METRICS FOR EVOLVING SERVICES IN
SERVICE ORIENTED ARCHITECTURE

Thesis submitted to Jawaharlal Nehru University
in partial fulfillment of the requirement
for the award of the degree of

DOCTOR OF PHILOSOPHY
in
COMPUTER SCIENCE
by

RACHNA KOHAR

Under the Supervision of

Prof. Parimala N.

Q
D

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI- 110067,
INDIA

July 2017

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

SargRed
JAWAHARLAL NEHRU UNIVERSITY
@ NEW DELHI- 110067
DECLARATION

This is to certify that the thesis entitled “Metrics for Evolving Services in Service
Oriented Architecture” which is being submitted to the School of Computer and
Systems Sciences, Jawaharlal Nehru University, New Delhi, for the award of the
degree of Doctor of Philosophy in Computer Science, is a bonafide research work
carried out by me under the supervision of Prof. Parimala N.

This research work is original and has not been submitted, in part or full, to any other

university or institution for the award of any other degree.

RodZ ™

Rachna Kohar

Enrollment No.: 12/10/PC/002

School of Computer and Systems Sciences,
Jawaharlal Nehru University,

New Delhi - 110067

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

EEISEIN
JAWAHARLAL NEHRU UNIVERSITY

SN

NEW DELHI- 110067

CERTIFICATE

This is to certify that the thesis entitled “Metrics for Evolving Services in Service

Oriented Architecture” submitted by Rachna Kohar to the School of Computer and

Systems Sciences, Jawaharlal Nehru University, New Delhi, for the award of the

degree of Doctor of Philosophy in Computer Science, is a bonafide research work

carried out under the supervision of Prof. Parimala N.

This research work is original and has not been submitted, in part or full, to any other

university or institution for the award of any other degree.

\\\4\@5\\1

Prof. D.K. Lobiyal
(Dean)
School of Computer & Systems Sciences
Jawaharlal Nehru University
New Delhi - 110067

Dean S ientas

reme

o uter & Sysiein® <

s & Sa?«tgr?a‘ Hehry URNEIS™
- i{m- “,‘M" ola

Prof. Parimala N. - '7 .
(Supervisor)
School of Computer & Systems Sciences

Jawaharlal Nehru University
New Delhi - 110067

Profaessof =
Sehool of Comutita A Syslems dienie
J-’l."ir\.-.f | y2hfy "."'“‘”"'(5“”
Maig D 107 (tndia)

ACKNOWLEDGEMENT

First, I would like to express my profound gratitude to the Almighty whose grace
provided me the strength to complete my Ph.D. thesis.

[want to express my sincere and heartiest thanks to my supervisor and mentor Prof.
Parimala N. for her excellent guidance and encouragement throughout my Ph.D.

research work. Her keen insight, enlightening discussions, expertise and moral

support enabled me to accomplish my research work.

I would like to express my sincere gratitude and thanks to Dean, Prof. D. K. Lobiyal
and Ex-Dean, Prof. R.K. Agrawal for providing me all the necessary facilities and an
ideal environment for doing my research. I would also like to thank all the staff

members of the school for their prompt assistance throughout my research.

[would like to give special thanks to my family for their continuous support. Words
cannot express how grateful I am to all my family members for all the sacrifices they
have made on my behalf. My beloved family has always been my support in the

moments when there was no one to answer my queries. Their prayers have sustained

me so far.

I'would also like to thank all of my friends for their support.

<

Rachna Kohar

Enrollment No.: 12/10/PC/002

School of Computer and Systems Sciences,
Jawaharlal Nehru University,

New Delhi - 110067

ABSTRACT

Service Oriented Architecture (SOA) is an architecture which uses a service as the
fundamental element for developing applications. A service has a very high reuse
capability to be reused in other applications. In SOA, there is a service provider who
describes the service and publishes it in a central repository from where service
consumer can invoke the service. The main aim of a service in SOA is to share
application logic across different systems having different operating systems and

development environments.

Services are aggregated to form a composite service in two different ways. The first is
orchestration in which there is a central coordinator to manage the flow among
services. Orchestration is achieved via Web Service Business Process Execution
Language (WS-BPEL). Composite service developed using WS-BPEL is also known
as WS-BPEL process. The second is choreography in which there is no central
coordinator over the services in service composition. Instead, there is a global
coordination between the services. Choreography is achieved via Web service
choreography description language (WS-CDL). Composite service developed using
WS-CDL is also known as WS-CDL process.

Services whether single or composite evolve over time. The evolution occurs due to
the changing demands of the market and due to the enhancements which the service
provider wants to incorporate to improve its performance. This evolution may affect
the service provider as well as the service consumer. Evolution comprises of changes
such as additions, deletions, modifications etc. Different changes may affect the
provider and the consumer in different ways. A provider may want to track different
phases of service evolution to identify the nature of changes and the amount by which
changes have taken place. A consumer may be interested in knowing whether the
usefulness of a service has changed for her/ him during service evolution. Therefore,
in this thesis, we propose metrics to measure evolution in services and the manner in
which this evolution affects the provider and the consumer. Metrics are proposed for

both a single service as well as a composite service.

First, consider the case of a single service. A service provider may want to know how
much a service has evolved across versions. This quantitative measure is provided by
Service Evolution Metric (SEM). A service is invoked through service client code.
When a service evolves, the client code may have to adapt to these changes. Some
may be mandatory and some may be optional to incorporate. This impact of evolution
in client code is measured by Service Client-code Evolution Metrics (SCEMy,
SCEMgp and SCEMy). For the service consumer, the usefulness of the service may
increase or decrease as the service evolves. The impact on the usefulness during

evolution is measured by Service Usefulness Evolution Metric (SUEM).

Now, consider the composite service. As discussed above, there are two ways in
which services are composed. Metrics are proposed for each of these.

Consider, first, composition through orchestration. A WS-BPEL process is an
executable process which is consumed by its consumer. Thus, metrics are proposed
for both the provider as well as the consumer of the process. A process interacts with
many partner (external) services in order to achieve the desired business
functionalities for its consumer. Also, it has some of its internal logic to coordinate
between these services. So, when it evolves, there may be external and/or internal
evolution. The nature and quantum of evolution is computed by the proposed metrics.
Two BPEL Evolution Metrics are proposed. One is for the external evolution (BEME)
and the other is for the internal evolution (BEM,). For a service consumer, BPEL
Process Usefulness Metric under Evolution in a positive sense (BUMEp) and BPEL
Process Usefulness Metric under Evolution in a negative sense (BUMEy) measures

the impact of process evolution on the usefulness for the consumer.

The second method of composing services is through choreography. A WS-CDL
process is not an executable process. It is used to specify interactions between the
involved participants in the choreography. Therefore, the perspective of the provider
is considered while proposing metrics. During evolution, new participants may be
added with new interactions and new roles or old participants may get deleted along

with their interactions with the existing ones. In this way, there are some changes

Vi

which may account to increase the number of entities in the choreography i.e. they are
additive in nature and some changes may decrease the number of entities in the
existing choreography i.e. they are subtractive in nature. Therefore, the provider may
want to know which kinds of changes are made in the evolving choreography. The
proposed metrics to measure these changes are Additive Evolution Metric (AEM™)
and Subtractive Evolution Metric (SEM’). Moreover, the provider may also want to
know the overall amount of process evolution. This is measured using Evolution
Metric (EM).

All the proposed metrics in this thesis have been theoretically validated using Zuse
framework. All metrics are found to be above the ordinal scale. Empirical validation
of all the metrics is done using real time data wherever the data is available and with

simulated data wherever the data is not available.

To sum up, in this thesis we have proposed metrics for measuring evolution of
services. For a single service, metrics are proposed for measuring the impact on the
service client code and usefulness during evolution. Metrics are also proposed to
measure evolution and its impact on the usefulness of a WS-BPEL process across its
different versions. The proposed metrics for the WS-CDL process measure its

evolution in terms of the nature of changes.

vii

LIST OF PUBLICATIONS

1. Rachna Kohar and Parimala N., “A Metrics Framework for Measuring Quality of
a Web Service as it Evolves”, International Journal of System Assurance Engineering
and Management, Springer, DOI: 10.1007/s13198-017-0591-y011, pp. 1-15, Feb.
2017, ISSN No: 0976-4348 (SCOPUS, Emerging Sources Citation Index)

2. Parimala N. and Rachna Kohar, "A Quality Metric for BPEL Process under
Evolution”, Eleventh International Conference on Digital Information Management
(ICDIM-2016), pp.197-202, 19-21 Sept. 2016. ISBN No: 978-1-5090-2641-8
(SCOPUS)

3. Parimala N. and Rachna Kohar, “Evolution Metrics for a BPEL Process”, Second
International Conference on Intelligent Computing & Communication, ICICC-2017,
(Accepted), To appear in Advances in Intelligent and Soft Computing (AISC) Series,
Springer.

4. Rachna Kohar and Parimala N., “A Metrics framework for a WS-CDL Process

under Evolution” (Communicated, 2017).

viii

LIST OF FIGURES

Figure 1.1 Basic entities of service oriented architeCture............ccocecvvvvrviniiiniinennne, 3
Figure 1.2 Single Service eVOIULION.........c.coceiiiiece e 6
Figure 1.3 Composite service evolution - Orchestration............cccoceveniieniennieienenne, 7
Figure 1.4 Composite service evolution - Choreography.........c.cccccoeveniiinienencnenenn 9
Figure 3.1 WSDL 2.0 INTOSEL........ccoeiieieiieieee e 25
Figure 3.2 Graph showing correlation of SEM & SCEMy and SEM & SUEM.......... 39
Figure 3.3 Graph showing correlation of SEM & SCEMo and SEM & SUEM.......... 39
Figure 3.4 Graph showing correlation of SEM & SCEMt and SEM & SUEM.......... 39
Figure 5.1 WS-CDL Process VErsSiON L........cccccoveiiiieieeieiie e see e 79
Figure 5.2 WS-CDL ProCess VEISION 2........ccccuuueieiereneniesiesiesieseeieeeseesse e snesneas 80
Figure 5.3 WS-CDL Process VEISION 3........cccciveieiieiieeiesee e esie e se e see e enne e 81
Figure 5.4 WS-CDL ProCess VErSION 4..........ccuuueieieienenesiesiesieseeeeie e 82
Figure 5.5 WS-CDL Process VEISION 5.........ccciviieiieiieie e se e 84
Figure 6.1 MCS AICNITECTUIE......c..oiiiieiiiiieeeeee e 92
Figure 6.2 User Interface to initiate interaction with MCS..............ccooiiiiiiiiiicien, 94
Figure 6.3 User Interface of MCS for a single Service.........ccccoevevieiicieciecicceeee 95
Figure 6.4 User Interface of MCS for a single service - real world................ccccooveeee 96
Figure 6.5 Computed metrics for a single service - real world................cccocovveiiinnn, 97
Figure 6.6 User Interface of MCS for a single service - simulated.............ccccocovenenn. 98
Figure 6.7 Computed metrics for a single service - simulated................ccccooeeviernennn. 99
Figure 6.8 User Interface of MCS for a COMpOSIte SErVICe..........cocovvrireeiieieenienienns 100

Figure 6.9 User Interface of MCS for a composite service - Orchestration............... 101

Figure 6.10 Computed metrics for a composite service - Orchestration.................... 102
Figure 6.11 User Interface of MCS for a composite service - Choreography........... 103
Figure 6.12 Computed metrics for a composite service - Choreography.................. 104

LIST OF TABLES

Table 3.1 WSDL 2.0 deSCrIPtION......c.ccuiiieiieie et 25
Table 3.2 Categories for changes in Service Client Code..........cccovvvvvienieicnieneene 29
Table 3.3 Categories for changes for Usefulness of service...........cccocvevevvvevevvenene. 32
Table 3.4 Metrics for the real-world SErVICe...........ccooeiiiiiiiiiieee 35
Table 3.5 Metrics for the simulated SEIVICE............coovieiiiiieie e 36
Table 3.6 Correlation amoNg MELFICS.........coiiiiiiieieiee e 38
Table 3.7 Table showing evolution data for operation element................c.cccoeviienne. 41
Table 3.8 Summarized Zuse FramewWork..........cccociiiiiiiiieneieeese e 42
Table 3.9 Summary of formal validation of metrics of a single service...................... 46
Table 4.1 WS-BPEL Process aCtiVIties.........ccuciviiiiiiieeie e 49
Table 4.2 Category of changes for a WS-BPEL ProcCess.........cccovvvvenieeriesieesieeneanens 50
Table 4.3 Category of changes for usefulness of a WS-BPEL process...........c.ccocu.... 53
Table 4.4 Basic Activities for Favorable Changes..........cccviieiiniicnscneee, 54
Table 4.5 Basic Activities for Unfavorable Changes............cccoveveeiiiiciieccciecees 57
Table 4.6 Description of the changes in the service and process..........cccocvevverviieennnns 61
Table 4.7 Metrics for the Airline service and the Travel booking process.................. 61
Table 4.8 Metric values for a WS-BPEL PrOCESS..........ccocviirieierienie e 62
Table 4.9 Table showing changes for invoke element..............cccoooeviiiiciiccec e, 64
Table 4.10 Summary of formal validation of metrics for WS-BPEL process............. 68
Table 5.1 WS-CDL ProCess ENTITIES.........ccuiiiiiieieiieiie ettt 70

Xi

Table 5.2 Evolution description of version 1 to version 2 of the process.................... 80

Table 5.3 Evolution description of version 2 to version 3 of the process.................... 82
Table 5.4 Evolution description of version 3 to version 4 of the process.................... 83
Table 5.5: Evolution description of version 4 to version 5 of the process................... 85
Table 5.6 Metric values 0f the WS-CDL ProCESS.........cccceirerueieeiieeieseeseesieseenseaeens 85
Table 5.7 Summary of formal validation of metrics of a WS-CDL process............... 90

xii

LIST OF ABBREVIATIONS

SOA - Service Oriented Architecture

WSDL - Web Service Description Language

SOAP - Simple Object Access Protocol

WS-BPEL - Web Service - Business Process Execution Language
WS-CDL - Web Service - Choreography Description Language
SEM - Service Evolution Metric

SCEM - Service Client-code Evolution Metric

SUEM - Service Usefulness Evolution Metric

BEM - BPEL Evolution Metric

BUME - BPEL Process Usefulness Metric under Evolution
AEM" - Additive Evolution Metric

SEM’ - Subtractive Evolution Metric

EM - Evolution Metric

ED - Evolution Data

CS - Compute and Store

MC - Metrics Computation

Xiii

TABLE OF CONTENTS

DECLARATION. . .t il
CERTIFICATE . ..ottt e e e e i
ACKNOWLEDGEMENT ...ttt st 1\
ABSTRACT ..ot e v
LIST OF PUBLICATIONS. ..ottt e e e e viii
LIST OF FIGURES ..ottt ettt IX
LIST OF TABLES ...ttt ne e Xi
LIST OF ABBREVIATIONS.......ooiiieitcteieieie ettt eneas Xiii
Chapter 1 INTrOQUCTION ...t 1
1.1 Service Oriented ArchiteCture (SOA)coveiiiiiiieree e 2
1.2 EVOIULION TN SOA ...ttt bbb 4
N ST T | (=BT Y (o= SRS 4
1.2.2 Composite service - Orchestration............ccccveveeveiie i 5
1.2.3 Composite Service - Choreographycccceeveieeieiieieeie e 5

1.3 Problem Statement and MOtIVatIONcoceiiiiiiiinieeee e 5
1.3.1.SINGIE SEIVICE ... 5
1.3.2 COMPOSITE SEIVICE ...ttt 7
1.3.2.1 Composite Service - Orchestrationcccooveeveneneninenseeeee 7
1.3.2.2 Composite Service - Choreographyccoceoveereneneneneniseeeeeeee 8

1.4 ThesSisS CONIIDULION.......ccoiiiiiiiieee s 10
1.4.1 SINGIE SEIVICE ...vveveeie ettt re et enre s 10
1.4.2 Composite Service - Orchestrationcccoevieeieeveiiee e 10
1.4.3 Composite Service- Choreographycccccveveiieiiiie i 11
Chapter 2 State 0f the Al ..o e 13
P20 I 1 0o [od 1 o USSP 13
2.2 IMIBITICS ettt ettt ettt et e e s teeee st e s te e aeeneesreenteeneenreenteaneenreas 14
2.3 MEetrics TOr @ SINGIE SEIVICEcciiiiieieee e 15
2.4 Metrics for a COMPOSITE SEIVICEcviivieiieeie et 19
2.5 SUMMIAIY ..ottt e e sr e srb e e e sbb e e e sbb e e e be e e enseeeanseeeannes 22
Chapter 3 Metrics for an Evolving Single SErviceccccoovvveieiiciiececc e 23
TR 1o To [0 od o] o ST 23
3.2 SEIVICE INLEITACEeeeeeiiieieee ettt eneenre s 24
3.3 Proposed Metrics for a SiNgle SErVICEe.........cccvviiiiiniiieeees e, 26
3.3.1 Service Evolution Metric (SEM) ... 26
3.3.2 Service Client- code Evolution Metric (SCEM).......ccccooviiiiniiiiinnicienn, 28
3.3.3 Service Usefulness Evolution Metric (SUEM)........cccocoiiiiiiniiinncicien, 31

3.4 Experiments and ANAIYSIS.......ccuciieiiieiiieiie et 34
3.5 TIME COMPIEXILY ...veieie et 40
3.6 Metrics Formal Validation...........ccoooiiiiiiiiiin i 41
3.7 SUMMIAIY .ttt ettt ettt s e e s st e e sab e e sa b e e sab e e e b e e e be e e enbneeanseeeannes 46

Chapter 4 Metrics for an Evolving Composite Service — Orchestration 47

o I [(oo [FTox 1 o] SRR PPV PRSP 47
4.2 WS-BPEL PIOCESSveiiiiiiiie ittt 49
4.3 Proposed Metrics for a Composite Service — Orchestration............cccccevvenenee. 50
4.3.1 BPEL Process Evolution Metrics (BEM;and BEME)...........ccccceeveeviveenneee, 50
4.3.2 BPEL Process Usefulness Metric under Evolution (BUMEr & BUMEY)..54

4.4 EXPeriments and ANAIYSIS.cooiiiiiiiieieeiesie e 60
4.5 TIME COMPIEXILY veovvreiieieieiir ettt enes 63
4.6 Metrics Formal Validation............ccocuveiiiiniiiesssee e 64
A7 SUMIMAIY .ttt stee et e st e e sttt ek e e e nb b e e e nbb e e e bt e e enbb e s enbbeeanbeeeanneeennes 68
Chapter 5 Metrics for an Evolving Composite Service -Choreography...................... 69
T8 A 111 0o 1 od 1 o USRS SSPRSRI 69
5.2 WS-CDL PrOCESScotiiiiie ittt ettt sttt sttt sttt 70
5.3 Proposed Metrics for a Composite Service - Choreographyc.ccoceeveeennee. 71
5.3.1 Metrics for interaCtion ENtitccooerereriiiierieiee e 73
5.3.2 MEtrics TOr role entityccoiiiiiiiieie s 75
5.3.3 Metrics for participant €Ntityccccccveiieiieieie e 76
5.3.4 Additive/Subtractive Evolution Metric (AEM*/SEM)cccoovvvvvvveeeenean. 78
5.3.5 EVOlUtion MEtric (EM)cooiviiiiiieceee e 78

5.4 EXperiments and ANAIYSIS.........c.civveiiieieeie e se e 79
5.5 TIME COMPIEXITY ... 86
5.6 Metrics Formal Validation...........ccoocviiiiiieiie e 86
O.7 SUMIMAIY ...ttt b et sb et e b nre s 90
Chapter 6 IMplementation............cooiiiiiiiie s 91
6.1 ArchiteCture OFf MCS......coo s 91
6.2 MCS USEI INEITACE ... 94
6.2.1 Using MCS for a Single SErVICE........cccvivveiiiiiieiecse e 95
6.2.1.1 Real WOrld dataceoeiviiiiiiieieieese e 96
6.2.1.2 SIMUIALEd UALA.......cceeeeiieiieie e 98

6.2.2 Using MCS for a COmPOSItE SEIVICE.........ccceriririeieierienie e 100
6.2.2.1 OrChESIatiONc.eiivieiieecie et nee e 101
6.2.2.2 ChOre0graphy.....cceoveiiiriiriieieeieeeie et 103

6.3 Implementation 0f MCScoo i 105
6.3.1 Single Service - Real World Data.............cccccveveiieiieie e, 105
6.3.2 Single Service — Simulated Data............cccccveiieveiiieiecce e, 106
6.3.3 Composite Service - Orchestrationcccocveiii e 107
6.3.4 Composite Service - Choreography ..o 108

6.4 SUMIMAIY ...ttt b ettt n e beene e 109
Chapter 7 CONCIUSION........ciiiiiiieeie st bbbt 110
T L FULUIE WOTK ...ttt ne e 111

R E =T =] 0TS 112

Chapter 1 Introduction

Service Oriented Architecture (SOA) is an architecture which guides the creation and
usage of services [1]. One of the important aspects of SOA is that the implementation
of a service is independent of its interface [2]-[4]. The service interface exposes
functionalities provided by the service provider. It is expressed using Web Service
Description Language (WSDL) which is based on Extensible Markup Language
(XML) [5].

Service composition is defined as the process of assembling the existing services to
make a composite service [1], [6]. A composite service is also known as a business
process because it involves coordination/collaboration among services to achieve a
specific business goal [7]. It is usually meant for complex or large applications. It can
be achieved in two ways. The first is orchestration in which there is a central process
which controls and coordinates the services. Web Service Business Process Execution
Language (WS-BPEL) is a de facto language to represent web based business
processes [8], [9]. A composite service realized using WS-BPEL is also known as a
WS-BPEL process. Another way of service composition is through choreography in
which there is no single process to control the flow of messages between web
services. It describes the collaboration of services to achieve a common business goal.
Web service Choreography Description Language (WS-CDL) is a standard language
used for choreography specification [10]. Composite service realized by WS-CDL is
also known as a WS-CDL process [1], [11], [12].

The layout of this chapter is as follows.

Section 1.1 describes the basics of SOA. Evolution in a single service and a composite
service is discussed in Section 1.2. Section 1.3 defines motivation and objective of the

thesis. The contribution of the thesis is defined in Section 1.4.

1.1 Service Oriented Architecture (SOA)

SOA provides business functionalities as a service which is reusable and platform
independent [13], [14]. According to [15], a service is central to represent the logic of
the business functionality to be provided. It enhances the efficiency and productivity

of an organization. The design principles of SOA are discussed below [15], [16].

Loose coupling - ensure that the service is not tightly coupled to the underlying

service logic and implementation.

Service contract - comprises of one or more documents that express its technical
interface (to specify the offered functionalities), service level agreement (to describe

the quality of service features) etc.

Autonomy - ensures that services have control over their underlying logic and

execution environment.

Abstraction - means that the essential information is described in the service contract

and its logic remains hidden.

Reusability - intends to reuse the service in other functional contexts.

Composability - different services are assembled together to form composite service,

generally, for large complex applications.

Statelessness - minimizes resource consumption by not maintaining the service state.

Discoverability - Services are designed to be outwardly descriptive so that they can be

found and accessed via available discovery mechanisms.

Figure 1.1 shows the basic entities of SOA which are service consumer, service
provider and a service repository. A service provider publishes a service in the central

repository which is consumed by the service consumer [17].

Service Repository

\:bhsh

Service DN Service

Consumer Provider

Figure 1.1: Basic entities of service oriented architecture

Now, the basic standards of SOA are discussed.

1) Web Service: A web service is defined by World Wide Web Consortium (W3C)
which is an international standards organization to develop open standards for the
World Wide Web.

“A web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the web
service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other web-
related standards.”[18]"

Services are the basic building blocks of SOA. They are self-contained units to

perform specific tasks. They have an interface to describe service functionalities.

! https:/www.w3.0rg/ TR/ws-arch/
"Copyright © [$11 February 2004] World Wide Web Consortium, (MIT, ERCIM, Keio, Beihang).
http://www.w3.0rg/Consortium/Legal/2015/doc-license™
This section describes the status of this document at the time of its publication. Other documents may supersede this document.
A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index
at http://www.w3.0rg/TR/. This is a public Working Group Note produced by the W3C Web Services Architecture Working
Group, which is part of the W3C Web Services Activity. This publication as a Working Group Note coincides with the end of the
Working Group's charter period, and represents the culmination of the group's work. Discussion of this document is invited on
the public mailing list www-ws-arch@wa3.org (public archives). A list of remaining open issues is included in 4 Conclusions.
Patent disclosures relevant to this specification may be found on the Working Group's patent disclosure page. Publication as a
Working Group Note does not imply endorsement by the W3C Membership. This is a draft document and may be updated,
replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
Other documents may supersede this document.

3

2) Web Service Description Language (WSDL): Interface of a web service is
described using WSDL. WSDL is an XML based language which describes a service
as a set of endpoints, operations and messages to be exchanged between service
provider and consumer [19].

3) Simple Object Access Protocol (SOAP): It is a XML based communication
protocol which is used to exchange messages among services [20]. A SOAP message
is exchanged in different ways: one-way, two-way (request-response), two-way with

fault message etc [21].

4) Web Service Business Process Execution Language (WS-BPEL): It is a
standard language to represent web based business processes. It specifies the business
process behavior to perform tasks to achieve a business goal. It is used to accomplish

the service composition through orchestration [9], [22].

5) Web Service Choreography Description Language (WS-CDL): It is a standard
language which is used for choreography specification. It is used to describe multi-

party interactions based on web services from a global point-of-view [11], [23].

1.2 Evolution in SOA

In today’s fast growing environment, services evolve over time. There are many
factors which drive these changes. One is the changing demands of the market and
another is the desire of business entrepreneurs to enhance the productivity and to

increase the value of their services [24], [25].

