wait, while, assign etc.

may occur. These changes are internal to the process itself i.e. they do not involve

interactions with the external services. For example, addition of a wait activity is an

internal change.

2. External Changes: A process uses external services to accomplish the required

business functionalities. It interacts with these services via invoke, receive, reply

activities. Any change in these interactions is classified as an external change. For

example, addition of an invoke activity is an external change.

Table 4.2 provides a detailed list of the changes in the process activities.

Table 4.2: Category of changes for a WS-BPEL process

Category Type of change: Activities in the WS-BPEL process

External

Add/Delete/Modify/Split/Merge: invoke, receive, reply

Internal Add/Delete/Modify/Split/Merge: throw, rethrow, wait, sequence,
if, while, repeatUntil, forEach, pick, flow, assign, exit, empty

51

Now, we define metrics for measuring the evolution of a process. Metrics are defined

for both categories of changes.

When a process changes, a new version is created. The metrics are computed for

changes in different activities across different versions of a process. Now, to define

the metrics, let x and x+1 be two versions of a process and let, Tx,x+1 denote the table

containing the changes between them. Let i be an activity and Ci (Tx,x+1) be the

number of changes for that activity stored in the table Tx,x+1. For example, a

sequence activity can undergo a number of changes such as addition, deletion etc.

Suppose 3 wait activities are added in the table Tx,x+1, then the value for Ci is 3. When

the context of the changes is unambiguous Tx,x+1 is not mentioned while defining the

metrics.

1. Internal Evolution Metric (BEMI):

 BEMI =
∑ wi∗ Ci
n
i

n
 (4.1)

where n is the count of the total number of types of changes in ‘Internal’ change

category, Ci is the count of changes for i
th

 type of change within this category and wi

is the weight for the i
th

 type of change. The weight is computed as a proportion of the

number of changes for each type of change within the ‘Internal’ change category to

the total number of changes in the category. For example, if in a process, two wait

activities are added (C1) and one throw activity is deleted (C2) then there are two

types of changes i.e. n=2. C1 is 2 and w1 is 2/3; C2 is 1 and w2 is 1/3. So, BEMI = (

(2/3)*2 + (1/3)*1)/2 = .83

2. External Evolution Metric(BEME):

 BEME =
∑ wj∗ Cj
m
j

m
 (4.2)

where m is the count of the total number of types of changes in ‘External’ change

category, Cj is the count of changes for j
th

 type of change within this category and wj

52

is the weight for the j
th

 type of change. For example, if invoke activities are added

and modified then there are two types of changes i.e. n=2. If 3 invoke activities are

added and 2 are modified then C1 is 3 & w1 is 3/5 and C2 is 2 & w2 is 2/5. So,

BEME= ((3/5)*3 + (2/5)*2)/2 = 1.3

In the next section, we discuss the metrics defined for the consumer’s perspective.

4.3.2 BPEL Process Usefulness Metric under Evolution (BUMEP and BUMEN)

In this section, we propose two metrics for the BPEL process that is, BPEL Process

Usefulness Metric under Evolution in a positive sense (BUMEP) and BPEL Process

Usefulness Metric under Evolution in a negative sense (BUMEN). Both the metrics

are meant to provide a measure of the impact of process evolution on its usefulness

for the consumer. Different changes in the process have a different impact on the

usefulness for the consumer. Some changes make the process favorable to the

consumer; some do not and some are neutral. We classify the changes into three

categories namely Favorable, Unfavorable and Indifferent as per their impact on the

usefulness. Then, we define metrics for each category. Finally, BUMEP and BUMEN

are computed by combining the individual metrics for all the three categories.

We first define the categories.

1. Favorable changes: These changes make the process more useful to the

consumer. For example, addition of invoke activity is a favorable change as new

functionalities are added for consumer by invoking a service; addition of throw is a

favorable change because it adds fault signaling activities in the process which makes

it more advantageous for the consumer in case a fault occurs; addition of

documentation makes the process more understandable and easy to use for consumer.

2. Unfavorable changes: These changes make the process less useful to the

consumer. For example, deletion of invoke activity deprives consumer from the

functionality that she/he may be using; deletion of If activity deprives the consumer

from the choices that were available to her/him earlier.

53

3. Indifferent changes: These changes have a negligible impact on the consumer i.e.

the usefulness of the process remains almost the same. For example, merging of

invoke/sequence activities will not affect the consumer in the sense that the

functionalities provided by the process will still be accessible to the consumer.

We now present the above classification in detail in Table 4.3. This table lists all the

changes in each category for basic and structured activities of a process.

Table 4.3: Category of changes for usefulness of a WS-BPEL process

Category Activity Changes in Activities

Favorable Basic

Structured

Add: invoke, receive, reply, throw, rethrow, wait,
documentation
Add: sequence, If, while, repeatUntil, forEach, pick, flow

Unfavorable Basic

Structured

Delete: invoke, receive, reply, throw, wait, rethrow,
documentation

Delete: sequence, If, while, repeatUntil, forEach, pick, flow

Indifferent Basic

Structured

Modify/Merge/Split: invoke, receive, reply, throw, wait,
rethrow, assign, empty, exit
Add: assign, empty, exit
Delete: assign, empty, exit
Modify/Merge/Split: sequence, If, while, repeatUntil,
forEach, Pick, flow

Next, the metrics for each category are defined. We define each individual metric for

basic and structured activities under each category and then combine both of them to

compute the metric for the respective category.

1) BPEL Usefulness Metric under Evolution for Favorable changes (BUMEF):

First, we define the metric for basic activities.

Addition of different basic activities have a different degree of impact on the

consumer i.e. how much favorable the process has become for the consumer after

their addition. This degree of impact is used to classify these activities into different

groups as shown in Table 4.4. Weights proportional to the impact are assigned to each

group.

54

Table 4.4: Basic Activities for Favorable Changes

Group Impact on consumer Change in Basic Activity Weight

1 High Add: invoke, receive, reply w1= .6

2 Medium Add: documentation, throw w2=.3

3 Low Add: wait, rethrow w3=.1

The metric for basic activities for favorable changes is computed using Table 4.6 as

 BUMEFB = ∑ 𝑤𝑖 ∗ 𝐺𝑖
3
𝑖=1 (4.3)

where i is the group number, Gi is the total number of additions of activities in i
th

group and wi is the weight for i
th

 group.

Next we compute the metric for structured activities for favorable changes.

Here, we define four metrics: Choice Metric (corresponding to If activity), Iteration

Metric (corresponding to while, repeatUntil and forEach activities), Selection Metric

(corresponding to pick activity) and Sequence and Parallel Metric (corresponding to

sequence and flow activity). These are combined to define the metric for structured

activities for favorable changes. Now we discuss them in detail.

Choice Metric (FCM): Addition of If may give rise to a new choice for the consumer.

FCM gives a measure of how much more the process is after addition of choices.

 FCM =

{

𝐹𝐶𝐴

 𝐹𝐶𝐴+ 𝐹𝐶
, 𝑤ℎ𝑒𝑛 𝐹𝐶𝐴, 𝐹𝐶 > 0

𝐹𝐶𝐴 , 𝑤ℎ𝑒𝑛 𝐹𝐶𝐴 > 0, 𝐹𝐶 = 0
 0 , 𝑤ℎ𝑒𝑛 𝐹𝐶𝐴 = 0, 𝐹𝐶 > 0 or
 𝐹𝐶𝐴 = 0, 𝐹𝐶 = 0

 (4.4)

where FCA is the count of choices added and FC is the count of choices in the process

before additions.

Iteration Metric (FIM): The loops while, repeatUntil and forEach executes the

contained activities based on the count of the specified iterations. FIM is a measure for

55

the offered functionalities after addition of loops. We compute the metric by

considering the number of activities in the added loops and the number of iterations

added for those added loops.

 FIM =

{

𝐹𝐼𝐴∗𝑛

 𝐹𝐼𝐴∗𝑛 + 𝐹𝐼∗𝑚
, 𝑤ℎ𝑒𝑛 𝐹𝐼𝐴, 𝑛,𝑚, 𝐹𝐼 > 0

𝐹𝐼𝐴 ∗ 𝑛 , 𝑤ℎ𝑒𝑛 𝐹𝐼𝐴, 𝑛 > 0; 𝐹𝐼 or m > 0
0 , 𝑤ℎ𝑒𝑛 𝐹𝐼𝐴 𝑜𝑟 𝑛 = 0; 𝐹𝐼 , m > 0 or

 𝐹𝐼𝐴𝑜𝑟 𝑛 = 0, 𝐹𝐼 or m = 0;

 (4.5)

where FIA is the number of activities added in each added loop, n is the number of

iterations specified for FIA, FI is the number of activities in the loops before additions,

m is the number of iterations for FI.

Selection Metric (FSM): A pick activity is used to select one event on the basis of a

particular message received or on the basis of an alarm. The metric is

 FSM =

{

1

𝐹𝑀/𝐴𝐴
1

𝐹𝑀/𝐴𝐴
 +

1

𝐹𝑀/𝐴

, 𝑤ℎ𝑒𝑛 𝐹𝑀/𝐴𝐴, 𝐹𝑀/𝐴 > 0

1

𝐹𝑀/𝐴𝐴
 , 𝑤ℎ𝑒𝑛 𝐹𝑀/𝐴𝐴 > 0, 𝐹𝑀/𝐴 = 0

 0 , 𝑤ℎ𝑒𝑛 𝐹𝑀/𝐴𝐴 = 0, 𝐹𝑀/𝐴 > 0 or

 𝐹𝑀/𝐴𝐴, 𝐹𝑀/𝐴 = 0

 (4.6)

where FM/AA is the number of onMessage/onAlarm activities added in the added pick

activities and FM/A is the count of onMessage/onAlarm activities in the process before

additions in the process.

Sequence and Flow Metric (FSFM): FSFM provides a measure of the functionalities in

the form of a set of activities performed in a sequence or in parallel. The metric is

56

 FSFM =

{

𝐹𝑆𝐴
𝐹𝑆𝐴+ 𝐹𝑆

+ 𝐹𝐹𝐴
𝐹𝐹𝐴+ 𝐹𝐹

, 𝑤ℎ𝑒𝑛 𝐹𝑆𝐴, 𝐹𝑆, 𝐹𝐹𝐴, 𝐹𝐹 > 0

𝐹𝑆𝐴+
𝐹𝐹𝐴

𝐹𝐹𝐴+ 𝐹𝐹
 , 𝑤ℎ𝑒𝑛 𝐹𝑆𝐴 > 0,𝐹𝑆 = 0; 𝐹𝐹𝐴, 𝐹𝐹 > 0

𝐹𝐹𝐴
𝐹𝐹𝐴+ 𝐹𝐹

 , 𝑤ℎ𝑒𝑛 𝐹𝑆𝐴 = 0,𝐹𝑆 > 0; 𝐹𝐹𝐴, 𝐹𝐹 > 0 or

 𝐹𝑆𝐴, 𝐹𝑆 = 0; 𝐹𝐹𝐴, 𝐹𝐹 > 0
𝐹𝑆𝐴

𝐹𝑆𝐴+ 𝐹𝑆
+𝐹𝐹𝐴 , 𝑤ℎ𝑒𝑛 𝐹𝑆𝐴, 𝐹𝑆 > 0; 𝐹𝐹𝐴 > 0,𝐹𝐹 = 0

𝐹𝑆𝐴

𝐹𝑆𝐴+ 𝐹𝑆
 ,𝑤ℎ𝑒𝑛 𝐹𝐹𝐴 = 0,𝐹𝐹 > 0 𝑜𝑟 𝐹𝐹𝐴, 𝐹𝐹 > 0;

 𝐹𝑆𝐴, 𝐹𝑆 > 0
𝐹𝑆𝐴+ 𝐹𝐹𝐴 , 𝑤ℎ𝑒𝑛 𝐹𝑆𝐴 > 0,𝐹𝑆 = 0; 𝐹𝐹𝐴 > 0,𝐹𝐹 = 0
 𝐹𝑆𝐴 , 𝑤ℎ𝑒𝑛 𝐹𝑆𝐴 > 0,𝐹𝑆 = 0 ; 𝐹𝐹𝐴 = 0,𝐹𝐹 > 0;

 𝑜𝑟 𝐹𝐹𝐴 = 0,𝐹𝐹 = 0
𝐹𝐹𝐴 ,𝑤ℎ𝑒𝑛 𝐹𝐹𝐴 > 0,𝐹𝐹 = 0 ; 𝐹𝑆𝐴 = 0,𝐹𝑆 > 0

𝑜𝑟 𝐹𝑆𝐴 = 0, 𝐹𝑆 = 0
0, 𝑤ℎ𝑒𝑛 𝐹𝐹𝐴, 𝐹𝐹, 𝐹𝑆𝐴, 𝐹𝑆 = 0

 (4.7)

where FSA is the number of activities added in sequence, FS is the total number of

activities in sequence in the process before additions, FFA is the number of activities

added in flow and FF is the total number of activities in flow in the process before

additions.

Different types of computations are used in each of the individual metrics above.

Therefore, to combine all these metric values, we use mean of these metrics to reflect

the value appropriately. Therefore,

 BUMEFS =
𝐹𝐶𝑀 +𝐹𝐼𝑀+ 𝐹𝑆𝑀+𝐹𝑆𝐹𝑀

4
 (4.8)

Next, the metric for the favorable changes is computed by combining metrics for

Basic and Structured activities.

