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Chapter 1

Introduction to Disordered Spin

Systems

1.1 Introduction

Spin systems with quenched disorder have been widely studied in condensed mat-

ter physics. Although these systems are ubiquitous, the complex nature of the

spin-spin interactions creates difficulties in studying them analytically and com-

putationally. In general, the disorders are of two types—annealed and quenched.

A system is said to have quenched disorder if the random impurities are frozen

and are not allowed to move. In the case of annealed disorder, the random im-

purities move and evolve with time. Indeed, the systems with quenched disorder

are harder to analyze as compared to the annealed disorder and quite popular in

statistical physics. An issue of interest for these systems is the nature of their

thermodynamic ground state (GS) [1]. It contains important information about

the critical behavior and equilibrium properties such as low temperature suscep-

tibility, specific heat, etc. However, finding the GS in the disordered spin systems

is not a trivial problem.

The quenched disorder introduces deep valleys in the free-energy landscape

yielding a complicated scenario. The system can get stuck in a deep valley, i.e.,

opt for a local minimum which can be arbitrarily far from the global minimum,

and may not reflect any of its GS properties. Standard numerical techniques such
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1.1. Introduction

as Monte Carlo (MC) with Metropolis algorithm [2], or simulated annealing [3],

are often used to minimize the energy and access the GS, starting from an arbi-

trary initial condition. However, these techniques have several drawbacks such as

lack of self-averaging, diverging computation times, and trapping in metastable

states. Therefore, we still lack a complete understanding of the GS of disordered

spin systems and many issues related to the equilibrium or the critical behavior

of these systems remain unanswered.

Another fascinating class of problems in these systems is phase-ordering dy-

namics, which is the nonequilibrium evolution dynamics of a system when it is

rendered thermodynamically unstable by a sudden change of external parameters

such as, temperature T , pressure P , etc. The system will then grow as a function

of time until it reaches the equilibrium or gets stuck into a metastable state. The

dynamics of this non-equilibrium evolution of the system is described as domain

growth or coarsening or phase ordering dynamics or ordering kinetics. The prob-

lem of the kinetics of phase transitions has been a subject of intense research

interests in statistical physics during last two decades. This thesis focuses on the

both, equilibrium as well as non-equilibrium aspects of the disordered spin sys-

tems. In equilibrium, we study the GS problem using graph cut (GC) method. In

non-equilibrium, we study the ordering kinetics in these disordered system using

MC techniques.

This chapter provides an overview and the organization of the thesis. Sec-

tion 1.2 discusses the various types of disordered spin models which have been

studied in this thesis. Sections 1.3 and 1.4 are devoted to the details of numer-

ical techniques used to study these systems, namely, the MC method and the

GC method. Section 1.5 describes the various numerical tools. Section 1.6 pro-

vides a detailed discussion of ordering kinetics in disordered models. Finally, in

section 1.7, there is an overview of the thesis.

2



1.2. Disordered Spin Models

1.2 Disordered Spin Models

The typical Hamiltonian of a disordered spin system consists of two terms: spin-

spin interaction term and a local field term [1, 4, 5], i.e.,

H = −
∑
〈ij〉

Jijsisj −
∑
i

hisi. (1.1)

Here, 〈ij〉 denotes the nearest-neighbor (NN) sites i and j, and si is the spin

variable at site i, which takes a value +1 or −1. The parameter Jij is the strength

of exchange interaction between the NN pairs of spins si and sj. {hi} are the

quenched random field variables extracted form a certain probability distribution,

e.g., Gaussian, bimodal, etc. For ferromagnetic (FM) systems, {Jij} ≥ 0 while

for antiferromagnetic (AFM) systems, {Jij} < 0. On the other hand, in frustrated

systems, {Jij} takes both, positive as well as negative values.

These models are broadly classified into two categories: random field (RF)

models and random bond (RB) models. For RF models, {Jij} = J and {hi}
are random. For RB models, {Jij} are random and hi =constant. In the RF

category, we study the random field Ising model (RFIM) and random field Potts

model (RFPM), and in the RB category, we study the random bond Ising model

(RBIM) and random-bond XY model (RBXYM).

1.2.1 Random Field Ising Model

In the RFIM, all spins interact with the equal amount of strength, i.e., {Jij} ≡
J > 0 and the disorder is introduced via random values of {hi}. Therefore, with

reference to Eq. (1.1), the Hamiltonian reads

H = −J
∑
〈ij〉

sisj −
∑
i

hisi, si = ±1. (1.2)

Usually, the quenched RF variables {hi} are drawn form a Gaussian distribution

P (hi) =
1√

2π∆2
e−h

2
i /(2∆2), (1.3)

3



1.2. Disordered Spin Models

where ∆ is the standard deviation, which is a measure of the disorder strength.

Other common choices of the distribution of random-fields are the uniform and

bimodal:

Pu(hi) =


[√

12∆
]−1

, |hi| ≤
√

3∆,

0, |hi| >
√

3∆,
(1.4)

Pb(hi) =
1

2
[δ(hi −∆) + δ(hi + ∆)] . (1.5)

All three distributions Gaussian, uniform and bimodal have zero mean and vari-

ance ∆2.

The interaction term energetically prefers to have a parallel alignment of spins,

but the disorder tends to align the spins towards their local field hi. The compe-

tition between these two terms yield the complex energy landscape and therefore,

finding the GS is an optimization problem. In the zero-temperature GS study of

the RFIM, the continuous type of the distribution, e.g., Gaussian and uniform,

give rise to the non-degenerate ground states whereas the discrete distribution

(e.g., bimodal) produces the degenerate ground states [6].

1.2.2 Random Field Potts Model

The RFPM is a natural generalization of RFIM for q possible states of spins [7, 8]

and is defined by the Hamiltonian [9]

H = −J
∑
〈ij〉

δsi,sj −
∑
i

q−1∑
α=0

hαi δsi,α, si ∈ {0, 1, ...., q − 1}. (1.6)

Here, δx,y is the Kronecker delta function, and q is the total number of labels

or the Potts state. Therefore, each spin si can take any value from the set

{0, 1, ...., q− 1}. {hαi } are the quenched RF variables at site i acting on the state

α, which can be drawn from the distributions as described above.

4



1.2. Disordered Spin Models

1.2.3 Random Bond Ising Model

Setting {hi} = 0 in Eq. (1.1), the Hamiltonian for the RBIM can be written as

H = −
∑
〈ij〉

Jijsisj, si = ±1. (1.7)

The quenched RB variables {Jij} are often drawn from the uniform distribu-

tion [10]:

Pu(Jij) =

ε−1, (1− ε/2) ≤ Jij ≤ (1 + ε/2),

0, otherwise.
(1.8)

Another distribution that is commonly used is the bimodal distribution [11, 12]:

Pb(Jij) = a [δ(Jij − (J0 − ε))] + (1− a) [δ(Jij − (J0 + ε))] , (1.9)

where ε, a, and J0 are the non-negative parameters. a is a disorder parameter.

A system with all Jij > 0 is called a random magnet [10] and a combination of

both positive as well as negative values of Jij is called a frustrated magnet [12]. In

a random magnet, one usually considers a uniform distribution where ε gives the

amount of disorder. While the bimodal distribution in Eq. (1.9) is more general

and several useful models can be realized depending on the various possibilities

in ε and J0 as follows.

(i) ε = 0 corresponds to the pure Ising model (IM) ({Jij} = J0).

(ii) ε < J0 corresponds to an FM asymmetric random-bond Ising model (AR-

BIM) ({Jij} > 0).

(iii) ε = J0 corresponds to a bond-diluted case of IM in which Jij = 0 with

probability a, i.e, a fraction a of total bonds are removed. In other words,

a is a dilution parameter.

(iv) ε > J0 corresponds to a frustrated case. However, the frustration is weak

because positive bonds are stronger than the negative ones, i.e., (J0 + ε) >

|J0 − ε|.

5



1.3. The Monte Carlo Method

(v) J0 = 0 represents the Ising spin-glass system [13–15], where Jij takes the

values −ε with probability a or +ε with the probability 1− a. In Edwards-

Anderson (EA) spin-glass model [15], a = 0.5 , i.e., {Jij} takes ±ε with

equal probability. However, a more common choice of {Jij} is from the

Gaussian distribution of zero mean and variance ε2. Therefore, in this case,

ε is a disorder parameter.

1.2.4 Random Bond XY Model

In the XY model, spins are the two-component (n = 2) vector quantities, which

are restricted to move in an xy plane. Considering the vectors are of unit mag-

nitude, each spin Si = (cos θi, sin θi) is characterized by an angle θi. Therefore,

the Hamiltonian that describes the RBXYM [16, 17] is

H = −
∑
〈ij〉

Jij Si · Sj, |Si| = 1,

= −
∑
〈ij〉

Jij cos(θi − θj), (1.10)

where θi lies in the interval (−π, π) or (0, 2π). The RB variables {Jij} are uni-

formly distributed in the interval [1− ε/2, 1 + ε/2], according to the distribution

in Eq. (1.8).

As stated earlier, the important features of these disordered models are in the

underlying low-temperature phase. Therefore, to minimize the energy Hamilto-

nian and to equilibrate these systems at low-T are the interesting issues. There

are two important numerical techniques, the MC and the GC methods, which are

used to deal such issues in these systems.

1.3 The Monte Carlo Method

MC methods are the standard sampling techniques used in statistical physics.

The general approach of a MC method is to thermally equilibrate a system,

which is placed in contact with a heat bath at temperature T . The system reaches

6



1.3. The Monte Carlo Method

the thermal equilibrium via taking different possible spin configurations {si} in

the phase space [18, 19]. Once the system is equilibrated, the thermodynamic

observables can be easily determined.

Let P ({si}, t) be the probability that the system has a spin configuration {si}
at a given time t. If the underlying stochastic process of evolution is assumed

to be a Markov chain of states, i.e., a system in a given state at time t + ∆t

depends only on the previous state at time t. Then, in a small interval of time

∆t, the system makes a transition to {s′i} from {si} via a suitable transition

probability W ({si} → {s′i}) such that in the limit of t → ∞, the probability

distribution of these states generated by this Markov process approaches the

equilibrium maxwell-Boltzmann distribution, i.e.,

Peq({si}) =
exp (−βH({si}))

Z
. (1.11)

Here, β = 1/kBT and Z is the partition-function defined as

Z =
∑
{si}

exp (−βH({si})). (1.12)

Now, we can write down the following master equation for the rate of change

of P ({si}, t) [20]:

dP ({si}, t)
dt

=
∑

{s′i}6={si}

[
−W ({si} → {s′i})P ({si}, t)+W ({s′i} → {si})P ({s′i}, t)

]
.

(1.13)

The first term on the right-hand-side denotes the loss of probability P ({si}, t) of

{si} in making a transition to {s′i} at time t + ∆t and second term denotes the

probability gain of {si} from {s′i} at t−∆t. Notice that the negative sign in first

term is due to probability loss of P ({si}, t).
At thermal equilibrium, the system will reach a steady state, and therefore

dP ({si}, t)/dt = 0. This gives∑
{s′i}6={si}

[
W ({si} → {s′i})Peq({si})−W ({s′i} → {si})Peq({s′i})

]
= 0. (1.14)
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1.3. The Monte Carlo Method

The general form of W , which gives Peq as t→∞, is very difficult to obtain from

Eq. (1.14). However, a particular solution can be quickly identified as

W ({si} → {s′i})Peq({si})−W ({s′i} → {si})Peq({s′i}) = 0. (1.15)

Eq. (1.15) is known as the detailed balance condition. Thus, the detailed balanced

condition is a sufficient—but not necessary—condition to ensure equilibration.

Using Peq from Eq. (1.11), Eq. (1.15) takes a simpler form

W ({si} → {s′i})
W ({s′i} → {si})

= exp (−β∆E). (1.16)

Here, ∆E = H({s′i}) − H({si}) is the change in energy due to the transition

{si} → {s′i}. The transition probability W is chosen such that it satisfies the

condition of detailed balance (Eq. (1.16)).

There are two frequent choices of W [18, 21]:

W =
1

2

[
1− tanh

(
β∆E

2

)]
=

1

1 + exp (β∆E)
, (1.17)

and

W =

e−β∆E, if∆E > 0,

1, otherwise.
(1.18)

It is easy to check that both Eqs. (1.17) and (1.18) satisfy the detailed balance

condition (Eq. (1.16)). Eq. (1.17) corresponds to the Glauber rate of transition

and Eq. (1.18) to the Metropolis rate of transition. In Metropolis algorithm, as

the acceptance probability is 1 for ∆E ≤ 0, therefore, it is more efficient and has

become a popular choice in the MC studies of various statistical models [19].
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1.4. The Ground State Problem

1.4 The Ground State Problem

At T = 0, the system relaxes into the GS, which is a state with the lowest possible

energy H{si}. Though, MC techniques are useful to minimize the energy Hamil-

tonian, at T = 0, they have several limitations, e.g., violation of self-averaging,

trapping in a metastable state because of lack of thermal fluctuations by which

the system can overcome the energy barriers. Therefore, the system will never

reach its GS.