1.2.1 Single Service

A service is described by its interface. A service interface contains various elements
such as operations which could be invoked by the consumer, messages which are
exchanged between consumer and provider, service address etc. When a service
evolves, its interface may also evolve. The changes that may occur in its elements are

addition, deletion, modification, split or merge [26]-[28].

1.2.2 Composite service - Orchestration

A composite service realized through WS-BPEL consists of two types of activities:
basic and structured. Basic activities are used to perform basic steps such as to invoke
a service, to receive input from a service etc. Examples of basic activities are invoke,
receive, reply activities. Whereas structured activities describe the order of execution
of activities. If, while, etc. are some of the structured activities. Changes that can
occur in a process could be addition, deletion, modification, split and merge in these
different activities [29]-[33].

1.2.3 Composite Service - Choreography

A composite service realized using WS-CDL aims to describe interactions among
different participants having different roles. It comprises of different entities such as
interaction, role, participant etc. WS-CDL process may evolve over time. During this
evolution changes such as addition of new participants in the choreography or some

interactions being deleted from the existing choreography etc. may occur [34]-[37].

1.3 Problem Statement and Motivation

In SOA, evolution occurs both at a single service level and at a composite service
level. At both levels, there is a service provider and a service consumer. Whenever
there is a change in the service, it may impact both service consumer as well as

service provider. We now discuss this impact at each level in detail.

1.3.1 Single Service

When a service evolves, the service provider is concerned with the impact on its
interface in which offered functionalities are described. She/he is interested in
analyzing the evolution phases to improve the service interface for the service
consumer. On the other hand, a service consumer is concerned with the impact of
service evolution on its client code which is used to invoke the service. Also, she/he

may also want to know the impact of this evolution on the usefulness of the service.

Figure 1.2 depicts these different aspects of service evolution for the consumer and

provider.

Usefulness
Measure??

Service

Service Interface
Interface (WSDL)
(WSDL) Versions

b
—

Service Consumer
\ }

Evolution Phases
Analysis??

|
m

Service Provider

Figure 1.2: Single service evolution

Consider an order placing service, Sorgervi, Which provides ‘place order offline’, and
‘cancel order’ functionalities. Suppose the service changes and its new version is
created, Sorgerv2. Assume that there are three changes in the new version which are
addition of ‘place order online’ (to support green energy) and ‘change order’
functionalities and removal of ‘cancel order’ functionality. In this example, clearly,
the service interface would change. The functionalities of a service are realized by
operations in the service interface. When the functionalities change, service interface
operations and other corresponding interface elements also change. The service
provider is interested in knowing the impact of this evolution on the service interface.
Now, consider from the perspective of service consumer. She/he may add the
invocation statements for the newly added functionalities and/or may remove the
invocation statements for the deleted functionality from the client code. These
changes have also changed the usefulness of the service because new functionalities
are now offered to the consumer and a previously offered functionality has been
removed. Therefore, the service consumer wants to know the impact of this evolution

on the service client code and on the service usefulness.

1.3.2 Composite Service

Service composition achieved through orchestration or through choreography may
evolve over a period of time. First, we discuss evolution and its impact in a composite

service achieved through orchestration.
1.3.2.1 Composite Service - Orchestration

Here, we discuss evolution from the perspectives of both the provider as well as the
consumer. First, consider the provider. A WS-BPEL process could evolve due to the
change in its internal logic such as addition of wait activity or deletion of If activity.
Another kind of evolution may involve changes in the interactions with the external
service partners such as addition of invoke or receive activity. The provider may want
to analyze the kind and quantum of evolution that has taken place. Now, consider the
process consumer perspective. A WS-BPEL process is an executable process which
has a consumer who uses its functionalities. Evolution in the process may have an
impact on its usefulness for the consumer. Therefore, the consumer may want to make
a decision about its further consumption based on the quantum of impact on its

usefulness. Figure 1.3 shows these aspects of process evolution.

Web service Web service

Usefulness
Measure??
Consumer {

Figure 1.3: Composite service evolution - Orchestration

Invok:m g

‘WS-BPEL Process

BPEL

Internal Evolution
External Eveclution

Internal & External
Evolution Analyss??
'__\‘
7

Process
Versions

5

Provider

As an example, consider a Purchase Order (PO) WS-BPEL process which coordinates
with the consumer, process order and payment services. Let the activities present in
PO version 1 (POvl) be ‘receive PO’, ‘invoke process order service’, ‘invoke
payment service’, ‘receive change order request’, ‘invoke process order service’ (to
change order), ‘reply PO Confirmation’. Assume that the process changes and its new
version is created, PO version 2 (POv2). The changes done in this version are deletion
of ‘receive change order request’ activity, addition of ‘receive order relay coupon
request’ activity and ‘wait’ activity for this newly added activity. Clearly, this
evolution from POvI1 to POv2 has an internal change i.e. addition of ‘wait’ activity
and rest of the changes are external changes. The process usefulness has also changed
because a new functionality is now offered to the consumer in POv2 and one offered
functionality has been removed from POvL1.

1.3.2.2 Composite Service - Choreography

A WS-CDL process is not an executable process i.e. the aim of the process is to
describe peer-to-peer collaborations (interactions) among the participants and to serve
an abstract purpose of defining abstract interactions among participants (services)
[38]. The process evolves over time due to different types of changes in its entities i.e.
participants/ roles/ interactions. Here, some changes are additive in nature such as
addition of new participants and some are subtractive in nature such as merging of
various interactions in the existing choreography. Therefore, the provider may want to
know the nature of evolution and the quantum of change. Figure 1.4 depicts the

evolution in composite service using choreography.

Nature and Quantum of
Evelution??

WS-CDL Process [

Addition/Deletion of

participants
Collaborates

—_—

.

—_— WS-CDL
Evolution in Process
Roles of participants Versions

—

)
Evolution in
Interactions —

=0

Provider

of participants
—

|

Participants of the Choreography

Figure 1.4: Composite service evolution - Choreography

Summarizing, evolution occurs both at a single service level and at a composite
service level. At both levels, there is a service provider and a service consumer. The
service provider may want to know the nature and quantum of evolution that has
taken place in the service. The service consumer may be interested in knowing how
much impact the evolution has on service usefulness. Therefore, there is a need to

have a measure for evolution in services.

Metrics are a standard of measurement which provides a measure of progress or
quality of a process or a product [39]-[43]. Authors have proposed metrics to analyze
the evolution in a software and to consider the impact of evolution from an internal
(structural) perspective i.e. methods and classes [44]-[49]. We also consider the
structure of services to measure the service evolution and its impact on the provider

and the consumer. To do so, we propose metrics.

In SOA, metrics have been proposed for a single service [50]-[59] as well as for a
composite service (orchestration) [60]-[66]. However, the existing metrics are

proposed either:

a) for the quality attributes such as availability, reliability, performance, security,
etc.
b) or for the structure of a service.

In other words, for a single service and a composite service (orchestration), metrics
for evolution or its impact on the service provider and the service consumer have not
been proposed. Moreover, we are not aware of any metrics proposed for a composite

service (choreography).

In order to address the aforementioned research gap, we propose metrics for evolving

services in SOA.

1.4 Thesis Contribution

In this thesis, we propose metrics framework for a single service and a composite
service to provide a measure of the evolution and its impact. The proposed metrics
framework aims to measure the totality of the changes both for the service provider

and consumer.

1.4.1 Single Service

We propose a suite of metrics for a single service using its interface i.e. WSDL
document. The suite consists of Service Evolution Metric (SEM), Service Client-Code
Evolution Metrics (SCEMy, SCEMo and SCEMy) and Service Usefulness Evolution
Metric (SUEM) which measures service evolution for the service provider, impact of
service evolution on the client code and on the usefulness for the service consumer
respectively. The study of correlation between these metrics is conducted which
indicates to the service provider whether the changes made in the service have
tangible benefits for the consumer. The proposed metrics are empirically validated
using real world services of Amazon and also using simulated data. Theoretical
validation of the metrics is done using Zuse framework [67].

1.4.2 Composite Service - Orchestration

We propose a metrics framework for a composite service when composition of
different services occurs through orchestration. WS-BPEL process document is used
to compute metrics. Metrics are proposed both, for the provider as well as the

consumer. For the provider, WS-BPEL Evolution Metrics are proposed to provide a
10

measure of evolution. The metric BEMg provides a measure of the quantum of
evolution due to the changes in the interactions with the external partner services. On
the other hand, BEM, metric measure evolution due to change in the internal logic in
the process. For the consumer of the process, BPEL Process Usefulness Metric under
Evolution in a positive sense (BUMEp) and BPEL Process Usefulness Metric under
Evolution in a negative sense (BUMEY) are proposed to measure the impact on the
usefulness for the consumer when it evolves. A WS-BPEL process is a consumer of
the partner services. Therefore, when a service evolves, the process may also evolve.
Thus, we show that the proposed metrics for the process truly reflect the cohesiveness
of changes in a process vis-a-vis changes in services. Proposed metrics are
empirically validated. They are also theoretically validated using Zuse framework
[67].

1.4.3 Composite Service- Choreography

The entities of the WS-CDL process document are used while defining metrics for a
composite service via choreography. Additive Evolution Metric (AEM®) and
Subtractive Evolution Metric (SEM") are proposed to provide the measure for the
changes in WS-CDL entities which are additive in nature such as addition of
participants and for those changes which are subtractive in nature such as deletion of
participants. Evolution Metric (EM) is proposed to measure the overall evolution for
the provider. All the proposed metrics are empirically validated using a case study.
Theoretical validation using Zuse framework [67] shows that the metrics are above

the ordinal scale level.
To summarize, the contribution of the thesis is as follows:

a) Metrics (Service Evolution Metric (SEM), Service Client-Code Evolution Metrics
(SCEMp, SCEMg and SCEMy) and Service Usefulness Evolution Metric (SUEM))
are proposed for a single service. SEM provides a measure of service evolution for the
provider, SCEM and SUEM measures the impact on the client code and usefulness of

the service for the consumer.

11

b) Metrics (BEM,, BEMg, BUMEp and BUMEY) are proposed for a composite
service, which is achieved through orchestration, to measure the evolution for the

provider and the impact on its usefulness for the consumer.

c) Metrics (AEM*, SEM™ and EM) are proposed for a composite service, which is
achieved through choreography, to measure the evolution in a composite service

(choreography) as it evolves for the provider.

d) All metrics are theoretically validated using Zuse framework and are found to be

above ordinal scale.

e) All metrics are empirically validated using real time data wherever it is available

and using simulated data wherever it is not.
The layout of the thesis is as follows:

Chapter 2 provides an overview of the literature on metrics for services. The metrics
proposed both for a single service and composite service are discussed.

Chapter 3 discusses the proposed metrics framework for an evolving single service.

Metrics are proposed for both the service provider and the consumer.

Chapter 4 discusses the metrics proposed for an evolving composite service achieved

through orchestration. Metrics are proposed for both the provider and consumer.

Chapter 5 discusses the proposed metrics framework for an evolving composite

service achieved through choreography. A case study is given to analyze the metrics.

Chapter 6 provides conclusion of the thesis, with possible further studies.

12

Chapter 2 State of the Art

2.1 Introduction

As brought out in chapter 1, in SOA, evolution occurs both in a single service as well
as in a composite service. In this thesis, the evolution in services is studied via

metrics. In this chapter, we review the work which is done on metrics in SOA.

Metrics, in general, are vastly used to provide a quantitative measure of the evolution
in software. Metrics have been proposed by authors considering the structural
perspective of software. In these metrics, the structure of a software is considered in
terms of the classes, methods etc. The successive versions of software are used while
proposing metrics. Similarly, in this thesis, we consider the structure of services

across its different versions while proposing metrics.

In SOA, a number of efforts have been made to propose metrics for a single service
and for a composite service achieved via orchestration. For a composite service using

choreography, we are not aware of any work that proposes metrics.

For a single service, metrics are proposed to measure different service attributes.
Availability, reliability, performance, security, reputation, resource quality,
granularity, complexity, coupling and cohesion etc. are such attributes which are

considered by different authors for proposing metrics [50]-[59].

For a composite service via orchestration, authors have used various attributes such as

performance, reusability, reliability, complexity, availability etc. [60]-[66]

The layout of this chapter is as follows. Metrics, in general, are discussed in section
2.2. In this section, the importance of metrics, in general, as well as in the context of
SOA is mentioned in this section. In section 2.3, metrics proposed for a single service

are discussed in detail. Subsequently, review of state of the art of the work done in

13

proposing metrics for a composite service via orchestration is discussed in section 2.4.

Finally, section 2.5 is the concluding section.

2.2 Metrics

Formally, a measure is a number which is assigned to an entity to characterize its
attributes [68][69][70]. In general, a measure is used because without a measure one

has views or assumptions. A measure may be used to evaluate, control or improve.

Software measurement is a key aspect of good software engineering practice
[71][72][73]. It is used to numerically define the attributes, characteristics or
properties of a software. It provides a scientific base in the field of software
engineering to analyze the software development and maintenance process. Analysis
of the measures is done to understand the collected data. Measurement analysis is
performed to make or to revisit the decisions that are taken during the software
development. Therefore, measurement and its analysis help to understand the software
processes. It also provides a way to evaluate the process so as to make decisions about

improvement in the process [74].

Metrics are used for software measurement and analysis. A metric represents standard
quantitative measurement for the assessment of quality, progress or performance of a
software product or a process. They help to determine whether or not we are
progressing towards the goal.

In the context of evolution in software, metrics can be used to understand and analyze
the evolution in a software system. The internal (structural) perspective of a software
across its successive releases [44]-[49] is used while proposing metrics. Software
quality from an internal (structural) perspective i.e. methods and classes of a software
is considered in [44]. Metrics help to identify the high-risk and low-risk classes of
software. The author has performed an empirical analysis of the proposed metrics
using successive released versions of software systems. The progress of software
development is viewed as a sequence of changes in [45]. Metrics are proposed in

order to analyze the development patterns when a software evolves. In [46], the

14

author has discussed various approaches which are used to understand and improve a
software evolution process via metrics. The work done in [47] uses metrics to analyze
the evolution in software by detecting relationship between the quantum of change, its
type and the time of occurrence of these changes. Evolution in a software system is
analyzed using metrics in [48]. Changes in classes e.g., additions or deletions are
considered. Metrics are used to compare different versions of a software to analyze
whether the decisions taken during software design erodes during evolution or not
[49].

In the context of SOA, several metrics have been proposed for different attributes of a
service. Metrics may help to know the value of the services of an organization. They
can be a powerful tool for informing and guiding decision making at all levels of an
organization. Metrics may be useful for both the service provider as well as to the
service consumer. A service provider wants to know about the progress of its services
and on the other hand service consumer wish to know about the status of the offered

functionalities.

In the next section, we discuss different metrics which are proposed for a single

service.

2.3 Metrics for a single service

Metrics have been proposed for a single service to measure its attributes such as
availability, reliability, performance, security, reputation, resource quality,

granularity, and cohesion [50]-[59].

Different requirements of service consumer and service provider have been taken care
of while developing a quality metrics model in [50]. Metrics are presented for the
service provider for availability and throughput. For the service consumer, the quality
attributes for which metrics are proposed are response time and reliability. Metric

proposed for a consumer to measure the response time is given below.

15

Response Time = Completion time of receiving responses from the service -

Completion time of sending the request to the service (2.2)

The quality attribute for the provider, Availability, is defined as

Availability = Uptime / (Uptime — Downtime) (2.2)

where Uptime is the total time in which service is available during the time of
measurement and the Downtime is the total time that the service is down during

measurement time.

In [51], a set of metrics is proposed for the single service taking into account quality
features such as availability in terms of time, reliability in terms of process requests,
and performance to measure throughput, discoverability etc. The authors have
proposed metrics keeping in mind that services in good quality should be published

for the service consumer. For example, proposed metric for measuring reliability is

RRR = NumberofReliableResponses / TotalNumberofRequests (2.3)

Availability of Web Service (AWS) is defined as

AWS = WSOT / (WSOT + WSRT) (2.4)

where WSOT represents web service operating time and WSRT represents web

service repairing time.

Authors define metrics in [52] to measure the quality of service resources. Here,
throughput and utilization for a service provider are measured in terms of how many
versions of a service have been made and what is the total lifespan of the service. For

measuring the utilization of a service in SOA, metrics proposed by the authors is

AUQ[m] - average utilization of Operation m (2.5)

AIMSO[m] — Average Input Message Size for Operation m (2.6)

16

AOMSO[m] — Average Output Message Size for Operation m (2.7)

The metrics defined in [53] measures the quality of a web service in SOA. The first
quality factor is business value in which service price, reputation, recognition etc. are
used to define the metrics. Business value of web services represents the financial
growth achieved by offering web services in a particular business. The other quality
factor for which authors have proposed metric is for the service consumer. This metric
is termed as Service measurement. Response time, throughput and accessibility etc.
are the sub-quality factors which are defined under this factor. One such metric

proposed by the authors is Maximum-nrougnput Which is defined as

max(NumberofRequestsProcessedbyServiceProviderinMeasuredTime)/ MeasuredTime
(2.8)

Service cohesion metrics are presented in [54]. The authors have extended the notion
of the cohesion of object oriented design while proposing metrics. Some of the

metrics are given below:

Service Interface Usage Cohesion (SIUC) represents the cohesion level of a service in

terms of its behavioural communication with its consumers.
SIUC: INV(clients, SO(sis) / (num_clients * |[SO(sis)|) (2.9)

where SO(sis) represents the set of all the operations present in the service s; INV is a
function to count the number of operations which are invoked by a consumer and

num_clients is the count of clients of s.

Service Interface Data Cohesion (SIDC) represents the level of cohesiveness of the
service operations with other services in terms of how many parameters they share

with each other.

SIDC (s) = |Common(Param(so € SO(sis)| / totalParamTypes (2.10)

17

Cohesion metrics, defined in [55], are a measure of how much a service provides
agnostic or non-agnostic functionalities. Author has defined agnostic functionality as
a generalized functionality i.e. it can be used in other contexts. One of the proposed
metrics is DANF (Division of agnostic and non-agnostic functionality). This metric is
a measure of how much a service provides agnostic or non-agnostic functionalities.

The desired value of the metric is either 0 or 1.

DANF= | AF (O (RI (SI(s)))) | /|0 (RI (SI(s)))| (2.11)

where s is service; Sl is service interface; Rl is realized interface; AF is Agnostic

functionality; O is total number of operations.

Lack of cohesion metrics, proposed by authors in [56], provides a measure which is
the complement of the average sequential and communicational similarity between
the pairs of operations in service. A service interface is said to be sequentially
cohesive when it has pairs of operations which comprise of common elements in their
input and output message. The proposed metric for the sequential cohesion is Lack of
sequential cohesion (LoCs(s;)) metric. The metric is the complement of the average

sequential similarity between the pairs of operations that belong to CS(si).

LoCs(si) = 1 —[>V (opi,opj) ecssi OPSseqopi, opj) 1/ ([|si.Of*(|si.O-1)]/2) (2.12)

where si.O is the service operation, op; and opj are the operations, OpSseq(opi, opj) are
the operations that are operations that are sequentially related to each other i.e. input

message of a service is the output message of other service.

Authors in [57] have presented service coupling metrics. The notion of the coupling
of object oriented design is used in the work to propose coupling metrics in service-
oriented design. Metrics such as Weighted Intra-Service Coupling between Elements
(WISCE), Weighted Extra-Service Incoming Coupling of an Element (WESICE),
Weighted Extra-Service Outgoing Coupling of an Element (WESOCE) etc. are
proposed. Authors have used implementation elements of a service interface i.e. OO

class, interface, package and business scripts.

18

In [58], metrics are proposed for service reputation in terms of how trustworthy a
service provider has been in complying with the agreed SLA levels. The metrics are
defined for service verity, service compliance and service reputation. Service verity is
the amount of variance among all the compliance levels of services provided by the

service provider. It is defined by the authors as
SPLyerity = Y. (WSL'compi—pt)* / 1 (2.13)

where WSL'.ompi is the local compliance of an i service and n is the count of services.
Compliance of a service provider is the average of the SLA compliance values of the
offered web services. Reputation is used as a parameter for user ranking.

Reusability of services is evaluated using a quality model in [59]. The model is
developed for the service reusability features: business commonality, standard
conformance, discoverability etc. One of the proposed metrics for a service measures

functional commonality (FCopi) of an operation of a service. It is defined as below

I:COpi: Nu mConsumerRequiringFRofOpi /Nu MTotalConsumers (2 . 14)

where NUMconsumerRequiringFrofopi 1S the count of consumers who want to invoke the
functionality offered via operation i of the service and NUMotaiconsumers 1S the count of

total number of service consumers.

From the foregoing, we conclude that metrics have not been proposed to provide a
measure of the service evolution and its impact across its different versions.
Moreover, there is a lack of metrics which covers both perspectives of service
consumer as well as of the provider. In the next section, we discuss metrics for a

composite service.
2.4 Metrics for a composite service

In SOA, metrics have been proposed for a composite service via orchestration [50],
[60]-[66]. Authors have used WS-BPEL process to measure its performance,

granularity, coupling etc.

19

In [50], metrics are defined for measuring the quality of the composite service quality.
The quality attributes which are considered while proposing metrics are availability,
composability, performance etc. Availability of Business Process (ABP) is a metric
proposed for availability is given below.

ABP = BPOT / BPOT+BPRT (2.15)

Where BPOT represents operating time of the composite service; BPRT means
repairing time for the composite service after a failure has occurred. Values of these

metrics are collected by using log files obtained from the BPEL engine.

Metrics proposed in [60] considers service level agreement between consumer and
provider of the composite service to measure how much performance, reliability and
availability are actually met. A metric latest start time (LST) is defined to measure the
time required to start processing the requests. It is given below.

LSTi= RsLa— (RsLax/Cmax) (2.16)

where Rg| a is the maximum response time and Cax IS the estimated completion time.

A metric is defined in [61] to quantitatively measure the granularity appropriateness
of a composite service. In order to determine this, attributes of granularity such as
business value, reusability, context independency etc. are considered. The proposed

metric Weighted Granularity Level Appropriateness (WGLA\) is defined as below.

WGLA = ((W1XSBv)X(WZXSR)X(W3XSC|)) / (W4XSCO) (217)

where Sgy is the business value of a service, Sg is service reusability, Sc is service
the value for the attribute context-independency and Sc, is the service complexity

value.

A WS-BPEL process performance monitoring model is developed in [62]. In this
model, performance metrics are computed at the run time of the process. These

20

metrics are Instance and Aggregate metrics. Their computation is based on duration,

state, time etc parameters of a BPEL process instances during the run-time.

The work in [63] provides metrics for measuring decoupling of a process taking into
account the factors of how many operations of web services are invoked and how
many services are present in a process. Their computation is based on duration, state,
time etc parameters of a process instances during the run-time. One of the coupling
metrics is Average Required Services Dependency Metric (ARSD) which is defined

as followvs.

ARSD = YR;/n (2.18)

where R; is the count of services which a given service needs to complete its

functionalities and n is the total number of services available in a business domain.

Authors have proposed coupling metrics to measure the number of relationships
between services in [64] in a service composition achieved through orchestration.
Degree of coupling within a given set of services metric (DCSS) is defined by the
authors in terms of a graph drawn for the service connectivity in the system and is

calculated by the below formula.

DCSS = [Max - Y3 d(u,v)] / Max- Min (2.19)

where d(u,v) is number of calls from node u to v for all the services in system.

Authors in [65] have defined metrics for measuring the quality of a composite service
in terms of coupling and granularity (i.e. based on principles of service design). The
proposed metrics are based on information-theory. They have considered two types of
elements in a composition. One is atomic and the other is complex. An atomic
element is a service operation and the complex element is a composite service. The

information entropy H(S;) metric defined for a complex element S; is as follows.

H(S) = pX. (-log(PL(1))) = 2j (-log(P(j))) / n (2.20)

21

where P_(j) represents the probability of invocation of atomic j™ element (service) by
the complex element (composite service). If a composite service invokes a service,
then the coupling index is high for the composite service. As per the service design
principles, coupling should be as low as possible. The metric reflects that how much

is the coupling index.

The work in [66] has used metrics for the service provider to monitor the SLA
violations in a service composition. One of such metric is Mean Prediction Error (e)
which is the average of the differences between predicted (p;) and monitored (m;)

values for a given number of instances (n).

e =(Imi—pil) /n (2.21)

From the aforementioned, it could be seen that the existing metrics do not measure
evolution across different versions of a composite service in SOA. Also, there is a
lack of metrics proposed for both consumer as well as of the provider of the

composite service.

2.5 Summary
In this chapter, we have described a general definition of metrics. We discussed the

existing proposed metrics for a single service and a composite service in SOA.

We found that the existing metrics do not cover the aspect of evolution in single as

well as composite service.

As mentioned in chapter 1, we now propose the metrics framework for both the
composite and non-composite service in the coming chapters of the thesis. In the next

chapter, we discuss the metrics framework for a single evolving service in detail.

22

Chapter 3

Metrics for an Evolving Single Service

3.1 Introduction

In SOA, a service is provided by a service provider and consumed by a service
consumer. In today’s fast growing environment, service evolves over time [24], [25].
These changes in a service are studied via metrics in this chapter. Further, the
perspectives of both the service provider and service consumer have been taken care

of while defining metrics.

Consider a service which is expressed via an interface. The service interface contains
operations, messages, service address etc. Changes that can occur in the service

interface are addition, deletion, modification, split or merge [26]-[28].

Changes in a service need to be carefully analyzed by the service provider because the
changes which are accumulated through its successive versions may affect the service
consumer as well as the provider. As an example, consider an order placing service as
mentioned in the section 1.3.1. In this example, the questions that need to be answered

are what and how much is the

1. impact on the service interface?
2. impact on the service client code?
3. impact on the usefulness of a service?