 BUMEF = 𝐵𝑈𝑀𝐸𝐹𝐵 + 𝐵𝑈𝑀𝐸𝐹𝑆 (4.9)

2) BPEL Usefulness Evolution Metric for the Unfavorable changes (BUMEUF):

First, we define the metric for basic activities.

57

The deletion of different basic activities has a different degree of impact on the

consumer in terms of how much unfavorable the process becomes for the consumer.

We classify these activities into different groups as shown in Table 4.5. Weights

proportional to the impact is assigned to each group.

Table 4.5: Basic Activities for Unfavorable Changes

Group Impact on consumer Change in Basic Activity Weight

1 High Delete: invoke, receive, reply w1= .6

2 Medium Delete: documentation, throw w2=.3

3 Low Delete: wait, rethrow w3=.1

The metric for basic activities for Unfavorable changes is computed using Table 4.7.

 BUMEUFB = ∑ 𝑤𝑗 ∗ 𝐺𝑗
3
𝑗=1 (4.10)

where j is the group number, Gj is the total number of deletions of activities in j
th

group and wj is the weight for each group.

Next, we compute the metric for structured activities for Unfavorable changes.

Here also, we define four metrics: Choice Metric (corresponding to If activity),

Iteration Metric (corresponding to while, repeatUntil and forEach activities),

Selection Metric (corresponding to pick activity) and Sequence and Parallel Metric

(corresponding to sequence and flow activities). These are combined to define the

metric for structured activities for Unfavorable changes. The metrics are defined

below.

Choice Metric (UFCM): UFCM gives a measure of how much the process has become

less useful after deletion of choices.

 UFCM = {

𝑈𝐹𝐶𝐷

 𝑈𝐹𝐶
, 𝑤ℎ𝑒𝑛 𝑈𝐹𝐶𝐷 , 𝑈𝐹𝐶 > 0

 0 , 𝑤ℎ𝑒𝑛 𝑈𝐹𝐶𝐷 = 0,𝑈𝐹𝐶 > 0 or
 𝑈𝐹𝐶𝐷 = 0,𝑈𝐹𝐶 = 0

 (4.11)

58

where UFCD is the count of choices deleted and UFC is the count of choices in the

process before deletions.

Iteration Metric (UFIM): UFIM is used to measure by how much the process has

become less useful for the consumer after deletion of loops.

 UFIM = {

𝑈𝐹𝐼𝐷∗𝑛

 𝑈𝐹𝐼∗𝑚
, 𝑤ℎ𝑒𝑛 𝑈𝐹𝐼𝐷 , 𝑛, 𝑚, 𝑈𝐹𝐼 > 0

 0 , 𝑤ℎ𝑒𝑛 𝑈𝐹𝐼𝐷𝑜𝑟 𝑛 = 0, 𝑈𝐹𝐼 , m > 0 or
 𝑈𝐹𝐼𝐷𝑜𝑟 𝑛 = 0, 𝑈𝐹𝐼 , m = 0

 (4.12)

where UFID is the number of activities deleted in the deleted loop, n is the number of

deleted iterations in UFID , UFI is the number of count of activities before deletions, m

is the number of iterations in UFI.

Selection Metric (UFSM): UFSM gives a measure of how much the process becomes

less useful when selection activities are deleted from the process.

 UFSM =

{

1

𝑈𝐹𝑀/𝐴𝐷

1

𝑈𝐹𝑀/𝐴

, 𝑤ℎ𝑒𝑛 𝑈𝐹𝑀/𝐴𝐷 , 𝑈𝐹𝑀/𝐴 > 0

 0 , 𝑤ℎ𝑒𝑛 𝑈𝐹𝑀/𝐴𝐷 = 0,𝑈𝐹𝑀/𝐴 > 0;

 𝑈𝐹𝑀/𝐴𝐷 , 𝑈𝐹𝑀/𝐴 = 0

 (4.13)

where UFM/AD be the number of onMessage/onAlarm activities deleted and UFM/A be

the total number of onMessage/onAlarm activities in the process before deletions.

Sequence and Flow Metric (UFSFM): UFSFM provides a measure of how many

functionalities are reduced in the form of a set of activities performed in a sequence or

in parallel. The metric is

 UFSFM =

{

𝑈𝐹𝑆𝐷

𝑈𝐹𝑆
+

𝑈𝐹𝐹𝐷

𝑈𝐹𝐹
, 𝑤ℎ𝑒𝑛 𝑈𝐹𝑆𝐷, 𝑈𝐹𝑆, U𝐹𝐹𝐷, 𝑈𝐹𝐹 > 0

𝑈𝐹𝐹𝐷

𝑈𝐹𝐹
 , 𝑤ℎ𝑒𝑛 𝑈𝐹𝑆𝐷 > 0,𝑈𝐹𝑆 = 0 ; 𝑈𝐹𝑆𝐷 = 0,𝑈𝐹𝑆 > 0 ;

 𝑈𝐹𝑆𝐷 ,𝑈𝐹𝑆 = 0 ;U𝐹𝐹𝐷,𝑈𝐹𝐹 > 0
𝑈𝐹𝑆𝐷

𝑈𝐹𝑆
 ,𝑤ℎ𝑒𝑛 U𝐹𝐹𝐷 > 0,𝑈𝐹𝐹 = 0; U𝐹𝐹𝐷 = 0,𝑈𝐹𝐹 > 0

or U𝐹𝐹𝐷,𝑈𝐹𝐹 = 0; 𝑈𝐹𝑆𝐷,𝑈𝐹𝑆 > 0

0, 𝑤ℎ𝑒𝑛 𝑈𝐹𝐹𝐷, 𝑈𝐹𝐹, 𝑈𝐹𝑆𝐷, U𝐹𝑆 = 0

 (4.14)

59

where UFSD be the number of activities deleted in the sequence, UFS be the count of

activities in the sequence before deletions, UFFD be the number of activities deleted in

the flow and UFF be total number of activities in flow before deletions.

All the above calculated metric values are now combined to compute BUMEUFS.

 BUMEUFS =
𝑈𝐹𝐶𝑀 +𝑈𝐹𝐼𝑀 +𝑈𝐹𝑆𝑀+𝑈𝐹𝑆𝐹𝑀

4
 (4.15)

Next, BUMEUF is computed by combining metrics for basic and structured activities.

 BUMEUF = 𝐵𝑈𝑀𝐸𝑈𝐹𝐵 + 𝐵𝑈𝑀𝐸𝑈𝐹𝑆 (4.16)

3) BPEL Usefulness Evolution Metric for the Indifferent changes (BUMEI):

The nature of the impact on the consumer for Indifferent changes in process activities

makes the metric computation as a summation of all these changes.

 BUMEI =
1

𝑝
∗ ∑ 𝑝

𝑘=1 𝐼𝑘 (4.17)

where p is the total number of activities for Indifferent changes, Ik is the number of

changes in the k
th

 activity.

Now, we compute BPEL Process Usefulness Metric under Evolution in a positive

sense (BUMEP) and BPEL Process Usefulness Metric under Evolution in a negative

sense (BUMEN) by combining the metrics defined in Equation (4.9), Equation (4.16)

and Equation (4.17). This is done because a consumer is always interested in knowing

the impact on the overall usefulness when a process evolves. Weights are assigned to

each category bearing in mind that each category has different significance in terms of

the impact of changes on the usefulness of process for the consumer.

We denote wF*, wUF*, wI* as the weights for Favorable, Unfavorable and Indifferent

changes respectively. We assign wF* = .4, wUF* = .4, wI* = .2 so that wF* + wUF* + wI*

= 1.

60

The usefulness metric in a positive sense is denoted as BUMEP. In this case, (wF* *

BUMEF + wI* * BUMEI) >= wUF* * BUMEUF.

BUMEP = (𝑤𝐹∗ ∗ 𝐵𝑈𝑀𝐸𝐹 + 𝑤𝐼∗ ∗ 𝐵𝑈𝑀𝐸𝐼) − 𝑤𝑈𝐹∗ ∗ 𝐵𝑈𝑀𝐸𝑈𝐹 (4.18)

The usefulness metric in a negative sense is denoted as BUMEN. In this case, (wF* *

BUMEF + wI* * BUMEI) <= wUF* * BUMEUF.

BUMEN = 𝑤𝑈𝐹∗ ∗ 𝐵𝑈𝑀𝐸𝑈𝐹 − (𝑤𝐹∗ ∗ 𝐵𝑈𝑀𝐸𝐹 + 𝑤𝐼∗ ∗ 𝐵𝑈𝑀𝐸𝐼) (4.19)

4.4 Experiments and Analysis

First, we show the experiments for the BPEL Evolution metrics i.e. BEMI and BEME

metrics which are proposed for the provider.

A web service is invoked using client code. When a service undergoes changes, its

corresponding client code may also undergo changes. In chapter 3, changes in a web

service have been classified into three categories which are Mandatory changes,

Optional changes and Trivial changes. Corresponding to these categories, metrics

were proposed which are SCEMM (for mandatory changes), SCEMO (for optional

changes) and SCEMT (for trivial changes).

A WS-BPEL process is the consumer of web services. When a service changes, the

process may have to accommodate the corresponding changes - depending upon the

type of changes. The metrics proposed in this chapter and in chapter 3 are shown to be

cohesive. For example, when service client code metrics reflect the mandatory

changes in service, then BEMI and BEME metrics of a process must exhibit a value

indicating that a change has occurred for the successful execution of the process. This

cohesiveness is demonstrated with the help of an example.

The example of Booking process from Oracle Technology Networks

http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html is taken. It has

two partner services: Airline and Employee services. Employee service is used to give

travel status of employee to the process and then based on this status Airline service

61

returns airline booking details to process. Service and WS-BPEL process code which

is taken from the reference cited above are modified. The modified versions are

shown in Table 4.6.

Table 4.6: Description of the changes in the service and process

Vers

ions

Changes in the

Airline Service

Service

Version

Changes in the BPEL

Process

BPEL

Version

1 Addition: Travel

Update & Cancel and

Refund functionality

Airline WSDL Version 1.wsdl

Addition of activities for

Travel Update & Cancel

and Refund functionality

Travel BPEL Version 1.bpel

2 Deletion: Travel

Update & Cancel and

Refund functionality

Airline WSDL Version 2.wsdl

Deletion of activities for

Travel Update

functionality

Deletion of activities for

Cancel and Refund

functionality

Travel BPEL Version 2.bpel

3 Addition: Client

Privilege functionality
Airline WSDL Version 3.wsdl

Addition of activities for

Client Privilege

functionality

Travel BPEL Version 3.bpel

4 Addition of Flight

Schedule functionality
Airline WSDL Version 4.wsdl

No change
Travel BPEL Version 4.bpel

5 Addition of

documentation
Airline WSDL Version 5.wsdl

No change
Travel BPEL Version 5.bpel

Service version Vi (i ≥ 2) is compared with service version V1 and the changes are

stored in the table SV1,i in the database. The second column of Table 4.4 lists these

tables. Similarly, tables for WS-BPEL process are listed in the fourth column of Table

4.7.

Table 4.7: Metrics for the Airline service and the Travel booking process

S.No. Service

Version

Table

Service metrics Process

Version

Table

Process

metrics

1 SV1,2 SCEMM=2.44

SCEMO=0.00

SCEMT=0.00

BV1,2 BEMI=3.00

BEME=3.33

2 SV1,3 SCEMM=0.00

SCEMO=3.31

SCEMT=0.00

BV1,3 BEMI=1.80

BEME=0.80

3 SV1,4 SCEMM=0.00

SCEMO=2.44

SCEMT=0.00

BV1,4 BEMI=0.00

BEME=0.00

4 SV1,5 SCEMM=0.00

SCEMO=0.00

SCEMT=1.86

BV1,5 BEMI= 0.00

BEME=0.00

62

Metrics in chapter 3 and the metrics proposed in this chapter are shown in Table 4.4.

Next, we analyze the metrics.

1) Mandatory changes: SCEMM > 0 and BEMI and BEME have positive values

for SV1,2 and BV1,2 . Therefore, there is a clear synchronization between mandatory

changes in service client code vis-à-vis changes in the process.

2) Optional changes: Metrics for SV1,3 and SV1,4 show optional changes. The

process may accommodate (as in BV1,3) or may not (as in BV1,4). Again, clearly, the

changes are synchronized.

3) Trivial changes: The last row shows that the process is unaffected by the

changes in SV1,5 .

Now, we show the experiments for the metrics i.e. BUMEP and BUMEN which are

proposed for the consumer.

We simulate the changes (additions, deletions, change, split and merge) for the basic

and structured activities of a process due to the non-availability of public WS-BPEL

process versions. Starting with Version 1 of a process, changes are simulated to create

Version 2. These changes between Version 1 and Version 2 are recorded in a database

and denoted as Version 1&2. Next, Version 2 is picked up; changes are made and

recorded as Version 2&3. Continuing in this way, we generate changes between

versions till Version 10&11. We then compute the metrics. The results are shown in

Table 4.8.

Table 4.8: Metric values for a WS-BPEL process

Version/

Metrics

1&

2

2&3 3&

4

4&

5

5&6 6&

7

7&

8

8&

9

9&

10

10&

11

BUMEF 5.48 5.48 5.48 5.48 10.46 17.94 23.17 23.15 23.14 23.12

BUMEUF 0.00 5.13 7.72 9.83 7.61 7.60 7.83 8.14 8.13 8.44

BUMEI 3.00 3.00 3.00 3.00 3.00 3.00 3.00 10.23 19.62 34.69

BUMEP 2.792 0.74 - - 1.74 4.736 6.736 8.05 9.928 12.81

BUMEN - - 1.496 2.34 - - - - - -

63

From the table, it is clearly seen that when BUMEP increases, the usefulness of the

process also increases and vice-versa. On the other hand, usefulness is inversely

proportional to the values of BUMEN. We now present a detailed analysis of the

metrics.