Further, the numerical studies of such spin systems must restrict themselves

to finite-size systems to model an infinite-size system. Therefore, it is computa-

tionally very demanding to simulate large system sizes. For larger system sizes,

one obtains better agreement with the behavior of the actual physical system.

However, MC methods place severe restrictions on the maximum system sizes

because of non-polynomial (NP) divergence of computation time with the system

size (∼ exp(Lϕ)).

Therefore, with limited computational resources, there is a need for fast and

efficient optimization algorithms to deal such systems. Particularly fruitful are

the application of the GC methods. The GC methods have traditionally been

used in computer science to obtain optimal solutions to the hard combinatorial

problems [22, 23]. These methods have the advantage of being much faster than

the standard algorithms. As a result, very large system sizes are accessible in

dimensions d = 2 and d = 3. Let us now discuss the approach of a GC method,

which has many potential applications for energy minimization in complex spin

systems.

1.4.1 The Graph Cut Method

The GC method can be applied to the standard energy function (e.g., a Hamil-

tonian), which is typically of the form:

E(S) =
∑
{i j}∈N

Vij(si, sj) +
∑
i∈S

Di(si), (1.19)
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1.4. The Ground State Problem

where S is the set of sites and N is the set of all interacting pairs of sites. Consider

L is a set of labels. Each site i ∈ S is assigned a label si ∈ L, and related

to the neighboring site j ∈ Ni in the well-defined neighborhood system N =

{Ni | ∀i ∈ S}, where Ni is the set of sites neighboring i. Typically, N consists

of neighboring sites but it can be arbitrary. Di is an arbitrary function which

measures the cost (or penalty) of assigning the label si to the site i; and Vij(si, sj)

measures the cost of assigning labels si and sj to neighboring sites i and j. A

system comprising N sites is then defined by a configuration S = (s1, s2, ..., sN)

in the configuration space of size |L|N , where |L| denotes the total number of

elements of L. Our goal is to find an optimal labeling S∗ that minimizes the

energy function E.

The starting point in a GC method is to construct a specialized graph for the

energy function E such that the minimum cut on the graph yields the minimiza-

tion of the energy (either globally or locally). A graph G is an ordered pair of

disjoint sets (V,E) such that V is the set of vertices and E is the set of edges.

An edge i j joining vertices i and j is assigned a weight Vi,j. Then, a cut C is a

partition of the vertices V into two disjoint sets R and Q. Any edge i j ∈ E with

i ∈ R and j ∈ Q (or vice-versa) is said to be crossing the cut and is a cut edge.

The cost (or size) of the cut is defined to be the sum of the weights of the cut

edges, and the minimum cut is the cut that has the smallest cost. To find the

cut with the smallest cost is called the min-cut problem.

A natural question to ask is the following. What class of energy functions are

graph-representable such that they can be efficiently minimized by computing the

minimum cut on the graph? In the case of binary labels, viz., L ∈ {0, 1} (e.g.,

RFIM), the energy function E is graph-representable if and only if each term Vij

satisfies the regularity condition [23]

Vij(0, 0) + Vij(1, 1) ≤ Vij(1, 0) + Vij(0, 1). (1.20)

Functions which satisfy the above condition are called regular functions. Regular-

ity is the necessary and sufficient condition for graph-representability. Addition-

ally, if E is quadratic in Eq. (1.19), a global minimum is guaranteed in polynomial

(P) time.
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1.4. The Ground State Problem

Exact ground states for random field Ising model

The spin-variables (si = ±1) of the RFIM Hamiltonian in Eq. (1.2) can be trans-

formed into occupation-number variables (ni = 0, 1) through the transformation

ni = (1 + si)/2. Then, neglecting constant terms, one has

H({ni}) = −4J
∑
〈ij〉

ninj − 2
∑
i

(hi − q′J)ni, ni = 0, 1. (1.21)

Here, q′ denotes the number of NNs of a lattice site. It is straightforward to

check that the interaction term of Eq. (1.21) satisfies the regularity condition

[Eq. (1.20)]. Thus, the energy function of the RFIM (Eq. (1.21)) is graph-

representable and can be minimized using a GC method to yield the exact GS.

This computation is done via graph cuts on the specialized graph representing

the energy function H({ni}). Each iteration of the GC method finds an optimal

subset of nodes with a fixed label ni (= 0 or 1) that gives the largest decrease

in energy. The algorithm repeatedly cycles through the labels ni until the global

minimum is reached.

The literature on combinatorial optimization provides several GC algorithms

with different polynomial (P) complexity times, e.g., Ford-Fulkerson (FF) method

of augmenting paths [24], the Goldberg-Tarjan (GT) push-relabel method [25],

and the more recent Boykov-Kolmogorov (BK) method [26], etc. A benchmarking

of these algorithms on a number of typical graphs has revealed that the BK

method is faster than any other. While the runtime to search the global minima

in FF and GT algorithms has O(N3) dependence on the system size N , the BK

method has O(N) [26]. In our study, we use the BK implementation of the GC

method. The details of the BK method and the pseudo-code are provided in

Secs. 3.1 and 3.2 of Ref. [26]. The source code of its implementation and usage

instructions are openly available online [27].

Approximate ground states for random field Potts model

For the systems having binary labels (e.g., RFIM), the GC method yields the

exact GS in P time. However, for the systems having more than two labels

(e.g., RFPM), minimizing energy function as in Eq. (1.6) is a NP hard prob-
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lem [28]. Therefore, an efficient method for the exact GS is extremely unlikely

to exist. Boykov, Veksler and Zabih (BVZ) [22] developed two efficient energy

minimization algorithms in GC techniques, namely, α-expansion and α-β-swap,

which allow arbitrary label sets L = (α, β, ...., γ), arbitrary data terms Di and

a very wide class of pair-wise interactions V . These algorithms are for multi-

dimensional energy functions and allow simultaneous relabeling of large number

of spins. They obtained approximate solutions in energy minimization of the

NP-hard problem with guaranteed optimality bounds.

Both of these algorithms make use of graph cuts iteratively in energy min-

imization. The basic structure of both these algorithms is described as follows

(see Ref. [22]):

Expansion Algorithm

1. Start with an arbitrary labeling S

2. Set success = 0

3. For each label α ∈ L

(a) Find Ŝ = arg minE(S ′) among S ′ within one α-expansion of S

(b) If E(Ŝ) < E(S), set S = S ′ and success = 1

4. If success = 1 goto step 2

5. Return S

Swap Algorithm

1. Start with an arbitrary labeling S

2. Set success = 0

3. For each pair of labels {α, β} ⊂ L

(a) Find Ŝ = arg minE(S ′) among S ′ within one α-β swap of S

(b) If E(Ŝ) < E(S), set S = S ′ and success = 1

4. If success = 1 goto step 2
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5. Return S

A single execution of step 3 is an iteration and an execution of steps 2-4 is one

cycle. In each cycle, the expansion algorithm performs an iteration for every label

α ∈ L, while the swap algorithm performs for every pair of labels {α, β} ∈ L.

Both algorithms are guaranteed to find the local minima in a finite number of

cycles. These algorithms are so efficient that they terminate in a few cycles and

most of the spins in configurational space are sampled in a first cycle. However,

the expansion algorithm converges faster as compared to the swap algorithm.

A cycle in the expansion algorithm takes |L| iterations, while a cycle in the

swap algorithm takes |L|2 iterations. Further, the expansion algorithm finds the

local minimum within a known factor of the global minimum whereas the swap

algorithm does not have any guaranteed optimality properties, but it handles the

more general energy functions. Ref. [22] provides the details of the graph cuts of

both algorithms.

In our study of the RFPM, we have used the graph cuts of α-expansion algo-

rithm. In an expansion move, the α-expansion algorithm cycles for each α ∈ L in

some order (fixed or random) and assign a set of spins si’s to a new value s′i = α

if the energy is lowered, i.e.,

s′i =

{
α if E({s′i}) < E({si}),
si, otherwise.

(1.22)

The algorithm then repeatedly iterates until no further improvement can be made.

It is called expansion as the set of spins which are flipped to α has increased in

moving from {si} to {s′i}. The key step in the algorithm is to use graph cuts to

compute efficiently an expansion move.

Boykov et al. (BVZ) [22] have shown the optimality properties of the expan-

sion algorithm that the algorithm produces a solution within a known factor of

the global solution. They prove that if S∗ is the global minimum of any energy

function E(S) for an arbitrary set of labels and given the expansion moves Ŝ is

a local minimum, then E(Ŝ) ≤ 2cE(S∗), where

c =
maxsi 6=sj∈LV (si, sj)

minsi 6=sj∈LV (si, sj)
. (1.23)
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BVZ described a special case of multilabel energy function of the form of Potts

model, for which they prove that the minimizing the energy function is NP-hard.

The energy function which they consider is

E({si}) =
∑
{i,j}∈N

u{i,j}.T (si 6= sj) +
∑
i∈S

Di(si), (1.24)

where Vij ≡ u{i,j}.T (si 6= sj) is the Potts interaction penalty which is metric on

the space of labels L. u{i,j} represents a penalty of assigning different weight to

the neighboring sites i and j. T (·) = 1 if its argument is true, and otherwise 0.

In this case c = 1, so the expansion move allows us to get the local minimum

within a factor of two of the global minimum.

BVZ [22] presented the experimental results for the effectiveness of these al-

gorithms in a variety of computer vision problems such as image restoration with

multiple labels, stereo, segmentation, and motion. These problems are solved

by computing a minimum cost multiway cut on a graph. On comparing the

real data with the known ground truth, they obtained 98% accuracy. Therefore,

these algorithms are proved to be a powerful tool in solving many computer vision

problems.

1.5 Numerical Tools for Studying the Morpholo-

gies

Consider the RFIM at T = 0, which has the Hamiltonian in Eq. (1.2). For large

enough disorder ∆, the GS of the system is a paramagnetic (PM) state, in which

spins are aligned with their local fields. As ∆ is reduced, the system develops an

FM order, in which all spins energetically prefer to align parallel to each other.

The onset of this FM order involves the formation of domains (or blobs) which

are rich in either up or down spins. The domains are separated by an interface

and characterized by a length scale, i.e., the correlation length ξ(∆). The effect

of quenched disorder is in pinning and roughening of interfaces. As a result, these

interfaces become fractal in nature.

There are many relevant questions about the domain structure and the inter-
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face texture. For instance, what are the appropriate length scales to investigate

the domains structure and fractal properties of interfaces?; How different are

these properties at different length scales? For morphologies having rough or

fractal interfaces, what are the roughness exponents and the fractal dimension?

and how the exponents are affected by the disorder? The most useful quanti-

ties to answer these questions, and for quantifying the domain structure are the

correlation function (CF) and the structure factor (SF).

1.5.1 The Correlation Function and Structure Factor

The CF [29] is defined as

C(r, ∆) = 〈sisj〉 − 〈si〉〈sj〉, (1.25)

where r ≡ rj − ri, and the angular brackets denote an ensemble averaging. In an

another representation,

C(r, ∆) =
1

N

∑
r′

[
〈sr′sr′+r〉 − 〈sr′〉〈sr′+r〉

]
. (1.26)

For determining scattering properties, interfaces separating domains are probed

in the small-angle scattering experiments using X-rays, neutron, light, etc. These

scattering experiments measure the SF, which is the Fourier transform of the CF,

S(k, ∆) =

∫
dr e−ik·rC(r, ∆), (1.27)

where k is the wave vector of the scattered beam. In the isotropic case, C(r, ∆)

and S(k, ∆) are spherically averaged to make them directionally independent

[30]. Then, the CF and the SF depend on their vector magnitudes r = |r| and

k = |k|, respectively.

If the system is characterized by a single length scale, the morphology of the

domains does not change with ∆, apart from a scale factor. In this case, the CF

exhibits a scaling property [29, 31]:

C(r, ∆) ≡ g

(
r

ξ(∆)

)
. (1.28)
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Using Eq. (1.27), the corresponding scaling form for the SF is

S(k, ∆) = ξdf(kξ), (1.29)

where d is the dimension of the system. f and g are the scaling functions, which

are related as

f(p) =

∫
dx e−ip·xg(x). (1.30)

These functions characterize the morphology of the domains and interfaces. In

experiments or simulations related to the formation of domains, the main interest

is in determining the functional forms of g(x) and f(p). The characteristic length

scale ξ(∆) is defined as the distance over which the CF decays to (say) half of

its maximum value. We study the scaling behavior of the domain structure and

characterize the scattering or interfacial properties resulting due to scattering

from rough interfaces of domains.

1.5.2 Characterization of Morphologies

Consider a typical domain structure of size ξ with an interface width w on an

underlying lattice with spacing a as shown in Fig 1.1. The microscopic length

scale a could be the diameter of the spherical particles which aggregate to yield

domains, e.g., diffusion limited aggregation (DLA) clusters, colloidal aggregates,

etc., or the underlying lattice spacing when domains consist of point particles

(e.g., Ising models).