In this chapter, metrics to answer the above three questions are proposed. The first
metric, Service Evolution Metric (SEM), is an answer to the first question. It is a
guantitative measure to represent the amount of evolution in different versions of a
service interface. The second metric, Service Client-code Evolution Metric (SCEM),

is a measure for the impact on client code when a service undergoes changes. The last

23

metric, Service Usefulness Evolution Metric (SUEM) is a measure of usefulness of

the service for the consumer when a service changes.

The layout of this chapter is as follows. Section 3.2 defines the service interface
(WSDL document). The service evolution metric (SEM), service client code evolution
metrics (SCEM) and service usefulness evolution metric (SUEM) are presented in
section 3.3. Time complexity of metrics is given in section 3.4. In section 3.5,
experiments and analysis are shown. The formal validation of metrics using Zuse

framework is presented in section 3.6. Finally, the chapter is concluded in section 3.7.
3.2 Service Interface

The interface of a service is described as a WSDL document. A WSDL document is
based on XML which contains a set of operations with inputs/outputs which are
exchanged when the operations are invoked [19]%. The WSDL 2.0 is defined in terms
of XML Infoset in Figure 3.1. This WSDL 2.0 Infoset is described in Table 3.1. It is

used to compute the metrics.

2 https:/Awww.w3.0rg/ TR/wsdI20-primer/

"Copyright © [$26 June 2007] World Wide Web Consortium, (MIT, ERCIM, Keio, Beihang).
http://www.w3.org/Consortium/Legal/2015/doc-license”

This section describes the status of this document at the time of its publication. Other documents may supersede this document.
A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports
index at http://www.w3.0rg/TR/. This is the W3C Recommendation of Web Services Description Language (WSDL) Version 2.0
Part O: Primer for review by W3C Members and other interested parties. It has been produced by the Web Services Description
Working Group, which is part of the W3C Web Services Activity. Please send comments about this document to the
public public-ws-desc-comments@w3.org mailing list (public archive). The Working Group released a test suite along with
an implementation report. A diff-marked version against the previous version of this document is available. This document has
been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by
the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another
document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread
deployment. This enhances the functionality and interoperability of the Web. This document is governed by the 24 January 2002
CPP as amended by the W3C Patent Policy Transition Procedure. W3C maintains a public list of any patent disclosures made in
connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has
actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in
accordance with section 6 of the W3C Patent Policy.

24

description
targetMamespace

1 import oI operation |- input
namespace name massagelabal?
Iocation? pattern element?
styla?)
| o-] output
i include infault
messagelabel? ref
location .
- fault CLOIEETNiE 1.~ |messagelabel?
0.1 e " o outfault
types elemeant?
ref
messagelabel?
input
0. interface o messagelabel?
name
extends? output infault
styleDefault? IS rp— messagelabel?
operation |ref
" Imessagelabel?
ref
’—‘ outfault
0. binding o = ref
name aukt messagelabel?
Interface? ref
type
5 service ++[endpoint
name name
interface binding
address?

Figure 3.1: WSDL 2.0 Infoset

Table 3.1: WSDL 2.0 description

S.No | Elements with Description
their attributes
1 Description Root element and all WSDL elements are nested inside this element.
2 Import Import XML Schemas or other WSDL documents.
3 Include Assemble contents of a given WSDL 2.0 namespace from several WSDL
2.0 documents that define elements for that namespace.
4 Types A specification of the data types exchanged between client and service
5 Interface Describes what operations a service has, and what messages are
Operation exchanged for each operation (input/output) and also describes possible
Input fault messages.
Output
InFault
OutFault
Fault
6 Binding Describes howa service is accessed over the network. A
Operation binding operation describes a concrete binding of an interface operation
Fault to a concrete message format. A binding fault associates a concrete
message format with an abstract fault of an interface.
7 Service Describes where web service can be accessed on the network via a URL
Endpoint (Endpoint).
8 Documentation Is optional and contain a humanly readable description of the service.

25

In the next section, the metrics are presented.
3.3 Proposed Metrics for a Single Service

As stated in section 3.2, the aim is to propose metrics for a service when changes
occur. In this section, we propose three metrics for an evolving service which are:
Service Evolution Metric (SEM), Service Client Code Evolution Metric (SCEM) and

Service Usefulness Evolution Metric (SUEM). These are explained below.

1. Service Evolution Metric (SEM): SEM gives a measure of how much a service
interface has changed. A service contains elements and sub-elements as depicted in
Figure 3.1. The metric measures the changes in the service vis-a-vis changes in these
elements and sub-elements.

2. Service Client Code Evolution Metric (SCEM): SCEM provides a measure of the
impact of changes in service on the service client code. The three types of changes are
categorized according to their impact on the client code: mandatory, optional and
trivial. The computation of the metric is based on this categorization so that the
consumer is provided with the measure of how much change he has to accommodate
in his code to access the service.

3. Service Usefulness Evolution Metric (SUEM): SUEM is meant to provide a
measure of the impact of changes in service on the usefulness for the consumer. The
changes are classified into three categories namely Favorable, Unfavorable and
Uncertain as per their impact on service usefulness and then define metrics for each of
them. The Usefulness Evolution metric is then computed by combining the individual

measures for the three categories using weights.
Next, the metrics are discussed in detail.
3.3.1 Service Evolution Metric (SEM)

In this section, metrics are defined to quantify the amount of changes in service
interface that have occurred. Changes in all the elements and their sub-elements listed

in Table 3.1 contribute to the computation of the metric.

26

Let, x and x+1 be two versions of a service and let, Ty x+1 denote the table containing
the changes between them. Let i be an element /sub-element and C; (Txx+1) be the
number of changes for that element in the table Txx:1. For example, the element
operation can undergo a number of changes such as addition, deletion etc. Suppose 5
operation elements are added in the table Ty x+1, then the value for C; is 5. When the
context of the changes is unambiguous, Txx+1 is not defined while defining the

metrics.

In general, when there is a change in an element, it may also bring about changes in
its sub-elements. For example, if an operation is added then the input and output and

even infault and outfault could be added.

In the WSDL 2.0 infoset, each element and it’s sub-element is at a certain depth. This
depth is used to assign a weight to the elements and sub-elements. Let D; be the depth

of an element. Its weight is]'[}=1 Dij. For example, the element operation is at depth 2,

its sub-elements input and output are at depth 3. The weight for the operation

element is 1/(1*2) and weight for its sub-elements input and output is 1/(2*3).

The Service Evolution Metric is computed as the summation of all the changes in

elements and sub-elements together with their respective weights.
i 1
SEM = Xie1(Ij=1) * G (3.1)

where n is the total number of changed elements and sub-elements.

For example, let n be 4 i.e. there is a total of four changed elements. Let these be
interface, operation, input and output. Let the number of changes for element
interface be 2, 5 for its sub-element operation, 8 for operations’ sub-element input

and 9 for output. Then, Service Evolution Metric is

SEM = (L/1)*2 + (L/(1*2)) *5 + (L/(1*2*3))*8+(L/(1*2*3))*9 = .5+.4+1.33+1.5

3.73

27

In the next section, we define metrics from the perspective of the service consumer.

3.3.2 Service Client- code Evolution Metric (SCEM)

A web service client code is required to invoke the service. This client code can be
developed in any language such as Java, .NET, C# etc. In Eclipse, web service client
code to invoke the service is developed using IDE which has Web Tools Platform
(WTP). The client is generated based on the WSDL document of the service.

The elements of the WSDL document which are required and used to develop the
client code are interface, port, operation and types [75]-[78]. Figure 3.2 shows that
changes in the WSDL document may introduce changes in the generated web service
client code. The changes are classified according to their effect on the client code.
These categories are discussed below.

1. Mandatory changes: These are the changes which a client has to include in the
code. An example of mandatory change is deletion of operation which necessitates
the client to remove the corresponding invocation in the code.

2. Optional changes: These are the changes which are not compulsory for a client
i.e. client may opt to include them in the code. Addition of operation in the service is
an example of optional change because it may make the client to use the provided
functionality and include the invocation in the code.

3. Trivial changes: These are the changes which are immaterial to include in the
code. Addition of import or include is an example of trivial change as it does not need
any modification in the client code because they are not used while writing the client

code; modification in the operation will not affect its invocation in the code.

This classification of changes is presented in Table 3.2 in detail. Now, metrics are
defined.

28

Table 3.2: Categories of changes for Service Client Code

S.No | Category Description Changes

1 Mandatory | Compulsory to | Delete: Types, Interface, Operation, Fault, Input,
accommodate in | Qutput, InFault, OutFault, Binding, BindingOperation,
the client code BindingFault, Bindinglnput, BindingOutput,

BindinglInFault, BindingOutFault Service, Endpoint

Split: Types, Interface, Operation, Fault, Input, Output,
InFault, OutFault,
Binding, BindingOperation, BindingFault, Bindinglnput,
BindingOutput, BindingInFault, BindingOutFault,
Service,Endpoint

Merge: Types, Interface,
Operation,Fault,Input,Output,InFault,0OutFault,
Binding,BindingOperation,BindingFault, BindingInput,
BindingOutput, BindingInFault, BindingOutFault,
Service,Endpoint

2 Optional Not necessarily to | Add: Types, Interface,
accommodate in | Operation,Fault,Input,Output,InFault,OutFault,
the client code Binding,BindingOperation,BindingFault, BindingInput,
BindingOutput, BindingInFault, BindingOutFault, Service,
Endpoint
3 Trivial Insignificant to | Add: Import, Include, Documentation
include in client | Delete: Import Include, Documentation
code Modify: Import, Include, Types,

Interface,Operation,Fault,Input,Output,InFault,OutFault,
Binding,BindingOperation,BindingFault, Bindinglnput,
BindingOutput, BindingInFault, BindingOutFault, Service,
Endpoint

Import, Include, Documentation, Description,
Namespace

Split: Import, Include, Documentation

Merge: Import, Include, Documentation

Let Cy be the total number of changes under the first category, Co be the total number
of changes under the second category and C+ be the total number of changes under the
third category. The individual metrics for each category are computed. The weight is
computed as a proportion of the number of changes for each type of change within the

category to the total number of changes in the category.

29

The Service Client-Code Evolution Metric for the first category is computed as
SCEMM = Z?=1 WMi * CMi (32)

where n is the count of different types of changes in this category, Cy; is the total
number of changes for i type of change within this category and Wy is the weight
for the i" type of change. For example, if types and operations are deleted then there
are two types of changes i.e. n=2. If 5 types and 3 operations are deleted then Cp; is
5 &W\y1 is 5/8 and Cyy, is 3 &W, is 3/8. So, SCEMy = (5/8)*5 + (3/8)*3 = 4.25

The Service Client-Code Evolution Metric for the second category is computed as
SCEMo = X7, Wo, * Co; (3.3)

where m is the total number of different types of changes in this category (listed in
Column 4 of Table 3.2) and Cy; is the total number of changes for j™ type of change
under this category and Wo; is the weight for the j" type of change. For example, if
types and operations are added then there are two types of changes i.e. m=2. If 4
types and 3 operations are added then Co; is 4 &Wo; is 4/7 and Coy is 3 &Wo; is 3/7.
So, SCEMg = (4/7)*4 + (3/7)*3 = 3.57

The Service Client-Code Evolution Metric for the third category is computed as
SCEMr=3%k_; Wr,* Cr, (3.4)

where | is the total count of different types of changes in this category, C is the total
number of changes for for k™ type of change Ct and Wry is the weight for the k™ type
of change . For example, if import, include and documentation are added then there
are three types of changes i.e. 1=3. If 1 import, 2 include and 5 documentation are
added then Ct1is 1 & W1 is 1/8, Ctzo is 2 & W is 2/8 and Ct3 is 5 & W3 is 5/8. So,
SCEM7y = (1/8)*1 + (2/8)*2 + (5/8)*5= 3.75

30

3.3.3 Service Usefulness Evolution Metric (SUEM)

Different changes have different impact on the usefulness for the consumer. Some
changes make the service favorable to the consumer; some do not and some are
neutral. Therefore, we first, categorize the changes as per their impact on usefulness

for the consumer.

The proposed three categories are discussed below.

1. Favorable changes: These changes make the service favorable to the consumer.
Addition of operation is a favorable change as a new functionality is added in a
service for the consumer, import or include are Favorable changes because they add
more elements in the service which make the service more advantageous for the
consumer; addition of documentation makes the service more understandable and

easy to use to the consumer.

2. Unfavorable changes: These changes make the service less favorable to the
consumer. For example, deletion of an operation deprives the consumer of the

functionalities that he may be using.

3. Indifferent changes: These changes have insignificant impact on the consumer i.e.
neither they make the service favorable nor they make the service unfavorable to the
consumer. For example, modification in the service address or merging of two
imports will not affect the consumer in the sense that the functionalities will still be

accessible to the consumer.

The classification of changes with respect to the impact on the usefulness of a service
in Table 3.3 is presented in detail.

31

Table 3.3: Categories of changes for Usefulness of service

S.No | Category Description Changes
1 Favorable Makes the service Add: Import, Include, Types, Interface,
more favorable to the Operation, Input, Output, InFault, OutFault,
consumer Binding, BindingOperation, BindingFault,
Bindinglnput, BindingOutput, BindingInFault,
BindingOutFault, Service, Endpoint,
Documentation
2 Unfavorable | Makes the service less | Delete: Import, Include, Types, Interface,
favorable to the Operation, Input, Output, InFault, OutFault,
consumer Binding,BindingOperation,BindingFault,

Bindinglnput, BindingOutput, BindingInFault,
BindingOutFault Service,Endpoint,
Documentation

3 Indifferent Have insignificant Modify: Documentation, Description, Namespace,
impact on the Service, Endpoint, Import, Include, Types,
consumer Interface, Operation, Input, Output, InFault,

OutFault,

Binding,BindingOperation,BindingFault,
Bindinglnput, BindingOutput, BindingInFault,
BindingOutFault

Merge: Import, Include, Types, Interface,
Operation, Input, Output, InFault, OutFault,
Binding,BindingOperation,BindingFault,
Bindinglnput, BindingOutput, BindinginFault,
BindingOutFault Service,Endpoint,Documentation

Split: Import, Include, Types, Interface,
Operation, Input, Output, InFault, OutFault,
Binding,BindingOperation,BindingFault,
Bindinglnput, BindingOutput, BindingInFault,
BindingOutFault Service,Endpoint,Documentation

Consider, now, the metrics. Let Cg be the total number of changes under the first
category, Cyr be the total number of changes under the second category and Cy be the

total number of changes under the third category.

32

The Service Usefulness Evolution Metric for the first category is computed as
SUEME = ?=1 WFi * CFi (35)

where n is the total number of different types of changes in this category (listed in
Column 4 of Table 3.3) , Cr is the total number of changes for i type of change
within this category and WH; is the weight for the i type of change, For example, if
types and operations are added then there are two types of changes i.e. n=2. If 2
inputs and 3 outputs are added then Cgy is 2 & Wry is 2/5 and Cr; is 3 &Wr; is 3/5.
So, SUEME = (2/5)*2 + (3/5)*3 = 2.6.

The Service Usefulness Evolution Metric for the second category is computed as
SUEMur = ¥72; Wur; * Cug (3.6)

where m is the count of different types of changes in this category and Cygj is the total
number of changes for | type of change under this category and Wor is the weight
for the j" type of change. For example, if types and operations are deleted then there
are two types of changes i.e. m=2. If 1 fault and 2 operations are deleted then Cyg; is
1 &Wyp; is 1/3 and Cypz is 2 &Wyrp is 2/3. So, SUEMyg = (1/3)*1 + (2/3)*2 =
1.67

The Service Usefulness Evolution Metric for the third category is computed as
SUEM= Xj—; Wi, * Cy, (3.7)

where | is the count of different types of changes in this category, Ci is the total
number of changes for k™ type of change within this category and W, is the weight
for the k™ type of change. For example, if operations are merged and documentation is
changed, then, there are two types of changes i.e. I=2. If 2 operations are merged and
5 documentation are changed then Cj; is 2 &W; is 2/7, C is 5 &Wy, is 5/7. So,
SUEM, = (2/7)*2 + (5/7)*5 = 4.14.

33

Now, we compute the Service Usefulness Evolution Metric of a service by combining
all the above defined metrics. We combine these metrics because a consumer is
always interested in knowing the impact on the overall usefulness when a service
evolves. Weights are assigned to each category bearing in mind that each category has
different significance in terms of the impact of evolution on the usefulness of service

for the consumer.

We=, Wypx, W= denotes the weights of first, second and third category respectively.
The weights are: Wg= = .6, Wyg» = .3, W;» = .1 so that Wg= + Wy + wix = 1. The

Service Usefulness Evolution Metric is defined as

SUEM = W+ *SUEME + wygx * SUEMyr + wix * SUEM, (3.8)

In the example taken above, SUEME is 2.6, SUEMr is 1.67 and SUEM,; is 4.14 so,

SUEM = (.6 * 2.6) + (.3 * 1.67) + (.1 * 4.14) = 1.56 + 0.501 + .414 = 2.475

3.4 Experiments and Analysis

The metrics are evaluated using the real world service- “Amazon Elastic load
balancing”. The changed versions of the WSDL documents of the service are
available at the link:

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/Document
History.html. The versions are identified by the “release date”, mentioned in Table
3.4. Version 1 of the service is the one with the oldest “release date” and the
subsequent versions are assigned in increasing numbers thereafter. The subsequent
versions are compared and the changes are identified manually. The metrics are
computed and results are shown in Table 5. The Pearson correlation coefficient
between SEM and SCEMy, is 0; SEM and SCEMgp is 1; SEM and SCEMr+ is .74 and
SEM and SUEM is 1. It can be seen from the correlation values between the metrics
that even though the client code need not necessarily change as the service evolves,

the usefulness of the service for the consumer increases.

34

Table 3.4: Metrics for the real-world service

Ser
vice

Versio
ns

Number of
changes

SEM

SCEM

SCEMwm

SCEMg

SCEM«

SUEM

Amazon Elastic Load Balancing

1&2

None

0.00

0.00

0.00

0.00

0.00

2 &3

Add Types-20,
Modify
Namespace-1,
Add Operation-4,
Add Input-4,
Add Output-4

24.32

0.00

14.00

1.00

8.50

3&4

None

0.00

0.00

0.00

0.00

0.00

4&5

Add Types-15,
Modify
Namespace-1,
Add Operation-3,
Add Input-3,
Add Output-3

18.49

0.00

10.50

1.00

6.40

5&6

None

0.00

0.00

0.00

0.00

0.00

6&7

None

0.00

0.00

0.00

0.00

0.00

7&8

Add
Documentation-15

15.00

0.00

0.00

15.00

9.00

8&9

Add Types-20,
Modify
Namespace-1,
Add Operation-4,
Add Input-4,
Add Output-4

24.32

0.00

14.00

1.00

8.50

9&10

None

0.00

0.00

0.00

0.00

0.00

10&11

Add Types-15,
Modify
Namespace-1,
Add Operation-3,
Add Input-3,
Add Output-3
Add
Documentation-8

26.65

0.00

10.50

7.22

6.03

11&12

None

0.00

0.00

0.00

0.00

0.00

12&13

Modify
Namespace-1,
Add
Documentation-1

1.50

0.00

0.00

1.50

1.50

13&14

None

0.00

0.00

0.00

0.00

0.00

14&15

None

0.00

0.00

0.00

0.00

0.00

15&16

None

0.00

0.00

0.00

0.00

0.00

16&17

None

0.00

0.00

0.00

0.00

0.00

Some limitations can be observed in the above real world data in Table 5 which

makes the metrics hard to analyze. For example, sparsity in the table for the changes

hinders the extensive analysis of the SCEM metric vis-a-vis changes. To analyze

35

SCEMy, there are no mandatory changes in the available versions of the service.
Therefore, SCEMy, cannot be analyzed. Similarly, to analyze SUEM, there are no
unfavorable changes in the available versions of the service. Moreover, the table has
mostly the same number of changes. This means that using Table 3.5, the effect of
varying changes cannot be studied and therefore relation among the metrics cannot be
found. Therefore, to overcome the above limitations, the simulated data is used and
then the metrics are analyzed. Subsequently, the correlations among the metrics are
analyzed.

All the changes (additions, deletions, change, split and merge) are simulated for all
elements and sub-elements of a service and its 100 versions are generated. The
changes are generated randomly in 10 sets each containing 10 versions of the service.
The sets are denoted as SET 1, SET 2,SET 10. The information of all the changes
in these sets is stored in their respective tables. The metrics are computed and are

shown in Table 3.5.

Table 3.5: Metrics for the simulated service

SET1
Metric V1&2 V2&3 V3&4 | VA&5 | V5&6 V6&7 V7&8 V8&9 V9&10 | V10&11
SEM 276.43 239.97 | 272.74 | 291.70 256.04 286.36 277.43 279.05 273.78 285.62
SCEM 7.04 5.99 7.22 7.11 7.51 6.89 6.75 7.55 7.49 6.87
m
SCEMo 5.20 5.32 5.02 6.88 5.80 8.14 5.34 6.30 6.65 5.98
SCEMt 0.91 1.00 1.03 1.06 0.99 0.97 0.94 0.93 0.97 0.95
SUEM 6.81 6.15 6.93 6.93 6.34 7.90 6.41 7.08 7.28 6.94
SET 2
Metric V11&1 | V12&1 | V13&1 | V14&1 | V15&1 | V16&1 | V17&1 | V18&1 | V19&2 | V20&2
2 3 4 5 6 7 8 9 0 1
SEM 253.92 232.25 243.58 293.09 265.71 261.75 289.92 270.23 265.43 288.72
SCEMm 7.42 7.08 6.96 6.93 7.21 6.88 7.02 7.52 7.33 7.15
SCEMo 6.37 6.00 5.19 7.86 5.40 6.59 6.59 6.09 5.60 5.05
SCEMt 1.03 0.91 0.97 0.98 0.93 1.01 0.94 0.93 1.05 0.97
SUEM 7.37 6.40 6.82 7.78 6.60 7.39 6.91 7.51 6.84 6.68
SET 3

V21&2 | V22&2 | V23&2 | V24&2 | V25&2 | V26&2 | V27&2 | V28&2 | V29&3 | V30&3
Metric 2 3 4 5 6 7 8 9 0 1
SEM 278.92 284.27 249.14 248.73 303.09 269.22 242.33 264.60 248.02 261.23
SCEM
m 6.75 7.24 6.56 6.06 7.60 7.64 6.53 6.80 6.83 7.18
SCEMo 6.09 6.11 7.32 6.37 5.74 6.70 6.06 6.91 6.28 6.37
SCEMt 1.03 0.96 0.93 1.02 0.98 1.02 1.04 0.92 0.99 1.00
SUEM 6.95 6.96 7.08 6.89 6.86 7.69 6.38 6.88 6.85 7.20

36

SET 4

V31&3 | V32&3 | V33&3 | V34&3 | V35&3 | V36&3 | V37&3 | V38&3 | V39&4 | V40&4
Metric 2 3 4 5 6 7 8 9 0 1
SEM 273.90 266.85 266.77 292.42 263.61 264.53 293.25 282.22 286.93 251.20
SCEM
m 7.53 7.22 6.12 6.81 6.98 7.35 7.01 6.92 7.44 6.84
SCEMo 4.95 6.24 6.51 6.54 6.35 6.71 6.12 5.84 5.94 6.28
SCEMt 0.98 0.93 0.92 0.99 0.94 1.06 1.01 0.91 0.96 1.00
SUEM 6.56 7.32 6.87 7.04 7.27 7.55 7.35 6.90 6.77 6.69
SET5
V41&4 | V4284 | VA3&4 | V44&4 | VA5&4 | V46&4 | VAT&4A | V48&4 | V49&5 | V50&5
Metric 2 3 4 5 6 7 8 9 0 1
SEM 289.42 233.94 265.26 267.61 244.06 272.94 267.56 247.88 271.75 266.26
SCEM
m 7.21 6.70 7.03 7.24 6.71 6.70 7.19 7.05 6.51 6.87
SCEMo 7.43 5.48 5.24 5.69 6.63 6.43 6.92 4.67 5.59 6.90
SCEMt 0.96 0.99 0.97 0.94 0.97 1.03 0.98 0.99 1.02 0.96
SUEM 7.39 6.29 7.33 7.20 6.60 6.44 7.44 6.65 6.96 7.24
SET 6
V51&5 | V52&5 | V53&5 | V54&5 | V55&5 | V56&5 | V57&5 | V58&5 | V59&6 | V60&6
Metric 2 3 4 5 6 7 8 9 0 1
SEM 280.08 267.26 274.20 239.65 289.18 299.06 261.26 258.28 268.26 282.93
SCEM
m 7.15 7.48 6.71 6.61 7.56 7.51 6.61 6.80 7.46 7.02
SCEMo 6.77 5.94 5.85 3.68 5.19 4.95 7.63 6.15 5.49 5.73
SCEMt 1.00 1.00 0.98 0.97 1.00 1.03 1.06 0.98 0.92 0.93
SUEM 6.81 6.70 7.10 6.31 7.33 6.88 7.07 6.69 6.81 6.64
SET 7
V61&6 | V62&6 | V63&6 | V64&6 | V65&6 | V66&6 | V67&6 | V6B&6 | V69&7 | V70&7
Metric 2 3 4 5 6 7 8 9 0 1
SEM 235.80 237.89 285.60 278.86 252.38 263.33 226.52 272.57 290.65 235.57
SCEM
m 6.07 6.34 7.22 7.72 6.04 6.56 7.19 7.29 7.05 6.77
SCEMo 6.77 7.01 5.12 6.31 6.48 551 7.70 5.79 7.61 7.01
SCEMt 0.94 0.98 0.98 1.00 0.91 1.01 1.05 0.95 0.96 1.00
SUEM 6.72 6.96 6.83 7.19 6.63 6.47 7.29 6.59 7.44 7.18
SET 8
V71&7 | V72&7 | V73&7 | V74&7 | V75&7 | V76&7 | V77&7 | V78&7 | V79&8 | V80&8
Metric 2 3 4 5 6 7 8 9 0 1
SEM 287.43 296.60 281.55 239.66 238.91 297.76 241.74 259.26 293.87 262.89
SCEM
m 6.16 7.61 7.66 5.82 6.28 7.08 7.23 7.21 7.50 6.38
SCEMo 6.13 6.11 5.07 6.13 7.47 5.78 5.55 6.12 6.70 6.38
SCEMt 1.02 1.00 1.04 0.97 0.93 0.99 1.03 0.87 0.94 1.07
SUEM 6.72 7.10 6.62 6.34 7.18 7.38 7.39 6.83 7.89 7.37
SET9
V81&8 | V82&8 | VB3&8 | V84&8 | V85&8 | VB86&8 | VB7&8 | V88&8 | V89&9 | VI0&9
Metric 2 3 4 5 6 7 8 9 0 1
SEM 216.68 247.79 259.70 284.10 298.56 258.46 297.80 284.53 217.65 245.63
SCEM
m 7.58 6.91 7.37 6.74 6.87 7.68 6.75 7.77 6.01 6.99
SCEMo 6.33 6.74 5.34 6.20 6.04 5.41 6.60 5.44 6.37 6.23
SCEMt 0.95 0.89 0.99 1.07 0.99 0.93 1.01 1.09 1.02 0.86
SUEM 7.10 6.55 7.15 7.02 7.28 6.86 7.11 6.92 6.31 6.27
SET 10
VI1&9 | V92&9 | VI3&9 | V94&9 | VI5&9 | VI6&9 | VI7&9 | VI8&9 | V99&10 | V100&10
Metric 2 3 4 5 6 7 8 9 0 1
SEM 232.96 256.57 289.93 271.58 238.22 243.10 292.60 237.09 264.94 264.57
SCEM
m 6.70 6.46 6.63 6.88 7.39 6.68 7.39 7.11 7.02 6.89
SCEMo 6.01 5.65 6.61 6.62 5.19 5.85 6.30 5.75 6.35 5.75
SCEMt 0.99 0.96 1.00 1.06 0.97 1.05 0.95 0.88 1.02 0.98
SUEM 6.67 6.64 7.33 7.19 6.93 6.70 7.18 6.50 6.12 6.82

37

Figure 3.3 shows the correlation between SEM and SCEMo, and between SEM and
SUEM and Figure 3.4 shows the correlation between SEM and SCEM~, and between
SEM and SUEM. It may be noted that usefulness is positively correlated with the
changes in both the cases. The graphs show the correlation between SEM and SCEMo
and SEM and SCEM~ as well. Since the client need not make any modifications to the
code for SCEMO and SCEMy, the further study of correlation is not done.