1) Constant BUMEF & BUMEI, Increase in BUMEUF: The value of BUMEP reflects

that when unfavorable changes increases, the usefulness of the process for the

consumer decreases. This is seen from the values of the metrics for Version1&2,

Version2&3 in Table 4.8. Whereas, metrics for Version 3&4 and Version 4&5, shows

that the higher the value of BUMEN, the lesser is the usefulness.

2) Constant BUMEUF & BUMEI, Increase in BUMEF: The value of BUMEP reflects

that when favorable changes increase, the usefulness of the process for the consumer

also increases. This is seen in the Version5&6, Version6&7 and Version7&8 in Table

4.8.

3) Constant BUMEF & BUMEUF, Increase in BUMEI: The value of BUMEP reflects

that the increase in indifferent changes has very slight positive impact on the

usefulness of the process for the consumer. This is seen in the Version8&9,

Version9&10 and Version10&11 in Table 4.8.

From the above analysis, it can be seen that our proposed metrics BUMEP and

BUMEN appropriately reflects the impact on the usefulness of a WS-BPEL process

for the consumer when it evolves.

4.5 Time Complexity

Information about the evolution in a service is stored in a table. Each row of the table

specifies changes for each activity of the process. The table has five columns. The

column headers are

1) Process versions (evolution data between these two versions is stored)

2) Activity (lists the activities of a process)

64

3) Number of changes (the number additions/ deletions/ modifications/ split/merge for

each activity)

4) Number of activities in previous version (count of each activity present in the

previous version)

5) Change category (type of change for the process i.e. Internal, External, Favorable,

Unfavorable or Indifferent)

Whenever a new version of the process is created, a new table is created to store the

changes between this version and its previous version. Then, information of these

changes is inserted into that table. Next, the proposed metrics are computed by using

evolution data which is stored in the corresponding table. Different metrics use

different columns to retrieve the data.

The data from the table is accessed sequentially for the metrics computation.

Therefore, if n is the number of rows in a table, then the time complexity of the

metric’s computation is O(n).

Table 4.9 shows an entry for the evolution data stored in the table for an invoke

element.

Table 4.9: Table showing changes for invoke element

Process

versions

Activity Number of activities

in previous version

Number of

changes

Change category

 2&3 invoke 7 Add 1 External, Favorable

Delete 2 External, Unfavorable

Modify 0 External, Indifferent

Split 0 External, Indifferent

Merge 1 External, Indifferent

4.6 Metrics Formal Validation

All the proposed metrics are theoretically validated using Zuse framework as given in

Table 3.8 in chapter 3. Now, we present formal validation of the BEMI.

BEMI Metric Formal Validation

Let, there be a process P having n versions. Between any two process versions,

evolution data is computed and stored in a table. This table is referred to as a

65

difference table. Let, there be two process versions i.e. x and x+1. Let, their difference

table be denoted by Diffx,x+1. Let F be the set of all difference tables.

Consider BEMI. The measure BEMI

is a mapping: BEMI: Diff-> R such that the

following holds for all tables Diffx,x+1, Diffy,y+1 ε Diff: Diffx,x+1
.
>= Diffy,y+1 ⇔ BEMI

(Diffx,x+1) >= BEMI

(Diffy,y+1).

The concatenation operation for combination rule is denoted as follows.

BEMI

(Diffx,x+1 o Diffy,y+1) = BEMI

(Diffx,x+1U Diffy,y+1)

where Diffx,x+1 U Diffy,y+1 is the table which contains changes (distinct) in the two

tables Diffx,x+1 and Diffy,y+1.

BEMI

and the Modified Extensive Structure

ME1: The binary relation •>=is known to be weak order when it is transitive and

complete. Let Diff1,2, Diff3,4 and Diff5,6 be the three tables where Diff1,2 , Diff3,4 ,

Diff5,6 ε Diff. It must be true that either BEMI

(Diff1,2) >= BEMI

(Diff3,4) or BEMI

(Diff3,4) >= BEMI

(Diff1,2). Thus, the property of completeness is fulfilled. Now,

consider the transitivity property. If BEMI

(Diff1,2) >= BEMI

(Diff3,4) and BEMI

(Diff3,4)>= BEMI

(Diff5,6) then it is obvious that BEMI

(Diff1,2)>= BEMI

(Diff5,6).

Thus, the transitive property is also accomplished. Therefore, BEMI

fulfills ME1.

ME2: It can be seen that when two tables are combined then the value of the metric

BEMI is larger than the value of the metric for each of those tables. Thus, BEMI

(Diff1,2 o Diff3,4) >= BEMI

(Diff1,2). This proves ME2 for BEMI.

ME3: When weak associativity rule is applied to metric BEMI, formulation of rule

becomes, BEMI

(Diff1,2 o (Diff3,4 o Diff5,6)) = BEMI

((Diff1,2 o Diff3,4) o Diff5,6).

The concatenation operation for the metric is Union operation. It is known that the

union operation is associative, therefore, BEMI

(Diff1,2 U (Diff3,4 U Diff5,6)) = BEMI

(

(Diff1,2 U Diff3,4) U Diff5,6). ME3 is satisfied.

66

ME4: The weak commutative axiom for the metric BEMI is stated as BEMI

(Diff1,2 o

Diff3,4) = BEMI

(Diff3,4 o Diff1,2). This means that BEMI

(Diff1,2 U Diff3,4) = BEMI

(Diff3,4 U Diff1,2). It is known that the union operation is commutative. Hence, BEMI

fulfills ME4.

ME5: The property of weak monotonicity is stated as BEMI

(Diff1,2) >= BEMI

(Diff3,4) ⇒ BEMI

(Diff1,2 o Diff5,6) >= BEMI

(Diff3,4 o Diff5,6). To prove BEMI

(Diff1,2

U Diff5,6) >= BEMI

(Diff3,4 U Diff5,6) (given BEMI

(Diff1,2)>= BEMI

(Diff3,4)), let the

count of common changes between Diff3,4 and Diff5,6 be more than the count of

common changes between Diff1,2 and Diff5,6. Since these common changes appear

once after applying concatenation operation, then the resultant metric computed based

on their concatenate tables be BEMI

(Diff3,4 U Diff5,6) >= BEMI

(Diff1,2 U Diff5,6).

Therefore, BEMI

does not fulfill

this axiom.

ME6: Idempotent property is considered here to prove this axiom. A metric is

idempotent going by definition of concatenation operation i.e. BEMI

(Diff1,2 o Diff1,2)

= BEMI

(Diff1,2). Therefore, BEMI

does not fulfill

this axiom.

It is concluded that the modified extensive structure is not fulfilled by BEMI.

BEMI

and the independence conditions

IC1: To prove this condition, it has to be shown that BEMI

(Diff1,2 o Diff5,6) = BEMI

(Diff3,4 o Diff5,6) and BEMI

(Diff5,6 o Diff1,2) = BEMI

(Diff5,6 o Diff3,4) given BEMI

(Diff1,2) = BEMI

(Diff3,4). Now, BEMI

(Diff1,2 U Diff5,6) may be or may not be equal

to BEMI

(Diff3,4 U Diff5,6) because the changes (which are common) in Diff1,2 U

Diff5,6 and Diff3,4 U Diff5,6 may not be the same. The same is true between BEMI

(Diff5,6 U Diff1,2) and BEMI

(Diff5,6 U Diff3,4). Hence, this condition is not fulfilled.

IC2: When a metric does not accomplish IC1, it will also not fulfill IC2. The metric

BEMI does not fulfill IC1 and therefore does not fulfill IC2.

IC3: When a metric does not accomplish fifth axiom of the modified extensive

structure, it will also not fulfill this condition which is the case with BEMI.

67

IC4: A metric not satisfying the condition IC3 cannot accomplish the condition IC4.

Hence, BEMI does not accomplish IC4.

Therefore, BEMI does not fulfill independence conditions.

BEMI

and the modified relation of belief

 MR1: When ME1 of modified extensive structure is fulfilled by a metric, then it also

satisfies MR1. BEMI fulfills ME1 of modified extensive structure (proved above) and

therefore, BEMI satisfies MR1.

 MR2: If ME1 of modified extensive structure is satisfied by a metric then that metric

satisfies MR2. BEMI fulfills ME1 of modified extensive structure and therefore, it

satisfies MR2.

MR3: Suppose that all the changes of the table Diff3,4 are included in Diff31,2, then

BEMI

(Diff1,2) >= BEMI

(Diff33,4). Thus, this axiom is satisfied.

MR4: In order to prove MR4, let all the changes of the table Diff3,4 are included in

Diff1,2 and Diff1,2 ∩ Diff5,6 = ∅. Then it needs to be proved that BEMI

(Diff3,4)>=

BEMI

(Diff1,2) ⇒ BEMI

(Diff3,4 U Diff5,6) >= BEMI

(Diff1,2 U Diff5,6) needs to be

proved. Due to the fact that BEMI

(Diff3,4)>= BEMI

(Diff1,2) and that there are no

common changes between Diff3,4 and Diff5,6 , the value of BEMI

(Diff3,4 U Diff5,6)

will be more than BEMI

(Diff1,2 U Diff5,6). This proves that the metric BEMI satisfies

MR4.

MR5: This axiom is also satisfied because changes in a process cannot be less than 0.

Therefore, BEMI

fulfills the modified relation of belief. Thus, BEMI is a measure

above the level of the ordinal scale.

Other metrics i.e. BEME, BUMEP and BUMEN have also been validated using Zuse

framework. All the metrics are found to be above the ordinal scale. The results of

applying the framework to all metrics are shown in Table 4.10.

68

Table 4.10: Summary of formal validation of metrics of a WS-BPEL process

Metrics/Axioms BEMI BEME BUMEP BUMEN

ME1 Y Y Y Y

ME2 Y Y Y Y

ME3 Y Y Y Y

ME4 Y Y Y Y

ME5 N N N N

ME6 N N N N

IC1 N N N N

IC2 N N N N

IC3 N N N N

IC4 N N N N

MR1 Y Y Y Y

MR2 Y Y Y Y

MR3 Y Y Y Y

MR4 Y Y Y Y

MR5 Y Y Y Y

Scale Above

ordinal

Above

ordinal

Above

ordinal

Above

ordinal

4.7 Summary

In this chapter, we proposed metrics for an evolving process. Perspectives of both the

provider as well as the consumer have been considered while proposing metrics.

For the provider, firstly, in order to understand what types of changes have occurred

in a WS-BPEL process, two categories of changes are proposed: Internal and External

changes. Subsequently, to estimate the amount of changes, metrics are defined for

each of these categories. The corresponding metrics are Internal Evolution Metric

(BEMI) and External Evolution Metric (BEME). Also, these metrics truly reflect the

cohesiveness of changes in a process vis-a-vis changes in services.

For the consumer of the process, BPEL Process Usefulness Metric under Evolution in

a positive sense (BUMEP) and BPEL Process Usefulness Metric under Evolution in a

negative sense (BUMEN) are proposed. They are defined for computing the impact on

the usefulness for the consumer as a process evolves.

All the proposed metrics have linear time complexity. The metrics are validated

theoretically using Zuse framework and are found to be above the ordinal scale.

69

Chapter 5

Metrics for an Evolving Composite Service -

Choreography

5.1 Introduction

Service composition can be achieved through choreography [79][80]. Choreography

refers to the collaborations between interacting services. Continuing with our

approach of studying changes via metrics, in this chapter we propose metrics for an

evolving composite service which is composed via choreography (WS-CDL process).

A choreography involves peer-to-peer interactions between participants (web

services) having different roles [11]. The different kinds of changes that can occur in

choreography are addition, deletion, modification, split or merge of the participants

and interactions [34]–[37]. Among these changes, there are some changes which are

additive in nature i.e. addition, modification and split and some are subtractive in

nature i.e. deletion and merge. Both of these changes are considered while proposing

metrics for a choreography as it evolves.

We propose metrics to measure changes in the entities (participant/role/interaction)

of a choreography. These metrics take into account each kind of change in these

entities i.e. additive changes and subtractive changes. To do so, two metrics are

proposed, one is Additive Evolution Metric (AEM
+
) and the other one is Subtractive

Evolution Metric (SEM
-
). The former metric is used to measure the changes which

increase the number of entities that take part in the choreography and the latter gives a

measure of the decrease in the number of entities that were participating. Evolution

Metric (EM) is proposed to quantify the total evolution by taking into account both

kinds of changes i.e. additive as well as subtractive changes. A case study is used to

empirically show the applicability of the proposed metrics. To theoretically validate

the metrics, Zuse Framework has been used.

70

The layout of this chapter is as follows. Section 5.2 defines the WS-CDL process. In

section 5.3, evolution metrics are discussed. Experiments and analysis are shown

using a case study are presented in section 5.4. Finally, the chapter is concluded in

section 5.5.

5.2 WS-CDL Process

A WS-CDL process is used to compose different web services. Each web service

is a participant which interacts with each other to attain a global goal of the

choreography. WS-CDL is an XML based description language and not an

executable language. Therefore, the aim of the WS-CDL process is to describe

peer-to-peer collaborations (interactions) among the participants [11]. It represents

the global perspective of the participant’s interactions rather than from the

perspective of a single participant. It aims to serve the purpose of defining abstract

interactions among participants (services). The different entities of a WS-CDL

process are listed in Table 5.1.