At short distances (r � ξ), the correlation function is well approximated as

[32–34]

1− C (r, ∆) ≡ C̃ (r, ∆) ' A (r/ξ)ζ +B (r/ξ) + . . . , a� r � ξ, (1.31)

where A and B are constants. The first term conveys information about the

interfacial structure, which can be probed by length scales a � r � w. In this

regime, C(r) exhibits a cusp singularity characterized by the roughness exponent

ζ (ζ < 1), and is a consequence of rough fractal interfaces. They are generally

described as self-affine fractals with a dimension df = d− ζ. The linear term in
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w

ξ
a

a

Figure 1.1: Schematic of a domain of size ξ, with an interface of width w . The
microscopic lattice spacing is a. The domain can also result from the aggregation of
spherical particles of diameter a.

Eq. (1.31) corresponds to smooth interfaces, probed at length scales w � r � ξ.

It is characteristic of scattering arising from smooth interfaces in inhomogeneous

systems, meaning that the domain has no internal structure. This is referred

to as the Porod law, which was first discussed in the context of scattering from

porous rocks [35, 36]. The crossover between the cusp singularity regime and the

Porod regime can be identified as rc ' ξ(A/B)1/(1−ζ).

The short-distance cusp singularity in C(r, ∆) has important implications for

the structure factor S(k, ∆), which decays with an asymptotic power-law form

[37, 38]:

S(k, ∆) ∼ Ã(ξk)−(d+ζ) + B̃(ξk)−(d+1). (1.32)

The dominant large-k behavior in Eq. (1.32) is the cusp regime with S(k) ∼
(ξk)−(d+ζ). At intermediate values of k, there is a Porod regime characterized by

S(k) ∼ (ξk)−(d+1). The crossover from a Porod regime to an asymptotic cusp
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regime is an indication of a fractal architecture in the domains or interfaces. In

the Porod-regime, the C(r) and S(k) shows power-law decay with an integer

exponent while in the cusp-regime, the C(r) and S(k) shows power-law decay

with a non-integer exponent. The GS morphologies in RFIM shows a crossover

to this non-Porod behavior [33, 34]. We study the RFIM system with and without

an external field h to obtain this non-integer roughness exponent ζ.

1.6 Phase Ordering Kinetics

To study ordering kinetics, we rapidly quench the system from an arbitrary ran-

dom initial state mimicking the high-temperature phase to a low temperature

T < Tc (where Tc is the critical temperature). The system becomes thermody-

namically unstable and evolves toward its new equilibrium state. We study the

nonequilibrium evolution via the MC method. The system coarsens via the for-

mation and growth of domains. These domains have a typical size L(t), which

grow as a function of time t in the unit of Monte-Carlo steps (MCS). One MCS

corresponds to the sweeping over whole system size.

The most commonly used quantity to study the dynamics of phase-ordering is

the correlation function C(r, t) and the corresponding Fourier transform S(k, t)

as defined in the previous section. If the typical structure of domains does not

change with time t, apart from a scale factor L that depends on t, then the

growth process is isotropic and characterized by a single length-scale L(t), and

the correlation function exhibits the dynamical scaling: C(r, t) ≡ g(r/L). The

corresponding structure factor has the dynamical scaling: S(k, t) = Ldf(kL),

where f and g are the scaling function related by the Eq. (1.30). A natural

question is to ask how L(t) depends on t? The behavior of L(t) vs. t is defined

as domain growth law or domain growth problem.

1.6.1 Domain Growth Laws in Pure Systems

For pure (without disorder) and isotropic system, we have a very good under-

standing of domain growth problem. The growth law shows a power law behavior

L(t) ∼ t1/z [31, 39], where the exponent z is temperature independent and varies
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among different dynamical universality classes determined by the nature of dy-

namics, e.g., in the presence of conservation laws governing the order parameter

evolution, the presence of hydrodynamics velocity-fields, etc. For the case of evo-

lution with non-conserved order parameter (NCOP), z = 2, and for the case of

evolution with conserved order parameter (COP), z = 3. In the presence of hy-

drodynamic field effects, e.g., in phase separation of a fluid, the growth is faster

than t1/3 and the exponent z shows the crossover from 3→ 1→ 3/2 [40–42]. Let

us understand the physical arguments for the domain growth law in the systems

with the case of NCOP and COP.

Non-conserved order parameter

Ordering in a ferromagnet into up and down domains is an example of a system

with NCOP. The appropriate order parameter, in this case, is the spontaneous

magnetization. The growth is driven by the reduction in the curvature of inter-

faces, and thus, the rate of domain growth (dL/dt) is proportional to the local

curvature of interfaces, which scales as 1/L. Therefore, dL/dt ∼ 1/L, which

yields the growth-law L(t) ∼ t1/2. This is referred to as Lifshitz-Allen-Cahn

(LAC) growth-law. In this case of NCOP, the appropriate kinetics of domain

growth in the MC evolution of spin systems is the spin-flip kinetics.

Conserved order parameter

Phase separation in a binary (AB) mixture into A- and B-rich domains is an

example of a system with COP. In this case, the composition or the concentration

of each species in the mixture remain fixed, and the appropriate order parameter

is the local density difference of the two species in the mixture. The growth

is driven by the diffusion. Huse [43] demonstrate that the typical value of the

chemical potential on the surface of a domain is µ ∼ 1/L, which means the

concentration gradient |~∇µ| ∼ 1/L2. Then, the diffusion current, J ∝ |~∇µ|,
which leads to the growth of domains, scales as 1/L2. Therefore, the rate of

domain growth dL/dt ∼ 1/L2, which yields the growth law L(t) ∼ t1/3. This

is referred to as Lifshitz-Slyozov (LS) growth-law [44]. In this case of COP, the

appropriate kinetics of domain growth in the MC evolution of spin systems is
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the spin-exchange kinetics, which preserves the overall magnetization during the

evolution.

1.6.2 Domain Growth Laws in Disordered Systems

When a system is characterized by the disorder (or defects, impurities, etc.), our

understanding of domain growth problem is much poorer. The disorder has a

strong effect on the scaling functions and in slowing down of domain growth.

A general framework for understanding of domain growth law has been pro-

posed by Lai, Mazenko, and Valls (LMV) [45]. The growth process involves the

motion of interfaces or domain walls. In disordered systems, this motion is im-

peded by the presence of free-energy barriers. LMV classified the systems on the

basis of free-energy barriers required to coarsen a domain of typical size L. In

their scheme, domain size L(t) grows as

dL

dt
=
a(L,T )

L
, (1.33)

where a(L,T ) is the diffusion constant that depends on domain size L and tem-

perature T . Eq. (1.33) is for the non-conserved case of curvature-driven growth

process. For the conserved case of diffusion-driven growth process, we have (from

Huse equation [43])
dL

dt
=
a(L,T )

L2
. (1.34)

In LMV classification scheme, four different classes of the systems have been

identified depending on the behavior of a(L,T ). These are described as follow:

Class 1 systems

Class 1 systems belongs to pure systems for which a(L,T ) = a0. Then, for the

non-conserved case, Eq. (1.33) gives the LAC growth law, L(t) ∼ t1/2; and for

the conserved case, Eq. (1.34) yields the LS growth law, L(t) ∼ t1/3. Pure FM

Ising model [31] is an example of this class.
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Class 2 systems

Class 2 consists of systems whose energy barriers are independent of L but have

a single barrier height EB, i.e,

a(L,T ) = a0 exp (−EB/T ) . (1.35)

As a result, the growth is still power-law, but with a temperature dependent

prefactor, i.e.,

L(t) = D(T )t1/z, (1.36)

where

D(T ) ∼ a0 exp [−EB/(zT )] , (1.37)

with z = 2 and 3 for the non-conserved and conserved cases, respectively. Typical

example of this class is the d = 1 random magnet [46].

Class 3 systems

Class 3 refers to the case in which the barrier heights grow linearly with L, i.e.,

EB(L) ∼ E0L, where E0 is the energy barrier per unit length. Using EB(L) in

Eq. (1.35) and integrating Eq. (1.33) and Eq. (1.34), yields the power-law growth

in a short-time

L(t) ' (za0t)
1/z, (1.38)

which crosses over to a logarithmic growth:

L(t) ' T

E0

ln

(
t

t0

)
. (1.39)

Here, t0(T ) ∼ a−1
0 (T/E0)z and z = 2, 3 corresponding to the non-conserved and

conserved case of growth, respectively.

Class 4 systems

In Class 4, the energy barrier scales as EB(L) ∼ E0L
ϕ with ϕ 6= 1 (as ϕ = 1

belongs to class 3). Again, from Eqs. (1.33), (1.34), and (1.35), one obtains the
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asymptotic logarithmic growth-law:

L(t) '
[
T

E0

ln

(
t

t0

)]1/ϕ

, (1.40)

where

t0(T ) =
1

a0ϕ

(
T

E0

)z/ϕ
. (1.41)

A complete functional form of the cross-over behavior can be expressed as

L(t) ' L0(T )h

(
t

t0

)
, (1.42)

with

L0(T ) =

(
T

E0

)1/ϕ

, (1.43)

and

h(x) =


(
z
ϕ
x
)1/z

, x� 1,

(lnx)1/ϕ, x� 1.
(1.44)

Typical examples of Class 3 and Class 4 are the systems with quenched disor-

der in the Hamiltonian, e.g., RFIM, RBIM. Eq. (1.40) states that the typical time

to cross the free-energy barriers scales as the exponential of barrier height, i.e.,

t ∼ t0 exp (EB/T ). Thus, to access the logarithmic regime of domain growth in

these disordered systems, a huge numerical effort is required. Therefore, domain

growth problem in such systems—particularly in higher dimensions d = 2, 3—is

still controversial and we do not have a complete understanding.

In the thesis, we provide a large scale numerical study of these disordered sys-

tems, which enables us to understand domain growth problem in the asymptotic

large-time regime without having a finite-size effect.

1.7 Overview of the Thesis

This thesis comprises two parts. In part I, we present the ground states study

of disordered spin systems using the GC method. In part II, we study ordering
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kinetics in disordered spin systems using the MC method.

1.7.1 Overview of Part I

In this part of the thesis, we undertake the GS study in the RFIM and the RFPM.

With GC method, we obtain exact GS in the RFIM and an approximate GS in

the RFPM. This study is described in the following chapters.

In Chapter 2, we study the GS morphologies of the RFIM in d = 2, 3 using

the computationally efficient GC method. We analyze the morphologies by com-

puting the CF and the SF. Using these quantities, we characterize the non-Porod

behavior in the RFIM and evaluate the characteristic properties, e.g., domain

sizes, scaling functions, roughness exponents, fractal dimensions, etc.

In Chapter 3, we study the RFIM in an external magnetic field h for three

different disorder types: Gaussian, uniform, and bimodal. In the external field

h, the GS morphologies contain clusters of spins, which are distributed in the

form of power-law. We consider the pinning effect due to the local field hi and

study the GS morphologies via pinned cluster distribution, spin-spin correlation

functions, and structure factors. We obtain the corresponding scaling function

for pinned clusters distributions, correlation functions, structure factors, and find

that the scaling function is universal for all disorder types and independent of h.

In Chapter 4, we study the q-state RFPM for the approximate GS. The

GS problem for the RFIM is polynomial, and can be solved using some of the

well-known algorithms for maximum flow, but the analogue random-field Potts

model corresponds to a multi-terminal flow problem that is known to be NP-hard.

Hence, an efficient algorithm which gives the exact GS is extremely unlikely to

exist. Still, it is possible to use GC methods to solve approximately the corre-

sponding GS problem in the RFPM in the polynomial time. We show that this

works relatively well. We compare results produced by this heuristic algorithm

to energy minima found by an appropriately tuned parallel tempering method

that is configured to find ground states for the considered system sizes with high

probability. The method based on graph cuts finds the same states in a fraction

of the time. The new method is used for a first exploratory study of the RFPM

in d = 2, 3. We use the GC method to study the critical behavior in the q = 3
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RFPM and obtain the relevant critical exponent.

1.7.2 Overview of Part II

In this part of the thesis, we present a comprehensive MC study of phase or-

dering kinetics in the conserved case of the RFIM (C-RFIM), frustrated case of

the RBIM, i.e., frustrated magnet, and the random-bond XY model (RBXYM).

These studies have been described in the following chapters.

In Chapter 5, we study phase ordering dynamics in the RFIM with conserved

order parameter (C-RFIM) in d = 2, 3. We perform an extensive MC simulations

which enable us to reach into the asymptotic regime of domain growth. The

evolving morphologies {si}(t) are analyzed using CF and SF. From this study,

Our observations are:

(a) For a fixed disorder value (∆), the CF exhibits dynamical scaling, and by

varying ∆, the scaling function gets modified. Thus, super-universality

(SU) is violated and the scaling function is not robust with respect to ∆.