The values are depicted in a line graph in Figure 3.2 (correlation between SEM and
SCEMp, and between SEM and SUEM), Figure 3.3 (correlation between SEM and
SCEMpo, and between SEM and SUEM) and Figure 3.4 (correlation between SEM
and SCEMr, and between SEM and SUEM) so as to have an insight into the
correlation values of Table 3.6.

Table 3.6: Correlation among metrics

Metric SET SET SET | SET |SET |SET |SET | SET SET | SET
1 2 3 4 5 6 7 8 9 10

SEM 0.40 -0.08 0.71 0.13 0.28 | 0.66 | 0.53 0.53 0.10 0.06

and

SCEMm

SEM 0.50 0.36 -0.47 -0.19 | 0.47 0.11 -0.48 | -.25 -0.19 | 0.71

and

SCEMo

SEM -0.10 0.04 -0.09 |-0.03 | 004 |0.15 |-024 |0.17 0.46 0.20

and

SCEMt

SEM 0.69 0.39 0.22 0.04 0.66 | 058 |0.01 0.27 0.58 0.56

and

SUEM

38

0.8

7 T /'\ s

0:5 A \’—‘
\\/ \ / VA -

2\) A A

0.1 VI \ / \

) \/ N Y ——

01 SET1 S¥2 SET3 SET4 SETS SET®6 SET7 SET8 SETS SET10

Pearson Correlation Coefficient

0.2 ——SEM and SCEMm___ ——SEM and SUEM

Figure 3.2: Graph showing correlation of SEM & SCEMy and SEM & SUEM

0.8

NN N
HE SE/AN \\/,./ y

-o.: SET1 SET2 \SEra / SET5 SErs\ SET7 16 —_—
0.4 \ / \ //-'"

-0.6

Pearson Correlation Coefficient

—4—5SEM and SCEMo ——5EM and SUEM

Figure 3.3: Graph showing correlation of SEM & SCEMg and SEM & SUEM

i A -
/ NN
0 A /4/\ \//

SM/SErz\m?/ SHE\ SET8 SET9 SET10
¥

-0.2

Pearson Correlation Coefficient

-0.4

—4—5EM and SCEMt ~ ——SEM and SUEM

Figure 3.4: Graph showing correlation of SEM & SCEM+ and SEM & SUEM

Now the analysis of Figure 3.2 is presented.

1. Phases where the correlation of SEM & SCEMy are on a rise but of SEM &
SUEM are on a fall: These phases of evolution such as service evolution from Set 8 to
Set 9, may be a concern for the service provider that needs to be looked-into as the
client code has to change without much tangible benefits in terms of usefulness.

2. Phases where the correlation of SEM & SCEMy are on a fall but of SEM &
SUEM are on a rise : These phases of evolution such as service evolution from Set 2
to Set 3 are a good indication of changes for the service provider as with very little
code change the usefulness has increased. The service provider may analyze the
corresponding versions of the service and use the same approach for further service
evolution which he has used in these versions.

3. Phases where the correlation of SEM & SCEMy and of SEM & SUEM both
rise/fall: These phases are not as good as the second phase but if usefulness increases
albeit with an increase in client code modifications, it is, probably, worthwhile to
make such changes.

3.5 Time Complexity

Evolution data of all the changes that occur between two versions of a service is
stored in a table in the database. There are five columns for each table. The column

headers of the table are

Service versions (versions for which data is to be stored)
Element (lists the elements of a WSDL document of the service)

Depth of the element

A 0 bdp e

Number of changes (number of changes for each of additions/deletions/
modifications/split/merge of an element)

5. Change category (type of change for the client code and usefulness)

A row specifies the changes for each element of a WSDL document of the service.
Whenever a new version of service is created, a new table is created. All the

information of the changes that have occurred is inserted into the table.

40

Metrics proposed for the provider and the consumer uses different columns from the
table. The data from the table is accessed sequentially for the metrics computation and
computation of the metrics requires only the data which is stored in the table.
Therefore, if n is the number of rows in a table then the time complexity for the
metric’s computation is O(n). Therefore, the time complexity is linear of all the

proposed metrics. An example entry is shown in Table 3.7 for operation element.

Table 3.7: Table showing evolution data for operation element

Service Element Depth of the | Number of | Change category
versions element changes
Version 7&8 | operation 2 Add 1 Optional,
Favorable
Delete 2 Mandatory,

Unfavorable
Modify 0 Trivial, Indifferent

Split 0 Mandatory,
Indifferent

Merge 1 Mandatory,
Indifferent

3.6 Metrics Formal Validation

In this section, the formal validation of metrics using Zuse’s framework [67] is
presented. It is a software measurement framework in which there are three structures
to determine the scale of a metric using axiomatic approach. These structures are

shown in Table 3.8.

A metric is characterized in a measurement scale based on the accomplished category.
The scale of a metric helps in analyzing its values and empirical properties. There are
four measurement scales which are nominal, ordinal, ratio and absolute. The nominal
scale does not play a role in measurement because it just differentiates between the
items based on their names. Ordinal scale provides a degree of difference between the
values in terms of the order of values. Ratio between the values is allowed by the ratio
scale. It also provides exact difference between the metric values. The absolute scale

begins at a minimum point and extends in that direction only. This scale is used when,

41

with respect to zero point, precise values are required for comparison between the

values.
Table 3.8: Summarized Zuse Framework
Structure Axiom Description
MEL: (A, - >=) Axiom for weak order
ME2: Alo A2 - >= Al Axiom for positivity
ME3: Al o (A20A3)=(AloA2)0 A3 Axiom for weak
associativity
MODIFIED ME4: Al 0 A2=A20 Al Axiom for weak
EXTENSIVE commutativity
STRUCTURE ME5: Al->=A2=Al10A->=A20A Axiom for weak
monotonicity
MES6: If A3 - > A4 then for any Al, A2, then Axiom for
there exists a natural number n, such that Alo Archimedean axiom
nA3 - >A2 0 nA4
IC1: A1 = A2 = Al 0 A= A2 o0 A and Al = | Condition for weak
A2 = Ao Al = A o0A2 homomorphism
IC2: Al = A2 & Al 0 A = A2 0 A and Al = | Condition for
INDEPENDENCE | A2 ©A 0 Al = A 0A2 homomorphism
CONDITIONS
IC3: A1->=A2=Al0A - ->=A20A, and | Condition for weak
Al->=A2=>A0Al1->=A0A2 monotonicity
IC4:Al->=A2 A10A->=A20A, and Condition for
Al - >=A2 5 A0Al->=A0A2 monotonicity
MR1: VA, Be3:A->=BorB->=A Axiom for
completeness
MR2:V A,B,Ce3: A->=BandB - >=C = | Axiom for transitivity
MODIFIED A->=C
RELATION OF MR3:VACB=>A=<-B Axiom for dominance
BELIEF axiom
MR4:V(ADB,ANC=0)=(A->=B= A | Axiom for partial
UC->BUQ) monotonicity
MR5:VAe3A:A->=0 Axiom for positivity

Next, we discuss the formal validation of SEM.
SEM Metric Formal Validation

Let Sy, Sp........ , Si. Si+1 be the versions of a service. The changes between any two
versions, say Sy Sx+1 Of a process are captured in a Diffyx1 table. Let Diffyx+1 and
Diffy .1 denotes the tables containing the information of all the changes between these
versions. Let Diff be the set of all tables which store information of changes across

different versions of a service.
42

The measure SEM is a mapping: SEM: Diff-> R such that the following holds for all
(Diffy’y+1).

The combination rule of a metric determines the metric behavior when two values of
the metric are combined using the concatenation operation. This behavior is required

to validate the metric using different axioms of Zuse framework.

In the proposed metrics, the concatenation operation for combination rule is denoted

as follows.
SEM (Diffxyx+1 O Diffy’y+1) = SEM (Diffxyx+1U Diffy’y+1)

where Diffyx.1 U Diffyy.1 is the table containing all the distinct changes in the two
tables Diffy .1 and Diffyy.1. In other words, if a change is common to both the tables,

then it appears only once in the concatenated table.
SEM and the Modified Extensive Structure

ME1: The binary relation *>=is known to be weak order when it is transitive and
complete. Let Diff;,, Diff;4 and Diffsg be the three tables where Diff;, , Diffs4 ,
Diffs ¢ ¢ Diff. It is true for SEM that either SEM (Diff;,) >= SEM (Diff34) or SEM
(Diff3 4) >= SEM (Diffy). Thus, property of completeness is fulfilled. Now, consider
the transitivity property. If SEM (Diff;) >= SEM (Diff34) and SEM (Diff;4)>= SEM
(Diffsg) then it is obvious that SEM (Diff;,)>= SEM (Diffsg). Thus, transitive
property is also accomplished. Therefore, SEM fulfills ME1.

MEZ2: The positivity of the metric implies that the value of the metric when two tables
are combined is bound to be greater than the metric for each individual table. Thus,
SEM (Diff,, o Diffs 4) >= SEM (Diffy ;). Therefore, ME2 is fulfilled.

ME3: Applying the weak associativity rule to the proposed metric, the formulation of
the rule becomes, SEM (Diff;, o (Diff;4 0 Diffsg)) = SEM ((Diff;, o Diffs4) o
lef56) This means that SEM (leflz U (lef34 U lef56)) = SEM ((leflz U

43

Diffs4) U Diffsg). It is obvious that this axiom is fulfilled because union operation is

associative.

ME4: The weak commutative axiom is stated as SEM (Diff, , o Diff34) = SEM (Diff3 4
o Diff;,). This means that SEM (Diff,, U Diffss) = SEM (Diffs4 U Diffyy).

Therefore, this axiom is fulfilled because union operation is commutative.

MES5: The property of weak monotonicity is stated as SEM (Diff; ;) >= SEM (Diffs 4)
= SEM (Diffy, o Diffsg) >= BEM, (Diff; 4 0 Diffsg). This means that SEM (Diff;, U
Diffs¢) >= SEM (Diffz, U Diffs) (given SEM (Diff; »)>= SEM (Diff34)) needs to be
proved. Suppose that the number of common changes between Diff; 4 and Diffs ¢ are
more than the ones between Diff;, and Diffsg. Since common identical changes
appear only once in the concatenated table, it may well be the case that SEM (Diff3 4
U Diffsg) >= SEM (Diffy , U Diffsg). Therefore, this axiom is not fulfilled.

MES6: To prove this axiom, the idempotent property needs to be considered. As per
the definition of the concatenation operation, the metric is idempotent i.e. SEM
(Diffy , 0 Diffy,) = SEM (Diffy ,). Therefore, this axiom is not fulfilled.

It is concluded that SEM does not fulfill the modified extensive structure.
SEM and the Independence Conditions

IC1: It has to be shown that SEM (Diffy, o Diffsg) = SEM (Diff3 4 0 Diffsg) and SEM
(Diffs ¢ 0 Diffy,) = SEM (Diffs s 0 Diffz,) given SEM (Diffy) = SEM (Diffz4). SEM
(Diff;, U Diffsg) may be or may not be equal to SEM (Diff;4 U Diffsg) as the
common changes may not be the same between Diff;, U Diffsg and Diff; 4 U Diffsg.
The same is true between SEM (Diffs ¢ U Diff; ;) and SEM (Diffs ¢ U Diff34). Hence,

this condition is not fulfilled.

IC2: SEM does not accomplish the first condition therefore, it will also not fulfill the

second condition.

44

IC3: Due to non-accomplishment of the fifth axiom of the modified extensive

structure, this condition is not fulfilled.

IC4: As IC3 is not fulfilled, thus, IC4 cannot be accomplished.

It can be concluded that SEM does not fulfill the independence conditions.
SEM and the Modified Relation of Belief

MR1: SEM fulfills the weak order i.e. ME1 of modified extensive structure, therefore,

this axiom is satisfied.

MR2: If the metric fulfills the weak order i.e. ME1 of modified extensive structure

then, this axiom is also satisfied.

MR3: Suppose that all the changes of the table Diff;4 are included in Diff;, then
SEM (Diff,) >= SEM (Diffz4). Thus, this axiom is satisfied.

MR4: Suppose that all the changes of the table Diff;4 are included in Diff;, and
Diff;, N Diffs s = @. Then, SEM (Diff; 4)>= SEM (Diff;) = SEM (Diff;4 U Diffs)
>= SEM (Diff,, U Diffsg) needs to be proved. Due to the fact that SEM (Diffs 4)>=
SEM (Diffy 2) and that there are no common changes between Diff; 4 and Diffsg , the
value of SEM (Diff3 4 U Diffsg) will be more than SEM (Diff,, U Diffsg). Hence this

axiom is satisfied.

MR5: This axiom is also satisfied because the changes in a service cannot be less than
0.

Therefore, SEM fulfills the modified relation of belief.

When a metric does not fulfill the axioms of the modified extensive structure and the
independence conditions but fulfills the modified relation of belief, it can be
characterized above the ordinal scale [87]. Therefore, SEM is a measure above the

level of the ordinal scale.

45

We have validated other proposed metrics using Zuse framework. The results of

applying the framework to all metrics are shown in Table 3.9.

Table 3.9: Summary of formal validation of metrics of a single service

Metrics/ SEM SCEMy, SCEMg SCEMy SUEM
Axioms
ME1 Y Y Y Y Y
ME2 Y Y Y Y Y
ME3 Y Y Y Y Y
ME4 Y Y Y Y Y
ME5 N N N N N
ME®6 N N N N N
IC1 N N N N N
1C2 N N N N N
IC3 N N N N N
1C4 N N N N N
MR1 Y Y Y Y Y
MR2 Y Y Y Y Y
MR3 Y Y Y Y Y
MR4 Y Y Y Y Y
MR5 Y Y Y Y Y
Scale Above Above Above Above Above
ordinal ordinal ordinal ordinal ordinal
3.7 Summary

In this chapter, a suite of evolution metrics is proposed for a web service for
computing service evolution, its impact on client code and usefulness for its
consumer. Different versions of the WSDL document of a service are used while
proposing metrics. The proposed suite of metrics for evolving service, which is the
first effort of its kind, is expected to benefit both the service provider and consumer.
They are simple to compute. The proposed metrics have linear time complexity.

Experiments are conducted on the real world and simulated data to empirically
validate the metrics. The correlation between the proposed metrics is computed using
Pearson correlation coefficient. The experiments clearly demonstrated cases to the
provider whether the changes benefitted the consumer and also those cases where the
provider may have to re-consider the evolution. The metrics are validated
theoretically using Zuse framework and all the metrics are found to be above the

ordinal scale.
46

Chapter 4

Metrics for an Evolving Composite Service -
Orchestration

4.1 Introduction

Orchestration is a process to compose services [79][80]. In chapter 3, we proposed
metrics for a single service under evolution. In this chapter, we propose metrics for a
composite service (through orchestration) when it evolves. Both perspectives of the
provider and the consumer have been considered while defining metrics. WS-BPEL is
considered to be a de facto language to compose services via orchestration [8].
Therefore, we use WS-BPEL process document to define the metrics.

A WS-BPEL process has a set of activities to compose different web services [9]. The
changes that can occur in a process could be addition, deletion, modification, split and
merge in its different activities [29]-[33]. All these changes may impact the provider
as well as the consumer. First, consider the provider’s perspective. The provider may
be interested in knowing the nature and quantum of evolution that has taken place in
the process. The evolution in a process may involve changes in the interactions with
the external services or may involve changes in the internal logic of the process.
Therefore, changes in a process could be categorized, as per their nature, into External
and Internal changes. These changes are measured for the provider. Now, consider the
consumer’s perspective. Changes may affect the consumer in terms of the usefulness
of the process. This impact on the process usefulness is measured for the consumer.

Let us understand both of these perspectives with an example.

As an example, consider a Travel Booking process, TB versionl which coordinates
with the consumer, Employee and the Airline web service and provides the
functionality of booking the flight for an Employee. Activities in this version are
‘receive TB request’, ‘invoke Employee service’ (to retrieve Employee Travel

47

details), ‘receive Employee service’ (to receive travel status), ‘invoke Airline service
(for travel booking), ‘receive Airline service’ (receive booking details), ‘invoke
consumer’ (to reply travel booking confirmation)’. Let a Privilege functionality is
added in the Airline service, which provides the Employee an opportunity to book a
Hotel, rent a Car or subscribe for a magazine along with the discount given by the
Airline. The process accommodates the newly offered functionality by the Airline
service for the Employee. Therefore, in TB version2, ‘invoke Airline service’ (for
availing Privileges) activity and ‘invoke consumer’ (for returning Privilege
confirmation details) activity are added. These changes involve interactions with the
external partner services. In this sense, these changes are external changes. Now,
suppose a new version TB version3 is created in which a wait activity is added in the
process to wait for some duration to perform functionalities of TB version2. This is an
internal change in the process. Clearly, there are two types of process evolution, one
is external in nature and other is internal in nature. This shows the nature of evolution
which has taken place in the process for the provider. Now, let another version of the
process, TB version4, be created in which the offered functionalities in TB version2
are deleted. Due to this change, there is an impact on the usefulness of the process.
This is because the consumer was offered a new functionality in TB version2 but on
the other hand, this functionality is removed in TB version4. This shows the impact

on the usefulness of the process for the consumer.
Therefore, following questions arise.

1) “What” and “by how much” the process has changed?

2) How much is the process useful for the consumer?

To provide answers to the above questions, we propose BPEL process Evolution
Metrics (BEM, and BEMg) for the provider to measure evolution in the process.
BPEL process usefulness metric is defined for the process consumer. BPEL Process
Usefulness Metric under Evolution in a positive sense (BUMEp) metric and BPEL
Process Usefulness Metric under Evolution in a negative sense (BUMEy) metric is

used to measure the impact on the usefulness of the BPEL process when it evolves.

48

The layout of this chapter is as follows. Section 4.2 defines the BPEL Process. In

section 4.3, BPEL evolution metrics for the provider and BPEL process usefulness

metrics for the consumer are presented. The time complexity of all the metrics is

discussed in section 4.4. Experiments and metrics analysis is given in section 4.5 for

all the proposed metrics. The formal validation of metrics using Zuse framework is

presented in section 4.6. Finally, the chapter is concluded in section 4.7.

4.2 WS-BPEL Process

WS-BPEL process is used to accomplish the orchestration of multiple web services. It

specifies the business process behavior to perform the tasks to achieve a business

goal. A process consists of two types of activities: basic and structured. We now

briefly discuss these activities in Table 4.1.

Table 4.1: WS-BPEL process activities

Type

Definition

Activities

Basic

Used in performing basic steps of a BPEL
process

invoke: Invoking a web service.
receive: Waiting to receive a
message.

reply: Send a response in response of
the request sent previously.

assign: Manipulating data variables
throw: Signaling fault explicitly
wait: Specify a delay or wait until a
deadline is reached

empty: Do nothing

exit: Immediately end process
instance

rethrow: Used in fault handlers to
rethrow fault caught

Structured

Describe the order of execution of the activities

sequence: Contains activities that
will be performed in a sequence
flow: Defining a set of activities that
will be executed in parallel.

if: Implementing decisive behavior.
pick: Selecting one of a number of
alternative paths.

while: Defining loops.

repeatUntil: Executes a loop atleast
once

forEach: Executes a loop using
counter

49

We use BPEL 2.0 standard to compute the metrics. In the next section, we present the

metrics.

4.3 Proposed Metrics for a Composite Service — Orchestration

As discussed in section 4.1, metrics are proposed for both the provider and the

consumer. First, we define metrics from the provider’s perspective.

4.3.1 BPEL Process Evolution Metrics (BEM,and BEMg)

The evolution metrics are proposed to provide a measure of the nature and quantum of
evolution that has occurred in a process for the provider. The evolution of a BPEL
process is analyzed along internal and external changes. These changes are

categorized as below.

1. Internal Changes: Changes in BPEL activities such as If, wait, while, assign etc.
may occur. These changes are internal to the process itself i.e. they do not involve
interactions with the external services. For example, addition of a wait activity is an

internal change.

2. External Changes: A process uses external services to accomplish the required
business functionalities. It interacts with these services via invoke, receive, reply
activities. Any change in these interactions is classified as an external change. For

example, addition of an invoke activity is an external change.

Table 4.2 provides a detailed list of the changes in the process activities.

Table 4.2: Category of changes for a WS-BPEL process

Category Type of change: Activities in the WS-BPEL process

External Add/Delete/Modify/Split/Merge: invoke, receive, reply

Internal Add/Delete/Modify/Split/Merge: throw, rethrow, wait, sequence,
if, while, repeatUntil, forEach, pick, flow, assign, exit, empty

50

Now, we define metrics for measuring the evolution of a process. Metrics are defined

for both categories of changes.

When a process changes, a new version is created. The metrics are computed for
changes in different activities across different versions of a process. Now, to define
the metrics, let x and x+1 be two versions of a process and let, Txx+1 denote the table
containing the changes between them. Let i be an activity and C; (Txx+1) be the
number of changes for that activity stored in the table Txx+.1. For example, a
sequence activity can undergo a number of changes such as addition, deletion etc.
Suppose 3 wait activities are added in the table Ty x+1, then the value for C; is 3. When
the context of the changes is unambiguous Txx+1 iS not mentioned while defining the

metrics.

1. Internal Evolution Metric (BEM)):

BEM.:E?—”?fi (4.1)
where n is the count of the total number of types of changes in ‘Internal’ change
category, C; is the count of changes for i type of change within this category and w;
is the weight for the i type of change. The weight is computed as a proportion of the
number of changes for each type of change within the ‘Internal’ change category to
the total number of changes in the category. For example, if in a process, two wait
activities are added (C;) and one throw activity is deleted (C,) then there are two
types of changes i.e. n=2. Cy is 2 and w; is 2/3; C, is 1 and w; is 1/3. So, BEM; = (
(2/3)*2 + (1/3)*1)/2 = .83

2. External Evolution Metric(BEME):

m . .
2 wi* G

BEM = (4.2)

where m is the count of the total number of types of changes in ‘External’ change

category, C; is the count of changes for j™ type of change within this category and Wi

51

is the weight for the j™ type of change. For example, if invoke activities are added
and modified then there are two types of changes i.e. n=2. If 3 invoke activities are
added and 2 are modified then C; is 3 & wj is 3/5 and C, is 2 & w» is 2/5. So,
BEMe= ((3/5)*3 + (2/5)*2)/2=1.3

In the next section, we discuss the metrics defined for the consumer’s perspective.
4.3.2 BPEL Process Usefulness Metric under Evolution (BUMEr and BUMEy)

In this section, we propose two metrics for the BPEL process that is, BPEL Process
Usefulness Metric under Evolution in a positive sense (BUMEp) and BPEL Process
Usefulness Metric under Evolution in a negative sense (BUMEy). Both the metrics
are meant to provide a measure of the impact of process evolution on its usefulness
for the consumer. Different changes in the process have a different impact on the
usefulness for the consumer. Some changes make the process favorable to the
consumer; some do not and some are neutral. We classify the changes into three
categories namely Favorable, Unfavorable and Indifferent as per their impact on the
usefulness. Then, we define metrics for each category. Finally, BUMEp and BUMEy

are computed by combining the individual metrics for all the three categories.

We first define the categories.

1. Favorable changes: These changes make the process more useful to the
consumer. For example, addition of invoke activity is a favorable change as new
functionalities are added for consumer by invoking a service; addition of throw is a
favorable change because it adds fault signaling activities in the process which makes
it more advantageous for the consumer in case a fault occurs; addition of

documentation makes the process more understandable and easy to use for consumer.