Table 5.1: WS-CDL process entities

S. No Entity Description

1 Interaction a realization of the collaboration between two peers

2 Roles Interactions takes place between different roles

3 Participants a physical entity which realize the interaction

4 Relationships declares the intention of the interaction

5 Information types declares type of the variables to be used in the

choreography

6 Tokens and
Locators

Token is an alias for an information type and

Locator is used to locate a particular token

generally in an XPath query

7 Channels a medium for the interaction to happen

8 Choreographies define how the interaction would occur, in

sequence/parallel/loop

Clearly, the above discussed entities could be divided into two parts: one part is of

the entities from serial no. 1 to 3 which describes the collaborations and the other

part is of entities from serial no. 4 to 8 which are used in describing on how the

collaborations would take place. Therefore, our focus is on the first part as they

are the principal components of the WS-CDL process.

71

In the next section, we propose metrics for a WS-CDL process under evolution.

5.3 Proposed Metrics for a Composite Service - Choreography

Essentially, a choreography aims to accomplish multi-party interactions to achieve a

global goal. WS-CDL document consists of many entities such as interaction,

roleType, variable, token, informationType, while etc. From an external global

perspective, a choreography can be viewed essentially as interactions between

participants in a certain role. When a choreography undergoes changes, it can be

viewed from two different perspectives. One is the structure of the WS-CDL

document, the other is from the perspective of the interactions. In this work, changes

in the interactions are addressed. These interactions do not happen in a vacuum but

between participants having some roles. Thus, changes in the entities:

participantType, roleType, interaction, are the focus of the study.

In a WS-CDL process, there are participants with roles which interact with each other.

There could be changes in the existing participants such as deletion of their existing

roles or interactions or there could be addition of new participants with new roles and

interactions. In other words, changes which occur in these entities could be in the

existing participants/roles/interaction or in newly added

participants/roles/interactions.

As brought out in section 5.1, metrics are proposed for the above discussed changes.

The changes themselves can be addition, modification, split, deletion and merge. The

metrics take into account these changes for the entities under focus.

We use these metrics to measure the changes across different versions of a WS-CDL

process. Let there be a version i of a process, CDLi. When it changes, its new version

CDLi+1 is created. A Difference Table, Diffi,i+1, is maintained which contains all

changes when CDLi evolves to version CDLi+1.

72

Here, the following terms and acronyms are used.

Peer: participant involved in an interaction

Already Interacting Peer (AIP): peer involved in interactions in current version of

choreography

New Interacting Peer (NIP): peer involved in newly added interactions in current

version of choreography

Old Participant (OP): Participant in the previous version of the choreography

New Participant (NP): Newly added participant in the current version of

choreography

IA/RA: number of Interactions/Roles added

ID/RD: number of Interactions/Roles deleted

IMo
+
: number of Interactions/Roles modified in which an exchange is added

IMo
-
: number of Interactions/Roles modified in which an exchange is deleted

IS: number of split Interactions

IMe: number of merged Interactions

We use below notations throughout the metrics computation in this chapter.

Notation-(a): Peers which were already interacting with each other are denoted as

AIPi and AIPj.

Notation-(b): Peers which were not interacting with each other are denoted as NIPi

and NIPj.

Notation-(c): Newly added participant start interacting with another newly added

participant - denoted as NPi and NPj.

Notation-(d): Newly added participant start interacting with an old participant -

denoted as NPi and OPj.

Notation-(e): Old participant starts interacting with another old participant - denoted

as OPi and OPj.

We propose below metrics pertaining to changes in the interaction entity, role entity

and participant entity, in turn.

73

5.3.1 Metrics for interaction entity

Changes in interactions, when considered independently, occur in existing

participants with their roles. An interaction could be

added/deleted/modified/split/merged. Therefore, there are five components in the

metrics computation for the interactions.

Additions

There are two ways in which interactions can be added. These can be between peers

mentioned in Notation-(a) or between peers in Notation-(b) as defined in in section

5.3. Therefore, the metric for additions in interactions consists of two parts. The

metric is defined below.

ΔInteraction
Addition =

 { ∑ 𝑛
𝑖=1 ∑ (IAAIPi,AIPj)}

𝑚
𝑗=1

| 𝐍𝟏 |
+

 { ∑ 𝑛
𝑖=1 ∑ (IANIPi,NIPj)

𝑚
𝑗=1 }

| 𝐍𝟐 |
 (5.1)

A peer can add several interactions with more than one peer. Thus, for each peer,

these added interactions are counted with each interacting peer. The numerator of

both parts in Equation (5.1) are IAAIPi, AIPj and IANIPi, NIPj which are the number of

interactions added between peers mentioned in Notation-(a) and Notation-(b)

respectively. N1 and N2 are the number of peers which have participated in the

interactions in the numerator.

Deletions

Deletions can occur only between the peers defined in Notation-(a) in section 5.3.

The metric for deletions, therefore, is defined as

ΔInteraction
Deletion =

 { ∑ 𝑛
𝑖=1 ∑ (IDAIPi,AIPj) }

𝑚
𝑗=1

| 𝐍𝟑 |
 (5.2)

The numerator of Equation (5.2) contains the count of the deleted interactions

between peers mentioned in Notation-(a). N3 is the number of peers (mentioned in

Notation-(a)) which have participated in the interactions in the numerator.

74

Splits

Interactions can be split among the peers defined in Notation-(a) in section 5.3. Metric

for split interactions is as follows.

ΔInteraction
Split

=

 { ∑ 𝑛
𝑖=1 ∑ (

 𝐌𝟏
 ISAIPi,AIPj

) } 𝑚
𝑗=1

| 𝐍𝟒 |
 (5.3)

An interaction can be split in more than one interaction between any two peers which

are defined in Notation-(a). Therefore, the numerator of Equation (5.3) contains both

the count of interactions which are split (ISAIPi,AIPj) as well as the count in which each

of these interactions is split(M1). N4 is the number of peers as mentioned in Notation-

(a) which have split interactions.

Merge

Peers defined in Notation-(a) in section 5.3, can merge interactions between them.

The metric for merged interactions is defined as follows.

ΔInteraction
Merge

=
 { ∑ 𝑛

𝑖=1 ∑ (IMeAIPi,AIPj) }
𝑚
𝑗=1

| 𝐍𝟓 |
 (5.4)

A peer can merge several of its interactions with the peers with which it interacts. The

numerator of the above equation contains IMeAIPi,AIPj as the number of interactions

that are merged between peers as mentioned in (a). N5 is the number of peers

mentioned in Notation-(a) which have merged their interactions.

Modifications

Within an interaction, there is an exchange of information (send and/or receive)

among peers. When an interaction is modified, the exchanges within an interaction

are either added or deleted. The metric defined below for modifications of interactions

considers these exchanges.

75

ΔInteraction
Modification+=

 { ∑ 𝑛
𝑖=1 ∑ (IMo+ AIPi,AIPj) }

𝑚
𝑗=1

 | 𝐍𝟔 |
 (5.5)

ΔInteraction
Modification−=

 { ∑ 𝑛
𝑖=1 ∑ (IMo− AIPi,AIPj) }

𝑚
𝑗=1

| 𝐍𝟕 |
 (5.6)

IMo+AIPi,AIPj and IMo− AIPi,AIPj is the number of interactions that are modified for

each peer (mentioned in Notation-(a)) by adding and deleting an exchange

respectively. N6 and N7 are such respective number of peers.

Next, we present metrics for a WS-CDL process pertaining to evolution in role entity.

5.3.2 Metrics for role entity

A role could be added or deleted in a WS-CDL process but not split/merged. A role

has a behavior which could be defined using references to a WSDL description

binding or is optional in a process. A role can have a binding point to different service

descriptions. Therefore, changes to the behavior within a roleType are possible and

hence in a roleType. But this modification neither increases nor decreases the quantity

of evolution in a process, thus modification of roleType is not taken into account

while computing the metrics for roles. Hence, there are two components in the metrics

computation for evolution in the roles i.e. one for additions and other for deletions.

Both components consider changes that occur between existing participants with their

roles.

Metrics are defined for both above discussed changes in roles.

Additions

Roles can be added between peers mentioned in Notation-(a) and Notation-(b) in

section 5.3. In the metric defined below, the first part refers to roles added for

Notation-(a) and second part refers to Notation-(b). The metric is computed as

follows.

76

ΔRole
Addition=

 [∑ 𝑛
𝑖=1 ∑ { RAAIPi,AIPj ∗(

∑ M1
𝑙
𝑘=1)}]𝑚

𝑗=1

| N8 |
+
 [∑ 𝑛

𝑖=1 ∑ { RANIPi,NIPj ∗(
∑ 𝐌𝟐
𝑙
𝑘=1)}]𝑚

𝑗=1

| 𝐍𝟗 |
 (5.7)

RAAIPi,AIPj is the number of roles that are added between each peer as mentioned in

Notation-(a). For each role, thus added, one or more interactions are also added for

each of these peers. M1 is the total number of such interactions. A similar

computation is expressed in the second part of the equation. However, the second part

refers to roles added for peers as mentioned in Notation-(b).

Deletions

Interacting peers, mentioned in Notation-(a), can delete their roles. The metric is

defined as follows.

ΔRole
Deletion=

 [∑ 𝑛
𝑖=1 ∑ { RDAIPi,AIPj ∗(

∑ 𝐌𝟑
𝑙
𝑘=1)}]𝑚

𝑗=1

| 𝐍𝟏𝟎 |
 (5.8)

RDAIPi,AIPj is the number of roles that are deleted between peers mentioned in

Notation-(a). M3 is the number of interactions deleted for RDAIPi,AIPj. N10 is the

number of such peers.

Now, consider the participant entity to propose metrics.

5.3.3 Metrics for participant entity

Participants are either added or deleted. A new participant is added with new roles

and interactions and an old participant is deleted with old roles and interactions. A

participant has a role which could be modified. But this modification neither increases

nor decreases the quantity of evolution in a process, thus modification of participant is

not taken into account. A participant can neither be split nor merged. Therefore, there

are two components in the metrics computation for evolution in the participants i.e.

for addition and deletion.

Metrics are defined for both additions as well as deletions in participants.

77

Additions

The metric for additions in participants has two parts. The first part defines the case

when newly added participants interact with each other with their newly added roles

as mentioned in Notation-(c). The second part shows that when a newly added

participant interacts with the old participant in the choreography mentioned in

Notation-(d). The metric is computed as follows.

ΔParticipant
Addition

=
 (∑ (RANP𝑖 ∗(∑ 𝐌𝟒))

𝑚
𝑗=1 𝑛

𝑖=1

 |𝐍𝟏𝟏|
+

 (∑ (RAOP𝑖 ∗(∑ 𝐌𝟓))
𝑚
𝑗=1 𝑛

𝑖=1

 |𝐍𝟏𝟐|
 (5.9)

In the above equation, RANP𝑖 and RAOP𝑖 are the number of added roles for the new

and old participant respectively. M4 and M5 re the number of interactions added for

each role added for participants of Notation-(c) and Notation-(d) respectively.

N11 and N12 are the number of participants in the numerators of each part of the

above equation.

Deletions

An old participant can be deleted in the choreography. Equation (5.10) defines the

metric for deletions.

ΔParticipant
Deletion =

 { (∑ (RDOPi ∗(∑ 𝐌𝟔)
𝑚
𝑗=1 } 𝑛

𝑖=1

|𝐍𝟏𝟑|
 (5.10)

RDOP𝑖 is the number of deleted roles for old participants as mentioned in Notation-(e).

M6 is the number of deleted interactions for these participants. N13 is the number of

old participants in the numerator.

Metrics proposed for each entity for each change is aggregated by using weights γ𝐼 as

.2, γ𝑅 as .3 and γ𝑃 as .5 as per their contribution to the amount of evolution in the

choreography.

78

ΔAddition =𝛾𝐼 ∗ ΔInteraction
Addition +γ𝑅 ∗ ΔRole

Addition
 +γ𝑃 ∗ ΔParticipant

Addition (5.11)

ΔSplit = ΔInteraction
Split

 (5.12)

ΔMerge = ΔInteraction
Merge

 (5.13)

ΔDeletion = 𝛾𝐼 ∗ ΔInteraction
Deletion

 +𝛾𝑅 ∗ ΔRole
Deletion

 +γ𝑃 ∗ ΔParticipant
Deletion (5.14)

5.3.4 Additive/Subtractive Evolution Metric (AEM
+
/SEM

-
)

As brought out in section 5.1, some changes are additive in nature and some are

subtractive. Therefore, the metrics are combined under two categories using Equation

(5.5), Equation (5.6) and equations from Equation (5.11) to Equation (5.14).

Let CDL1, CDL2,.……., CDLi, CDLi+1 be the versions of the WS-CDL process and the

changes are maintained in the difference tables Diff1,2, Diff2,3 ,….. Diffi,i+1.

a) Additive Evolution Metric:

AEM
+
 (Diffi,i+1)

= ΔAddition + ΔSplit+ ΔInteraction

Modification+ (5.15)

b) Subtractive Evolution Metric:

SEM
-
 (Diffi,i+1)=ΔDeletion+ΔMerge+ΔInteraction

Modification− (5.16)

Whenever evolution occurs, some changes may increase the number of entities and

some may decrease. The Equation (5.15) and Equation (5.16) help to determine the

kind and quantity of changes with respect to additive or subtractive changes in the

process.