(b) At early times, the domains follow algebraic growth with a disorder-dependent

exponent (L(t, ∆) ∼ t1/z̄(∆)). At late times, there is a cross-over to log-

arithmic growth: L(t, ∆) ∼ (ln t)1/ϕ, where ϕ is a disorder-independent

exponent.

(c) The small-r behavior of the CF exhibits a cusp singularity and the corre-

sponding SF shows the non-Porod behavior.

In Chapter 6, we study the frustrated magnet in d = 2 where frustration

can be tuned by varying the fraction a of AFM coupling constants Jij. At low

temperatures, the model exhibits a phase with FM order for sufficiently small

values of a, a < af . In an intermediate range, af < a < aa, the system is

paramagnetic, with spin glass order expected right at zero temperature. For

even larger values, a > aa, an AFM phase exists. After a deep quench from

high temperatures, slow evolution is observed for any value of a. We show that

different amounts of frustration, tuned by a, affect the dynamical properties in a

highly non trivial way. In particular, the kinetics is logarithmically slow in phases

with FM or AFM order, whereas evolution is faster, i.e., algebraic, when spin glass

order is prevailing. We provide the interpretation in terms of the different nature
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of the system in a phase space.

In Chapter 7, we study the RBXYM with the non-conserved kinetics in

d = 2, 3. In d = 2, we observe a power-law growth with a disorder-dependent

exponent on the time-scale of our simulation. In d = 3, we find that the growth is

slower than the power-law at late-times, but our data is inadequate to understand

the asymptotic growth law in the time-scale of our simulation. Therefore, our

simulations do not access the asymptotic regime of logarithmic growth known to

exist for disordered Ising models.
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Part I

Ground States in Disordered

Spin Systems



Chapter 2

Ground State Morphologies in

the Random Field Ising Model

2.1 Introduction

The random-field Ising model (RFIM) is the simplest example of a system with

quenched disorder [1, 2]. In spite of its simplicity, diverse systems have been

studied using the RFIM. Some examples are diluted anti-ferromagnets (DAFs) in

a uniform magnetic field [3, 4] (e.g., FeF2, CoF2, and MnF2 diluted with non-

magnetic compounds such as ZnF2 [5–7]), colloid-polymer mixtures [8], relaxor

ferroelectrics [9], Barkhausen noise in magnetic hysteresis [10], etc. Recently,

switchable magnetic domains and diluted dipolar magnets such as LiHoxY1−xF4

have also been modeled by the RFIM [11]. It is described by the Hamiltonian in

Eq. (1.2), in which ∆ gives the amount of disorder.

The quenched disorder play an important role in the behavior of phases and

phase transitions in the RFIM system. Due to which, there have been very

much discussion, which remain controversial. An early controversy was regarding

the lower critical dimension dl, below which the system has no long-range order

(LRO) or a FM order. The domain-wall stability arguments of Imry and Ma [12]

predicted dl = 2, whereas perturbative field-theoretic calculations by Young [13]

predicted dl = 3. However, rigorous proofs by Imbrie [14], Bricmont and Kupi-

ainen [15], and later by Aizenmann and Wehr [16] ruled out LRO in the d = 2
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Figure 2.1: A schematic of phase diagram of d = 3 RFIM. Labels PM and FM refer
to the paramagnetic phase and the ferromagnetic phase, respectively.

RFIM for any non-zero value of disorder ∆, however small. These authors also

showed that, in the d = 3 RFIM, there exist a small region of (T , ∆) values where

the equilibrium state has an FM order. Because of no LRO in the d = 2 RFIM,

∆c = 0 and thus dl = 2.

Then, there have been questions and debates about nature of phase transitions

in the RFIM. The earliest MC study by Young and Nauenberg [17] reported a

first-order transition. While later studies involving GS calculations reported a

second-order transition [18–20]. Further, using the replica symmetry breaking

technique, Mezard et al. [21] predicted an intermediate glassy phase separating

the FM and PM phases. However, a detailed numerical study of Middleton and

Fisher [22] showed that the transition between FM and PM phase of the RFIM

is continuous and there is no intermediate glassy phase.

A schematic of a phase diagram of the d = 3 RFIM is shown in Fig. 2.1.

The FM phase consist of the macroscopic domains of up (+1) spins with the

impurities of down (−1) spins or vice-versa. With increasing disorder ∆, the

impurity regions grow, finally yielding the PM phase in which up and down spins
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are in the random fashion. At ∆ = 0, the RFIM becomes pure IM, which in

d = 3 has a second-order phase transition from FM to PM phase at a critical

temperature Tc ' 4.515 [23]. As we introduce disorder ∆, Tc decreases. With

increasing ∆, there is decrease in Tc, and at a critical disorder ∆c, Tc becomes

0. At T = 0, the RFIM shows a phase transition from FM to PM with a critical

point at ∆c. According to the zero-temperature fixed point hypothesis, transitions

which take place at T = 0 and T 6= 0 falls in the same universality class [24, 25].

Thus, the low-temperature phase of the RFIM is controlled by the T = 0 fixed

point. It is therefore of great interest to obtain T = 0 ground states of the RFIM.

Let us review the earlier works on the T = 0 ground states of the RFIM. An

early significant work is due to Fytas and Martin-Mayor [26], who perform a high-

statistics simulation of the zero-temperature RFIM in d = 3 for different types of

RF distributions, viz., Gaussian, double Gaussian, and Poissonian distributions.

They showed that the RFIM is ruled by a single universality class. They also

compute the relevant critical exponents with high numerical accuracy including

the scaling corrections. Another interesting recent work is due to Picco and

Sourlas [27]. These authors also undertook a comprehensive simulation of the

d = 3 RFIM at T = 0 and obtained precise estimates of the critical exponents.

Another important study of the d = 3 RFIM at T = 0 is due to Middleton and

Fisher [22]. They studied a wide range of physical properties and obtained the

critical exponents. There have been many other significant contributions on the

scaling theory of T = 0 phase transition in the RFIM [24, 28, 29].

In this Chapter, we study the GS morphologies of the d = 2 and d = 3 RFIM

as a function of ∆ and compare our result with experimental scattering data.

We analyze these morphologies using correlation function C(r, ∆) and structure

factor S(k, ∆) and characterize the interfacial properties such as fractal dimension

and non-Porod behavior. The tools for characterization of morphologies via the

correlation functions and the structure factors are described in the Sec. 1.5.2.

The results that we obtain are as follows.

(a) In the d = 2 RFIM, C(r, ∆) exhibits universal scaling with respect to

different disorder amplitudes. At short distances, it shows a cusp singularity

as a consequence of rough, fractal interfaces. We obtain a precise estimate

of the fractal dimension.
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(b) Interfaces in the PM phase are always fractal, but in the d = 3 RFIM,

interfaces in the FM phase are also fractal with a fractal dimension different

from that in the PM phase.

(c) The correlation length ξ(∆) diverges as ∆ → ∆c. We obtain a precise

functional forms for the divergence of the ξ(∆) in both, the d = 2 and

d = 3 RFIM.

(d) Then, we explain the non-Porod behavior of the SF obtained in small-angle

neutron-scattering experiments on DAFs.

This chapter is organized as follows. In Sec. 2.2, we discuss the ground state

method. Then, we present the detailed numerical results in Sec. 2.3. The ground

states of the d = 2 RFIM and their properties are discussed in Sec. 2.3.1. A

corresponding study of the d = 3 RFIM is presented in Sec. 2.3.2. In Sec. 2.4,

we present experimental evidence of the crossover from the Porod regime to the

cusp or non-Porod regime. Finally, we conclude this chapter with a summary

and discussion in Sec. 2.5.

2.2 The Ground State Method

In Sec. 1.4.1, we discussed that the Hamiltonian of the RFIM belongs to the class

of energy function which are quadratic and satisfy a regularity condition, and we

are assured of getting the exact GS in the energy minimization of the RFIM using

GC methods (See section 1.4.1 for the details of the GC method). Typically, the

search time in these methods for a global minimum or a “good quality” local

minimum has a polynomial (P) dependence on the system size. There are several

algorithms in GC techniques, which have different P complexity time.

In this Chapter, we use the BK implementation of “max-flow−min-cut” algo-

rithm [30], which has a linear dependence on the system size O(N) in searching

the global minima. The O(N) complexity allows us to simulate systems of large

sizes. We have numerically confirmed this O(N) complexity for d = 2, 3, and will

present these results in Chapter 4 in the context of ground state study of the

Random-field Potts model. For the RFIM, typically the BK-GC method finds
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the exact GS in its first iteration itself. Therefore, with the use of BK algorithm

[30] of the GC method, we obtain the exact GS and study the GS morphologies

in the RFIM.

2.3 Detailed Numerical Results

In this section, we present the numerical results for the ground state properties

in the d = 2, 3 RFIM. The initial configuration of the system is chosen to be a

random mixture of si = ±1, corresponding to the paramagnetic state at ∆ =∞.

The simulations were performed on regular lattices, L2 in d = 2 and L3 in d = 3,

with periodic boundary conditions applied in all directions. We present each

numerical result averaged over 100 configurations of {hi}. In our results, the

error bars are not shown if these are smaller than the symbol sizes.

2.3.1 Ground States of the d = 2 RFIM

The d = 2 RFIM offers the simplest paradigm to study the effects of quenched

disorder. Although there is no ferromagnetic LRO, the GS (at T = 0) is nontrivial

due to the competition between FM strength of interaction J and the disorder

∆ (in units of J). In the limit of weak disorder (∆ < 1), the exchange coupling

between the spins dominates and the GS comprises large domains of up spins (or

down spins) which percolate through the system. For strong disorder (∆ > 1),

the spins point along their local random-fields. A study of the GS morphology

is important to understand the effect of disorder on the geometrical correlations

and phase transitions in the d = 2 RFIM [31–35].

All the statistical data presented here, unless otherwise specified, is for a

square lattice with L = 4096. We choose ∆ values which are not very close to ∆c

as we are primarily interested in the rough interfaces which form deep inside a

particular phase. In the d = 2 RFIM, as ∆c = 0, the minimum value of disorder

we consider is ∆min = 0.8. As we see later, the typical size of domain is O(100)

lattice spacings at ∆min, which is much less than the system size L = 4096.

Therefore, we do not expect scaling corrections to play a significant role, and the

system sizes and averaging used are adequate for our purposes. The same is true
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Figure 2.2: GS morphologies of the RFIM in d = 2 obtained from the GC method
for (a) ∆ =0.8 and (b) ∆ = 1.2. These morphologies correspond to a 10242 lattice.
Regions with up and down spins are marked black and white, respectively.

for the d = 3 RFIM, which is discussed in Sec. 2.3.2.

The ground-state morphology in the paramagnetic state (∆ = ∞) has the

following features. The spins are uncorrelated and typically the correlation length

ξ → 0. As the disorder strength ∆ is reduced, the GS consists of correlated regions

or domains of size ξ, enriched in either up or down spins. These regions grow in

size with ξ → ∞ as ∆ → 0. These features are captured in Fig. 2.2, where we

show snapshots of ground-state morphologies for ∆ = 0.8 and ∆ = 1.2.

After obtaining the GS morphologies, we compute the CF C(r, ∆) and define

the correlation length as the distance over which the CF decays to 0.2 of its

maximum value. In Fig. 2.3(a), we plot the correlation length ξ(∆) vs 1/∆ on

a semilog scale. The correlation length diverges with an essential singularity as

∆→ 0:

ξ(∆) ∼ ea/∆, (2.1)

where a is a constant. However in earlier works [31–35], the ξ diverges as exponen-

tial of 1/∆2 instead of 1/∆. But, our data do not follow this stretched-exponential

divergence ξ(∆) ∼ ea/∆
2
. To demonstrate this, we plot ξ(∆) vs 1/∆2 on a semilog
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Figure 2.3: (a) Plot of correlation length ξ(∆) vs 1/∆ for a 40962 system on a
semilog scale. The correlation length is defined as the distance over which the CF
falls to 0.2× maximum value. The straight line shows the exponential-fit of ξ with
1/∆. (b) ξ(∆) vs 1/∆2.

scale in Fig. 2.3(b). Clearly, this plot does not show a linear regime. (Of course,

it is possible that a linear regime may appear even closer to the critical point.)

Now, we expect the divergent correlation length to be saturated by the finite

size (L) of the system. To investigate finite-size effects, in Fig. 2.4(a) we plot

ξ(∆) vs 1/∆ for system sizes L ranging from 256 to 4096. The correlation length

diverges as ξ(∆) ∼ ea/∆ when ∆ → 0 , but this is limited by the lattice linear

size L. The finite-size scaling (FSS) ansatz,

ξ(∆) ∼ ea/∆ R(Le−a/∆), (2.2)

results in the data collapse shown in Fig. 2.4(b), yielding a ' 4.798± 0.003.