2. Unfavorable changes: These changes make the process less useful to the
consumer. For example, deletion of invoke activity deprives consumer from the
functionality that she/he may be using; deletion of If activity deprives the consumer

from the choices that were available to her/him earlier.
52

3. Indifferent changes: These changes have a negligible impact on the consumer i.e.
the usefulness of the process remains almost the same. For example, merging of
invoke/sequence activities will not affect the consumer in the sense that the

functionalities provided by the process will still be accessible to the consumer.

We now present the above classification in detail in Table 4.3. This table lists all the

changes in each category for basic and structured activities of a process.

Table 4.3: Category of changes for usefulness of a WS-BPEL process

Category Activity Changes in Activities

Favorable Basic Add: invoke, receive, reply, throw, rethrow, wait,
documentation

Structured | Add: sequence, If, while, repeatUntil, forEach, pick, flow
Unfavorable | Basic Delete: invoke, receive, reply, throw, wait, rethrow,
documentation

Structured | Delete: sequence, If, while, repeatUntil, forEach, pick, flow
Indifferent Basic Modify/Merge/Split: invoke, receive, reply, throw, wait,
rethrow, assign, empty, exit

Add: assign, empty, exit

Delete: assign, empty, exit

Modify/Merge/Split: sequence, If, while, repeatUntil,
forEach, Pick, flow

Structured

Next, the metrics for each category are defined. We define each individual metric for
basic and structured activities under each category and then combine both of them to

compute the metric for the respective category.
1) BPEL Usefulness Metric under Evolution for Favorable changes (BUME):
First, we define the metric for basic activities.

Addition of different basic activities have a different degree of impact on the
consumer i.e. how much favorable the process has become for the consumer after
their addition. This degree of impact is used to classify these activities into different

groups as shown in Table 4.4. Weights proportional to the impact are assigned to each
group.

53

Table 4.4: Basic Activities for Favorable Changes

Group Impact on consumer | Change in Basic Activity Weight
1 High Add: invoke, receive, reply | Wi=.6
2 Medium Add: documentation, throw | W,=.3
3 Low Add: wait, rethrow Wa-.1

The metric for basic activities for favorable changes is computed using Table 4.6 as
BUMEs = X7, w; * G; (4.3)

where i is the group number, G; is the total number of additions of activities in i

group and w; is the weight for i group.
Next we compute the metric for structured activities for favorable changes.

Here, we define four metrics: Choice Metric (corresponding to If activity), Iteration
Metric (corresponding to while, repeatUntil and forEach activities), Selection Metric
(corresponding to pick activity) and Sequence and Parallel Metric (corresponding to
sequence and flow activity). These are combined to define the metric for structured

activities for favorable changes. Now we discuss them in detail.

Choice Metric (Fcm): Addition of If may give rise to a new choice for the consumer.

Fcm gives a measure of how much more the process is after addition of choices.

Fca
Font Fe when FCA’FC >0
FCM = FCA , when FCA >0, FC =0 (44)
| 0, when Foy=0,F,>0or

FCA = O,FC = 0

where Fca is the count of choices added and F¢ is the count of choices in the process
before additions.

Iteration Metric (Fyv): The loops while, repeatUntil and forEach executes the

contained activities based on the count of the specified iterations. Fy is a measure for

54

the offered functionalities after addition of loops. We compute the metric by
considering the number of activities in the added loops and the number of iterations
added for those added loops.

Fraxn

m, when F,A,n,m,FI >0

Fim =4 F;,*n,when Fi;,n>0;F,orm >0 (4.5)
| o, when F;y orn = 0;F;,m > 0 or
k Fiporn=0,F, orm = 0;

where Fa is the number of activities added in each added loop, n is the number of
iterations specified for Fia, Fyis the number of activities in the loops before additions,

m is the number of iterations for F.

Selection Metric (Fsm): A pick activity is used to select one event on the basis of a

particular message received or on the basis of an alarm. The metric is

1

F
1M—/AAl,When FM/AAIFM/A >0

Fm/aa Fmya

FSM =9 ! , when FM/AA > OIFM/A =0 (46)
Fmyaa

0 , When FM/AA = OlFM/A > 0 or

\ FM/AA'FM/A =0

where Fyaa is the number of onMessage/onAlarm activities added in the added pick
activities and Fyya is the count of onMessage/onAlarm activities in the process before
additions in the process.

Sequence and Flow Metric (Fspm): Fspm provides a measure of the functionalities in

the form of a set of activities performed in a sequence or in parallel. The metric is

55

Fsa Fra
F5A+F5+FFA+FF’ when Fgg, Fg,Fpa, Fr > 0

F5A+FFFA , when Fsq>0,Fs=0; Fpp,Fp > 0
Fat Fr

FFZTFF , when Fs, =0,Fg >0; Fpq,Fp > 0or
Fss,Fs=0; Fpg,Fp > 0
Fsa +FFA; WhenFSA,F5>O; FFA>01FF= 0

- F — .
Fspm = § FSAinS ,When FFA = O,FF >0or Fpa, Frp > 0; (47)
Fga,Fs>0

F5A+ FFA,WhenFSA >O,FS=0; FFA>O,FF= 0
FSA’ whenF5A>0,F5=0; FFA :O,FF > 0;
OTFFA=O,FF=O
FFA,WhenFFA>O,FF:O; FSA :O,FS >0
OT'FSA = O,FSZ 0
O, WhenFFA,FF,FSA, F_g: 0

where Fsa is the number of activities added in sequence, Fs is the total number of
activities in sequence in the process before additions, Fra is the number of activities
added in flow and F is the total number of activities in flow in the process before

additions.

Different types of computations are used in each of the individual metrics above.
Therefore, to combine all these metric values, we use mean of these metrics to reflect

the value appropriately. Therefore,

BUMEgs = Fcm +FIM+4FSM+FSFM (4.8)

Next, the metric for the favorable changes is computed by combining metrics for

Basic and Structured activities.
BUMEF:BUMEFB‘l‘ BUMEFS (49)
2) BPEL Usefulness Evolution Metric for the Unfavorable changes (BUMEg):

First, we define the metric for basic activities.

56

The deletion of different basic activities has a different degree of impact on the
consumer in terms of how much unfavorable the process becomes for the consumer.
We classify these activities into different groups as shown in Table 4.5. Weights

proportional to the impact is assigned to each group.

Table 4.5: Basic Activities for Unfavorable Changes

Group Impact on consumer Change in Basic Activity Weight
1 High Delete: invoke, receive, reply | Wi=.6
2 Medium Delete: documentation, throw | W,-.3
3 Low Delete: wait, rethrow Ws-.1

The metric for basic activities for Unfavorable changes is computed using Table 4.7.
BUMEUFB = Z'}g-:l Wj * Gj (410)

where j is the group number, G; is the total number of deletions of activities in i

group and w; is the weight for each group.
Next, we compute the metric for structured activities for Unfavorable changes.

Here also, we define four metrics: Choice Metric (corresponding to If activity),
Iteration Metric (corresponding to while, repeatUntil and forEach activities),
Selection Metric (corresponding to pick activity) and Sequence and Parallel Metric
(corresponding to sequence and flow activities). These are combined to define the

metric for structured activities for Unfavorable changes. The metrics are defined

below.

Choice Metric (UFcm): UFcm gives a measure of how much the process has become

less useful after deletion of choices.
YPD when UFqp, UF,; > 0
UF¢

UFem =9 0, whenUF.p =0,UF. > 0or (4.11)
UFCD = 0, UFC =0

57

where UF¢p is the count of choices deleted and UF¢ is the count of choices in the

process before deletions.

Iteration Metric (UF): UFv is used to measure by how much the process has

become less useful for the consumer after deletion of loops.

UFip*n
ﬁ, when UF;p,n,m, UF, > 0
I*

UFim = 0, whenUF,porn=0,UF, m > 0 or (4.12)
UFjporn=0,UF, m=0

where UFp is the number of activities deleted in the deleted loop, n is the number of
deleted iterations in UF,p , UF,is the number of count of activities before deletions, m

is the number of iterations in UF,.

Selection Metric (UFsy): UFsm gives a measure of how much the process becomes

less useful when selection activities are deleted from the process.

1
(UFp/AD

—_— when UFM/ADIUFM/A >0

UFSM = UFM/A (413)
0 B when UFM/AD == O, UFM/A > 0,

|
k UFM/ADlUFM/A =0

where UFwap be the number of onMessage/onAlarm activities deleted and UFyya be

the total number of onMessage/onAlarm activities in the process before deletions.

Sequence and Flow Metric (UFsgm): UFspm provides a measure of how many
functionalities are reduced in the form of a set of activities performed in a sequence or

in parallel. The metric is

25b 2D when UFsp, UFs, UF pp, UFE > 0

UFg UFR
\when UFgp > 0,UFs = 0; UFsp = 0,UFg > 0;
UFsp,UFs =0 ;UFpp,UFp >0
UFstm = U550 when UFpp > 0,UFy =0; UFpp = 0,UFf > 0 (4.14)
or UFsp, UFy = 0; UFgp, UFs > 0

UFfgp

F

0, when UFFD,UFF,UFSD,UFSZ 0

58

where UFsp be the number of activities deleted in the sequence, UFs be the count of
activities in the sequence before deletions, UFgp be the number of activities deleted in

the flow and UFg be total number of activities in flow before deletions.

All the above calculated metric values are now combined to compute BUME ys.

UFcym +tUFMm +UFsy+UFsEMm

BUMEUFS = 2

(4.15)

Next, BUMEg is computed by combining metrics for basic and structured activities.
BUMEyr = BUMEyrg + BUMEyrg (4.16)
3) BPEL Usefulness Evolution Metric for the Indifferent changes (BUME)):

The nature of the impact on the consumer for Indifferent changes in process activities

makes the metric computation as a summation of all these changes.
BUME, = %* YP_ I (4.17)

where p is the total number of activities for Indifferent changes, Ix is the number of

changes in the k™ activity.

Now, we compute BPEL Process Usefulness Metric under Evolution in a positive
sense (BUMEp) and BPEL Process Usefulness Metric under Evolution in a negative
sense (BUMEy) by combining the metrics defined in Equation (4.9), Equation (4.16)
and Equation (4.17). This is done because a consumer is always interested in knowing
the impact on the overall usefulness when a process evolves. Weights are assigned to
each category bearing in mind that each category has different significance in terms of

the impact of changes on the usefulness of process for the consumer.

We denote We=, Wy, W)+ as the weights for Favorable, Unfavorable and Indifferent
changes respectively. We assign We= = .4, Wy = .4, Wj» = .2 SO that We= + Wypx + W=
=1.

59

The usefulness metric in a positive sense is denoted as BUMEg. In this case, (Wg=*
BUMEEr + wi=* BUME|) >= Wyup«* BUMEE.

BUMEP = (WF* * BUMEF + WI* * BUMEI) - WUF* * BUMEUF (418)

The usefulness metric in a negative sense is denoted as BUMEy. In this case, (Wgs*
BUMEr+ w;=* BUME;) <= wyp+* BUMEE.

BUMEN = wyp, * BUMEy; — (wpg, * BUMER + w;, * BUME,) (4.19)
4.4 Experiments and Analysis

First, we show the experiments for the BPEL Evolution metrics i.e. BEM, and BEMg

metrics which are proposed for the provider.

A web service is invoked using client code. When a service undergoes changes, its
corresponding client code may also undergo changes. In chapter 3, changes in a web
service have been classified into three categories which are Mandatory changes,
Optional changes and Trivial changes. Corresponding to these categories, metrics
were proposed which are SCEMy, (for mandatory changes), SCEMo (for optional
changes) and SCEM+ (for trivial changes).

A WS-BPEL process is the consumer of web services. When a service changes, the
process may have to accommodate the corresponding changes - depending upon the
type of changes. The metrics proposed in this chapter and in chapter 3 are shown to be
cohesive. For example, when service client code metrics reflect the mandatory
changes in service, then BEM, and BEMg metrics of a process must exhibit a value
indicating that a change has occurred for the successful execution of the process. This
cohesiveness is demonstrated with the help of an example.

The example of Booking process from Oracle Technology Networks
http://www.oracle.com/technetwork/articles/matjaz-bpel1-090575.html is taken. It has
two partner services: Airline and Employee services. Employee service is used to give

travel status of employee to the process and then based on this status Airline service
60

returns airline booking details to process. Service and WS-BPEL process code which

is taken from the reference cited above are modified. The modified versions are

shown in Table 4.6.

Table 4.6: Description of the changes in the service and process

Vers | Changes in
ions | Airline Service

Service
Version

Changes in the BPEL

Process

BPEL
Versi_on

1 Addition:

Update & Cancel and
Refund functionality

|

Airline WSDL Version 1.wsd!

Addition of activities for
Travel Update & Cancel
and Refund functionality

Travel BPEL Version 1.bpel

Deletion: Travel
Update & Cancel and
Refund functionality

Airline WSDL Version 2.wsdl

Deletion of activities for
Travel Update
functionality
Deletion of activities for
Cancel and Refund
functionality

Travel BPEL Version 2.bpel

documentation

Airline WSDL Version 5.wsdl

3 Addition: I Addition of activities for | <l
Privilege functionality | """ Client Privilege ’
functionality
4 Addition of | No change
Schedule functionality
5 Addition J No change |

Travel BPEL Version 5.bpel

Service version V; (i > 2) is compared with service version V; and the changes are

stored in the table SV, in the database. The second column of Table 4.4 lists these

tables. Similarly, tables for WS-BPEL process are listed in the fourth column of Table

47.
Table 4.7: Metrics for the Airline service and the Travel booking process
S.No. | Service Service metrics | Process Process
Version Version metrics
Table Table
1 SVi, SCEMy=2.44 BV, BEM,=3.00
SCEM=0.00 BEMg=3.33
SCEM+;=0.00
2 SV1’3 SCEMM:OOO BV1,3 BEM|2180
SCEM=3.31 BEM=0.80
SCEM=0.00
3 SV1,4 SCEMNFOOO BV1,4 BEM|=OOO
SCEMy=2.44 BEM=0.00
SCEM=0.00
4 SVis SCEM,,=0.00 BVis BEM,=0.00
SCEMy=0.00 BEM=0.00
SCEM=1.86

61

Metrics in chapter 3 and the metrics proposed in this chapter are shown in Table 4.4.

Next, we analyze the metrics.

1) Mandatory changes: SCEMy, > 0 and BEM, and BEMEg have positive values
for SV, and BVy, . Therefore, there is a clear synchronization between mandatory
changes in service client code vis-a-vis changes in the process.

2) Optional changes: Metrics for SVi3 and SV14 show optional changes. The
process may accommodate (as in BV13) or may not (as in BV14). Again, clearly, the
changes are synchronized.

3) Trivial changes: The last row shows that the process is unaffected by the

changes in SV 5.

Now, we show the experiments for the metrics i.e. BUMEp and BUMEy which are

proposed for the consumer.

We simulate the changes (additions, deletions, change, split and merge) for the basic
and structured activities of a process due to the non-availability of public WS-BPEL
process versions. Starting with Version 1 of a process, changes are simulated to create
Version 2. These changes between Version 1 and Version 2 are recorded in a database
and denoted as Version 1&2. Next, Version 2 is picked up; changes are made and
recorded as Version 2&3. Continuing in this way, we generate changes between
versions till Version 10&11. We then compute the metrics. The results are shown in
Table 4.8.

Table 4.8: Metric values for a WS-BPEL process

Version/ 1& |2&3 | 3& | 4& | 5&6 | 6& & 8& 9& | 10&
Metrics 2 4 5 7 8 9 10 11
BUMEE 548 | 548 | 548 | 548 | 1046 | 17.94 | 23.17 | 23.15 | 23.14 | 23.12

BUME ¢ 0.00 | 513 | 7.72 | 983 | 761 | 7.60 | 7.83 | 8.14 | 8.13 | 8.44
BUME;, 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 10.23 | 19.62 | 34.69
BUME, 2.792 | 0.74 - - 1.74 | 4736 | 6.736 | 8.05 | 9.928 | 12.81

BUMEy - - 1.496 | 2.34 - - - - - -

62

From the table, it is clearly seen that when BUMEp increases, the usefulness of the
process also increases and vice-versa. On the other hand, usefulness is inversely
proportional to the values of BUMEy. We now present a detailed analysis of the

metrics.

1) Constant BUMEr & BUME,, Increase in BUMEyg: The value of BUMEp reflects
that when unfavorable changes increases, the usefulness of the process for the
consumer decreases. This is seen from the values of the metrics for Versionl&2,
Version2&3 in Table 4.8. Whereas, metrics for Version 3&4 and Version 4&5, shows
that the higher the value of BUMEy, the lesser is the usefulness.

2) Constant BUMEyr & BUME,, Increase in BUMEE: The value of BUMEp reflects
that when favorable changes increase, the usefulness of the process for the consumer
also increases. This is seen in the Version5&6, Version6&7 and Version7&8 in Table
4.8.

3) Constant BUMEF & BUME_g, Increase in BUME,: The value of BUMEp reflects
that the increase in indifferent changes has very slight positive impact on the
usefulness of the process for the consumer. This is seen in the Version8&9,
Version9&10 and Version10&11 in Table 4.8.

From the above analysis, it can be seen that our proposed metrics BUMEp and
BUMEy appropriately reflects the impact on the usefulness of a WS-BPEL process

for the consumer when it evolves.

4.5 Time Complexity

Information about the evolution in a service is stored in a table. Each row of the table
specifies changes for each activity of the process. The table has five columns. The

column headers are

1) Process versions (evolution data between these two versions is stored)

2) Activity (lists the activities of a process)

63

3) Number of changes (the number additions/ deletions/ modifications/ split/merge for
each activity)

4) Number of activities in previous version (count of each activity present in the
previous version)

5) Change category (type of change for the process i.e. Internal, External, Favorable,
Unfavorable or Indifferent)

Whenever a new version of the process is created, a new table is created to store the
changes between this version and its previous version. Then, information of these
changes is inserted into that table. Next, the proposed metrics are computed by using
evolution data which is stored in the corresponding table. Different metrics use

different columns to retrieve the data.

The data from the table is accessed sequentially for the metrics computation.
Therefore, if n is the number of rows in a table, then the time complexity of the

metric’s computation is O(n).

Table 4.9 shows an entry for the evolution data stored in the table for an invoke
element.

Table 4.9: Table showing changes for invoke element

Process |Activity Number of activities| Number of | Change category
versions in previous version | changes
2&3 |invoke 7 Add 1 | External, Favorable
Delete | 2 | External, Unfavorable
Modify | 0 | External, Indifferent
Split 0 | External, Indifferent
Merge | 1 | External, Indifferent

4.6 Metrics Formal Validation

All the proposed metrics are theoretically validated using Zuse framework as given in

Table 3.8 in chapter 3. Now, we present formal validation of the BEM,.

BEM, Metric Formal Validation

Let, there be a process P having n versions. Between any two process versions,

evolution data is computed and stored in a table. This table is referred to as a
64

difference table. Let, there be two process versions i.e. x and x+1. Let, their difference
table be denoted by Diffy x+1. Let F be the set of all difference tables.

Consider BEM,. The measure BEM, is a mapping: BEM;,: Diff-> R such that the
following holds for all tables Diffy x+1, Diffyy.1 € Diff: Diff, x+1 >= Diffyy+1 © BEM,

The concatenation operation for combination rule is denoted as follows.
BEM| (Diffx1x+1 0 Diffy’y+1) = BEM| (Diffxyx+]_U Diffyyy+1)

where Diffyx1 U Diffyy. is the table which contains changes (distinct) in the two

BEM, and the Modified Extensive Structure

MET1: The binary relation *>=is known to be weak order when it is transitive and
complete. Let Diffy,, Diff;4 and Diffsg be the three tables where Diffy, , Diffs, ,
Diffs ¢ ¢ Diff. It must be true that either BEM, (Diff,,) >= BEM, (Diff;4) or BEM,
(Diff;34) >= BEM, (Diffy). Thus, the property of completeness is fulfilled. Now,
consider the transitivity property. If BEM, (Diff;,) >= BEM, (Diff;4) and BEM,
(Diff; 4)>= BEM, (Diffs¢) then it is obvious that BEM, (Diff;,)>= BEM, (Diffsg).
Thus, the transitive property is also accomplished. Therefore, BEM, fulfills MEL.

ME?2: It can be seen that when two tables are combined then the value of the metric
BEM, is larger than the value of the metric for each of those tables. Thus, BEM,
(Diffy » 0 Diff3 4) >= BEM, (Diffy). This proves ME2 for BEM,.

ME3: When weak associativity rule is applied to metric BEM,, formulation of rule
becomes, BEM, (Diff;, o (Diff;4 0 Diffsg)) = BEM, ((Diff,, 0 Diff;4) 0 Diffsg).
The concatenation operation for the metric is Union operation. It is known that the
union operation is associative, therefore, BEM, (Diff; , U (Diff34 U Diffsg)) = BEM, (
(Diff; 2 U Diff34) U Diffs6). ME3 is satisfied.

65

ME4: The weak commutative axiom for the metric BEM, is stated as BEM, (Diff;, 0
Diff; 4) = BEM, (Diffs4 0 Diffy5). This means that BEM, (Diff1, U Diffs4) = BEM;
(Diff; 4 U Diffy5). It is known that the union operation is commutative. Hence, BEM,
fulfills ME4.

MES5: The property of weak monotonicity is stated as BEM, (Diff,,) >= BEM,
(Diff; 4) = BEM, (Diffy; 0 Diffsg) >= BEM, (Diff3 4 0 Diffs). To prove BEM, (Diff; ,
U Diffs) >= BEM, (Diff;4 U Diffs¢) (given BEM, (Diff,,)>= BEM, (Diffs4)), let the
count of common changes between Diff;, and Diffsg be more than the count of
common changes between Diff;, and Diffs. Since these common changes appear
once after applying concatenation operation, then the resultant metric computed based
on their concatenate tables be BEM, (Diff;4 U Diffsg) >= BEM, (Diff» U Diffsg).
Therefore, BEM, does not fulfill this axiom.

MES6: Idempotent property is considered here to prove this axiom. A metric is
idempotent going by definition of concatenation operation i.e. BEM, (Diff; , 0 Diffy)
= BEM, (Diffy). Therefore, BEM, does not fulfill this axiom.

It is concluded that the modified extensive structure is not fulfilled by BEM,.

BEM, and the independence conditions

IC1: To prove this condition, it has to be shown that BEM, (Diff,, o Diffsg) = BEM,
(Diff; 4 0 Diffsg) and BEM, (Diffs ¢ 0 Diff;,) = BEM, (Diffs 0 Diffz4) given BEM,
(Diffy) = BEM, (Diff; 4). Now, BEM, (Diff,, U Diffsg) may be or may not be equal
to BEM, (Diff;4 U Diffsg) because the changes (which are common) in Diff;, U
Diffs ¢ and Diff;4 U Diffs ¢ may not be the same. The same is true between BEM;
(Diffs g U Diffy 5) and BEM, (Diffs ¢ U Diff3 4). Hence, this condition is not fulfilled.

IC2: When a metric does not accomplish IC1, it will also not fulfill IC2. The metric
BEM, does not fulfill IC1 and therefore does not fulfill I1C2.

IC3: When a metric does not accomplish fifth axiom of the modified extensive

structure, it will also not fulfill this condition which is the case with BEM,.
66

IC4: A metric not satisfying the condition IC3 cannot accomplish the condition 1C4.

Hence, BEM, does not accomplish 1C4.

Therefore, BEM, does not fulfill independence conditions.

BEM, and the modified relation of belief

MR1: When ME1 of modified extensive structure is fulfilled by a metric, then it also
satisfies MR1. BEM,; fulfills ME1 of modified extensive structure (proved above) and
therefore, BEM; satisfies MR1.

MR2: If ME1 of modified extensive structure is satisfied by a metric then that metric
satisfies MR2. BEM, fulfills ME1 of modified extensive structure and therefore, it
satisfies MR2.

MR3: Suppose that all the changes of the table Diff;4 are included in Diffs; 5, then
BEM, (Diff, ;) >= BEM; (Diffs34). Thus, this axiom is satisfied.

MR4: In order to prove MR4, let all the changes of the table Diff;4 are included in
Diff,, and Diff;, N Diffsg = @. Then it needs to be proved that BEM, (Diff34)>=
BEM, (Diff;,) = BEM, (Diff;4 U Diffss) >= BEM, (Diff;, U Diffs¢) needs to be
proved. Due to the fact that BEM, (Diff; 4)>= BEM, (Diff;) and that there are no
common changes between Diff; 4, and Diffsg , the value of BEM, (Diff;4 U Diffsg)
will be more than BEM, (Diff;, U Diffsg). This proves that the metric BEM, satisfies
MRA4.

MR5: This axiom is also satisfied because changes in a process cannot be less than 0.

Therefore, BEM, fulfills the modified relation of belief. Thus, BEM, is a measure

above the level of the ordinal scale.

Other metrics i.e. BEMg, BUMER and BUMEy have also been validated using Zuse
framework. All the metrics are found to be above the ordinal scale. The results of

applying the framework to all metrics are shown in Table 4.10.

67

Table 4.10: Summary of formal validation of metrics of a WS-BPEL process

Metrics/Axioms | BEM, BEMg BUMEp BUMEy
ME1 Y Y Y Y
ME2 Y Y Y Y
ME3 Y Y Y Y
ME4 Y Y Y Y
ME5 N N N N
ME®6 N N N N
IC1 N N N N
1C2 N N N N
IC3 N N N N
1C4 N N N N
MR1 Y Y Y Y
MR2 Y Y Y Y
MR3 Y Y Y Y
MR4 Y Y Y Y
MR5 Y Y Y Y
Scale Above Above Above Above

ordinal ordinal ordinal ordinal
4.7 Summary

In this chapter, we proposed metrics for an evolving process. Perspectives of both the

provider as well as the consumer have been considered while proposing metrics.