5.3.5 Evolution Metric (EM)

Evolution Metric (EM): provides a measure for the net amount of evolution occurred

in the process after it evolves from CDLi to CDLi+1. It is computed as

79

 EM (Diffi,i+1) = AEM
+
 (Diffi,i+1) - SEM

-
 (Diffi,i+1) when AEM

+
> SEM

-

= SEM
-
 (Diffi,i+1) - AEM

+
 (Diffi,i+1) when SEM

-
 > AEM

+

 (5.17)

In the next section, we perform experiments on a case scenario for a WS-CDL process

and analyze the resultant metric values computed for this process.

5.4 Experiments and Analysis

The proposed metrics are evaluated using a case study of a WS-CDL process.

Different versions of this process are made and then metrics are computed for each

version of the process. The changes are made for additions and deletions as additions

and deletions are common changes among all the three entities i.e. interaction, role

and participant. Whenever a new version of the process is created, a new difference

table is created. The information of the changes that have occurred is inserted into the

table.

A process describes the ordering of the collaborations between the participants,

therefore, UML diagrams are used to illustrate the case study. Consider a purchase

order WS-CDL Process in which there are three participants: Seller, Buyer and

Customer Support with buyer, seller and support as their respective roles. The

interactions among these three are shown in Figure 5.1.

Figure 5.1: WS-CDL Process Version 1

Buyer
buyer

Seller

seller

CustomerSupport

support

getQuote:QuoteReq

getQuote:QuoteResp

getSupport:SupportReq

getSupport:SupportResp

80

Let the process Version 1 change to Version 2 after adding interactions between

Buyer and Seller. The changed version is shown in Figure 5.2.

Figure 5.2: WS-CDL Process Version 2

Table 5.2 shows the evolution data.

Table 5.2: Evolution description of version 1 to version 2 of the process

Peers/

Participants

(AIP/NIP/

NP/OP)

Addition (N1/N2/
N8/N9/N11/N12)

Deletion (N3/N10/
N13)

Modification

(N6/ N7)

Split

(N4)
Merge

(N5)

In
te

ra
ct

io
n

s

 I
A
A
IP
,A
IP
/
IA

N
IP
,𝑁
IP

R
o

le
s

 R
A
A
IP
,A
IP
/
R
A
N
IP
,N
IP

/
R
A
N
P
/R
A
O
P

R
o

le
-I

n
te

ra
ct

io
n

s

(M
1
/M

2
/M

4
/M

5
)

In
te

ra
ct

io
n

s

 I
D
A
IP
,A
IP

R
o

le
s

 R
D
A
IP
,A
IP
 /
R
D
O
P

R
o

le
-I

n
te

ra
ct

io
n

s

M
3
/M

6

In

te
ra

ct
io

n
s

 I
M
o
A
IP
,A
IP

+

/I
M
o
A
IP
,A
IP

−

In
te

ra
ct

io
n

s

 I
S A

IP
,A
IP

In
te

ra
ct

io
n

s

 I
M
e A

IP
,A
IP

AIPBuyer,

AIPSeller

2 0 0 0 0

2 0 0 0 0 0 0 0 0

Buyer
buyer

Seller
seller

CustomerSupport
support

getQuote:QuoteReq

getQuote:QuoteResp

getSupport:SupportReq

getSupport:SupportResp

updateQuote:updateQuoteReq

updateQuote:updateQuoteResp

cancelQuote:cancelQuoteReq

cancelQuote:cancelQuoteResp

81

Let Version 3 be created after adding roles: sponser and advertiser for Seller and

CustomerSupport respectively. The interactions are also added for these newly added

roles. In addition, an interaction is also added between Buyer and CustomerSupport.

All these changes are depicted in Figure 5.3. Table 5.3 shows the data of evolution

from Version 2 to Version 3.

Figure 5.3: WS-CDL Process Version 3

Version 4 of the CDL process is created by adding a new participant (CreditAgency).

In addition, a role (support) for CustomerSupport is deleted along with its interaction.

Changed version is shown in Figure 5.4.

Buyer

buyer

Seller

seller

sponsor

CustomerSupport

 support

 advertiser

getQuote:QuoteReq

getQuote:QuoteResp

getSupport:SupportReq

getSupport:SupportResp

updateQuote:updateQuoteReq

uest

updateQuote:updateQuoteResp

onse

cancelQuote:cancelQuoteReq

cancelQuote:cancelQuoteResp

onse

sendQuote:sendQuoteData

sendQuote:sendQuoteDataAck

sendAdvertisements:sendAd

sponserAd:sendAdReq

sponserAd:sendAdResp

82

Table 5.3: Evolution description of version 2 to version 3 of the process

Peers/

Participants

(AIP/NIP/

NP/OP)

Addition (N1/
N2/N8/N9/N11/

N12)

Deletion (N3/N10/
N13)

Modification

(N6/ N7)

Split

(N4)
Merge

(N5)

In
te

ra
ct

io
n

s

 I
A
A
IP
,A
IP
/
IA

N
IP
,𝑁
IP

R
o

le
s

 R
A
A
IP
,A
IP

/
R
A
N
IP
,N
IP

/
R
A
N
P
/R
A
O
P

R
o

le
-I

n
te

ra
ct

io
n

s

(M
1
/M

2
/M

4
/M

5
)

In
te

ra
ct

io
n

s

 I
D
A
IP
,A
IP

R
o

le
s R
D
A
IP
,A
IP

/
R
D
O
P

R
o

le
-I

n
te

ra
ct

io
n

s

M
3
/M

6

In

te
ra

ct
io

n
s

 I
M
o
A
IP
,A
IP

+

/I
M
o
A
IP
,A
IP

−

In
te

ra
ct

io
n

s

 I
S A

IP
,A
IP

In
te

ra
ct

io
n

s

 I
M
e A

IP
,A
IP

AIPBuyer,

AIPCustomerSupport

2 0 0 0 0

0 1 1 0 0 0 0 0 0

NIPSeller,

NIPCustomerSupport

2 0 0 0 0

1 1 1 0 0 0 0 0 0

 Figure 5.4: WS-CDL Process Version 4

Buyer

buyer

Seller

seller

sponsor

CustomerSupport

 advertiser

getQuote:QuoteReq

updateQuote:updateQuoteReq

uest

updateQuote:updateQuoteResp

cancelQuote:cancelQuoteReq

cancelQuote:cancelQuoteResp

onse

sendQuote:sendQuoteData

sendQuote:sendQuoteDataAck

sendAdvertisements:sendAd

sponserAd:sendAdReq

sponserAd:sendAdResp

CreditAgency

creditor

getQuote:QuoteResp

creditCheck:creditReq

creditCheck:creditResp

83

The evolution data is shown in Table 5.4.

Table 5.4: Evolution description of version 3 to version 4 of the process

Peers/

Participants

(AIP/NIP/

NP/OP)

Addition (N1/N2/
N8/N9/N11/N12)

Deletion (N3/N10/
N13)

Modification

(N6/ N7)

Split

(N4)
Merge

(N5)

In
te

ra
ct

io
n

s

 I
A
A
IP
,A
IP
/
IA

N
IP
,𝑁
IP

R
o

le
s

 R
A
A
IP
,A
IP
/
R
A
N
IP
,N
IP

/
R
A
N
P
/R
A
O
P

R
o

le
-I

n
te

ra
ct

io
n

s

(M
1
/M

2
/M

4
/M

5
)

In
te

ra
ct

io
n

s

 I
D
A
IP
,A
IP

R
o

le
s

 R
D
A
IP
,A
IP
 /
 R
D
O
P

R
o

le
-I

n
te

ra
ct

io
n

s

M
3
/M

6

In
te

ra
ct

io
n

s

 I
M
o
A
IP
,A
IP

+
 /
IM
o
A
IP
,A
IP

−

In
te

ra
ct

io
n

s

 I
S A

IP
,A
IP

In
te

ra
ct

io
n

s

 I
M
e A

IP
,A
IP

CreditAgency,

Seller

2 0 0 0 0

0 1 1 0 0 0 0 0 0

AIPBuyer,

AIPCustomerSupport

0 2 0 0 0

0 0 0 0 1 1 0 0 0

In Figure 5.5, one participant (CreditAgency) is deleted. There are two additions: one

is role (support) added between Buyer and CustomerSupport along with its

corresponding interaction and the other one is the addition of two new participants

(Accounts and Shipper). All these changes give rise to Version 5.

84

Figure 5.5: WS-CDL Process Version 5

Buyer

buyer

Seller

seller

 sponsor

CustomerSupport

support

 advertiser

getQuote:QuoteReq

getSupport:SupportReq

getSupport:SupportResp

updateQuote:updateQuoteReq

updateQuote:updateQuoteResp

onse

cancelQuote:cancelQuoteReqe

st

cancelQuote:cancelQuoteResp

onse

sendQuote:sendQuoteData

sendQuote:sendQuoteDataAck

sendAdvertisements:sendAd

 Accounts
accountchecker

getQuote:QuoteResp

payment:receivePayment

payment:sendReceipt

 Shipper

shipper

shipping:shippingReq

shipping:shippingResp

sponserAd:sendAdReq

sponserAd:sendAdResp

85

The evolution data is shown in Table 5.5.

Table 5.5: Evolution description of version 4 to version 5 of the process

Peers/

Participants

(AIP/NIP/NP/OP)

Addition (N1/N2/
N8/N9/N11/N12)

Deletion (N3/N10/
N13)

Modification

(N6/ N7)

Split

(N4)
Merge

(N5)

In
te

ra
ct

io
n

s

 I
A
A
IP
,A
IP
/
IA

N
IP
,𝑁
IP

R
o

le
s

 R
A
A
IP
,A
IP

/
R
A
N
IP
,N
IP
/
R
A
N
P

/R
A
O
P

R
o

le
-I

n
te

ra
ct

io
n

s

(M
1
/M

2
/M

4
/M

5
)

In
te

ra
ct

io
n

s

 I
D
A
IP
,A
IP

R
o

le
s

 R
D
A
IP
,A
IP
 /
R
D
O
P

R
o

le
-I

n
te

ra
ct

io
n

s

M
3
/M

6

In

te
ra

ct
io

n
s

 I
M
o
A
IP
,A
IP

+

/I
M
o
A
IP
,A
IP

−

In
te

ra
ct

io
n

s

 I
S A

IP
,A
IP

In
te

ra
ct

io
n

s

 I
M
e A

IP
,A
IP

CreditAgency,

Seller

0 2 0 0 0

0 0 0 0 1 1 0 0 0

Seller,

Accounts

2 0 0 0 0

0 1 1 0 0 0 0 0 0

Seller,

Shipper

2 0 0 0 0

0 1 1 0 0 0 0 0 0

AIPBuyer,

AIPCustomerSupport

2 0 0 0 0

0 1 1 0 0 0 0 0 0

The metrics for all the versions of the WS-CDL process, computed above, are

tabulated in Table 5.6.

Table 5.6: Metric values of the WS-CDL process

Serial

No.

Version Evolution Description AEM
+
 SEM

-
 EM

1 1,2 Interactions added

between AIP, AIP

.20 0 .20

2 2,3 Roles added between

AIP, AIP and NIP,NIP

and Interactions added

between NIP,NIP

.40 0 .40

3 3,4 Participant added

Role deleted

.25 .15 .10

4 4,5 Participants added

Participant deleted

Role added

.48 .25 .23

Table 5.6 depicts the comprehensive analysis of the changes in choreography. AEM
+

values at Serial No. 1 and 2 contains the changes which are additive in nature. Serial

No. 3 and 4 of the table contains both kinds of changes i.e. additive as well as

86

subtractive changes. This is shown by their AEM
+
 and SEM

-
 metric values. It can be

seen that the metric EM at Serial No. 1 & 4 are approximately same. However, there

are only additive changes at Serial No. 1 and 2. In other words, a clear picture of the

exact evolution is brought out by AEM
+
 and SEM

-
 values. Therefore, the proposed

metrics gives the total idea of the exact evolution that has taken place in the

choreography.

5.5 Time Complexity

A table is created in the database whenever a process evolves and results in the

creation of its new version. All the evolution data between the process versions is then

stored in the table. Each row of the table contains evolution data for each entity of the

CDL process. The table contains six columns which are listed below.

1) CDL process versions (evolution data between these two versions is stored)

2) Entity (lists the entities of a process)

3) Peer/Participant (entity participating in the choreography)

4) Number of peer/participant (count of interacting peers/participants)

5) Change (kind of change in the entity)

6) Number of changes (the number additions/ deletions/ modifications/ split/merge for

each entity)

Next, all the metrics are computed by sequentially accessing the information stored in

the corresponding table. Thus, when there are n number of rows, then the metrics are

computed in linear time i.e.O(n).

Tables from Table 5.2 to Table 5.5 shows the sample data stored for different process

versions.

5.6 Metrics Formal Validation

All the proposed metrics are theoretically validated using Zuse framework as given in

Table 3.8 in chapter 3. We, now, present formal validation of AEM
+
.

87

AEM
+

Metric Formal Validation

Let CDL1, CDL2,.……., CDLi, CDLi+1 be the versions of the WS-CDL process. The

changes between any two versions, say CDLx, CDLx+1 of a process are captured in a

Diffx,x+1 table. Let Diffx,x+1 and Diffy,y+1 denote the table containing the information of

all the changes between these versions. Let Diff be the set of all tables for the process

that store information of changes across its versions.