Characterization of morphologies

Next, we focus on the characterization of the domain morphologies for fractal

dimension and non-Porod behavior. As mentioned in Sec. 1.5.1, if the system is

characterized by a unique length scale, then the CF and SF exhibit the scaling

property: C(r, ∆) ≡ g(r/ξ), S(k, ∆) = ξdf(kξ). In Fig. 2.5, we show the scaling

36



2.3. Detailed Numerical Results

0.5 1 1.5 2
1/∆

10
0

10
1

10
2

10
3

ξ(
∆

)

L = 256
L = 512
L = 1024
L = 2048
L = 4096

10
0

10
1

10
2

Le
-a/∆

10
-2

10
-1

10
0

e
-a

/∆
 ξ

(∆
)

L = 256
L = 512
L = 1024
L = 2048
L = 4096

(a) (b)

Figure 2.4: (a) Plot of ξ(∆) vs 1/∆ for different system sizes on a semilog scale.
We present data for square lattices of size L = 256,512,1024,2048,4096, denoted by
the specified symbols. (b) Data collapse resulting from the finite-size scaling ansatz
ξ(∆) ∼ ea/∆ R(Le−a/∆), yielding a ' 4.8.

of C(r, ∆) vs r/ξ for different disorder amplitudes ∆, which confirm that the

domain morphologies are scale invariant for these values of ∆. (Note that the do-

main structure breaks up for ∆� 1, and the characteristic domain size becomes

ξ ∼ 1 lattice spacing. In that case, the CF decays to 0 almost immediately.)

Based on the discussion in Sec. 1.5.2, we expect the CF to have two regimes:

1− C (r, ∆) ≡ C̃ (r, ∆) ' B (r/ξ) , w � r � ξ,

' A (r/ξ)ζ r � w. (2.3)

The first regime corresponds to Porod scattering off smooth domains [36, 37]

on length scales � w, where w is the interface width. The second regime (for

r � w) corresponds to scattering off rough fractal interfaces with cusp exponent

ζ = d− df .
In Fig. 2.6(a), we plot C̃(r, ∆) = 1 − C(r, ∆) vs r/ξ for ∆ = 0.8, 0.9, 1.0, 1.2

on a log-log scale. We obtain the cusp exponent ζ ' 0.88, yielding df ' 1.12. In

Fig. 2.6(b), we present a scaling plot of the structure-factor data, i.e., ξ−2S(k, ∆)

vs ξk, for ∆ = 0.8,0.9,1.0,1.2. Again, the collapse of different data sets onto
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Figure 2.5: Scaled correlation functions, C (r , ∆) vs r/ξ, for specified disorder
strengths ∆.

a single master curve confirms that the morphologies are scale invariant. Fur-

ther, the scaling function exhibits an asymptotic cusp or non-Porod regime:

S(k, ∆) ' Ãk−2.88, which is consistent with the small-r behavior of the CF.

As mentioned earlier, this non-Porod behavior is characteristic of scattering from

fractal interfaces.

2.3.2 Ground States of the d = 3 RFIM

We next focus on the ground states of the d = 3 RFIM. The GC simulations

were performed on d = 3 lattices of size L3 with L ≤ 256. All the statistical data

presented here, unless otherwise specified, are for a cubic system with L = 256.

A major distinction between the d = 2 and d = 3 RFIM is that the later

exhibits a phase transition from a FM phase to the PM phase at non-zero value

of ∆. At T = 0, the phase transition occur at critical disorder ∆c. An important

study of the d = 3 RFIM at T = 0 is due to Middleton and Fisher [22]. They
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Figure 2.6: (a) Log-log plot of 1− C (r , ∆) vs r/ξ for the data sets in Fig. 2.5. The
solid line denotes the power-law fit 1 − C (r , ∆) ∼ (r/ξ)ζ , with the cusp exponent
is estimated as ζ ' 0.88. (b) Log-log plot of ξ−2S(k , ∆) vs ξk . The line of slope
−2.88 denotes the non-Porod behavior corresponding to the cusp singularity in the
CF.

studied a wide range of physical properties and convincingly demonstrated that

there is a second-order phase transition at ∆c ' 2.270.

One of the most efficient procedures to determine the critical disorder is the

fourth-order Binder cumulant [31, 38, 39], defined as

U4(∆,L) = 1− 〈m4〉
3〈m2〉2 , (2.4)

where m is the magnetization of the system and 〈· · · 〉 denotes average over many

RF configurations {hi}. The FSS ansatz for Binder-cumulant,

U4(∆,L) = U
[
L1/ν(∆−∆c)

]
, (2.5)

has no explicit L dependence. Thus, this cumulant, when plotted against disorder

∆ for different lattice sizes, intersects at a critical point. In Figure 2.7, we show

the plot of U4 vs ∆ for different values of L. The data has been averaged over

many disorder realizations ({hi}); typically 105,5×104, 4×104, 3×104, 2×104, 104,

for L =16,24,32,48,64, respectively. First, we vary ∆ in steps of 0.02 and find
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Figure 2.7: The Binder cumulant U4 vs. ∆ for cubic lattices of size
L =16,24,32,40,48,64. The appropriate error bars are shown. Upon zooming the
critical region, the intersection point of the data sets yields ∆c ' 2.278± 0.002.

that the crossing occurs between ∆ = 2.26 and ∆ = 2.28. We then zoom into the

region from ∆ = 2.26 to ∆ = 2.28 by changing the step size from 0.02 to 0.002.

This shows that the crossing occurs between ∆ = 2.278 and ∆ = 2.28. We can

further zoom into the region between ∆ = 2.278 and ∆ = 2.28 by reducing the

step size again, but we restrict our analysis to the disorder step size 0.002. This

choice of step size sets an error bar of ±0.002 on ∆c. Hence, the estimated value

of ∆c is 2.278 ± 0.002. This compares well with the most accurate estimate of

∆c for the d = 3 RFIM to date, which is ∆c ' 2.2727 (Fytas and Martin-Mayor

[26]).

We define the correlation length ξ(∆) as the distance over which the CF decays

to 0.2 of its maximum value. In Fig 2.8(a), we plot ξ(∆,L) vs ∆ for lattice size

L ranging from 16 to 256. For large ∆ � ∆c, typically ∆ ' 4, the system is in

highly paramagnetic state and there is essentially no domain structure, and thus

the correlation length ξ ' 1. As we reduce ∆, the correlation length grows and

40



2.3. Detailed Numerical Results

2 2.5 3 3.5 4

∆

10
0

10
1

10
2

ξ(
∆

)

L = 16
L = 32
L = 64
L = 128
L = 256

0 20 40 60 80

(∆−∆
c
)L

1/ν

10
-2

10
-1

10
0

ξ/
L

L = 16
L = 32
L = 64
L = 128
L = 256

(a) (b)

Figure 2.8: (a) Plot of correlation length ξ(∆, L) vs ∆ for L =16,32,64,128,256,
denoted by the specified symbols. (b) The data collapse resulting from the FSS
ansatz ξ/L = R

[
L1/ν(∆−∆c)

]
, yielding ν ' 1.308.

diverges as ξ ∼ (∆ − ∆c)
−ν in the limit ∆ → ∆+

c . As usual, the divergence is

limited by the finite lattice size L as shown in Fig. 2.8(a). The presence of finite-

size effects can be used to estimate the critical exponent ν. The FSS ansatz,

ξ(∆,L) = LR
[
L1/ν(∆−∆c)

]
, (2.6)

results in the data collapse seen in Fig. 2.8(b), yielding ν ' 1.308±0.005. This is

consistent with earlier estimates of ν = 1.37± 0.09 (Middleton and Fisher [23]),

ν = 1.32 ± 0.07 (Hartmann and Young [40]), and ν = 1.38 ± 0.02 (Fytas et al.

[41]).

Characterization of morphologies

We now analyze the domain morphologies in the FM as well as PM phases, using

C(r, ∆) and S(k, ∆). In both phases, C(r, ∆) is characterized by a universal

scaling function for different disorder amplitudes. To understand the interfacial

properties characterized by the small-r behavior, we plot C̃(r, ∆) = 1− C(r, ∆)
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Figure 2.9: Log-log plot of 1− C (r , ∆) vs r/ξ for the d = 3 RFIM for the specified
values of ∆. The solid lines shows the power-law fit, 1− C (r , ∆) ∼ (r/ξ)ζ , with the
cusp exponent estimated as (a) ζ ' 0.2 in the FM phase, and (b) ζ ' 0.5 in the PM
phase.

vs r/ξ on a log-log scale in Fig. 2.9. We see that both phases exhibit a cusp

singularity. In the FM phase [Fig. 2.9(a)], the cusp exponent is ζ ' 0.2, yielding

a fractal dimension df ' 2.8 for the interfaces. It should be kept in mind that

the FM morphology consists of a macroscopic up (or down) phase with impurity

islands of down (or up) spins. In the PM phase [Fig. 2.9(b)], ζ ' 0.5, yielding

a fractal dimension df ' 2.5. We point out that the percolation cluster in the

d = 3 RFIM also has the same fractal dimension [42].

In Fig. 2.10, we present a scaling plot of the structure-factor data. We plot

ξ−3S(k, ∆) vs ξk for ∆ = 2.24, 2.25, 2.26 [FM phase ∆ < ∆c, Fig. 2.10(a)] and

∆ = 2.4, 2.5, 2.6 [PM phase ∆ > ∆c, Fig. 2.10(b)]. The different data sets

collapse onto universal scaling functions for ∆ < ∆c and ∆ > ∆c, demonstrating

that the morphologies are scale invariant. For ∆ < ∆c, the scaling function shows

a non-Porod tail, S(k, ∆) ∼ k−3.2, which is consistent with the cusp singularity

in Fig. 2.9(a). For ∆ > ∆c, the corresponding non-Porod tail is S(k, ∆) ∼ k−3.5,

also consistent with Fig. 2.9(b).
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Figure 2.10: (a) Log-log plot of scaled SF: ξ−3S(k , ∆) vs ξk , corresponding to
the correlation functions in Fig. 2.9. The solid lines denote a non-Porod regime[
S(k , ∆) ∼ k−(d+ζ)

]
with (a) slope ' −3.2 in the FM phase; (b) slope ' −3.5 in

the PM phase.

2.4 Experimental Evidence of Non-Porod Be-

havior

A surge of experimental and theoretical activity was initiated by Fishman and

Aharony [3], who showed that effective random fields can be generated in dilute

antiferromagnets (DAFs) upon application of a uniform field. Since then, scat-

tering data from DAFs have been frequently used to support theories of phase

transitions, critical exponents, and scaling laws in the RFIM [43]. In this section,

we reinterpret some experimental data to verify our numerical results on scat-

tering properties of ground-state morphologies in the RFIM. We will provide the

two common examples of DAFs, realized by the RFIM.

The most commonly studied realization of the d = 2 RFIM is the dilute anti-

ferromagnet Rb2CoxMg1−xF4 [44]. This is a layered compound and the dominant

magnetic interaction between the Co2+ ions is short-ranged. The two-dimensional

character of spin ordering is the result of a large intraplanar exchange interaction

relative to the interaction between the planes. In Fig. 2.11, we replot neutron-

scattering data obtained by Birgeneau et al. [6] for Rb2Co0.7Mg0.3F4. We choose

data recorded for (a) T = 5 K, (b) T = 45 K, and (c) T = 60 K. All data sets
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Figure 2.11: Scattering data obtained for a Rb2Co0.7Mg0.3F4 sample [6] at (a) T = 5
K, (b) T = 45 K, and (c) T = 60 K. The solid line with slope −2.88 denotes the
asymptotic non-Porod regime.

are consistent with a non-Porod regime of S(k, ∆) ∼ k−2.88 shown by solid lines,

signifying the presence of fractal interfaces as seen in our simulations of Sec. 2.3.1.

Antiferromagnets which mimic the d = 3 RFIM rather well are CoxZn1−xF2 and

FexZn1−xF2 [45]. These are also layered compounds, but the interplanar coupling

is comparable in strength to the intraplanar coupling. In Fig. 2.12, we plot the

neutron-scattering data obtained by Hagen et al. [7] for Co0.35Zn0.65F2 on a log-

log scale. The parameter values are (a) H = 3.5 T, T = 7 K, and (b) H = 5.0 T,

T = 2 K. In both data sets, the structure-factor tail shows an asymptotic non-

Porod regime S(k, ∆) ∼ k−3.5, indicated by the solid line. The cusp exponent is

consistent with that reported in Sec. 2.3.2 for the PM phase of the d = 3 RFIM.

Therefore, the large-k behavior of the experimental SF exhibits a distinct non-

Porod regime signifying fractal interfaces, and the corresponding cusp exponents

agree with our theoretical predictions.