For the provider, firstly, in order to understand what types of changes have occurred
in a WS-BPEL process, two categories of changes are proposed: Internal and External
changes. Subsequently, to estimate the amount of changes, metrics are defined for
each of these categories. The corresponding metrics are Internal Evolution Metric
(BEM)) and External Evolution Metric (BEMg). Also, these metrics truly reflect the

cohesiveness of changes in a process vis-a-vis changes in services.

For the consumer of the process, BPEL Process Usefulness Metric under Evolution in
a positive sense (BUMEp) and BPEL Process Usefulness Metric under Evolution in a
negative sense (BUMEY) are proposed. They are defined for computing the impact on

the usefulness for the consumer as a process evolves.

All the proposed metrics have linear time complexity. The metrics are validated

theoretically using Zuse framework and are found to be above the ordinal scale.
68

Chapter 5

Metrics for an Evolving Composite Service -
Choreography

5.1 Introduction

Service composition can be achieved through choreography [79][80]. Choreography
refers to the collaborations between interacting services. Continuing with our
approach of studying changes via metrics, in this chapter we propose metrics for an

evolving composite service which is composed via choreography (WS-CDL process).

A choreography involves peer-to-peer interactions between participants (web
services) having different roles [11]. The different kinds of changes that can occur in
choreography are addition, deletion, modification, split or merge of the participants
and interactions [34]-[37]. Among these changes, there are some changes which are
additive in nature i.e. addition, modification and split and some are subtractive in
nature i.e. deletion and merge. Both of these changes are considered while proposing

metrics for a choreography as it evolves.

We propose metrics to measure changes in the entities (participant/role/interaction)
of a choreography. These metrics take into account each kind of change in these
entities i.e. additive changes and subtractive changes. To do so, two metrics are
proposed, one is Additive Evolution Metric (AEM™) and the other one is Subtractive
Evolution Metric (SEM"). The former metric is used to measure the changes which
increase the number of entities that take part in the choreography and the latter gives a
measure of the decrease in the number of entities that were participating. Evolution
Metric (EM) is proposed to quantify the total evolution by taking into account both
kinds of changes i.e. additive as well as subtractive changes. A case study is used to
empirically show the applicability of the proposed metrics. To theoretically validate
the metrics, Zuse Framework has been used.

69

The layout of this chapter is as follows. Section 5.2 defines the WS-CDL process.

In

section 5.3, evolution metrics are discussed. Experiments and analysis are shown

using a case study are presented in section 5.4. Finally, the chapter is concluded in

section 5.5.

5.2 WS-CDL Process

A WS-CDL process is used to compose different web services. Each web service
is a participant which interacts with each other to attain a global goal of the
choreography. WS-CDL is an XML based description language and not an
executable language. Therefore, the aim of the WS-CDL process is to describe
peer-to-peer collaborations (interactions) among the participants [11]. It represents
the global perspective of the participant’s interactions rather than from the
perspective of a single participant. It aims to serve the purpose of defining abstract
interactions among participants (services). The different entities of a WS-CDL

process are listed in Table 5.1.

Table 5.1: WS-CDL process entities

S. No Entity Description

1 Interaction a realization of the collaboration between two peers

2 Roles Interactions takes place between different roles

3 Participants a physical entity which realize the interaction

4 Relationships declares the intention of the interaction

5 Information types declares type of the variables to be used in the
choreography

6 Tokens and Token is an alias for an information type and

Locators Locator is used to locate a particular token

generally in an XPath query

7 Channels a medium for the interaction to happen

8 Choreographies define how the interaction would occur, in
sequence/parallel/loop

Clearly, the above discussed entities could be divided into two parts: one part is of
the entities from serial no. 1 to 3 which describes the collaborations and the other
part is of entities from serial no. 4 to 8 which are used in describing on how the
collaborations would take place. Therefore, our focus is on the first part as they

are the principal components of the WS-CDL process.

70

In the next section, we propose metrics for a WS-CDL process under evolution.

5.3 Proposed Metrics for a Composite Service - Choreography

Essentially, a choreography aims to accomplish multi-party interactions to achieve a
global goal. WS-CDL document consists of many entities such as interaction,
roleType, variable, token, informationType, while etc. From an external global
perspective, a choreography can be viewed essentially as interactions between
participants in a certain role. When a choreography undergoes changes, it can be
viewed from two different perspectives. One is the structure of the WS-CDL
document, the other is from the perspective of the interactions. In this work, changes
in the interactions are addressed. These interactions do not happen in a vacuum but
between participants having some roles. Thus, changes in the entities:

participantType, roleType, interaction, are the focus of the study.

In a WS-CDL process, there are participants with roles which interact with each other.
There could be changes in the existing participants such as deletion of their existing
roles or interactions or there could be addition of new participants with new roles and
interactions. In other words, changes which occur in these entities could be in the
existing participants/roles/interaction or in newly added

participants/roles/interactions.

As brought out in section 5.1, metrics are proposed for the above discussed changes.
The changes themselves can be addition, modification, split, deletion and merge. The

metrics take into account these changes for the entities under focus.

We use these metrics to measure the changes across different versions of a WS-CDL
process. Let there be a version i of a process, CDL;. When it changes, its new version
CDLi4; is created. A Difference Table, Diff;;.1, is maintained which contains all

changes when CDL,; evolves to version CDL,.1.

71

Here, the following terms and acronyms are used.

Peer: participant involved in an interaction

Already Interacting Peer (AIP): peer involved in interactions in current version of
choreography

New Interacting Peer (NIP): peer involved in newly added interactions in current
version of choreography

Old Participant (OP): Participant in the previous version of the choreography

New Participant (NP): Newly added participant in the current version of
choreography

IA/RA: number of Interactions/Roles added

ID/RD: number of Interactions/Roles deleted

IMo™: number of Interactions/Roles modified in which an exchange is added

IMo™: number of Interactions/Roles modified in which an exchange is deleted

IS: number of split Interactions

IMe: number of merged Interactions

We use below notations throughout the metrics computation in this chapter.

Notation-(a): Peers which were already interacting with each other are denoted as
AlP; and AlP;.

Notation-(b): Peers which were not interacting with each other are denoted as NIP;
and NIP;.

Notation-(c): Newly added participant start interacting with another newly added
participant - denoted as NP; and NP;.

Notation-(d): Newly added participant start interacting with an old participant -
denoted as NP; and OP;.

Notation-(e): Old participant starts interacting with another old participant - denoted
as OP; and OP;.

We propose below metrics pertaining to changes in the interaction entity, role entity

and participant entity, in turn.

72

5.3.1 Metrics for interaction entity

Changes in interactions, when considered independently, occur in existing
participants with their roles. An interaction could be
added/deleted/modified/split/merged. Therefore, there are five components in the

metrics computation for the interactions.
Additions

There are two ways in which interactions can be added. These can be between peers
mentioned in Notation-(a) or between peers in Notation-(b) as defined in in section
5.3. Therefore, the metric for additions in interactions consists of two parts. The

metric is defined below.

Addition _ (Ziz1 L (TAawp;arp))} {2y ZiZ.(TANipyNip)}
AInteraction_ [Np | + | N2 | (5-1)

A peer can add several interactions with more than one peer. Thus, for each peer,
these added interactions are counted with each interacting peer. The numerator of
both parts in Equation (5.1) are 1Aapi, airj and 1A, niej Which are the number of
interactions added between peers mentioned in Notation-(a) and Notation-(b)
respectively. N; and N, are the number of peers which have participated in the

interactions in the numerator.
Deletions

Deletions can occur only between the peers defined in Notation-(a) in section 5.3.

The metric for deletions, therefore, is defined as

n m
Deletion _ t2i=1 Xj=1(1DaIp;a1p))} 5
Alnteraction_ | N3 | (5-)

The numerator of Equation (5.2) contains the count of the deleted interactions
between peers mentioned in Notation-(a). N5 is the number of peers (mentioned in

Notation-(a)) which have participated in the interactions in the numerator.

73

Splits

Interactions can be split among the peers defined in Notation-(a) in section 5.3. Metric
for split interactions is as follows.

My
ISAIPi,AIP~) }

j (5.3)

; {2, ZT4(
ASp it _

Interaction™ [Ng |

An interaction can be split in more than one interaction between any two peers which
are defined in Notation-(a). Therefore, the numerator of Equation (5.3) contains both

the count of interactions which are split (ISAIpi_AIPj) as well as the count in which each

of these interactions is split(M;). N, is the number of peers as mentioned in Notation-

(a) which have split interactions.
Merge

Peers defined in Notation-(a) in section 5.3, can merge interactions between them.
The metric for merged interactions is defined as follows.

n m
AMerge - {Zi=1 Xj=1(IMearp,arp;) }
Interaction | Ns |

(5.4)

A peer can merge several of its interactions with the peers with which it interacts. The

numerator of the above equation contains IMejp, arp; as the number of interactions

that are merged between peers as mentioned in (a). Ngis the number of peers

mentioned in Notation-(a) which have merged their interactions.
Modifications

Within an interaction, there is an exchange of information (send and/or receive)
among peers. When an interaction is modified, the exchanges within an interaction
are either added or deleted. The metric defined below for modifications of interactions

considers these exchanges.

74

n m +
Modification+_{zl=1 Z}:l(IMo AIPi,AIPi)}

A : = 55
Interaction | N | ()
n m -
AModification__ { Zi:l Zj:l(IMo AIPi,AIPj) } (5 6)
Interaction | N7 | '

IMo*AIpi,Aij and IMo~ AIP; ATP; is the number of interactions that are modified for

each peer (mentioned in Notation-(a)) by adding and deleting an exchange

respectively. Ng and N, are such respective number of peers.
Next, we present metrics for a WS-CDL process pertaining to evolution in role entity.

5.3.2 Metrics for role entity

A role could be added or deleted in a WS-CDL process but not split/merged. A role
has a behavior which could be defined using references to a WSDL description
binding or is optional in a process. A role can have a binding point to different service
descriptions. Therefore, changes to the behavior within a roleType are possible and
hence in a roleType. But this modification neither increases nor decreases the quantity
of evolution in a process, thus modification of roleType is not taken into account
while computing the metrics for roles. Hence, there are two components in the metrics
computation for evolution in the roles i.e. one for additions and other for deletions.
Both components consider changes that occur between existing participants with their

roles.
Metrics are defined for both above discussed changes in roles.
Additions

Roles can be added between peers mentioned in Notation-(a) and Notation-(b) in
section 5.3. In the metric defined below, the first part refers to roles added for
Notation-(a) and second part refers to Notation-(b). The metric is computed as

follows.

75

! !
AAddition [Zit1 Zj2i{RAAmp;A1p; *(Zj=1 M1)}] + [Zi1 X721 {RANIp NIP; *(Zk=1 M2)}]
Role | Ng| |Ng |

(5.7)

RAAIPi,AIP]. is the number of roles that are added between each peer as mentioned in

Notation-(a). For each role, thus added, one or more interactions are also added for
each of these peers. M; is the total number of such interactions. A similar
computation is expressed in the second part of the equation. However, the second part

refers to roles added for peers as mentioned in Notation-(b).
Deletions

Interacting peers, mentioned in Notation-(a), can delete their roles. The metric is

defined as follows.

Deletion_ [Zin, Zjial RDAIp; AIP; #(Zh=1 M3)}]
ARole - N
[N1o |

(5.8)

RDarp, alp, is the number of roles that are deleted between peers mentioned in
Notation-(a). M5 is the number of interactions deleted for RDarp, a1p;- Nio is the

number of such peers.
Now, consider the participant entity to propose metrics.

5.3.3 Metrics for participant entity

Participants are either added or deleted. A new participant is added with new roles
and interactions and an old participant is deleted with old roles and interactions. A
participant has a role which could be modified. But this modification neither increases
nor decreases the quantity of evolution in a process, thus modification of participant is
not taken into account. A participant can neither be split nor merged. Therefore, there
are two components in the metrics computation for evolution in the participants i.e.

for addition and deletion.

Metrics are defined for both additions as well as deletions in participants.

76

Additions

The metric for additions in participants has two parts. The first part defines the case
when newly added participants interact with each other with their newly added roles
as mentioned in Notation-(c). The second part shows that when a newly added
participant interacts with the old participant in the choreography mentioned in

Notation-(d). The metric is computed as follows.

AAddition (Zi1(RANp; *(XjLq M4))+ (Zi1(RAop; *(XjL; M)
Participant = IN11| N1zl

(5.9)

In the above equation, RAyp, and RAgp, are the number of added roles for the new
and old participant respectively. M, and M5 re the number of interactions added for
each role added for participants of Notation-(c) and Notation-(d) respectively.
N;; and N;, are the number of participants in the numerators of each part of the

above equation.
Deletions

An old participant can be deleted in the choreography. Equation (5.10) defines the

metric for deletions.

ADeletlon — { (Z?:l(RDOP] *(Z;’;l M6) }
Participant IN13]

(5.10)

RDgp, is the number of deleted roles for old participants as mentioned in Notation-(e).
Mg is the number of deleted interactions for these participants. N5 is the number of

old participants in the numerator.

Metrics proposed for each entity for each change is aggregated by using weights y; as
.2, Yg as .3 and yp as .5 as per their contribution to the amount of evolution in the

choreography.

77

Addition — Addition Addition Addition
A =Y * AInteraction YR * ARole +tYp * AParticipant (5-11)

Split — ASplit

A - AInteraction (5.12)
Merge — pMerge

A - AInter‘action (5'13)
Deletion — Deletion Deletion Deletion

A =Y * AInteraction YR * ARole +tYp * AParticipant (5-14)

5.3.4 Additive/Subtractive Evolution Metric (AEM*/SEM)

As brought out in section 5.1, some changes are additive in nature and some are
subtractive. Therefore, the metrics are combined under two categories using Equation
(5.5), Equation (5.6) and equations from Equation (5.11) to Equation (5.14).

Let CDL,, CDL,;........ , CDL; CDL,4; be the versions of the WS-CDL process and the

changes are maintained in the difference tables Diff; ,, Diff, 5 . Diffjj.1.
a) Additive Evolution Metric:
AEM" (Diffijy) = Afddition 4 ASPlity Alfociication” (5.15)
b) Subtractive Evolution Metric:
SEM' (Diff; j,1)=APeletion s pMerge 4 \Modification™ (5.16)

Whenever evolution occurs, some changes may increase the number of entities and
some may decrease. The Equation (5.15) and Equation (5.16) help to determine the
kind and quantity of changes with respect to additive or subtractive changes in the
process.

5.3.5 Evolution Metric (EM)

Evolution Metric (EM): provides a measure for the net amount of evolution occurred

in the process after it evolves from CDL;to CDL,.1. It is computed as

78

EM (Diffi+1) = AEM" (Diff;j+1) - SEM (Diff;;+1) when AEM™> SEM
SEM" (Diffij+1) - AEM" (Diff;;11) when SEM™ > AEM"*

(5.17)

In the next section, we perform experiments on a case scenario for a WS-CDL process

and analyze the resultant metric values computed for this process.
5.4 Experiments and Analysis

The proposed metrics are evaluated using a case study of a WS-CDL process.
Different versions of this process are made and then metrics are computed for each
version of the process. The changes are made for additions and deletions as additions
and deletions are common changes among all the three entities i.e. interaction, role
and participant. Whenever a new version of the process is created, a new difference
table is created. The information of the changes that have occurred is inserted into the
table.

A process describes the ordering of the collaborations between the participants,
therefore, UML diagrams are used to illustrate the case study. Consider a purchase
order WS-CDL Process in which there are three participants: Seller, Buyer and
Customer Support with buyer, seller and support as their respective roles. The

interactions among these three are shown in Figure 5.1.

Buyer Seller CustomerSupport
buyer seller support

getQuote:QuoteReq

getQuote:QuoteResp

getSupport:SupportReq

getSupport:SupportResp

[

|
Figure 5.1: WS-CDL Process Version 1

79

Let the process Version 1 change to Version 2 after adding interactions between

Buyer and Seller. The changed version is shown in Figure 5.2.

CustomerSupport

Buyer Seller
seller support

buyer

getQuote:QuoteReq

getQuote:QuoteResp

updateQuote:updateQuoteReq

updateQuote:updateQuoteResp

cancelQuote:cancelQuoteReq

cancelQuote:cancelQuoteResp

getSupport:SupportReq

|

getSupport:SupportResp

Figure 5.2: WS-CDL Process Version 2
Table 5.2 shows the evolution data.

Table 5.2: Evolution description of version 1 to version 2 of the process

Peers/ Addition (N,/N,/ Deletion (N3/Ny,/ Modification |Split [Merge
Participants| Ng/No/N;;/N;,) N;3) (Ng/N5) (N4 [(Ns)
(AIP/NIP/ &
NP/OP) = 5
= | 2|84 | 2 |8 N 2
2| 2|85 | SIS < =
el | zaeS| 25| £(85 | g2 |2El2g
SE| %9882 s les |g=2= |85 |se
T = £ |ES BT < |E S & & S~ |8 =
S el 2402 | S £ |3 S+ IS S S
I < |2 é ‘:2 | @ D 2 I o § o) o)
ES @RS | E |8 |8 EZEZ |E |E
AIPgyyer, 2 0 0 0 0
AIPsgiier 2 o o 0 o o 0 0 0

Let Version 3 be created after adding roles: sponser and advertiser for Seller and
CustomerSupport respectively. The interactions are also added for these newly added
roles. In addition, an interaction is also added between Buyer and CustomerSupport.
All these changes are depicted in Figure 5.3. Table 5.3 shows the data of evolution

from Version 2 to Version 3.

Buyer Seller CustomerSupport
buyer seller support
sponsor advertiser

getQuote:QuoteReq

getQuote:QuoteResp

updateQuote:updateQuoteReq sendQuote:sendQuoteData

Y

sendQuote:sendQuoteDataAck

updateQuote:updateQuoteResp

cancelQuote:cancelQuoteReq

cancelQuote:cancelQuoteResp

getSupport:SupportReq

getSupport:SupportResp

sendAdvertisements:sendAd

sponserAd:sendAdReq

sponserAd:sendAdResp

Figure 5.3: WS-CDL Process Version 3

Version 4 of the CDL process is created by adding a new participant (CreditAgency).

In addition, a role (support) for CustomerSupport is deleted along with its interaction.

Changed version is shown in Figure 5.4.

81

Table 5.3: Evolution description of version 2 to version 3 of the process

Peers/ Addition (N, / Deletion (N3/N;,/ | Modification [Split |Merge
Participants N;/Ng/No/Ny1/ Ni3) (Ng/ N7) (N4) (Ns)
(AIP/NIP/ Ny,)
NP/OP) & » »
= [’.L\n [
=) g = o o S a =]

ed| g3 gi| 82 |ga: |gilgs:

Sz Se= s 5| &85 |8 |8gls =

- O~ — E 5| = E gl = A o = < - QO

o o <= s e A AL = S = 3 o v o s

S Zlg35|es £7 |8%|9 SIS |27 (g2

£elc®s=l € |8 IS £=5 = g |8

=< o x o = o o _— = = =
AIPgyyer, 2 0 0 0 0
AIPCustomerSupport 0 Il Il 0 IO IO IO 0 0
NIPselier, 2 0 |0 0 0
NIPCustomerSupport 1 |1 |l 0 |0 |0 |0 0 0
Buyer Seller CustomerSupport CreditAgency

buyer seller advertiser creditor
sponsor

getQuote:QuoteReq

getQuote:QuoteResp

sendQuote:sendQuoteData

sendQuote:sendQuoteDataAck

creditCheck:creditReq

updateQuote:updateQuoteReq

creditCheck:creditResp

updateQuote:updateQuoteResp

cancelQuote:cancelQuoteReq

cancelQuote:cancelQuoteResp

sendAdvertisements:sendAd

sponserAd:sendAdReq

sponserAd:sendAdResp

Figure 5.4: WS-CDL Process Version 4

82

The evolution data is shown in Table 5.4.

Table 5.4: Evolution description of version 3 to version 4 of the process

Peers/ Addition (N;/N,/ | Deletion (N3/N;o,/ | Modification [Split |[Merge
Participants Ng/No/Ny;/Ny5p) N;3) (Ng/ N7) (Ns) |(Ns)
(AIP/NIP/ N o
NP/OP) o, z &]
= £ =) 3 3
(%)
s 51583 3| YEs s = | 3
< & = e NEEY = o &
Q I3 2 < & = 2 e < |2 o
S E| =lg=| s8-8 slg = | S 3 s2 |s=
= < = E ~N — < E = — —
8 & | ST =| & w27 & += 3 3
s |eRi2 S 2 &2 158 ki ki
E-S BT IEE| E g |& |E= E |E
CreditAgency, 2 0 0 0 0
Seller 0 L [0 o o 0 0 0
AIPgyyer, 0 2 0 0 0
AIPCustomerSupport 0 0 |O 0 |1 |1 0 0 0

In Figure 5.5, one participant (CreditAgency) is deleted. There are two additions: one
is role (support) added between Buyer and CustomerSupport along with its
corresponding interaction and the other one is the addition of two new participants

(Accounts and Shipper). All these changes give rise to Version 5.

83

Buyer Seller CustomerSupport Accounts Shipper

buyer seller support accountchecker shipper
sponsor advertiser
|
getQuote:QuoteReq sendQuote:sendQuoteData
hY|
tQuote:QuoteRes -
g¢ ' P sendQuote:sendQuoteDataAck

updateQuote:updateQuoteReq

AN|

2|

updateQuote:updateQuoteResp

cancelQuote:cancelQuoteRege

cancelQuote:cancelQuoteResp

payment:receivePayment

payment:sendReceipt

shipping:shippingReq

| |
shipping:shippingResp

getSupport:SupportReq

1

getSupport:SupportResp

sendAdvertisements:send Ad

sponserAd:sendAdReq

sponserAd:sendAdResp

Figure 5.5: WS-CDL Process Version 5

The evolution data is shown in Table 5.5.

Table 5.5: Evolution description of version 4 to version 5 of the process

Peers/ Addition (N;/N,/ | Deletion (N3/N;,/ | Modification [Split |Merge
Participants Ng/No/Ny1/Ny5) Ni3) (Ne/ N;) (N4) |(Ns)
(AIP/NIP/NP/OP) N N
E: 0 Ol v
sl |sg| = Elss =| &
2= | L2832z | z8Z|l2.a |2s(2E
o ~ o= o < 4o o © < < o <|9 w
52| LEX|EL sE= |5 2 [E2(5S
€ ZlgfsZ| & |g5s | EFS |8 |E7
EsleReE| 8 g™l |B2=2 B |2
CreditAgency, 0 2 0 0 0
Seller 0 o o 0 L I 0 o P
Seller, 2 0 0 0 0
Accounts 0 i L 0 b D 0 o P
Seller, 2 0 0 0 0
Shipper 0 L L 0o [oTJo 0 0 0
AlPgyyer, 2 0 0 0 0
AIP customersupport 0 |1 |1 0 |0 |0 0 0 0

The metrics for all the versions of the WS-CDL process, computed above, are

tabulated in Table 5.6.

Table 5.6: Metric values of the WS-CDL process

Serial Version Evolution Description AEM”* SEM” EM

No.

1 1,2 Interactions added .20 0 .20
between AIP, AIP

2 2,3 Roles added between .40 0 .40

AIP, AIP and NIP,NIP
and Interactions added
between NIP,NIP

3 3,4 Participant added .25 A5 .10
Role deleted

4 4,5 Participants added .48 .25 .23
Participant deleted
Role added

Table 5.6 depicts the comprehensive analysis of the changes in choreography. AEM”
values at Serial No. 1 and 2 contains the changes which are additive in nature. Serial
No. 3 and 4 of the table contains both kinds of changes i.e. additive as well as

85

subtractive changes. This is shown by their AEM" and SEM™ metric values. It can be
seen that the metric EM at Serial No. 1 & 4 are approximately same. However, there
are only additive changes at Serial No. 1 and 2. In other words, a clear picture of the
exact evolution is brought out by AEM™ and SEM" values. Therefore, the proposed
metrics gives the total idea of the exact evolution that has taken place in the

choreography.
5.5 Time Complexity

A table is created in the database whenever a process evolves and results in the
creation of its new version. All the evolution data between the process versions is then
stored in the table. Each row of the table contains evolution data for each entity of the
CDL process. The table contains six columns which are listed below.

1) CDL process versions (evolution data between these two versions is stored)

2) Entity (lists the entities of a process)

3) Peer/Participant (entity participating in the choreography)

4) Number of peer/participant (count of interacting peers/participants)

5) Change (kind of change in the entity)

6) Number of changes (the number additions/ deletions/ modifications/ split/merge for
each entity)

Next, all the metrics are computed by sequentially accessing the information stored in
the corresponding table. Thus, when there are n number of rows, then the metrics are
computed in linear time i.e.O(n).

Tables from Table 5.2 to Table 5.5 shows the sample data stored for different process

versions.
5.6 Metrics Formal Validation

All the proposed metrics are theoretically validated using Zuse framework as given in

Table 3.8 in chapter 3. We, now, present formal validation of AEM".
86

AEM* Metric Formal Validation

Let CDL,, CDL, , CDL; CDLi4; be the versions of the WS-CDL process. The
changes between any two versions, say CDLy CDLy.; of a process are captured in a
Diffyx+1 table. Let Diffyx+1 and Diffyy.1 denote the table containing the information of
all the changes between these versions. Let Diff be the set of all tables for the process

that store information of changes across its versions.

The measure AEM" is a mapping: AEM™: Diff-> R such that the following holds for
a” tab|eS Diffxyx+1, Diffy’y+1 € lef Diffx’x+1 >= Diffy'y+]_ (= AEM+ (Diffxyx+]_) >= AEM+
(Diffyyy+1).