The measure AEM
+

is a mapping: AEM
+
: Diff-> R such that the following holds for

all tables Diffx,x+1, Diffy,y+1 ε Diff: Diffx,x+1
.
>= Diffy,y+1 ⇔ AEM

+
 (Diffx,x+1) >= AEM

+

(Diffy,y+1).

Here, the concatenation operation for combination rule is denoted as follows.

AEM
+
 (Diffx,x+1 o Diffy,y+1) = AEM

+
 (Diffx,x+1U Diffy,y+1)

where Diffx,x+1 U Diffy,y+1 is the table containing all the distinct changes in the two

tables Diffx,x+1 and Diffy,y+1 .

AEM
+

and the Modified Extensive Structure

ME1: The binary relation •>=is known to be weak order when it is transitive and

complete. Let Diff1,2, Diff3,4 and Diff5,6 be the three tables where Diff1,2 , Diff3,4 ,

Diff5,6 ε Diff. It must be true that either AEM
+
 (Diff1,2) >= AEM

+
 (Diff3,4) or AEM

+

(Diff3,4) >= AEM
+
 (Diff1,2). Thus, property of completeness is fulfilled. Now,

consider the transitivity property. If AEM
+
 (Diff1,2) >= AEM

+
 (Diff3,4) and AEM

+

(Diff3,4)>= AEM
+
 (Diff5,6) then it is obvious that AEM

+
 (Diff1,2)>= AEM

+
 (Diff5,6).

Thus, transitive property is also accomplished. Therefore, AEM
+

fulfills ME1.

ME2: The positivity of the metric implies that the value of the metric when two tables

are combined is bound to be greater than the metric for each individual table. Thus,

AEM
+
 (Diff1,2 o Diff3,4) >= AEM

+
 (Diff1,2). Therefore, ME2 is fulfilled.

88

ME3: Applying the weak associativity rule to the proposed metric, the formulation of

the rule becomes, AEM
+
 (Diff1,2 o (Diff3,4 o Diff5,6)) = AEM

+
 ((Diff1,2 o Diff3,4) o

Diff5,6). This means that AEM
+
 (Diff1,2 U (Diff3,4 U Diff5,6)) = AEM

+
 ((Diff1,2 U

Diff3,4) U Diff5,6). It is obvious that this axiom is fulfilled because union operation is

associative.

ME4: The weak commutative axiom is stated as AEM
+
 (Diff1,2 o Diff3,4) = AEM

+

(Diff3,4 o Diff1,2). This means that AEM
+
 (Diff1,2 U Diff3,4) = AEM

+
 (Diff3,4 U

Diff1,2). Therefore, this axiom is fulfilled because union operation is commutative.

ME5: The property of weak monotonicity is stated as AEM
+
 (Diff1,2) >= AEM

+

(Diff3,4) ⇒ AEM
+
 (Diff1,2 o Diff5,6) >= AEM

+
 (Diff3,4 o Diff5,6). This means that

AEM
+
 (Diff1,2 U Diff5,6) >= AEM

+
 (Diff3,4 U Diff5,6) given AEM

+
 (Diff1,2)>= AEM

+

(Diff3,4), needs to be proved. Suppose that the number of common changes between

Diff3,4 and Diff5,6 are more than the ones between Diff1,2 and Diff5,6. Since common

identical changes appear only once in the concatenated table, it may well be the case

that AEM
+
 (Diff3,4 U Diff5,6) >= AEM

+
 (Diff1,2 U Diff5,6). Therefore, this axiom is not

fulfilled.

ME6: To prove this axiom, the idempotent property needs to be considered. As per

the definition of the concatenation operation, the metric is idempotent i.e. AEM
+

(Diff1,2 o Diff1,2) = AEM
+
 (Diff1,2). Therefore, this axiom is not fulfilled.

It is concluded that AEM
+

does not fulfill the modified extensive structure.

AEM
+

and the Independence Conditions

IC1: It has to be shown that AEM
+
 (Diff1,2 o Diff5,6) = AEM

+
 (Diff3,4 o Diff5,6) and

AEM
+
 (Diff5,6 o Diff1,2) = AEM

+
 (Diff5,6 o Diff3,4) given AEM

+
 (Diff1,2) = AEM

+

(Diff3,4). AEM
+
 (Diff1,2 U Diff5,6) may be or may not be equal to AEM

+
 (Diff3,4 U

Diff5,6) as the common changes may not be the same between Diff1,2 U Diff5,6 and

Diff3,4 U Diff5,6. The same is true between AEM
+
 (Diff5,6 U Diff1,2) and AEM

+
 (Diff5,6

U Diff3,4). Hence, this condition is not fulfilled.

89

IC2: If the metric does not accomplish the first condition, it will not fulfill the second

condition.

IC3: Due to non-accomplishment of fifth axiom of the modified extensive structure,

this condition is not fulfilled.

IC4: As IC3 is not fulfilled, thus, IC4 cannot be accomplished.

It can be concluded that AEM
+

does not fulfill the independence conditions.

AEM
+

and the modified relation of belief

MR1: If the metric fulfills the weak order i.e. ME1 of modified extensive structure

then this axiom is satisfied.

MR2: If the metric fulfills the weak order i.e. ME1 of modified extensive structure

then, this axiom is also satisfied.

MR3: Suppose that all the changes of the table Diff3,4 are included in T1,2, then AEM
+

(Diff1,2) >= AEM
+
 (T3,4). Thus, this axiom is satisfied.

MR4: Suppose that all the changes of the table Diff3,4 are included in Diff1,2 and

Diff1,2 ∩ Diff5,6 = ∅. Then, AEM
+
 (Diff3,4)>= AEM

+
 (Diff1,2) ⇒ AEM

+
 (Diff3,4 U

Diff5,6) >= AEM
+
 (Diff1,2 U Diff5,6) needs to be proved. Due to the fact that AEM

+

(Diff3,4)>= AEM
+
 (Diff1,2) and that there are no common changes between Diff3,4 and

Diff5,6 , the value of AEM
+
 (Diff3,4 U Diff5,6) will be more than AEM

+
 (Diff1,2 U

Diff5,6). Hence this axiom is satisfied.

MR5: This axiom is also satisfied because the changes in a process cannot be less

than 0.

Therefore, AEM
+

fulfills the modified relation of belief. In summary, AEM
+

is a

measure above the level of the ordinal scale.

90

We have also validated SEM
-
 and EM using Zuse framework and both of them are

found to be above the ordinal scale. Results are shown in Table 5.7.

Table 5.7: Summary of formal validation of metrics of a WS-CDL process

Metrics/Axioms AEM
+
 SEM

-
 EM

ME1 Y Y Y

ME2 Y Y Y

ME3 Y Y Y

ME4 Y Y Y

ME5 N N N

ME6 N N N

IC1 N N N

IC2 N N N

IC3 N N N

IC4 N N N

MR1 Y Y Y

MR2 Y Y Y

MR3 Y Y Y

MR4 Y Y Y

MR5 Y Y Y

Scale Above

ordinal

Above

ordinal

Above

ordinal

5.7 Summary

In this chapter, three metrics (AEM
+
, SEM

-
 and EM) are proposed for measuring the

evolution of a WS-CDL process. AEM
+

and SEM
-
 give an idea of what kinds of

changes (additive/ subtractive in nature) are made and in what quantum. EM is a total

sum of both kinds of changes to give an idea of the overall evolution. The metrics are

empirically validated using a case scenario. They are theoretically validated using

Zuse framework and found to be above the ordinal scale.

91

Chapter 6 Implementation

This chapter explains the details of the Metrics Computation System (MCS) which

implements computation of metrics for a single as well as a composite service in

SOA.

MCS is implemented on a computer system having Intel(R) Core(TM) i7-3770

CPU@3.40GHz processor, 64-bit operating system and 10 GB RAM. Eclipse 4.6.0

(Neon) is used as the Integrated Development Environment (IDE) for building the

user and database interactions and to build the code for metrics computation. We have

used apache-tomcat-8.5.11 for the application server. SQL Server 12.0 is used as the

database server. Java code is developed using Sun Java Development Kit

(jdk1.8.0_121).

Consider, now, the data needed for computing the metrics. For a single service,

different versions of WSDL document of real world services (Amazon services) are

used. Simulated data is also used for a single service. Due to the non-availability of

real world data, only simulated data is used for the metrics computation for a

composite service (orchestration) as well as a composite service (choreography).

6.1 Architecture of MCS

Figure 6.1 depicts MCS architecture. We have used the following abbreviations for

the modules:

Evolution Data - ED

Compute and Store - CS

Metrics Computation - MC

92

Figure 6.1: MCS Architecture

The core software modules are:

Module 1: ED-CS Single service - Real world data: calculates evolution data between

the two versions of a service selected by the user and then creates a database table and

insert the evolution data in the table.

Module 2: ED-CS Single service – Simulated data: generates simulated evolution data

for the number of service versions selected by the user. This module then inserts this

evolution data in the database tables which are created to store the data. Simulated

data for all the WSDL elements of a service is generated.

Module 3: ED-CS Composite service - Orchestration: generates simulated evolution

data for the number of composite service versions selected by the user and then

creates database tables to insert the evolution data. Simulated data is generated for

both basic as well as structured activities of a WS-BPEL process.

Module 4: ED-CS Composite service - Choreography: generates simulated evolution

data for the number of composite service versions selected by the user and then

93

creates database tables to insert the evolution data. The WS-CDL entities are

considered for which simulated evolution data is generated.

Module 5: MC Single service - Real world data: computes SEM, SCEMM, SCEMO,

SCEMT and SUEM by using evolution data which is stored using the first module.

Module 6: MC Single service – Simulated data: computes SEM, SCEMM, SCEMO,

SCEMT and SUEM using evolution data which is stored using the second module.

Module 7: MC Composite service - Orchestration: computes BEMI, BEME, BUMEP

and BUMEN using evolution data which is stored using the third module.

Module 8: MC Composite service - Choreography: computes AEM
+
, SEM

-
 and EM

using evolution data which is stored using the fourth module.

Next, we show how to use MCS and its implementation for both a single service as

well as a composite service.

94

6.2 MCS User Interface

User starts interacting with MCS via the user interface shown in Figure 6.2. This user

interface gives two options for the user i.e. to compute metrics either for a single

service or for a composite service using MCS. The first option is ‘Metrics

Computation for Single Service’ and the second is ‘Metrics Computation for

Composite Service’. User can select either option by clicking on the checkbox

corresponding to that option. There is a ‘Submit’ button which the user clicks to

further use MCS.

Figure 6.2: User Interface to initiate interaction with MCS

95

6.2.1 Using MCS for a Single Service

If the user chooses a single service in the previous user interface, the next user

interface displayed to the user is shown in Figure 6.3. This interface gives two options

to the user. The first option is to use MCS for metrics computation for single service

for real world data. The second option is to use MCS for metrics computation for

single service for simulated data.

Figure 6.3: User Interface of MCS for a single service

The ‘Submit’ button has to be clicked after choosing one of the options.

96

6.2.1.1 Real world data

Figure 6.4 shows that this interface allows the user to choose any two service versions

for which she/he wants to compute metrics. There are two rows in the table as shown

in this figure. Firstly, user has to select a version of the service by clicking the browse

button in the first row. Then, she/he needs to select another service version by

clicking the browse button in the second row. User interface in Figure 6.4 shows that

the user has selected two versions of an Airline service. User has to then click the

‘Compute’ button. MCS then computes the metrics for these selected versions of the

service.

Figure 6.4: User Interface of MCS for a single service - real-world

97

As shown in Figure 6.5, all the computed metric values are displayed when the user

clicks the ‘Display’ button. The figure displays the computed metric values for the

selected versions of the Airline service by the user. Here, there are five rows

corresponding to SEM, SCEMM, SCEMO, SCEMT and SUEM. Each row has a

textbox in which the corresponding metric value is displayed.

Figure 6.5: Computed metrics for a single service – real world

98

6.2.1.2 Simulated data

The user interface shown in Figure 6.6 is displayed when she/he clicks on the

checkbox in the second row of the table and then on the ‘Submit’ button in Figure 6.4.

Figure 6.6 is the user interface of MCS for a single service for simulated data. Here,

there is a drop-down box which is used to select for how many service versions the

user wants to compute the metrics. There is a ‘Compute’ button to navigate to the

next user interface. In Figure 6.6, user selects 20 service versions for metrics

computation.

Figure 6.6: User Interface of MCS for a single service – simulated

99

When the user clicks the ‘Compute’ button, all the metrics that are computed for the

simulated data for the selected number of service versions are displayed. Figure 6.7

shows the computed metric values for the user who has selected 20 service versions.

Figure 6.7: Computed metrics for a single service – simulated

100

6.2.2 Using MCS for a Composite Service

If the user chooses a composite service in Figure 6.2, the user interface shown in

Figure 6.8 is displayed. This interface gives two options to the user. The first option is

to use MCS for metrics computation for a composite service (orchestration). The

second option is to use MCS for metrics computation for a composite service

(choreography).

Figure 6.8: User Interface of MCS for a composite service

The ‘Submit’ button has to be clicked after choosing one of the options.

101

6.2.2.1 Orchestration

When the user selects the first option of Figure 6.8, the user interface as shown in

Figure 6.9 is displayed. User has to select the number of versions. MCS computes

metrics for simulated data of composite service (orchestration). In Figure 6.9, user has

selected 20 versions.