2.5 Summary and Discussion

Let us conclude this chapter with a summary and discussion of our results. We

have used a computationally efficient BK algorithm of GC method to obtain ex-

act ground states of the RFIM in d = 2, 3. The usage of the BK-GC method

[30] allowed us to access the ground-state morphologies of large system sizes. We
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Figure 2.12: Scattering data obtained for a Co0.35Zn0.65F2 sample [7] at (a) H = 3.5
T, T = 7 K; and (b) H = 5 T, T = 2 K. The solid line with slope −3.5 denotes the
asymptotic non-Porod regime.

characterize these morphologies using correlation functions C(r, ∆) and struc-

ture factors S(k, ∆), which contain information averaged over all domains and

interfaces. Therefore, our numerical results have a high degree of precision.

The main results of this chapter are as follows.

(a) For the d = 2 RFIM with ∆c = 0, the correlation length ξ(∆) diverges as

ea/∆ for ∆→ 0.

(b) For the d = 2 RFIM with ∆c = 0, C(r, ∆) is characterized by a universal

scaling function for different disorder amplitudes up to ∆ ' 1. For higher

values of ∆, there is essentially no domain structure and the correlation

length is O(1) lattice spacing.

(c) For the d = 2 RFIM, the small-r behavior of C(r, ∆) and the large-k be-

havior of S(k, ∆) show a non-Porod behavior: 1 − C(r, ∆) ∼ r0.88 and

S(k, ∆) ∼ k−2.88. This corresponds to scattering off fractal interfaces with

df ' 1.12.

(d) For the d = 3 RFIM, using the fourth-order Binder-cumulant, we obtain

∆c = 2.278± 0.002, consistent with the earlier predictions. The correlation
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length ξ(∆) ∼ (∆−∆c)
−ν as ∆→ ∆+

c with ν ' 1.308.

(e) For the d = 3 RFIM, C(r, ∆) is characterized by distinct scaling functions

for ∆ > ∆c (PM phase) and ∆ < ∆c (FM phase). The cusp exponent

is ζ ' 0.5 with df ' 2.5 for ∆ > ∆c; and ζ ' 0.2 with df ' 2.8 for

∆ < ∆c. These results are consistent with both analytical predictions and

experiments.

(f) The non-Porod behavior of the SF in small angle neutron-scattering exper-

iments on DAFs is due to fractal interfaces.

Fractal morphologies arise in many physical systems, ranging from thin films

to colloidal aggregates to cometary dust. The techniques discussed in this chapter

are convenient to probe textures and organizational properties of domains and

interfaces. For example, similar non-Porod or cusp behavior has been reported

recently in the context of fluctuation-dominated phase separation [46, 47]. The

CF and the SF contain information averaged over all domains and interfaces.

Therefore, quantities such as the roughness exponent, fractal dimension, domain

size, interface width, etc., can be obtained with great precision. We hope that it

will stimulate further experimental and theoretical studies of systems with fractal

interfaces.
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Chapter 3

Random Field Ising Model in a

Uniform Magnetic Field

3.1 Introduction

As introduced before, the RFIM is one of the simplest examples of a system

with quenched disorder. An important feature of the RFIM is the possibility of

finding exact ground states at T = 0 by using fast GC methods. A closely related

topic of current interest is to study the GS morphologies, motion of domains and

interfaces of the RFIM on the application of an external driving field.

In chapter 2, we studied the GS morphologies in the d = 2, 3 RFIM without

any external field using a computationally efficient GC method [1]. In this chap-

ter, we extend this work in the presence of an external field h for the d = 3 RFIM.

We consider three different types of distributions of the random field: Gaussian

(G), uniform (U) and bimodal (B). The external field h is augmented from −h0

to h0. For each value of h, we determine the GS using the BK-GC method

[1]. We define pinned-sites as those which point against the direction of h, and

pinned-clusters as those which nucleate from the pinned sites when the field is

incremented. We study the growth, morphologies and interfacial properties of

these pinned-clusters in the paramagnetic phase (∆ > ∆c).

Our main results in this chapter are as follows:

(a) We obtain universal scaling forms and critical exponents for magnetization

50



3.2. The Model

m vs. h curves and pinned-cluster distributions.

(b) We obtain pinning-field distributions, which exhibit sharp discontinuities.

These yield estimates of energy barriers to be overcome for interfacial mo-

tion.

(c) The CF C (r, ∆,h) for the pinned clusters has a universal scaling form for

all values of ∆ > ∆c and h. It is also independent of the disorder type.

Further, at short distances, C (r, ∆,h) exhibits a cusp singularity.

(d) The corresponding SF S (k, ∆,h) exhibits a cross-over from a Porod to a

non-Porod regime signifying compact pinned-clusters with fractal interfaces.

The fractal dimension does not depend on the disorder type.

(e) We analyze experimental cluster morphologies created by polarization switch-

ing in (PZT)0.95(BFO)0.05, a typical relaxor ferroelectric well-represented by

the RFIM. These exhibit fractal interfaces consistent with our numerical

studies.

This chapter is organized as follows. In Sec. 3.2, we introduce the model in an

external field. Our detailed numerical results are presented in Sec. 3.3. In Sec. 3.4,

we present the experimental realization of pinned cluster morphologies in RFIM

and analyze the non-Porod behavior in these morphologies. Section 3.5 contains

a summary and discussion of our results. Finally, the Appendix A provides a

glossary of the variables used in the course of this study; a table of scaling forms

of relevant quantities; and a table of critical parameters and exponents.

3.2 The Model

In presence of an external field h, the Hamiltonian of the RFIM in Eq. 1.2 can

be expressed as

H ({si}) = −J
∑
〈ij〉

sisj −
N∑
i=1

(hi + h)si. (3.1)
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We study this model for three different types of the RF distributions:

Gaussian : Pg(hi) =
1√

2π∆2
e−h

2
i /(2∆2), (3.2)

Uniform : Pu(hi) =


[√

12∆
]−1

, |hi| ≤
√

3∆,

0, |hi| >
√

3∆,
(3.3)

Bimodal : Pb(hi) =
1

2
[δ(hi −∆) + δ(hi + ∆)] . (3.4)

The parameter ∆ is a measure of the disorder strength. All three distributions

have zero mean and variance ∆2.

3.3 Detailed Numerical Results

Without loss of generality, we set J = 1 in Eq. (3.1). The GC simulations were

performed on a cubic lattice (L3) with linear size L = 128. The initial state is

taken as si = −1 ∀ i. The external field h is incremented from −1 to 1 (−h0 → h0)

in steps of ∆h = 0.001. At each step, the corresponding GS is obtained using

the BK-GC method. The statistical results presented here were averaged over

100 configurations of {hi} for each value of ∆. In all our plots, the error bars in

the data are less than the symbol size. As mentioned earlier, we consider three

disorder types: Gaussian, uniform and bimodal.

3.3.1 Ground State Morphologies

In Fig. 3.1, we show typical GS morphologies of the Gaussian RFIM for a fixed

realization of the random fields {hi} with ∆ = 2.5 > ∆c w 2.278 [2], i.e., in the

paramagnetic phase. Fig. 3.1(a) shows the variation of the magnetization per spin

m with h. The h-values corresponding to the GS snapshots in Figs. 3.1(b)-(f) are

marked in Fig. 3.1(a). In Fig. 3.1(b), all sites with si = +1, pointing opposite to

the external field h = −1, are designated as pinned-sites and are marked black.

For these sites, the effective local field

heff
i = J

∑
Li

sLi + hi + h > 0, (3.5)
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Figure 3.1: (a) Magnetization curve (m vs. h) for Gaussian disorder with ∆ =
2.5. The panels (b)-(f) are snapshots of GS configurations in a (xy)-plane. These
snapshots are taken at z = 64 of 1283 lattice at h = −1.0,−0.03,−0.01,−0.0005, 0.0
for a fixed realization of the random fields {hi}. Black regions denote up spins, and
white regions denote down spins.

where Li denotes the NN of site i. As h is increased, more spins flip to si = +1.

The spin-up clusters or pinned clusters are marked black in Figs. 3.1(c)-(f). We

focus on the statistical properties of these pinned clusters.

3.3.2 Magnetization Curves

The most commonly measured quantity is the magnetization m(h), shown in

Fig. 3.1(a) for ∆ = 2.5. If N(= L3) is the total number of spins, the value of

magnetization per spin is

m =
1

N

N∑
i

si. (3.6)
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Fig. 3.2(a) shows the GS magnetization for Gaussian disorder as h is increased

from −1 to 1 for several values of the disorder ∆ > ∆c. As the disorder decreases,

there is a critical disorder value ∆c at which a discontinuous jump in the magne-

tization occurs at hc = 0, typically when the number of spins pointing either up

or down are of O(N).

In a series of important papers, Sethna et al. [3–5] have studied hysteresis

behavior across this first-order transition in the T = 0 RFIM. They have also

studied the critical behavior in the vicinity of (∆c,hc) via both mean-field theory

and numerical simulations. In the study of Sethna et al., the RFIM transits

between a sequence of metastable states as h is incremented. In our present

study, the GC method finds the exact GS for an {hi}-configuration at each value

of h. Thus, there is no hysteresis in the m−h loops between the “forward” cycle

(−h0 → h0) and the “backward” cycle (h0 → −h0). We are interested in the

critical behavior reflected in these exact GS at different h-values.

First, let us consider the magnetization m(∆,h), with the expected critical

behavior:

m(∆,h) ∼ |u|βM±(h/|u|βδ). (3.7)

Here, u = (∆ − ∆c)/∆c denotes the reduced disorder. Notice that the critical

magnetization mc = 0 as we are studying exact GS. Further, M± is a universal

scaling function in which ± refers to the sign of u. The critical exponents β and

δ respectively give the power law singularities for m(∆,h) at h = 0:

m(∆,h = 0) ∼ |u|β, ∆ < ∆c,

= 0, ∆ > ∆c; (3.8)

and ∆ = ∆c:

m(∆c,h) ∼ h1/δ for h→ 0±. (3.9)

For ease of reference, the scaling behaviors of the magnetization and other

physical quantities used in this chapter are summarized in Table A.1. In Fig. 3.2(b),

we collapse the m vs. h data from Fig. 3.2(a) using the scaling form in Eq. (3.7).

The data collapse is excellent and enables us to determine β and δ. The uniform

and bimodal RFIMs also show excellent scaling with appropriate values of β, δ
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Figure 3.2: (a) Magnetization curves (m vs. h) for Gaussian disorder with ∆ =
2.3, 2.5, 2.8, 3.0. These are obtained by averaging over 100 {hi} configurations. (b)
Scaling of m vs h data in (a) using Eq. (3.7).
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Figure 3.3: Scaling functions at ∆ = 2.5 for the three disorder types: Gaussian (G),
uniform (U), and bimodal (B). The critical exponents obtained from scaling collapse
are provided in Table A.2.
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provided in Table A.2. The critical exponents β, δ are independent of the disorder

type. Further, the scaling functions are reasonably independent of the disorder

type, as seen in Fig. 3.3, though the collapse is not perfect. This is consistent

with the recent results of Fytas and Mart̀ın-Mayor [8], who argued that critical

scaling behavior is independent of the disorder type for the RFIM.

For Gaussian disorder, we have determined the critical value of disorder (∆c)

from Binder cumulant [6, 7] in Sec. 2.3.2. Also for other cases of disorder, we have

verified the ∆c by evaluation of the Binder cumulants. The critical parameters

and exponents for the three disorder types are summarized in Table A.2. It is

interesting to note that the sequence of GS obtained as h is incremented from

−h0 to h0 are linked, yielding scaling laws analogous to those obtained from the

non-equilibrium evolution in the models of Sethna et al. [3–5]. In our study,

hc = 0 for all the three distributions as the GC method yields exact GS, so our

studies do not exhibit hysteresis. Our study is comparable to that of Sethna et

al. in the adiabatic regime when the field is ramped infinitely slowly.

3.3.3 Statistical Properties of Pinned Clusters

Next, we move on to study the statistical properties of pinned clusters, which are

the primary focus of this study. Their typical evolution as a function of h was

shown in Fig. 3.1 for Gaussian disorder with ∆ = 2.5. Recall that the pinning sites

are those with si = +1 when h < 0. As h is increased, these pinning sites forms

connected regions or pinned clusters, shown in black. New sites with si = +1

can also nucleate. The sequence of frames in Fig. 3.1 shows that pinned clusters

grow rapidly, merge and eventually span the entire system. We are interested in

the statistics of these clusters. We denote the number of spins in a cluster as q,

and the corresponding distribution as D(q).

In Fig. 3.4(a), we show the distributions D(q) vs. q for Gaussian disorder

with ∆ = 2.3, 2.5 at h = −0.5,−0.1. We compare these with D(q) vs. q at

the critical point (∆c ' 2.278, hc = 0), which obeys the power law D(q) ∼ q−τ

with τ = 2.01 ± 0.03, indicating that the clusters are scale-free at criticality.