Here, the concatenation operation for combination rule is denoted as follows.
AEM+ (Diﬁxyx+1 0 Diffy’y+]_) = AEM+ (Diffx]x+]_U Diffy,y+1)

where Diffyx.1 U Diffyy.1 is the table containing all the distinct changes in the two
tables Diffy x+1 and Diffy .1 .

AEM™ and the Modified Extensive Structure

METI: The binary relation *>=is known to be weak order when it is transitive and
complete. Let Diff;,, Diff;4 and Diffsg be the three tables where Diff;, , Diffs4 ,
Diffs ¢ ¢ Diff. It must be true that either AEM" (Diffy,) >= AEM" (Diff;4) or AEM”
(Diffs4) >= AEM" (Diffy,). Thus, property of completeness is fulfilled. Now,
consider the transitivity property. If AEM™ (Diffy,) >= AEM" (Diffz,) and AEM”
(Diff3 4)>= AEM" (Diffs) then it is obvious that AEM™ (Diff;,)>= AEM" (Diffs).
Thus, transitive property is also accomplished. Therefore, AEM" fulfills ME1.

ME2: The positivity of the metric implies that the value of the metric when two tables
are combined is bound to be greater than the metric for each individual table. Thus,
AEM" (Diffy , o Diffs 4) >= AEM™ (Diffy ;). Therefore, ME2 is fulfilled.

87

MES3: Applying the weak associativity rule to the proposed metric, the formulation of
the rule becomes, AEM" (Diff,, o (Diffs4 0 Diffsg)) = AEM™ ((Diffy, 0 Diffs4) 0
Diffs). This means that AEM™ (Diffy, U (Diff;4 U Diffsg)) = AEM™ ((Diff, U
Diff;4) U Diffsg). It is obvious that this axiom is fulfilled because union operation is

associative.

ME4: The weak commutative axiom is stated as AEM™ (Diff;, o Diffs4) = AEM*
(Diff3,4 0 lefj_z) This means that AEM” (lef12 U lef34) = AEM" (Diff3,4 U

Diff;). Therefore, this axiom is fulfilled because union operation is commutative.

MES5: The property of weak monotonicity is stated as AEM® (Diff;,) >= AEM®
(Diff34) = AEM™ (Diffy, o Diffsg) >= AEM" (Diffz4 0 Diffsg). This means that
AEM" (Diffy, U Diffsg) >= AEM* (Diffs4 U Diffse) given AEM* (Diff,)>= AEM*
(Diff34), needs to be proved. Suppose that the number of common changes between
Diff;4 and Diffs ¢ are more than the ones between Diff; , and Diffsg. Since common
identical changes appear only once in the concatenated table, it may well be the case
that AEM" (Diffz 4 U Diffs¢) >= AEM™ (Diffy, U Diffs). Therefore, this axiom is not
fulfilled.

MES6: To prove this axiom, the idempotent property needs to be considered. As per
the definition of the concatenation operation, the metric is idempotent i.e. AEM"
(Diffy, 0 Diffy,) = AEM" (Diffy ,). Therefore, this axiom is not fulfilled.

It is concluded that AEM™ does not fulfill the modified extensive structure.
AEM" and the Independence Conditions

IC1: It has to be shown that AEM™ (Diff,, 0 Diffs¢) = AEM" (Diffs4 0 Diffse) and
AEM" (Diffs¢ 0 Diff;,) = AEM* (Diffss 0 Diff34) given AEM* (Diffy;) = AEM*
(Diff34). AEM™ (Diff, U Diffss) may be or may not be equal to AEM* (Diffz4 U
Diffs g) as the common changes may not be the same between Diff,, U Diffsg and
Diff; 4 U Diffs 6. The same is true between AEM" (Diffs ¢ U Diff; ;) and AEM™ (Diffs g
U Diffs4). Hence, this condition is not fulfilled.

88

IC2: If the metric does not accomplish the first condition, it will not fulfill the second

condition.

IC3: Due to non-accomplishment of fifth axiom of the modified extensive structure,

this condition is not fulfilled.

IC4: As IC3 is not fulfilled, thus, 1C4 cannot be accomplished.

It can be concluded that AEM" does not fulfill the independence conditions.
AEM" and the modified relation of belief

MRZ1: If the metric fulfills the weak order i.e. ME1 of modified extensive structure
then this axiom is satisfied.

MR2: If the metric fulfills the weak order i.e. ME1 of modified extensive structure

then, this axiom is also satisfied.

MR3: Suppose that all the changes of the table Diffz 4 are included in Ty ,, then AEM”
(Diffy) >= AEM" (T34). Thus, this axiom is satisfied.

MR4: Suppose that all the changes of the table Diff;4 are included in Diff;, and
Diff,, N Diffsg = @. Then, AEM* (Diffs)>= AEM* (Diff,,) = AEM* (Diffs4 U
Diffs) >= AEM" (Diffy, U Diffsg) needs to be proved. Due to the fact that AEM”
(Diff3 4)>= AEM" (Diff,,) and that there are no common changes between Diffs 4 and
Diffs s , the value of AEM™ (Diffz4 U Diffsg) will be more than AEM™ (Diffy, U
Diffs). Hence this axiom is satisfied.

MR5: This axiom is also satisfied because the changes in a process cannot be less
than 0.

Therefore, AEM™ fulfills the modified relation of belief. In summary, AEM™ is a
measure above the level of the ordinal scale.

89

We have also validated SEM™ and EM using Zuse framework and both of them are

found to be above the ordinal scale. Results are shown in Table 5.7.

Table 5.7: Summary of formal validation of metrics of a WS-CDL process

2]
m
<

Metrics/Axioms

ME1

ME2

ME3

ME4

ME5

MEG6

IC1

IC2

IC3

IC4

MR1

MR2

MR3

MRA4

MR5

Scale Above Above Above
ordinal ordinal ordinal

>
<|<|<|<|<|z|z|z|z|z|z|<|<|<|<|2
%

<|<|<|<|<|z|z|z|z|z|z|<]|<|<|<
-
<|<|<|<|<|z|z|z|z|z|z|<]|<|<[<|Z

5.7 Summary

In this chapter, three metrics (AEM*, SEM™ and EM) are proposed for measuring the
evolution of a WS-CDL process. AEM* and SEM™ give an idea of what kinds of
changes (additive/ subtractive in nature) are made and in what quantum. EM is a total
sum of both kinds of changes to give an idea of the overall evolution. The metrics are
empirically validated using a case scenario. They are theoretically validated using

Zuse framework and found to be above the ordinal scale.

90

Chapter 6 Implementation

This chapter explains the details of the Metrics Computation System (MCS) which
implements computation of metrics for a single as well as a composite service in
SOA.

MCS is implemented on a computer system having Intel(R) Core(TM) i7-3770
CPU@3.40GHz processor, 64-bit operating system and 10 GB RAM. Eclipse 4.6.0
(Neon) is used as the Integrated Development Environment (IDE) for building the
user and database interactions and to build the code for metrics computation. We have
used apache-tomcat-8.5.11 for the application server. SQL Server 12.0 is used as the
database server. Java code is developed using Sun Java Development Kit
(jdk1.8.0_121).

Consider, now, the data needed for computing the metrics. For a single service,
different versions of WSDL document of real world services (Amazon services) are
used. Simulated data is also used for a single service. Due to the non-availability of
real world data, only simulated data is used for the metrics computation for a

composite service (orchestration) as well as a composite service (choreography).
6.1 Architecture of MCS

Figure 6.1 depicts MCS architecture. We have used the following abbreviations for

the modules:
Evolution Data - ED

Compute and Store - CS
Metrics Computation - MC

91

ED-CS ED-CS ED-CS ED-CS
7 3 i|| Single Service Single service Composit Composit
i || -Real world - Simulated service - service -

/ ' : data data Orchestration Choreography |
: : ; ; l l § :| DATABASE
. : MC MC MC MC - | SERVER
: :|| Single Service | | Single Service Composit Composit : :

|| -Real world - Simulated service - service -
Computed data data Orchestration | | Choreography

| Requestand | i Tmpl d || Implemented |
! Response | | using Java i using SQL

| usingJava | SoE Al At | Embedded

| Server Pages ! | queriesin Java |
! (JSP) and : | codeofall

i JavaScript ! | modules

R AL RS S S ! e e i B e e

Figure 6.1: MCS Architecture

The core software modules are:

Module 1: ED-CS Single service - Real world data: calculates evolution data between
the two versions of a service selected by the user and then creates a database table and

insert the evolution data in the table.

Module 2: ED-CS Single service — Simulated data: generates simulated evolution data
for the number of service versions selected by the user. This module then inserts this
evolution data in the database tables which are created to store the data. Simulated

data for all the WSDL elements of a service is generated.

Module 3: ED-CS Composite service - Orchestration: generates simulated evolution
data for the number of composite service versions selected by the user and then
creates database tables to insert the evolution data. Simulated data is generated for
both basic as well as structured activities of a WS-BPEL process.

Module 4: ED-CS Composite service - Choreography: generates simulated evolution
data for the number of composite service versions selected by the user and then
92

creates database tables to insert the evolution data. The WS-CDL entities are

considered for which simulated evolution data is generated.

Module 5: MC Single service - Real world data: computes SEM, SCEMy, SCEMo,
SCEM+y and SUEM by using evolution data which is stored using the first module.

Module 6: MC Single service — Simulated data: computes SEM, SCEMy, SCEMp,

SCEM+y and SUEM using evolution data which is stored using the second module.

Module 7: MC Composite service - Orchestration: computes BEM,;, BEMg, BUMEp
and BUMEy using evolution data which is stored using the third module.

Module 8: MC Composite service - Choreography: computes AEM*, SEM™ and EM
using evolution data which is stored using the fourth module.

Next, we show how to use MCS and its implementation for both a single service as

well as a composite service.

93

6.2 MCS User Interface

User starts interacting with MCS via the user interface shown in Figure 6.2. This user
interface gives two options for the user i.e. to compute metrics either for a single
service or for a composite service using MCS. The first option is ‘Metrics
Computation for Single Service’ and the second is ‘Metrics Computation for
Composite Service’. User can select either option by clicking on the checkbox
corresponding to that option. There is a ‘Submit’ button which the user clicks to
further use MCS.

E workspace - Java EE - http://localhost:8080/MCS/ - Eclipse — O hed
File Edit Mavigate Search Project Run Window Help
5‘ MCS.jsp @ Metrics i3 = 8

I m S |http:_f'_f'loca\host:SDSDf'MCSf' v| B

=

® METRICS COMPUTATION SYSTEM

Please select Single/Composite service to compute metrics

Metrics Computation for Single Service O

Metrics Computation for Composite Service [

Submit

- Uil Servers £2 =5

a Tomcat v8.5 Server at localhost [Started, Synchronized]

Figure 6.2: User Interface to initiate interaction with MCS

94

6.2.1 Using MCS for a Single Service

If the user chooses a single service in the previous user interface, the next user
interface displayed to the user is shown in Figure 6.3. This interface gives two options
to the user. The first option is to use MCS for metrics computation for single service
for real world data. The second option is to use MCS for metrics computation for

single service for simulated data.

E workspace - Java EE - http://localhost:8080/MCS/ - Eclipse - [m} *
File Edit MNavigate Search Project Run Window Help
E MCSjsp @ Metrics 33 = 08

By (kS ® 5 |http:_f;localhost:soao;mcs;mcss.jsp V| B

=

m METRICS COMPUTATION SYSTEM FOR A SINGLE SERVICE

Please select data for single service to compute metrics: Real World/Simulated

Metrics Computation for Single Service (Real World) v

Metrics Computation for Single Service (Simulated) O

Submit

[4k Servers 52 =
230 & |

q O

ﬁ Tomcat v8.5 Server at localhost [Started, Synchronized]

Figure 6.3: User Interface of MCS for a single service

The ‘Submit’ button has to be clicked after choosing one of the options.

95

6.2.1.1 Real world data

Figure 6.4 shows that this interface allows the user to choose any two service versions
for which she/he wants to compute metrics. There are two rows in the table as shown
in this figure. Firstly, user has to select a version of the service by clicking the browse
button in the first row. Then, she/he needs to select another service version by
clicking the browse button in the second row. User interface in Figure 6.4 shows that
the user has selected two versions of an Airline service. User has to then click the
‘Compute’ button. MCS then computes the metrics for these selected versions of the

service.

@] workspace - Java EE - http://localhost:8080/MCS/ - Eclipse - [m] X
File Edit Mavigate Search Project Run Window Help
5 MCS.jsp @ Metrics 37 = O

By (Il ® |http:_a’_a’lm(aIhnst:&DEDa’MCSa’MP.jsp V| B

=

s METRICS COMPUTATION SYSTEM FOR A SINGLE SERVICE (REAL WORLD)

PLEASE SELECT ANY TWO VERSIONS OF A SERVICE

Please browse first version of the service: E:\RachnalAirlineWSDL Browse...
Please browse second version of the service: E:\Rachna\AirlineWSDL Browse. ..
COMPUTE
E . & Console &2 = B8
= |28 a9

Tomcat v8.5 Server at localhost [Apache Tomcat] C\Pregram Filesyjrel.8.0_117\bin\javaw.exe

Figure 6.4: User Interface of MCS for a single service - real-world

96

As shown in Figure 6.5, all the computed metric values are displayed when the user
clicks the ‘Display’ button. The figure displays the computed metric values for the
selected versions of the Airline service by the user. Here, there are five rows
corresponding to SEM, SCEMy, SCEMp, SCEMt and SUEM. Each row has a

textbox in which the corresponding metric value is displayed.

18] workspace - Java EE - http://localhost:B080/MCS/ - Eclipse - O X
File Edit Mavigate Search Project Run Window Help
E MCS.jsp @ Metrics 23 = 08
Ry |2 ® & |http:_r'_r’localhost:BDSD_IMCS_e‘Metrics V| B
g -
® COMPUTED METRIC VALUES FOR A SINGLE SERVICE (REAL WORLD)
Service Evolution Metric (SEM): 1.0
Service Client-Code Evolution Metric (SCEMM):
Service Client-Code Evolution Metric (SCEMO):
Service Client-Code Evolution Metric (SCEMT):
Service Usefulness Evolution Metric (SUEM):
DISPLAY
ties [B5 Snippets b Servers Data Source Explore: Problems Search ariables Remote Systems (B Console 2 = O
ex % BEREE e

Tomcat v8.5 Server at localhost [Apache Tomcat] C:\Program Files\jrel.8.0_111\bin\javaw.exe

Figure 6.5: Computed metrics for a single service — real world

97

6.2.1.2 Simulated data

The user interface shown in Figure 6.6 is displayed when she/he clicks on the
checkbox in the second row of the table and then on the ‘Submit’ button in Figure 6.4.
Figure 6.6 is the user interface of MCS for a single service for simulated data. Here,
there is a drop-down box which is used to select for how many service versions the
user wants to compute the metrics. There is a ‘Compute’ button to navigate to the
next user interface. In Figure 6.6, user selects 20 service versions for metrics

computation.

8] workspace - Java EE - http://localhost:2080/MCS/ - Eclipse - a X
File Edit Mavigate Search Project Run Window Help

5 @ Metrics 32 = &
Sl Ol | http://localhost:2080/MCS/Simulate.jsp V| B

&

I'_ METRICS COMPUTATION SYSTEM FOR A SINGLE SERVICE (SIMULATED)

Please select the number of simulated service versions: m

COMPUTE

B & Console 33 = 8
BX % BEREE E o

Tomcat w5 Server at localhost [Apache Tomcat] C:\Proaram Fileshire1.8.0 111\bin\iavaw.exe

Figure 6.6: User Interface of MCS for a single service — simulated

98

When the user clicks the ‘Compute’ button, all the metrics that are computed for the
simulated data for the selected number of service versions are displayed. Figure 6.7

shows the computed metric values for the user who has selected 20 service versions.

:.} workspace - Java EE - http://localhost:8080/MCS/ - Eclipse

=W %
File Edit Navigate Search Project Run Window Help
| @ merRics 5 =g
B [|<= o {http://localhost:soso/MCS/Simulate VI B
P COMPUTED METRIC VALUES FOR A SINGLE SERVICE (SIMULATED)
(=2 SETI

Metrics Version 1 || Version 2 || Version 3 || Version 4 || Version 5 | Version 6 || Version 7 || Version 8 || Version 9 || Version

&2 &3 &4 &5 &6 &7 &3 &9 &10 10& 11

seM |[2630 2020 2560 [2100 2410 J2700 [2600 [2610 2280 2430 |

SCEMMM || 21044445 (2423529 | 16450981 19.491804 || 21666666 | 28 505852 | 31306818 16915968 | 20293104 25 141844

scemo [[1725 692 14709091 | 12.044444 [11.000001 | 13595744 | 14.189654 | 10596153 | 15.065042 | .506174

SCEMT [13.761904][17.470589 |[17.275864][8:384616 | 11500163 |[19.84058 |[3.931035 | 18468086 14.964911][16333332

SUEM [12484275]| 137526865 || 14.210431 | 11.549517 | 14.824784 | 14.507303 | 15.540045] 13171527 | 14.518237 | 12.86 7088 |

SET2
Metrics |Version Version 12 || Version Version Version 15 | Version Version Version I\’ersion Version
n&R |[&13 1B&14 |14&15 |&16 16&17 [17&18 |18&19 [19&20 [20&21

[sEM [2000 2880 3040 [[2300 J2170 2280 200 [2210 2510 2290

SCEMMM [1934188 [|26.151518 [35.18750419.70707 | 24.693548 [24409092 [20.07438 [13.08 [26705883 2736975

SCEMO | 12368419][14522035 |[15.575757|[17.510204 | 105135145][11.946236 [15.5679 | 17201681 || 11.282828 [11.865385

SCEMT | 1332258 18369564 | 14.1 14.944445] 16594202 |[10.30303 |[10.030302[[9407408 |[7.9166665][8.863636

SUEM [10967068|[15812303 || 21055805 | 17.018047 [12.025643 | 14.506343 | 12.816232 11.993333 | 13 614419 | 15 439206

8 Remo

s [Console 53

7= (m]

BX% BEREE t2-8-

Tomcat v8.5 Server at localhost [Apache Tomcat] C:\Program Files\jre1.8.0_111\bin\javaw.exe

Figure 6.7: Computed metrics for a single service — simulated

99

6.2.2 Using MCS for a Composite Service

If the user chooses a composite service in Figure 6.2, the user interface shown in
Figure 6.8 is displayed. This interface gives two options to the user. The first option is
to use MCS for metrics computation for a composite service (orchestration). The
second option is to use MCS for metrics computation for a composite service
(choreography).

i@ workspace - Java EE - http://localhost:2080/MCS/ - Eclipse - O x
File Edit Mavigate Search Project Run Window Help

E @ Metrics 53 - F
By IIfa m |http:_-"_«'I0caIhost:SDSD_-"MCS_f’MCSSS.Jsp v| B
E METRICS COMPUTATION SYSTEM FOR A COMPOSITE SERVICE

Please select Composite Service(Orchestration) /Composite Service(Choreography) to compute metrics

Metrics Computation for Composite Service (Orchestration) [

Metrics Computation for Composite Service (Choreography) [

Submit

ables emote Systems) Console &3 = 8
B X% BEREE e o

Tomcat v8.3 Server at localhost [Apache Tomcat] C:\Program Files\jre1.8.0_111\bin"\javaw.exe

Figure 6.8: User Interface of MCS for a composite service

The ‘Submit’ button has to be clicked after choosing one of the options.

100

6.2.2.1 Orchestration

When the user selects the first option of Figure 6.8, the user interface as shown in
Figure 6.9 is displayed. User has to select the number of versions. MCS computes

metrics for simulated data of composite service (orchestration). In Figure 6.9, user has
selected 20 versions.

@ workspace - Java EE - http://localhost:3080/MCS/ - Eclipse

- | X
File Edit Mavigate Search Project Run Window Help
= o
& @ Metrics 3
fl\ﬁ == | qgh |ht‘tp:_f_a'loca|host:SDED_a'MCS_a'MPMP.jsp v| B

E METRICS COMPUTATION SYSTEM FOR A COMPOSITE SERVICE -
ORCHESTRATION (SIMULATED DATA)

Please select the number of simulated composite service (orchestration) versions: m

COMPUTE

anables Remote Systems B Console 88 = B
L] BE2EE e -5

Tomcat v8.5 Server at localhost [Apache Tomcat] C:\Program Files\jrel.8.0_111\bin\javaw.exe

Figure 6.9: User Interface for a composite service — Orchestration

101

After selecting the number of versions in Figure 6.9, user clicks the ‘Compute’
button. The computed metrics for the selected number of versions are displayed.
Figure 6.10 shows computed metrics for 20 selected versions of the composite
service.

@] workspace - Java EE - http://localhost:2080/MCS/ - Eclipse - a X
File Edit Navigate Search Project Run Window Help

‘& | @ METRICS 58 = 8
| e & [nttpi//localhost:8080/MCS/MPMP | B

&

» COMPUTED METRIC VALUES FOR A COMPOSITE SERVICE - ORCHESTRATION
(SIMULATED DATA)
SET1 I

Metrics

Version 1 || Version 2 || Version 3 || Version 4 || Version 5 || Version 6 || Version 7 || Version 8 || Version 9 || Version
&2 &3 &4 &5 &6 &7 &8 &9 & 10 10&11

[BEMI | 72631583 | 7.6778026 || 7.745371 | 7.8515825] 7.745371 | 74866176 7.640197 | 8055815 | 74656854] 75599995
|BEME [17105263 1.75179 | 1.2453704 | 15304135]| 17106481 | 19537714 1.5682381 1344186 | 1.1495099 | 13082354

[BUMEP | 0.0 [0 00 |[6:675088 | 6960021 | 7715363 | 6.4301796] 0.0 [4967013 J 00 |
BUMEN | 594543 || 29422417 4.0677514 0.0 o0 00 o0 [[4269568 |00 37128224
SET 2

Version ([Version || Version Version | Version Version || Version || Version | Version || Version
11&12 |[12&13 ||[13&14 ||14&15 ||15&16 ([16&17 [[17&18 |[IS&19 |[19&20 |20&21

|BEMI | 7.799999 | 74761887 7402984 | 7.570071 | 7.5631056 7255637 | 7.7517076] 7421051 | 7.279301 | 72193894
[BEME | 10666666 [1.897243 | 1.7114427 11900239 | 1.1407765] 2.037594 | 1428246 || 1.9298246] 2.0099752 1.0790815]

Metrics

|BUMEP | 0.0 |[5.0139537 0.0 ||5.553437 |00 || 69218626 | 52525964 75819077 | 5.853842 | 0.0 |
| BUMEN | 2.5958576 | 0.0 [4550847 0.0 || 24331117] 0.0 |00 00 00 [15185232
s [f5 Snippets b Servers [§d Data Source Explorer |®/ Problems Search Variables 4§ Remote Systems & Console 5% = B8

BX % BERSE tE2-8-

Tomcat v8.5 Server at localhost [Apache Tomcat] C:\Program Files\jre1.8.0_111\bin\javaw.exe

Figure 6.10: Computed metrics of a composite service — Orchestration

102

6.2.2.2 Choreography

To use MCS for composite service (choreography), user has to select the checkbox in
the second row in Figure 6.8. The user interface as shown in Figure 6.11 is then
displayed. The number of versions to compute the metrics needs to be selected. Then,

MCS computes metrics for composite service (choreography). User has selected 20
versions as shown in Figure 6.11.

@ workspace - Java EE - hitp://localhost:B080/MCS/ - Eclipse

- [m| X
File Edit Mavigate Search Project Run Window Help
E @ Metrics 3 = 8
By & = @ & |hitp/localhostB080/MCS/MCS1 jsp v| B

I; METRICS COMPUTATION SYSTEM FOR A COMPOSITE SERVICE -
CHOREOGRAPHY (SIMULATED DATA)

Please select the number of simulated composite service (choreography) versions:

COMPUTE

[[] Properties i Snippets 4L Servers [Data Source Explorer [*/ Problems . Search (x)= Variables 8§ Remote Systems B Console 32 | = B
o X% RO e

Tomcat vB.5 Server at localhost [Apache Tomcat] C:\Program Files\jrel.8.0_111\bin'javaw.exe

Figure 6.11: User Interface of MCS for a composite service — Choreography

103

User clicks the ‘Compute’ button in Figure 6.11 after selecting the number of
versions. The computed metrics are displayed. Figure 6.12 shows computed metrics

for 20 selected versions of the composite service (choreography).

8 workspace - Java EE - hitp://localhost8080/MCS/ - Eclipse - O X
File Edit Mavigate Search Project Run Window Help
VE @ METRICS &2 = B8
By = B & [htp//localhost2080/MCS/MCS] <] B
= - . -
m COMPUTED METRIC VALUES FOR A COMPOSITE SERVICE -
CHOREOGRAPHY (SIMULATED DATA)
SET1
Metri Version 1 Version 2 || Version 3 || Version 4 || Version 5 || Version 6 || Version 7 & || Version 8 | Version 9 || Version
MeICs | g g &3 &4 &5 &6 &7 8 &9 & 10 10 & 11
‘AEMJr H 174899 H 8510094 || 7539234 || 18317779 || 58175573 H 27788727 || 1025961 || 31372035 H 8 067794 H 7 4145915|
(SEM- |[6666148 | 4.0886254] 478393 34154775 20762894 45011873 | 59634104 [4234042644844 | 4093544 |
EM |4.91?153 H 44214683 || 27553043 || 15236996 || 3741268 H 17223146 || 49374495 || 1.0962392 H 3583304 H 1.6780525 |
SET 2
Metrics Version 11 || Version Version Version Version Version Version 17 || Version Version Version
! &12 12813 ||13&14 [14&15 [15&16 |[16&17 |&18 18&19 ||19&20 [20&21
‘AEM+ H 30332484 H 17373289 || 2 2579439” 76104436 || 5 0449677 H 61573286 || 1201939 || 1289572 H 5918986 H 7.1961985 |
‘ SEM- H 32770236 H 45627236 || 4556329 || 13562206 || 14034145 H 1.3962045 || 12187723 || 2355245 H 49021616 H 4.?8161?6|
‘ EM H 0.24377513 H 28253046 || 2208445 || 6254223 || 3.6415532 H 4761124 || 0.016833305 || 10656731 H 10168242 H 2 4145808 |
] Properties [Snippets 4l Servers [Data Source Explorer |#] Problems <5 Search (x)=\ariables g8 Remote Systems | &) Console 32 = 8
= BB EE -
Tomcat v&.3 Server at localhost [Apache Tomcat] C\Program Files\jrel.2.0 111\bin\javaw.exe

Figure 6.12: Computed metrics for a composite service — Choreography

Now, we have seen the different user interfaces provided by MCS to know how it is
used by the user. Next, we show how the core modules mentioned in section 6.1 are

implemented to know how MCS internally works.