Figure 6.9: User Interface for a composite service – Orchestration

102

After selecting the number of versions in Figure 6.9, user clicks the ‘Compute’

button. The computed metrics for the selected number of versions are displayed.

Figure 6.10 shows computed metrics for 20 selected versions of the composite

service.

Figure 6.10: Computed metrics of a composite service – Orchestration

103

6.2.2.2 Choreography

To use MCS for composite service (choreography), user has to select the checkbox in

the second row in Figure 6.8. The user interface as shown in Figure 6.11 is then

displayed. The number of versions to compute the metrics needs to be selected. Then,

MCS computes metrics for composite service (choreography). User has selected 20

versions as shown in Figure 6.11.

Figure 6.11: User Interface of MCS for a composite service – Choreography

104

User clicks the ‘Compute’ button in Figure 6.11 after selecting the number of

versions. The computed metrics are displayed. Figure 6.12 shows computed metrics

for 20 selected versions of the composite service (choreography).

Figure 6.12: Computed metrics for a composite service – Choreography

Now, we have seen the different user interfaces provided by MCS to know how it is

used by the user. Next, we show how the core modules mentioned in section 6.1 are

implemented to know how MCS internally works.

105

6.3 Implementation of MCS

In this section, we discuss the implementation of MCS for a single service as well as

composite service.

6.3.1 Single Service - Real World Data

ED-CS Single service - Real world data and MC Single service - Real world data are

the two modules which realize the computation of the metrics.

ED-CS Single service - Real world data is implemented as given in Algorithm 1. In

this algorithm, firstly database table is created to store the evolution data between the

selected two versions of a single real world service. Then, the selected versions are

parsed to compute the evolution data for each WSDL element of the service versions.

After this, the evolution data to compute the metrics for the selected versions is stored

in the table created before.

Algorithm 1 : ED-CS Single service - Real world data

Input: WSDL File versions

Output: Evolution data stored in database for Input

1.Create table with columns: Service versions, Element, Depth of the element,

Number of changes and Change category

2. Parse selected versions of the WSDL files of service.

3. Compute each change (evolution data) between the selected versions i.e.

 addition, deletion, modification, merge and split in each element.

4. Store result in table.

MC Single service - Real world data is implemented as given in Algorithm 2. Data

stored in tables (using Algorithm 1) is read. The data is used to compute the metrics

for a single service i.e. SEM, SCEMM, SCEMO, SCEMT and SUEM.

106

Algorithm 2: MC Single service - Real world data

Input: WSDL File versions

Output: Computed values for SEM, SCEMM, SCEMO, SCEMT and SUEM

1. Read tables to compute SEM using SQL statements which uses columns:

Service versions, Depth of the element and Number of changes

2. Use data from step 1 to compute SEM

3. Read tables to compute SCEMM, SCEMO, SCEMT using SQL statements which

uses columns: Service versions, Element, Number of changes and Change category

4. Use data from step 3 to compute SCEMM, SCEMO, SCEMT

5. Read tables to compute SUEM using SQL statements which uses columns:

Service versions, Element, Number of changes and Change category

6. Use data from step 5 to compute SUEM

6.3.2 Single Service – Simulated Data

The computation of the metrics is realized through ED-CS Single service - Simulated

data and MC Single service – Simulated data.

ED-CS Single service - Simulated data is implemented using Algorithm 3. At first,

database table is created to store the evolution data for the selected number of

versions for a single service (simulated). If a user selects 20 number of versions, then

the evolution data is generated randomly for the subsequent versions i.e. between

Version 1&2, Version 2&3,……, Version 20&21. Evolution data for each WSDL

element is computed. After this, the evolution data to compute the metrics for the

selected number of versions is stored in the table.

Algorithm 3: ED-CS Single service - Simulated data

Input: Number of service versions for the simulated data

Output: Evolution data stored in database for selected Input

1. Create tables with columns : Service versions, Element, Depth of the element,

Number of Changes and Change category

2. Generate randomly changes for each WSDL element for the number of versions

given in Input

3. Store data in table

107

Algorithm 4 is used to implement MC Single service – Simulated data. Data stored in

tables (using Algorithm 3) is read. The data is used to compute the metrics for a single

service i.e. SEM, SCEMM, SCEMO, SCEMT and SUEM.

Algorithm 4: MC Single service – Simulated data

Input: Number of selected service versions to compute metrics

Output: Computed values for SEM, SCEMM, SCEMO, SCEMT and SUEM

1. Read tables to compute SEM using SQL statements which uses columns:

Service versions, Depth of the element, Number of changes and Change category

2. Use data from step 1 to compute SEM

3. Read tables to compute SCEMM, SCEMO, SCEMT using SQL statements which

uses columns: Service versions, Element, Number of changes and Change

category

4. Use data from step 3 to compute SCEMM, SCEMO, SCEMT

5. Read tables to compute SUEM using SQL statements which uses columns:

Service versions, Element, Number of changes and Change category

6. Use data from step 5 to compute SUEM

6.3.3 Composite Service - Orchestration

For the computation of metrics proposed for a composite service (orchestration), two

modules i.e. ED-CS Composite service - Orchestration and MC Composite service -

Orchestration are used.

The ED-CS Composite service - Orchestration module is implemented using

Algorithm 5. The first step in the algorithm is to create the database table to store the

evolution data for the selected number of versions for a composite service

(orchestration-simulated). The evolution data is generated randomly for the selected

number of versions for each WS-BPEL activity (basic and structured). After this, the

evolution data is stored in the table.

Algorithm 5: ED-CS Composite service - Orchestration

Input: Number of composite service versions for the simulated data

Output: Evolution data stored in database for selected Input

1. Create tables with columns : Process versions, Activity, Number of

activities in previous version, Number of changes and Change category

2. Generate randomly, changes for each WS-BPEL activity for the number of

versions given in Input.

3. Store data in tables.

108

The MC Composite service - Orchestration module is implemented using Algorithm

6. Data stored in tables (using Algorithm 5) is read. The data is used to compute the

metrics for a single service i.e. BEME, BEMI, BUMEP and BUMEN.

Algorithm 6: MC Composite service - Orchestration

Input: Number of selected composite service versions to compute metrics

Output: Computed values for BEME, BEMI, BUMEP and BUMEN

1. Read tables to compute BEME using SQL statements which uses columns:

Process versions, Activity, Number of changes and Change category

2. Use data from step 1 to compute BEME

3. Read tables to compute BEMI using SQL statements which uses columns:

Process versions, Activity, Number of changes and Change category

4. Use data from step 3 to compute BEMI

5. Read tables to compute BUMEP using SQL statements which uses columns:

Process versions, Activity, Number of activities in previous version, Number of

changes and Change category

6. Use data from step 5 to compute BUMEP

7. Read tables to compute BUMEN using SQL statements which uses columns:

Process versions, Activity, Number of activities in previous version, Number of

changes and Change category

8. Use data from step 7 to compute BUMEN

6.3.4 Composite Service - Choreography

MCS for composite service (choreography) is implemented using ED-CS Composite

service - Choreography and MC Composite service - Choreography modules.

ED-CS Composite service - Choreography is implemented using Algorithm 7. Firstly,

database table is created to store the evolution data for the selected number of

versions for a composite service (choreography-simulated). The evolution data is

generated randomly for the selected number of versions for WS-CDL entities

(participant/role/interaction). After this, the evolution data is stored in the created

table.

109

Algorithm 7: ED-CS Composite service - Choreography

Input: Number of composite service versions for the simulated data

Output: Evolution data stored in database for selected Input

1. Create tables with columns: CDL process versions, Entity, Peer/Participant,

Number of peer/participant, Change, Number of changes

2. Generate randomly, changes for WS-CDL entities (participant, role, and

interaction) for the number of versions given in Input.

3. Store data in tables.

MC Composite service - Choreography module is implemented using Algorithm 8.

Data stored in tables (using Algorithm 7) is read. The data is used to compute the

metrics for a single service i.e. AEM
+
, SEM

-
 and EM.

Algorithm 8: MC Composite service - Choreography

Input: Number of composite selected service versions to compute metrics

Output: Computed values for AEM
+
, SEM

-
 and EM

1. Read tables to compute AEM
+
 using SQL statements which uses columns: CDL

process versions, Entity, Peer/Participant, Number of peer/participant, Change,

Number of changes

2. Use data from step 1 to compute AEM
+

3. Read tables to compute SEM
-
 using SQL statements which uses columns: CDL

process versions, Entity, Peer/Participant, Number of peer/participant, Change,

Number of changes

4. Use data from step 3 to compute SEM
-

5. Read tables to compute EM using values of AEM
+
 and SEM

-

6. Use data from step 5 to compute EM

All algorithms are implemented using Java, Embedded SQL queries in Java code and

wsdl4j-1_6_3 parser (used as a plug-in in Eclipse).

6.4 Summary

In this chapter, we have presented Metrics Computation System (MCS) which is

developed to compute the metrics proposed in this thesis. MCS contains modules to

compute and store changes and also to compute the metrics for different versions of a

single as well as a composite service.

110

Chapter 7 Conclusion

In this thesis, we have proposed metrics for the evolving services in SOA for both

single and composite service. The service provider’s as well as the service consumer’s

perspective has been considered while proposing metrics. The metrics provide a

measure of the quantum of change in a service to the provider. They also measure the

impact on the consumer. This impact has been studied from different perspectives i.e.

impact on the service client code and impact on the usefulness of the service.

For a single service, to provide a measure of the overall evolution for the service

provider, we have proposed SEM metric. In order to measure the impact of service

evolution in the service client code, SCEMM, SCEMO and SCEMT are proposed.

These metrics are a measure of the amount of the changes (mandatory, optional,

trivial) for the client code to adapt. The proposed metric SUEM measures the impact

on the usefulness for the consumer as a service evolves. The correlation analysis of

the metrics helps the service provider to identify phases of the service evolution

which are beneficial to the consumer and which are not.

For a composite service, metrics for both orchestration and choreography are

considered. WS-BPEL document structure is used while defining the metrics for

service composition through orchestration. Metrics are proposed both for the provider

as well as the consumer. Two WS-BPEL Evolution Metrics are proposed for the

provider. One is for external evolution (BEME) and the other is for internal evolution

(BEMI). The changes which involve interactions with the external partner services are

measured by BEME. The changes which are confined only to the internal logic of the

process are measured by BEMI. For the consumer, two metrics are proposed i.e.

BUMEP to measure the impact of evolution on process usefulness in a positive sense

and BUMEN as a measure in a negative sense. It is used to give an idea by how much

the process is useful for her/him across its different versions. Here, we have defined

111

metric for favorable/ unfavorable/indifferent changes. The metric analysis shows the

degree of variance of usefulness for all these different kinds of changes.

Using versions of WS-CDL document, the evolution in choreography has also been

studied. Three metrics are proposed considering from the provider’s perspective. The

first metric is AEM
+

which is a measure of all the changes which are additive in

nature. The second metric, SEM
-
, measures those changes which are subtractive in

nature. Finally, EM, measures the total sum of both the kinds of changes in the

choreography to give an idea of the overall evolution.

We have performed theoretical validation of all the proposed metrics using Zuse

framework. All the metrics are found to be above the ordinal scale level. The metrics

were validated empirically using real time data for a single service. Simulated data

has been used for a composite service as well as a single service because of the non-

availability or insufficiency of real time data.

Metrics Computation System (MCS) has been developed to implement the

computation of the metrics. MCS was implemented using jdk1.8.0_121, SQL Server

12.0, Apache Tomcat 8.5.11, and Eclipse 4.6.0 (Neon).

7.1 Future Work

The future directions related to the proposed work in the thesis are as follows.

a) Metrics can be proposed for composite services (orchestration) using languages

other than WS-BPEL such as Web Services Flow Language (WSFL), Xlang etc. For

composite services (choreography), metrics can be proposed using languages such as

Web Service Conversation Language (WSCL), Web Service Choreography Interface

(WSCI) etc.

b) The metrics of different languages can, then, be compared. Further, the metrics

can be studied to determine whether any of the languages is better from the point of

evolution.

112

References

[1] T. Erl, Service-oriented architecture: concepts, technology, and design.

Pearson Education India, 2005.

[2] T. Erl, Service-oriented architecture: a field guide to integrating XML and web

services. Prentice hall, 2004.

[3] L.-J. Zhang, “SOA and Web services,” in Services Computing, 2006. SCC’06.

IEEE International Conference on, 2006, pp. xxxvi--xxxvi.

[4] K. B. Laskey and K. Laskey, “Service oriented architecture,” Wiley Interdiscip.

Rev. Comput. Stat., vol. 1, no. 1, pp. 101–105, 2009.

[5] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson, Web

services platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-

BPEL, WS-reliable messaging and more. Prentice Hall PTR, 2005.

[6] E. Newcomer and G. Lomow, Understanding SOA with Web services.

Addison-Wesley, 2005.

[7] T. Unger, F. Leymann, S. Mauchart, and T. Scheibler, “Aggregation of service

level agreements in the context of business processes,” in Enterprise

Distributed Object Computing Conference, 2008. EDOC’08. 12th International

IEEE, 2008, pp. 43–52.

[8] A. Barker and J. Van Hemert, “Scientific workflow: a survey and research

directions,” Parallel Process. Appl. Math., pp. 746–753, 2008.

[9] C. Barreto et al., “Web Services Business Process Execution Language Version

2.0,” OASIS, 2007. [Online]. Available: https://www.oasis-

open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm.

[Accessed: 01-Jan-2013].