For other parameter values, D(q) shows power-law behavior over a limited q-

window, and then crosses over to a more rapid decay—the crossover point depends
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Figure 3.4: Pinned cluster distributions [D(q, ∆, h) vs. q] for the three disorder
types: (a) Gaussian, (b) Uniform, (c) Bimodal. The values of (∆, h) are marked on
the relevant frames. The solid lines denote the power-law fit to the distribution at
the critical point (∆c , hc). The slopes are (a) τ ' 2.01± 0.03, (b) τ ' 1.98± 0.05,
(c) τ ' 1.97± 0.04.

on the proximity to the critical point and diverges as (∆,h) → (∆c,hc). A

similar behavior is seen for uniform disorder [Fig. 3.4(b)] and bimodal disorder

[Fig. 3.4(c)]. Following Sethna et al. [3–5], we propose the following scaling

function for D(q) close to criticality:

D(q, ∆,h) ∼ q−τD±

(
q

|u|−1/σ
,
h

|u|βδ
)

, (3.10)

where D± denotes the two branches for u > 0 and u < 0, respectively.

We can also study the integrated (over h ∈ [−∞, 0]) distribution of pinned

clusters. From Eq. (3.10), the scaling function for this quantity is

Dint(q, ∆) =

∫ 0

−∞
dhD(q, ∆,h)

∼ q−(τ+σβδ)Dint
± (q|u|1/σ). (3.11)

In Eq. (3.11), we have

Dint
± (x) = xβδσ

∫ 0

−∞
dzD±(x, z). (3.12)
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Figure 3.5: Integrated (over h) pinned-cluster distributions for the three disorder
types: (a) Gaussian, (b) Uniform, (c) Bimodal. The relevant values of ∆ are marked
on the relevant frames. The solid lines denote the power-law fits to the distributions
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Figure 3.6: Scaling plot of integrated distributions from Fig. 3.5. We plot
q(τ+σβδ)Dint(q) vs. qσ|u| for all three disorder types with ∆ = 2.5. The exponents
which yield the data collapse are provided in Table A.2.
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(a) (b) (c)

Figure 3.7: Ground-state snapshots obtained using BK-GC method for (a) Gaussian,
(b) Uniform, and (c) Bimodal disorder. Each frame is a cross-section in the (xy)-plane
taken at z = 64 of a 1283 lattice. These are correspond to u = 0.1 and h = −0.01.
Pinned clusters are marked in black and down spins are shown in white. The bottom
right corner in each frame shows an enlarged view of the region enclosed in the red
square.

For u = 0, Dint(q, ∆) is scale-free with power-law exponent τ + σβδ, as seen

in Fig. 3.5(a) for Gaussian disorder. Notice that the power-law behavior is seen

over more than 4 decades of q-values. The distributions for other values of u

also show power-law behavior up to a cut-off value qc ∼ |u|−1/σ → ∞ as u → 0.

Figs. 3.5(b) and 3.5(c) show the corresponding plots for the uniform and bimodal

distributions, respectively. In Fig. 3.6, we plot qτ+σβδDint(q, ∆) vs. qσu for all

three disorder types with ∆ = 2.5. There is a reasonable collapse of the data

sets, demonstrating that the scaling functions Dint
± (x) are also independent of

the disorder type. This is a stronger statement than the universality of critical

exponents we have demonstrated earlier.

Next, we examine the characteristic textures of the clusters and interfaces.

In Fig. 3.7, we show typical GS morphologies at u = 0.1 for the three disorder

types. The external field is h = −0.01. As before, the pinned clusters comprising

of up spins are marked black. An enlarged view of the morphologies is provided

in the bottom right corner of each figure. The following qualitative features are

noteworthy: (a) For all three disorder types, the pinned clusters are compact

with no internal structure. (b) For the same values of h and u, pinned clusters

are smallest for Gaussian disorder and largest for bimodal disorder. (c) The

interfaces of pinned clusters are rough in all three cases, and the morphologies
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are comparable.

As discussed in Sec. 1.5, a useful tool to quantify the textures of domains and

interfaces is the spin-spin CF C(r). As the system is isotropic, we spherically

average C(r) to obtain the scalar function C(r). The characteristic length scale

ξ(∆,h) is defined as the distance over which C(r, ∆,h) decays to 0.2×maximum

value. We follow the discussion in Secs. 1.5.1 and 1.5.2 that if the system is char-

acterized by a single length scale, the morphology of the domains does not change

with h and ∆, apart from a scale factor. In that case, the CF exhibits scaling:

C(r, ∆,h) = g(r/ξ) and corresponding SF exhibits S(k, ∆,h) = ξdf(kξ). Fur-

ther, the small r/ξ-behavior of C(r, ∆,h) exhibits a cusp singularity characterized

by the roughness exponent ζ, i.e., 1−C (r, ∆,h) ∼ (r/ξ)ζ . The roughness or the

cusp exponent ζ is a consequence of rough interfaces separating domains, which

are generally described as self-affine surface fractals with a dimension df = d− ζ.

In Fig. 3.8(a), we plot C(r, ∆,h) vs. r/ξ for different values of h for Gaus-

sian disorder with ∆ = 2.3. The data collapse confirms that morphologies

are scale-invariant for different h-values. In the inset of Fig. 3.8(a), we plot

C̃(r, ∆,h) = 1− C(r, ∆,h) vs. r/ξ on a log-log scale. The solid line in the inset

denotes the best linear fit to the log-log data, corresponding to the power-law

exponent ζ = 0.5± 0.01. This shows that the interfaces are fractal with df = 2.5

for all values of h, consistent with our earlier results for the h = 0 case (see

Sec. 2.3.2). In Fig. 3.8(b), we plot the scaled structure factors, ξ−dS (k, ∆,h) vs.

kξ, corresponding to Fig. 3.8(a). In Fig. 3.9(a), we plot C(r, ∆,h) vs. r/ξ for

the three disorder types at h = −0.01 and u = 0.1. The scaling functions are in

good agreement with each other. Thus, the fractal interfaces in the RFIM are

universal for different disorder types as well as the external fields. In Fig. 3.9(b),

we plot the scaled structure factors corresponding to Fig. 3.8(b), i.e., for differ-

ent disorder types. These plots are characterized by a non-Porod decay with a

non-integer exponent ζ ' 0.5.

An identical analysis was performed in the ferromagnetic phase (∆ < ∆c) and

we did not observe a change in the corresponding roughness exponent (ζ ' 0.66

[9]) with disorder type or h-values. We emphasize that the calculation of the CF

contains information averaged over all domains and interfaces. The estimates of

the roughness exponent (and the fractal dimension) are therefore very accurate.
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Figure 3.8: (a) Scaled correlation functions [C (r , ∆, h) vs. r/ξ] for Gaussian disorder
with ∆ = 2.3 and h = −0.05,−0.01,−0.005. The inset shows C̃ (r , ∆, h) = 1 −
C (r , ∆, h) vs. r/ξ on a log-log scale. The slope of the line in the inset gives the
roughness exponent ζ = 0.5 ± 0.01. (b) Scaled structure factors, ξ−d S(k , ∆, h) vs.
kξ, for the data sets in (a). The solid line of slope −(d + ζ) denotes a non-Porod
regime, corresponding to the cusp in the CF.
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Figure 3.9: (a) Scaled CF for all three types of disorder with u = 0.1 and h = −0.01.
(b) Corresponding scaled SF for the data sets in (a).
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film taken from Ref. [11]. The right frame show the corresponding scattering data,
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3.4 Experimental Verification of non-Porod Re-

sults

Before ending this chapter, it is relevant to examine experimental realizations

of the RFIM for validation of our numerical results. In this context, we study

pinned cluster morphologies observed in (PZT)1−x(BFO)x, a prototypical relaxor

ferroelectric. It is now well-established that these materials are modeled by the

RFIM [10], with the random fields generated due to charge disorder arising from

doping with BFO. Rodriguez et al. [11] used piezo-response force microscopy

(PFM) to study the evolution of domains in (PZT)0.95(BFO)0.05 due to polariza-

tion switching resulting from the application of voltage pulses of one sec duration.

Fig. 3.10(a) reproduces the domain evolution observed by Rodriguez et al. at t =

0.3 ms, 2 ms, 3 ms and 8 ms duration of the voltage pulse.

We digitized these images and evaluated the SF S(k) using the fast Fourier

transform in Matlab. The adjoining Fig. 3.10(b) shows S(k) vs. k on a log-log

scale. The solid lines with specified slopes are fits to different k-windows. There

is a crossover from a Porod regime [with S(k) ∼ k−(d+1)] at intermediate values
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of k to an asymptotic cusp regime [with S(k) ∼ k−(d+ζ), ζ ' 0.5]. Notice that

d = 2 in the present case as the sample has a thin-film geometry.

The fractal dimension of the interfaces from the S(k) vs. k plot is df =

d − ζ ' 1.5, in agreement with the value reported by Rodriguez et al. As seen

in our numerical studies, the value of df is independent of the field. Further,

the experimental df -value is consistent with our df -value reported here, if one

accounts for the fact that our numerical studies are performed in d = 3, whereas

the experiment is done in d = 2.

3.5 Summary and Discussion

The random-field Ising model (RFIM) is an archetypal example of a system with

quenched disorder. As the latter is inherent in experimental systems, understand-

ing of many phenomena in magnetism, superconductivity, porous flows, relaxor

ferroelectrics, martensitic phase transitions, etc., has been possible from stud-

ies of the RFIM. In this chapter, we have analyzed the influence of an external

field on properties of pinned domains and interfaces in the RFIM with (i) Gaus-

sian (G), (ii) uniform (U), and (iii) bimodal (B) distributions of the random field.

Such model studies are useful in the context of ferroelectric switches, for instance,

having applications in sensors, actuators, random access memory, etc. [11]. Our

results may be summarized as follows:

(a) We have obtained detailed results regarding the critical behavior of the

RFIM and the corresponding exponents. As expected, the critical proper-

ties are robust across different disorder types, in agreement with the recent

studies of Fytas and Mart̀ın-Mayor [8].

(b) We have characterized the pinned-cluster morphologies via their size dis-

tributions, which become scale-free at criticality. Another useful method

of quantifying the pinned-cluster morphologies is via the CF C(r) and the

SF S(k). These quantities are independent of the disorder type, as well as

the strength of the applied field. The CF shows a short-distance cusp sin-

gularity, and the SF exhibits a non-Porod tail at large wave-vectors. This
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feature results from scattering off fractal interfaces and provides an accurate

estimate of the fractal dimension (df w 2.5 in all cases) of the interfaces.

(c) The expected scaling forms (and associated exponents) of various physical

quantities in (a) and (b) are summarized in Table A.1. The numerical values

of various critical parameters and exponents are summarized in Table A.2.

(d) We have analyzed domain morphologies from experiments on relaxor ferro-

electrics, which are usually modeled by the RFIM. The corresponding S(k)

vs. k curves also show a non-Porod tail with a universal fractal exponent

independent of external field: df w 1.5 (in d = 2). This is consistent with

our numerical results on the RFIM.

In many physics problems and technological applications, it is crucial to un-

derstand the motion of interfaces under an external field. Interfaces in disordered

systems become trapped by energy barriers which depend on disorder amplitude

and the domain size ξ. Typically, there is a power-law dependence on ξ with an

exponent which depends on the interfacial fractal dimension [12–14]. Our results

in this chapter conclusively show that interfaces in the RFIM are robust to varia-

tions in the disorder type as well as the field strength. This demonstrates a broad

universality in different physical scenarios. We hope that our theoretical results

will motivate further experimental work on these important problems.
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Appendix A

Glossary of Variables, Scaling

Functions, and the Critical

Exponents

h Applied external field.

hc Critical field.

∆ Strength of disorder.

∆c Critical disorder strength.

u Reduced disorder (∆−∆c)/∆c.

m(∆,h) Magnetization per spin at (∆,h).

D(q, ∆,h) Pinned-cluster size distribution at (∆,h).

Dint(q, ∆) Pinned-cluster size distribution integrated over h at ∆.

ξ(∆,h) Characteristic length scale at (∆,h).

C(r, ∆,h) Spin-spin CF at (∆,h).

S(k, ∆,h) Structure factor, the Fourier transform of C(r, ∆,h).
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Quantities Scaling form Exponents
m(∆,h) ∼ |u|βM±(h/|u|βδ) β, δ

D(q, ∆,h) ∼ q−τD±(q|u|1/σ,h/|u|βδ) τ ,σ

Dint(q, ∆) ∼ q−(τ+σβδ)Dint
± (q|u|1/σ)

C(r, ∆,h) ' 1− A(r/ξ)ζ at small r/ξ ζ

S(k, ∆,h) ∼ (ξk)−(d+ζ) at large k

Table A.1: Scaling forms of physical quantities and related exponents.

Disorder ∆c hc β δ τ σ
Gaussian 2.278(2) 0± 0.004 0.025(1) 70± 4 2.01± 0.03 0.20± 0.05
Uniform 2.234(2) 0± 0.002 0.020(5) 72± 2 1.98± 0.05 0.20± 0.02
Bimodal 2.201(2) 0± 0.001 0.025(5) 74± 1 1.97± 0.04 0.17± 0.01

Table A.2: Values of critical parameters and exponents. Refs. [15, 16] provide values
of ∆c for bimodal disorder.