104

6.3 Implementation of MCS

In this section, we discuss the implementation of MCS for a single service as well as

composite service.

6.3.1 Single Service - Real World Data

ED-CS Single service - Real world data and MC Single service - Real world data are
the two modules which realize the computation of the metrics.

ED-CS Single service - Real world data is implemented as given in Algorithm 1. In
this algorithm, firstly database table is created to store the evolution data between the
selected two versions of a single real world service. Then, the selected versions are
parsed to compute the evolution data for each WSDL element of the service versions.
After this, the evolution data to compute the metrics for the selected versions is stored
in the table created before.

Algorithm 1 : ED-CS Single service - Real world data

Input: WSDL File versions

Output: Evolution data stored in database for Input

1.Create table with columns: Service versions, Element, Depth of the element,

Number of changes and Change category

2. Parse selected versions of the WSDL files of service.

3. Compute each change (evolution data) between the selected versions i.e.
addition, deletion, modification, merge and split in each element.

4. Store result in table.

MC Single service - Real world data is implemented as given in Algorithm 2. Data
stored in tables (using Algorithm 1) is read. The data is used to compute the metrics
for a single service i.e. SEM, SCEMy,, SCEMo, SCEMt and SUEM.

105

Algorithm 2: MC Single service - Real world data

Input: WSDL File versions

Output: Computed values for SEM, SCEMy,, SCEMo, SCEMt and SUEM

1. Read tables to compute SEM using SQL statements which uses columns:
Service versions, Depth of the element and Number of changes

2. Use data from step 1 to compute SEM

3. Read tables to compute SCEM),;, SCEMo, SCEM+ using SQL statements which
uses columns: Service versions, Element, Number of changes and Change category
4. Use data from step 3 to compute SCEMy;, SCEMo, SCEM+

5. Read tables to compute SUEM using SQL statements which uses columns:
Service versions, Element, Number of changes and Change category

6. Use data from step 5 to compute SUEM

6.3.2 Single Service — Simulated Data

The computation of the metrics is realized through ED-CS Single service - Simulated

data and MC Single service — Simulated data.

ED-CS Single service - Simulated data is implemented using Algorithm 3. At first,
database table is created to store the evolution data for the selected number of
versions for a single service (simulated). If a user selects 20 number of versions, then
the evolution data is generated randomly for the subsequent versions i.e. between
Version 1&2, Version 2&3,...... , Version 20&21. Evolution data for each WSDL
element is computed. After this, the evolution data to compute the metrics for the
selected number of versions is stored in the table.

Algorithm 3: ED-CS Single service - Simulated data

Input: Number of service versions for the simulated data

Output: Evolution data stored in database for selected Input

1. Create tables with columns : Service versions, Element, Depth of the element,
Number of Changes and Change category

2. Generate randomly changes for each WSDL element for the number of versions
given in Input

3. Store data in table

106

Algorithm 4 is used to implement MC Single service — Simulated data. Data stored in
tables (using Algorithm 3) is read. The data is used to compute the metrics for a single
service i.e. SEM, SCEMy,, SCEMo, SCEM+ and SUEM.

Algorithm 4: MC Single service — Simulated data

Input: Number of selected service versions to compute metrics

Output: Computed values for SEM, SCEMy,, SCEMo, SCEMt and SUEM

1. Read tables to compute SEM using SQL statements which uses columns:
Service versions, Depth of the element, Number of changes and Change category
2. Use data from step 1 to compute SEM

3. Read tables to compute SCEMy,, SCEMo, SCEM+ using SQL statements which
uses columns: Service versions, Element, Number of changes and Change
category

4. Use data from step 3 to compute SCEMy;, SCEMo, SCEM+

5. Read tables to compute SUEM using SQL statements which uses columns:
Service versions, Element, Number of changes and Change category

6. Use data from step 5 to compute SUEM

6.3.3 Composite Service - Orchestration

For the computation of metrics proposed for a composite service (orchestration), two
modules i.e. ED-CS Composite service - Orchestration and MC Composite service -
Orchestration are used.

The ED-CS Composite service - Orchestration module is implemented using
Algorithm 5. The first step in the algorithm is to create the database table to store the
evolution data for the selected number of versions for a composite service
(orchestration-simulated). The evolution data is generated randomly for the selected
number of versions for each WS-BPEL activity (basic and structured). After this, the

evolution data is stored in the table.

Algorithm 5: ED-CS Composite service - Orchestration

Input: Number of composite service versions for the simulated data

Output: Evolution data stored in database for selected Input

1. Create tables with columns : Process versions, Activity, Number of
activities in previous version, Number of changes and Change category

2. Generate randomly, changes for each WS-BPEL activity for the number of
versions given in Input.

3. Store data in tables.

107

The MC Composite service - Orchestration module is implemented using Algorithm
6. Data stored in tables (using Algorithm 5) is read. The data is used to compute the
metrics for a single service i.e. BEMg, BEM,, BUMEp and BUMEy.

Algorithm 6: MC Composite service - Orchestration

Input: Number of selected composite service versions to compute metrics
Output: Computed values for BEMg, BEM,, BUME; and BUME

1. Read tables to compute BEMg using SQL statements which uses columns:
Process versions, Activity, Number of changes and Change category

2. Use data from step 1 to compute BEMg

3. Read tables to compute BEM, using SQL statements which uses columns:
Process versions, Activity, Number of changes and Change category

4. Use data from step 3 to compute BEM,

5. Read tables to compute BUME; using SQL statements which uses columns:
Process versions, Activity, Number of activities in previous version, Number of
changes and Change category

6. Use data from step 5 to compute BUMEp

7. Read tables to compute BUMEy using SQL statements which uses columns:
Process versions, Activity, Number of activities in previous version, Number of
changes and Change category

8. Use data from step 7 to compute BUMEy

6.3.4 Composite Service - Choreography

MCS for composite service (choreography) is implemented using ED-CS Composite
service - Choreography and MC Composite service - Choreography modules.

ED-CS Composite service - Choreography is implemented using Algorithm 7. Firstly,
database table is created to store the evolution data for the selected number of
versions for a composite service (choreography-simulated). The evolution data is
generated randomly for the selected number of versions for WS-CDL entities
(participant/role/interaction). After this, the evolution data is stored in the created
table.

108

Algorithm 7: ED-CS Composite service - Choreography

Input: Number of composite service versions for the simulated data

Output: Evolution data stored in database for selected Input

1. Create tables with columns: CDL process versions, Entity, Peer/Participant,
Number of peer/participant, Change, Number of changes

2. Generate randomly, changes for WS-CDL entities (participant, role, and
interaction) for the number of versions given in Input.

3. Store data in tables.

MC Composite service - Choreography module is implemented using Algorithm 8.
Data stored in tables (using Algorithm 7) is read. The data is used to compute the

metrics for a single service i.e. AEM*, SEM™ and EM.

Algorithm 8: MC Composite service - Choreography

Input: Number of composite selected service versions to compute metrics

Output: Computed values for AEM", SEM™ and EM

1. Read tables to compute AEM™ using SQL statements which uses columns: CDL
process versions, Entity, Peer/Participant, Number of peer/participant, Change,
Number of changes

2. Use data from step 1 to compute AEM*

3. Read tables to compute SEM™ using SQL statements which uses columns: CDL
process versions, Entity, Peer/Participant, Number of peer/participant, Change,
Number of changes

4. Use data from step 3 to compute SEM’

5. Read tables to compute EM using values of AEM" and SEM

6. Use data from step 5 to compute EM

All algorithms are implemented using Java, Embedded SQL queries in Java code and

wsdl4j-1_6_3 parser (used as a plug-in in Eclipse).

6.4 Summary

In this chapter, we have presented Metrics Computation System (MCS) which is
developed to compute the metrics proposed in this thesis. MCS contains modules to
compute and store changes and also to compute the metrics for different versions of a

single as well as a composite service.

109

Chapter 7 Conclusion

In this thesis, we have proposed metrics for the evolving services in SOA for both
single and composite service. The service provider’s as well as the service consumer’s
perspective has been considered while proposing metrics. The metrics provide a
measure of the quantum of change in a service to the provider. They also measure the
impact on the consumer. This impact has been studied from different perspectives i.e.

impact on the service client code and impact on the usefulness of the service.

For a single service, to provide a measure of the overall evolution for the service
provider, we have proposed SEM metric. In order to measure the impact of service
evolution in the service client code, SCEMy, SCEMo and SCEM+t are proposed.
These metrics are a measure of the amount of the changes (mandatory, optional,
trivial) for the client code to adapt. The proposed metric SUEM measures the impact
on the usefulness for the consumer as a service evolves. The correlation analysis of
the metrics helps the service provider to identify phases of the service evolution

which are beneficial to the consumer and which are not.

For a composite service, metrics for both orchestration and choreography are
considered. WS-BPEL document structure is used while defining the metrics for
service composition through orchestration. Metrics are proposed both for the provider
as well as the consumer. Two WS-BPEL Evolution Metrics are proposed for the
provider. One is for external evolution (BEMEg) and the other is for internal evolution
(BEM)). The changes which involve interactions with the external partner services are
measured by BEMg. The changes which are confined only to the internal logic of the
process are measured by BEM,. For the consumer, two metrics are proposed i.e.
BUME; to measure the impact of evolution on process usefulness in a positive sense
and BUMEy as a measure in a negative sense. It is used to give an idea by how much

the process is useful for her/him across its different versions. Here, we have defined

110

metric for favorable/ unfavorable/indifferent changes. The metric analysis shows the

degree of variance of usefulness for all these different kinds of changes.

Using versions of WS-CDL document, the evolution in choreography has also been
studied. Three metrics are proposed considering from the provider’s perspective. The
first metric is AEM™ which is a measure of all the changes which are additive in
nature. The second metric, SEM", measures those changes which are subtractive in
nature. Finally, EM, measures the total sum of both the kinds of changes in the

choreography to give an idea of the overall evolution.

We have performed theoretical validation of all the proposed metrics using Zuse
framework. All the metrics are found to be above the ordinal scale level. The metrics
were validated empirically using real time data for a single service. Simulated data
has been used for a composite service as well as a single service because of the non-

availability or insufficiency of real time data.

Metrics Computation System (MCS) has been developed to implement the
computation of the metrics. MCS was implemented using jdk1.8.0_121, SQL Server
12.0, Apache Tomcat 8.5.11, and Eclipse 4.6.0 (Neon).

7.1 Future Work
The future directions related to the proposed work in the thesis are as follows.

a) Metrics can be proposed for composite services (orchestration) using languages
other than WS-BPEL such as Web Services Flow Language (WSFL), Xlang etc. For
composite services (choreography), metrics can be proposed using languages such as
Web Service Conversation Language (WSCL), Web Service Choreography Interface
(WSCI) etc.

b) The metrics of different languages can, then, be compared. Further, the metrics
can be studied to determine whether any of the languages is better from the point of

evolution.

111

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

T. Erl, Service-oriented architecture: concepts, technology, and design.
Pearson Education India, 2005.

T. Erl, Service-oriented architecture: a field guide to integrating XML and web
services. Prentice hall, 2004.

L.-J. Zhang, “SOA and Web services,” in Services Computing, 2006. SCC’06.
IEEE International Conference on, 2006, pp. XXXVi--XXXVi.

K. B. Laskey and K. Laskey, “Service oriented architecture,” Wiley Interdiscip.
Rev. Comput. Stat., vol. 1, no. 1, pp. 101-105, 2009.

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson, Web
services platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-
BPEL, WS-reliable messaging and more. Prentice Hall PTR, 2005.

E. Newcomer and G. Lomow, Understanding SOA with Web services.
Addison-Wesley, 2005.

T. Unger, F. Leymann, S. Mauchart, and T. Scheibler, “Aggregation of service
level agreements in the context of business processes,” in Enterprise
Distributed Object Computing Conference, 2008. EDOC’08. 12th International
IEEE, 2008, pp. 43-52.

A. Barker and J. Van Hemert, “Scientific workflow: a survey and research
directions,” Parallel Process. Appl. Math., pp. 746-753, 2008.

C. Barreto et al., “Web Services Business Process Execution Language Version
2.0,” OASIS, 2007. [Online]. Available: https://www.oasis-
open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm.
[Accessed: 01-Jan-2013].

H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based analysis of
obligations in web service choreography,” in Telecommunications, 2006.
AICT-ICIW 06. International Conference on Internet and \Web Applications
and Services/Advanced International Conference on, 2006, p. 149.

S. Ross and T. Fletcher, “Web Services Choreography Description Language:
Primer,” W3C Working Draft, 2006. [Online]. Available:
https://www.w3.0rg/TR/ws-cdl-10-primer/. [Accessed: 01-Jan-2014].

112

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

M. Rani, A. K. Chawla, and S. Batra, “Web service choreography description
language (WS-CDL): Goals and benefits,” COIT.[Online]. Available
http//www. rimtengq. com/coit2007/proceedings/pdfs/49. pdf, 2006.

E. A. Marks and M. Bell, Service Oriented Architecture (SOA): a planning and
implementation guide for business and technology. John Wiley & Sons, 2008.
J. P. Lawler and H. Howell-Barber, Service-oriented architecture: SOA
strategy, methodology, and technology. CRC Press, 2007.

T. Erl, Soa: principles of service design. Prentice Hall Press, 2007.

S. Carter, The New Language of Business: SOA & Web 2.0 (Adobe Reader).
Pearson Education, 2007.

M. N. Huhns and M. P. Singh, “Service-oriented computing: Key concepts and
principles,” IEEE Internet Comput., vol. 9, no. 1, pp. 75-81, 2005.

D. Booth et al., “Web Services Architecture,” W3C Working Group, 2004,
[Online]. Available: https://www.w3.org/TR/ws-arch/. [Accessed: 01-Jan-
2013].

D. Booth and C. Kevin Liu, “Web Services Description Language (WSDL)
Version 2.0 Part 0: Primer,” W3C, 2007. [Online]. Available:
https://www.w3.0rg/TR/wsdl20-primer/. [Accessed: 01-Jan-2013].

G. Mein et al., “Simple object access protocol.” Google Patents, 2002.

M. Gudgin et al., “SOAP Version 1.2 Part 1: Messaging Framework,” W3C,
2007. [Online]. Available: https://www.w3.0org/TR/soap12/. [Accessed: 01-Jan-
2013].

N. Milanovic and M. Malek, “Current solutions for web service composition,”
IEEE Internet Comput., vol. 8, no. 6, pp. 51-59, 2004.

A. Barker, C. D. Walton, and D. Robertson, “Choreographing web services,”
IEEE Trans. Serv. Comput., vol. 2, no. 2, pp. 152-166, 2009.

M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented
computing: a research roadmap,” Int. J. Coop. Inf. Syst., vol. 17, no. 2, pp.
223-255, 2008.

M. P. Papazoglou, V. Andrikopoulos, and S. Benbernou, “Managing evolving
services,” |IEEE Softw., vol. 28, no. 3, pp. 49-55, 2011.

113

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

M. B. Juric, A. Sasa, B. Brumen, and I. Rozman, “WSDL and UDDI
extensions for version support in web services,” J. Syst. Softw., vol. 82, no. 8,
pp. 1326-1343, 2009.

S. Akram, A. Bouguettaya, X. Liu, A. Haller, and F. Rosenberg, “A Change
Management Framework for Service Oriented Enterprises.,” Int. J. Next-
Generation Comput., vol. 1, no. 1, 2010.

Y. Wang, J. Yang, W. Zhao, and J. Su, “Change impact analysis in service-
based business processes,” Serv. Oriented Comput. Appl., vol. 6, no. 2, pp.
131-149, 2012.

D. Kim, M. Kim, and H. Kim, “Dynamic business process management based
on process change patterns,” in Convergence information technology, 2007.
international conference on, 2007, pp. 1154-1161.

M. Koning, C. Sun, M. Sinnema, and P. Avgeriou, “VxBPEL: Supporting
variability for Web services in BPEL,” Inf. Softw. Technol., vol. 51, no. 2, pp.
258-269, 20009.

W. Fdhila, A. Baouab, K. Dahman, C. Godart, O. Perrin, and F. Charoy,
“Change propagation in decentralized composite web services,” in
Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), 2011 7th International Conference on, 2011, pp. 508-511.
H. Liu, Z. Li, J. Zhu, and H. Tan, “Business process regression testing,” in
ICSOC, 2007, vol. 7, pp. 157-168.

A. Slominski, “Adapting BPEL to scientific workflows,” Work. e-Science, pp.
208-226, 2007.

M. Hiel, H. Aldewereld, and F. Dignum, “Ensuring conformance in an
evolving choreography,” in Service-Oriented Computing and Applications
(SOCA), 2010 IEEE International Conference on, 2010, pp. 1-4.

W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert, “Dealing with change
in process choreographies: Design and implementation of propagation
algorithms,” Inf. Syst., vol. 49, pp. 1-24, 2015.

A. Mahfouz, L. Barroca, R. Laney, and B. Nuseibeh, “Requirements-driven

collaborative choreography customization,” Serv. Comput., pp. 144-158, 20009.

114

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

S. Rinderle, A. Wombacher, and M. Reichert, “Evolution of process
choreographies in DYCHOR,” Move to Meaningful Internet Syst. 2006 CooplS,
DOA, GADA, ODBASE, pp. 273-290, 2006.

J. Su, T. Bultan, X. Fu, and X. Zhao, “Towards a theory of web service
choreographies,” Lect. Notes Comput. Sci., vol. 4937, pp. 1-16, 2008.

B. Curtis, “Measurement and experimentation in software engineering,” Proc.
IEEE, vol. 68, no. 9, pp. 1144-1157, 1980.

B. A. Kitchenham, Software metrics: measurement for software process
improvement. Blackwell Publishers, Inc., 1996.

J. E. Gaftney Jr, “Metrics in software quality assurance,” in Proceedings of the
ACM’81 conference, 1981, pp. 126-130.

N. Fenton and J. Bieman, Software metrics: a rigorous and practical approach.
CRC Press, 2014.

M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski,
“Metrics and laws of software evolution-the nineties view,” in Software
Metrics Symposium, 1997. Proceedings., Fourth International, 1997, pp. 20—
32.

N. Drouin, M. Badri, and F. Tour¢, “Metrics and software quality evolution: A
case study on open source software,” Int. J. Comput. Theory Eng., vol. 5, no. 3,
p. 523, 2013.

C. Gerlec and M. Hericko, “Analyzing Structural Software Changes: A Case
Study.,” in BCI (Local), 2012, pp. 117-120.

T. Mens and S. Demeyer, “Future trends in software evolution metrics,” in
Proceedings of the 4th international workshop on Principles of software
evolution, 2001, pp. 83-86.

A. Mockus and L. G. Votta, “Identifying Reasons for Software Changes using
Historic Databases.,” in icsm, 2000, pp. 120-130.

Y. Lee, J. Yang, and K. H. Chang, “Metrics and evolution in open source
software,” in Quality Software, 2007. QSIC’07. Seventh International
Conference on, 2007, pp. 191-197.

J. Van Gurp and J. Bosch, “Design erosion: problems and causes,” J. Syst.

115

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Softw., vol. 61, no. 2, pp. 105-119, 2002.

Z. Balfagih and M. F. Hassan, “Quality model for web services from multi-
stakeholders’ perspective,” in Information Management and Engineering,
2009. ICIME 09. International Conference on, 2009, pp. 287-291.

S. W. Choti, J. S. Her, and S. D. Kim, “Modeling QoS attributes and metrics for
evaluating services in SOA considering consumers’ perspective as the first
class requirement,” in Asia-Pacific Service Computing Conference, The 2nd
IEEE, 2007, pp. 398-405.

D. Rud, A. Schmietendorf, and R. Dumke, “Resource metrics for service-
oriented infrastructures,” Proc. SEMSOA 2007, pp. 90-98, 2007.

Y. Lee, “QoS metrics for service level measurement for SOA environment,” in
Advanced Information Management and Service (IMS), 2010 6th International
Conference on, 2010, pp. 509-514.

M. Perepletchikov, C. Ryan, and K. Frampton, “Cohesion metrics for
predicting maintainability of service-oriented software,” in Quality Software,
2007. QSIC’07. Seventh International Conference on, 2007, pp. 328-335.

M. Gebhart, “Measuring design quality of service-oriented architectures based
on web services,” in Eighth International Conference on Software Engineering
Advances (ICSEA 2013), Venice, Italy, 2013, pp. 504-509.

D. Athanasopoulos and A. V Zarras, “Fine-grained metrics of cohesion lack for
service interfaces,” in Web Services (ICWS), 2011 IEEE International
Conference on, 2011, pp. 588-595.

M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling metrics for
predicting maintainability in service-oriented designs,” in Software
Engineering Conference, 2007. ASWEC 2007. 18th Australian, 2007, pp. 329—
340.

S. Kalepu, S. Krishnaswamy, and S. W. Loke, “Verity: a QoS metric for
selecting Web services and providers,” in Web Information Systems
Engineering Workshops, 2003. Proceedings. Fourth International Conference
on, 2003, pp. 131-139.

S. W. Choi and S. D. Kim, “A quality model for evaluating reusability of

116

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

services in soa,” in E-Commerce Technology and the Fifth IEEE Conference on
Enterprise Computing, E-Commerce and E-Services, 2008 10th IEEE
Conference on, 2008, pp. 293-298.

D. Dyachuk and R. Deters, “Using sla context to ensure quality of service for
composite services,” in Pervasive Services, IEEE International Conference on,
2007, pp. 64-67.

A. Khoshkbarforoushha, R. Tabein, P. Jamshidi, and F. Shams, “Towards a
metrics suite for measuring composite service granularity level
appropriateness,” in Services (SERVICES-1), 2010 6th World Congress on,
2010, pp. 245-252.

B. Wetzstein, S. Strauch, and F. Leymann, “Measuring performance metrics of
WS-BPEL service compositions,” in Networking and Services, 2009. ICNS’09.
Fifth International Conference on, 2009, pp. 49-56.

K. Qian, J. Liu, and F. Tsui, “Decoupling metrics for services composition,” in
Computer and Information Science, 2006 and 2006 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software
Architecture and Reuse. ICIS-COMSAR 2006. 5th IEEE/ACIS International
Conference on, 2006, pp. 44-47.

P. T. Quynh and H. Q. Thang, “Dynamic coupling metrics for service--oriented
software,” World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom.
Control Inf. Eng., vol. 3, no. 3, pp. 795-800, 2009.

X. Wang, “Metrics for evaluating coupling and service granularity in service
oriented architecture,” in Information Engineering and Computer Science,
2009. ICIECS 2009. International Conference on, 2009, pp. 1-4.

B. Wetzstein, D. Karastoyanova, and F. Leymann, “Towards management of
SLA-aware business processes based on key performance indicators,” in 9th
Workshop on Business Process Modeling, Development and Support
(BPMDS’08)-Business Process Life-Cycle: Design, Deployment, Operation &
Evaluation, 2008.

H. Zuse, A framework of software measurement. Walter de Gruyter, 1998.

L. Mistr’\ik, R. M. Soley, N. Ali, J. Grundy, and B. Tekinerdogan, Software

117

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

quality assurance: in large scale and complex software-intensive systems.
Morgan Kaufmann, 2015.

L. Finkelstein, “Theory and philosophy of measurement,” Handb. Meas. Sci.,
vol. 1, pp. 1-30, 1982.

L. Finkelstein and M. S. Leaning, “A review of the fundamental concepts of
measurement,” Measurement, vol. 2, no. 1, pp. 25-34, 1984.

S. L. Pfleeger and J. M. Atlee, Software engineering: theory and practice.
Pearson Education India, 1998.

A. L. Baker, J. M. Bieman, N. Fenton, D. A. Gustafson, A. Melton, and R.
Whitty, “A philosophy for software measurement,” J. Syst. Softw., vol. 12, no.
3, pp. 277-281, 1990.

M. E. Bush and N. E. Fenton, “Software measurement: a conceptual
framework,” J. Syst. Softw., vol. 12, no. 3, pp. 223-231, 1990.

V. R. Basili, “Software modeling and measurement: the Goal/Question/Metric
paradigm,” 1992.

N. Simpkins, “T320 E-business technologies: foundations and practice,” 2008.
[Online]. Available:
http://www.eclipse.org/webtools/community/education/web/t320/Generating_a
_client_from_WSDL.pdf.

Oracle, “Creating a Simple Web Service and Client with JAX-WS - The Java
EE 5 Tutorial,” 2010. [Online]. Available:
http://docs.oracle.com/javaee/5/tutorial/doc/bnayn.html.

Pivotal, “Consuming a SOAP web service,” 2016. [Online]. Available:
https://spring.io/%0Aguides/gs/consuming-web-service/.

Z. M, “Create a web service client for a SOAP based web service,” 2012.
[Online]. Available: http://java.boot.by/ocewsd6-guide/ch06.html.

C. Peltz, “Web services orchestration and choreography,” Computer (Long.
Beach. Calif)., vol. 36, no. 10, pp. 46-52, 2003.

F. Daniel and B. Pernici, “Insights into web service orchestration and

choreography,” Int. J. E-bus. Res., vol. 2, no. 1, pp. 58-77, 2006.

118