[10] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based analysis of

obligations in web service choreography,” in Telecommunications, 2006.

AICT-ICIW’06. International Conference on Internet and Web Applications

and Services/Advanced International Conference on, 2006, p. 149.

[11] S. Ross and T. Fletcher, “Web Services Choreography Description Language:

Primer,” W3C Working Draft, 2006. [Online]. Available:

https://www.w3.org/TR/ws-cdl-10-primer/. [Accessed: 01-Jan-2014].

113

[12] M. Rani, A. K. Chawla, and S. Batra, “Web service choreography description

language (WS-CDL): Goals and benefits,” COIT.[Online]. Available

http//www. rimtenqq. com/coit2007/proceedinqs/pdfs/49. pdf, 2006.

[13] E. A. Marks and M. Bell, Service Oriented Architecture (SOA): a planning and

implementation guide for business and technology. John Wiley & Sons, 2008.

[14] J. P. Lawler and H. Howell-Barber, Service-oriented architecture: SOA

strategy, methodology, and technology. CRC Press, 2007.

[15] T. Erl, Soa: principles of service design. Prentice Hall Press, 2007.

[16] S. Carter, The New Language of Business: SOA & Web 2.0 (Adobe Reader).

Pearson Education, 2007.

[17] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key concepts and

principles,” IEEE Internet Comput., vol. 9, no. 1, pp. 75–81, 2005.

[18] D. Booth et al., “Web Services Architecture,” W3C Working Group, 2004.

[Online]. Available: https://www.w3.org/TR/ws-arch/. [Accessed: 01-Jan-

2013].

[19] D. Booth and C. Kevin Liu, “Web Services Description Language (WSDL)

Version 2.0 Part 0: Primer,” W3C, 2007. [Online]. Available:

https://www.w3.org/TR/wsdl20-primer/. [Accessed: 01-Jan-2013].

[20] G. Mein et al., “Simple object access protocol.” Google Patents, 2002.

[21] M. Gudgin et al., “SOAP Version 1.2 Part 1: Messaging Framework,” W3C,

2007. [Online]. Available: https://www.w3.org/TR/soap12/. [Accessed: 01-Jan-

2013].

[22] N. Milanovic and M. Malek, “Current solutions for web service composition,”

IEEE Internet Comput., vol. 8, no. 6, pp. 51–59, 2004.

[23] A. Barker, C. D. Walton, and D. Robertson, “Choreographing web services,”

IEEE Trans. Serv. Comput., vol. 2, no. 2, pp. 152–166, 2009.

[24] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented

computing: a research roadmap,” Int. J. Coop. Inf. Syst., vol. 17, no. 2, pp.

223–255, 2008.

[25] M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou, “Managing evolving

services,” IEEE Softw., vol. 28, no. 3, pp. 49–55, 2011.

114

[26] M. B. Juric, A. Sasa, B. Brumen, and I. Rozman, “WSDL and UDDI

extensions for version support in web services,” J. Syst. Softw., vol. 82, no. 8,

pp. 1326–1343, 2009.

[27] S. Akram, A. Bouguettaya, X. Liu, A. Haller, and F. Rosenberg, “A Change

Management Framework for Service Oriented Enterprises.,” Int. J. Next-

Generation Comput., vol. 1, no. 1, 2010.

[28] Y. Wang, J. Yang, W. Zhao, and J. Su, “Change impact analysis in service-

based business processes,” Serv. Oriented Comput. Appl., vol. 6, no. 2, pp.

131–149, 2012.

[29] D. Kim, M. Kim, and H. Kim, “Dynamic business process management based

on process change patterns,” in Convergence information technology, 2007.

international conference on, 2007, pp. 1154–1161.

[30] M. Koning, C. Sun, M. Sinnema, and P. Avgeriou, “VxBPEL: Supporting

variability for Web services in BPEL,” Inf. Softw. Technol., vol. 51, no. 2, pp.

258–269, 2009.

[31] W. Fdhila, A. Baouab, K. Dahman, C. Godart, O. Perrin, and F. Charoy,

“Change propagation in decentralized composite web services,” in

Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), 2011 7th International Conference on, 2011, pp. 508–511.

[32] H. Liu, Z. Li, J. Zhu, and H. Tan, “Business process regression testing,” in

ICSOC, 2007, vol. 7, pp. 157–168.

[33] A. Slominski, “Adapting BPEL to scientific workflows,” Work. e-Science, pp.

208–226, 2007.

[34] M. Hiel, H. Aldewereld, and F. Dignum, “Ensuring conformance in an

evolving choreography,” in Service-Oriented Computing and Applications

(SOCA), 2010 IEEE International Conference on, 2010, pp. 1–4.

[35] W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert, “Dealing with change

in process choreographies: Design and implementation of propagation

algorithms,” Inf. Syst., vol. 49, pp. 1–24, 2015.

[36] A. Mahfouz, L. Barroca, R. Laney, and B. Nuseibeh, “Requirements-driven

collaborative choreography customization,” Serv. Comput., pp. 144–158, 2009.

115

[37] S. Rinderle, A. Wombacher, and M. Reichert, “Evolution of process

choreographies in DYCHOR,” Move to Meaningful Internet Syst. 2006 CoopIS,

DOA, GADA, ODBASE, pp. 273–290, 2006.

[38] J. Su, T. Bultan, X. Fu, and X. Zhao, “Towards a theory of web service

choreographies,” Lect. Notes Comput. Sci., vol. 4937, pp. 1–16, 2008.

[39] B. Curtis, “Measurement and experimentation in software engineering,” Proc.

IEEE, vol. 68, no. 9, pp. 1144–1157, 1980.

[40] B. A. Kitchenham, Software metrics: measurement for software process

improvement. Blackwell Publishers, Inc., 1996.

[41] J. E. Gaffney Jr, “Metrics in software quality assurance,” in Proceedings of the

ACM’81 conference, 1981, pp. 126–130.

[42] N. Fenton and J. Bieman, Software metrics: a rigorous and practical approach.

CRC Press, 2014.

[43] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski,

“Metrics and laws of software evolution-the nineties view,” in Software

Metrics Symposium, 1997. Proceedings., Fourth International, 1997, pp. 20–

32.

[44] N. Drouin, M. Badri, and F. Touré, “Metrics and software quality evolution: A

case study on open source software,” Int. J. Comput. Theory Eng., vol. 5, no. 3,

p. 523, 2013.

[45] C. Gerlec and M. Hericko, “Analyzing Structural Software Changes: A Case

Study.,” in BCI (Local), 2012, pp. 117–120.

[46] T. Mens and S. Demeyer, “Future trends in software evolution metrics,” in

Proceedings of the 4th international workshop on Principles of software

evolution, 2001, pp. 83–86.

[47] A. Mockus and L. G. Votta, “Identifying Reasons for Software Changes using

Historic Databases.,” in icsm, 2000, pp. 120–130.

[48] Y. Lee, J. Yang, and K. H. Chang, “Metrics and evolution in open source

software,” in Quality Software, 2007. QSIC’07. Seventh International

Conference on, 2007, pp. 191–197.

[49] J. Van Gurp and J. Bosch, “Design erosion: problems and causes,” J. Syst.

116

Softw., vol. 61, no. 2, pp. 105–119, 2002.

[50] Z. Balfagih and M. F. Hassan, “Quality model for web services from multi-

stakeholders’ perspective,” in Information Management and Engineering,

2009. ICIME’09. International Conference on, 2009, pp. 287–291.

[51] S. W. Choi, J. S. Her, and S. D. Kim, “Modeling QoS attributes and metrics for

evaluating services in SOA considering consumers’ perspective as the first

class requirement,” in Asia-Pacific Service Computing Conference, The 2nd

IEEE, 2007, pp. 398–405.

[52] D. Rud, A. Schmietendorf, and R. Dumke, “Resource metrics for service-

oriented infrastructures,” Proc. SEMSOA 2007, pp. 90–98, 2007.

[53] Y. Lee, “QoS metrics for service level measurement for SOA environment,” in

Advanced Information Management and Service (IMS), 2010 6th International

Conference on, 2010, pp. 509–514.

[54] M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion metrics for

predicting maintainability of service-oriented software,” in Quality Software,

2007. QSIC’07. Seventh International Conference on, 2007, pp. 328–335.

[55] M. Gebhart, “Measuring design quality of service-oriented architectures based

on web services,” in Eighth International Conference on Software Engineering

Advances (ICSEA 2013), Venice, Italy, 2013, pp. 504–509.

[56] D. Athanasopoulos and A. V Zarras, “Fine-grained metrics of cohesion lack for

service interfaces,” in Web Services (ICWS), 2011 IEEE International

Conference on, 2011, pp. 588–595.

[57] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling metrics for

predicting maintainability in service-oriented designs,” in Software

Engineering Conference, 2007. ASWEC 2007. 18th Australian, 2007, pp. 329–

340.

[58] S. Kalepu, S. Krishnaswamy, and S. W. Loke, “Verity: a QoS metric for

selecting Web services and providers,” in Web Information Systems

Engineering Workshops, 2003. Proceedings. Fourth International Conference

on, 2003, pp. 131–139.

[59] S. W. Choi and S. D. Kim, “A quality model for evaluating reusability of

117

services in soa,” in E-Commerce Technology and the Fifth IEEE Conference on

Enterprise Computing, E-Commerce and E-Services, 2008 10th IEEE

Conference on, 2008, pp. 293–298.

[60] D. Dyachuk and R. Deters, “Using sla context to ensure quality of service for

composite services,” in Pervasive Services, IEEE International Conference on,

2007, pp. 64–67.

[61] A. Khoshkbarforoushha, R. Tabein, P. Jamshidi, and F. Shams, “Towards a

metrics suite for measuring composite service granularity level

appropriateness,” in Services (SERVICES-1), 2010 6th World Congress on,

2010, pp. 245–252.

[62] B. Wetzstein, S. Strauch, and F. Leymann, “Measuring performance metrics of

WS-BPEL service compositions,” in Networking and Services, 2009. ICNS’09.

Fifth International Conference on, 2009, pp. 49–56.

[63] K. Qian, J. Liu, and F. Tsui, “Decoupling metrics for services composition,” in

Computer and Information Science, 2006 and 2006 1st IEEE/ACIS

International Workshop on Component-Based Software Engineering, Software

Architecture and Reuse. ICIS-COMSAR 2006. 5th IEEE/ACIS International

Conference on, 2006, pp. 44–47.

[64] P. T. Quynh and H. Q. Thang, “Dynamic coupling metrics for service--oriented

software,” World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom.

Control Inf. Eng., vol. 3, no. 3, pp. 795–800, 2009.

[65] X. Wang, “Metrics for evaluating coupling and service granularity in service

oriented architecture,” in Information Engineering and Computer Science,

2009. ICIECS 2009. International Conference on, 2009, pp. 1–4.

[66] B. Wetzstein, D. Karastoyanova, and F. Leymann, “Towards management of

SLA-aware business processes based on key performance indicators,” in 9th

Workshop on Business Process Modeling, Development and Support

(BPMDS’08)-Business Process Life-Cycle: Design, Deployment, Operation &

Evaluation, 2008.

[67] H. Zuse, A framework of software measurement. Walter de Gruyter, 1998.

[68] I. Mistr’\ik, R. M. Soley, N. Ali, J. Grundy, and B. Tekinerdogan, Software

118

quality assurance: in large scale and complex software-intensive systems.

Morgan Kaufmann, 2015.

[69] L. Finkelstein, “Theory and philosophy of measurement,” Handb. Meas. Sci.,

vol. 1, pp. 1–30, 1982.

[70] L. Finkelstein and M. S. Leaning, “A review of the fundamental concepts of

measurement,” Measurement, vol. 2, no. 1, pp. 25–34, 1984.

[71] S. L. Pfleeger and J. M. Atlee, Software engineering: theory and practice.

Pearson Education India, 1998.

[72] A. L. Baker, J. M. Bieman, N. Fenton, D. A. Gustafson, A. Melton, and R.

Whitty, “A philosophy for software measurement,” J. Syst. Softw., vol. 12, no.

3, pp. 277–281, 1990.

[73] M. E. Bush and N. E. Fenton, “Software measurement: a conceptual

framework,” J. Syst. Softw., vol. 12, no. 3, pp. 223–231, 1990.

[74] V. R. Basili, “Software modeling and measurement: the Goal/Question/Metric

paradigm,” 1992.

[75] N. Simpkins, “T320 E-business technologies: foundations and practice,” 2008.

[Online]. Available:

http://www.eclipse.org/webtools/community/education/web/t320/Generating_a

_client_from_WSDL.pdf.

[76] Oracle, “Creating a Simple Web Service and Client with JAX-WS - The Java

EE 5 Tutorial,” 2010. [Online]. Available:

http://docs.oracle.com/javaee/5/tutorial/doc/bnayn.html.

[77] Pivotal, “Consuming a SOAP web service,” 2016. [Online]. Available:

https://spring.io/%0Aguides/gs/consuming-web-service/.

[78] Z. M, “Create a web service client for a SOAP based web service,” 2012.

[Online]. Available: http://java.boot.by/ocewsd6-guide/ch06.html.

[79] C. Peltz, “Web services orchestration and choreography,” Computer (Long.

Beach. Calif)., vol. 36, no. 10, pp. 46–52, 2003.

[80] F. Daniel and B. Pernici, “Insights into web service orchestration and

choreography,” Int. J. E-bus. Res., vol. 2, no. 1, pp. 58–77, 2006.