66



References

[1] Y. Boykov and V. Kolmogorov, IEEE Trans. PAMI 26, 1124 (2004).

[2] G. P. Shrivastav, M. Kumar, V. Banerjee, and S. Puri, Phys. Rev. E 90,

032140 (2014).

[3] J.P. Sethna, K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts, and D.

Shore, Phys. Rev. Lett. 70, 3347 (1993).
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Chapter 4

Approximate Ground States in

the Random Field Potts Model

4.1 Introduction

The Potts model is one of the popular spin model that finds many applications

in statistical physics, e.g., in the study of normal grain-growth, nucleation, static

and dynamic recrystallization, etc. The q-state Potts model is a generalization

of Ising model for q possible states of spins [1, 2]. Naturally, the RFIM is a

q = 2 case of the q-state random-field Potts model (RFPM). There are physical

and experimental realizations of the RFPM, e.g., orientational glass behavior and

ordering in randomly diluted molecular crystals [3, 4], structural transition from a

cubic or trigonal phase into the tetragonal phase in SrTiO3 crystal [5], and phase

transition in type I antiferromagnet (such as Ndsb, NdAs, CeAs) in a uniform

field [6], etc.

As discussed earlier, one of the major interest in disordered systems is to find

their ground states. It yields the important information about the equilibrium

properties and the critical behavior of the system. While the RFIM is the simplest

disordered system for which the GS problem has been exactly solved in polynomial

(P) time using several graph cut (GC) techniques of maximum flow, the GS

problem in RFPM is a multi-terminal flow problem that is known to be NP-hard.

Hence an efficient exact algorithm is extremely unlikely to exist. However, it is
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possible to use GC techniques to solve the corresponding ground-state problem

approximately in P time. In this chapter, we show that this works very well.

Before, we discuss our study, let us first review the earlier works on RFPM.

Previously, the RFPM has been studied analytically using the mean-field (MF)

approximation [7, 8] and numerically by MC techniques [9–11]. These studies are

for the phase diagram in a q–d plane. The pure Potts model in d = 2 has a

second-order phase transition for q ≤ 4 and a first-order transition for q > 4 [12].

On the other hand, in d = 3, there is a first-order transition for q ≥ 3. With

the disorder, Eichhorn and Binder (EB) [9, 10] studied the order of transition

in q = 3 and d = 3 RFPM via MC approach. They found that the disorder

turns the first order transition of the pure Potts model to the second order. But,

this change of transition depends on the strength of disorder. For a weak enough

disorder, the order of transition does not change. They proposed that the random

fields strength shifts the tricritical curve qc(d) to a higher value, consistent with

the prediction of Blankschtein et al. [7] on the basis of MF theory. All values

of q < qc(d) show a second-order transition and q > qc(d) show a first-order

transition. In their phase diagram, q = 3 and probably q = 4 show the second-

order transition. However, this disagrees with the result of Goldschmidt and Xu

(GX) [13] who perform 1/q expansions for q-state RFPM in d = 3 and found that

for q ≥ 3, there is a first-order transition irrespective of the disorder strength.

In this chapter, we investigate the GS of the RFPM using the GC method. We

compare the results of the energy minima produced by this heuristic algorithm

to those found by an appropriately tuned parallel tempering (PT) method that

is configured to find ground states for the considered system sizes with high

probability. We observed that in most of the cases, the GC method finds the

same states in a fraction of the time. In some cases, the PT method finds better

estimate of the energy minima as compared to the GC, but in an exponential

running time and also for restricted system sizes. On the other hand, the GC

method efficiently computes good quality local energy minimum, close to the

exact GS. The run-time typically scales linearly with the system size, which,

therefore, allows to simulate large systems. Therefore, the GC method is used

for a first exploratory study of the RFPM in d = 2, 3.

This chapter is organized as follows. In Sec. 4.2, we describe the model and
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our methodology for studying the GS problem. Particularly, we describe the

parallel tempering (PT) method. In Sec. 4.3, we present the detailed numerical

results for the GS study of RFPM using GC method and compare the GS results

of the GC method to the corresponding results from the PT method. Sec. 4.4 is

devoted to the study of critical behavior in q = 3 RFPM using GC method and

to determine the critical exponents. Finally, in Sec. 4.5, we conclude this chapter

with a summary of our results.

4.2 The Model and Methodology

Let us recall the Hamiltonian for the RFPM [7] as defined in Eq. (1.6) (considering

hαi ≡ ∆εαi )

H = −J
∑
〈ij〉

δsi,sj −∆
∑
i

q−1∑
α=0

εαi δsi,α, (4.1)

where each spin si can take any value from the set si = {0, 1, ...., q − 1}. The

total number of spin-states q are also designated as the Potts states. {εαi } are the

quenched random-field (RF) variables, drawn from a Gaussian distribution of 0

mean and standard deviation 1. Notice that the RF variables are of q component.

The parameter ∆ (in unit of J) is a measure of disorder strength.

The other simpler form of Hamiltonian for RFPM, defined in Refs. [9, 13], is

H = −J
∑
〈ij〉

δsi,sj −∆
∑
i

δsi,hi . (4.2)

Here, instead, the quenched random variables {hi} are the random spin-states,

chosen uniformly from the set si = {0, 1, ...., q − 1}. Thus, the distribution of

random fields are discrete, which act with equal probability to any one of the q

spin states, i.e.,

p(hi) =
1

q

q−1∑
α=0

δ(hi − α), (4.3)

whereas in the previous Hamiltonian [Eq. (4.1)], the random fields are coupled to

all q spin-states. Therefore, the Hamiltonian in Eq. (4.1) is more general and we

use this Hamiltonian in our study of RFPM.
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We have described the GC method in Sec. 1.4.1. Let us now discuss the PT

method.

4.2.1 Parallel Tempering Method

PT or the replica exchange method is an efficient MC technique which allows for

simultaneously studying a system at a set of many different temperatures, and

at the same time overcomes the difficulties encountered in sampling the phase

space of a disordered system. The general idea of the PT method is to simulate

several replicas of the system at different temperatures and then exchanging the

configurations at adjacent temperatures [14–19]. In this way, the system lowers

its energy by overcoming the free energy barriers to reach into the GS. In the

literature, many disordered systems have been studied for the ground states using

the PT method [20–25].

Let NT be the number of non-interacting independent replicas of the system

that are simulated simultaneously at different temperatures. In each independent

system, we perform single spin flip Metropolis move over the whole lattice. Once

all the replicas are simulated, the configurations at adjacent temperatures are

exchanged with the probability:

Pex = min
[
1, e−(βm+1−βm)(Em−Em+1)

]
, (4.4)

where βm and Em are the inverse temperature and the energy of the mth replica,

respectively. The crucial, but non-trivial part of the algorithm is that how one

chooses the temperatures of replicas in the PT simulation.

Choosing optimal set of the temperatures

There have been many studies [26–34], which proposed different ideas of find-

ing the optimal choices of temperatures. Katzgaber et.al. [26] proposed that the

optimal choice of temperatures corresponds to a maximum rate of round trips

between the lowest and highest temperature. Their scheme uses an adaptive

feedback-optimized algorithm with a recursive readjustment of temperatures to

minimize the round trip times (or tunneling times). This feedback-optimized
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update scheme is a sophisticated and appealing method, but because of its com-

plexity, other simpler methods have been more often implemented in comparative

studies of PT.

A simpler method based on the acceptance rates was analyzed by Bittner

et.al. [27]. In their method, adjacent temperatures are determined from an ex-

change acceptance rate given by

R(m→ m+ 1) =
∑

Em,Em+1

PTm(Em)PTm+1(Em+1)Pex. (4.5)

Here, PTm(Em) is the probability for replica m at temperature Tm to have the

energy Em. It is obvious that the acceptance rate and tunneling time—average

time taken by a replica to go from the lowest to the highest temperature—play

the most important role to get an optimized set of temperatures.

In our work, we use a greedy optimization method to choose optimal temper-

atures. The temperature Tm of the mth replica is chosen as

Tm = mηTnorm + Tmin, (4.6)

where

Tnorm =
Tmax − Tmin

(NT − 1)η
, (4.7)

with maximum temperature Tmax = 1.5 and minimum temperature Tmin = 0.2.

This is chosen so as to avoid metastability and not to have large number of

replicas. η is a parameter which we determine as follows: (a) choose a set of

temperatures for some initial value of η and run simulations, (b) measure the

acceptance rates and the tunneling time, and repeat the simulations with some

modified value of η, (c) select that value of η, which maximizes the acceptance rate

and minimize the tunneling time. The value of η and the number of replicas NT

for different lattices L, which we use in our simulation, are listed in a Table 4.1.

Though, the PT method has been used as an optimization technique for find-

ing the global minima of disordered systems, it is not guaranteed that the lowest

energy state found is a GS. But, for the smaller system sizes, the PT method

should be able to find the ground states. Therefore, our aim is to generate the
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L 8 12 16 20 24 32 48
NT 16 16 16 16 16 32 32
η 1.3 1.3 1.3 1.3 1.3 1.14 1.14

Table 4.1: The values of η and the number of temperatures NT for different lattice
sizes L.

exact ground states for typically smaller system sizes using PT and use them as

a reference to compare the corresponding minimum energy states from the GC

method.

In order to generate the typical ground states from PT, we measure the time

t0 (in the units of Monte Carlo time steps) for the first occurrence of the lowest

energy state during the simulation. The time t0 is measured for several disorder

realizations. Out of the distribution of t0’s for different disorder realization, we

select the largest value and re-run our simulations ten times longer than this

time. This process is repeated until the lowest energy found does not change

for all simulations for different disorder realizations. We refer this lowest energy

state as the GS in our work. Fig. 4.1 shows a schematic representation of time t0

and the GS energy E0.

Fig. 4.2 is a plot for mean and median of t0 as a function of Potts states q

and system size L. The shaded area shows the region of the data fluctuations.

These plots are shown on a log-linear scale. In Fig. 4.2a, we observe that t0

increases non-exponentially with the number of Potts-states q, while in Fig. 4.2b,

we observe an exponential increase of t0 for system sizes L ≥ 16. From the

plot, as mean values are smaller than the medians, it shows an asymmetrical and

tail heavy distribution of t0. The distribution is positively skewed and one is

interested in higher moments.

4.3 Numerical Results

We present the detailed numerical results for the GS problem in RFPM in the

following order. (i) Verify the GC method for the approximate ground states. (ii)

Compare the GS results of GC method to the exact results from the PT method.
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Figure 4.1: Schematic diagram showing t0 and E0
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Figure 4.2: Plots of t0, the time of first appearance of the GS obtained from a very
long simulation as a function of (a) number of Potts states q and (b) system size L.
The data is shown on a log-linear scale. The shaded area shows the fluctuations of
the data. The number of disorder realizations are 1500.
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Figure 4.3: Energy histograms of metastable states for the q = 3 RFPM on a 642

lattice. These histogram are for a fixed disorder configuration {εαi } and 10000 inde-
pendent runs of GC for different initial configuration {si}.
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Figure 4.4: Analogous to Fig. 4.3 but for the q = 4 RFPM.

(iii) Discuss the performance and efficiency of the GC method.

4.3.1 Approximate Ground States from the GC Method

Let us begin by testing the GC for the approximate ground states in RFPM. In

order to do this, we fix the disorder configuration {εαi } and obtain the minimum

energy states from several runs of the GC for different initial labeling {si}. Fig. 4.3

shows the histograms of energies of such metastable states for the q = 3 RFPM.

The simulations are performed on a 642 lattice for 10000 runs of different initial

conditions. E = H({si}) is the total energy of the RFPM from the Hamiltonian

in Eq. (4.1) (Note that E is negative and we have plotted −E). For ∆ = 0.5, we

always have a same energy state for several runs of different initial conditions and
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therefore, the histogram shows a sharp peak corresponding to that energy state.

As we increase the disorder strength ∆, the histogram shows the distribution

over multiple energy states. The GC method therefore does not produces the

exact ground states of the RFPM. Fig. 4.4 shows similar histograms for the q = 4

RFPM. It can be clearly seen that the histograms are wider as compared to q = 3.

To quantify the energy spread in the histogram, we determine the standard

deviation in energy, σE =
√

(E − 〈E〉)2. 〈E〉 is the mean of energies obtained

for different runs of GC for a fix disorder realization; and for any quantity, [· · · ]
denotes the average over different disorder realizations. In Fig. 4.5, we show the

energy spread plot with disorder ∆ for q = 3 and q = 4 RFPM on a square

lattice (L2) of linear size L = 32, 62, 128. The energy spread is determined from

1000 independent runs for a fixed disorder realization and then averaged over

100 disorder realizations. The figure shows that the energy spread grows with

increase in L. In order to check the L-dependence of [σE], we plot σE/
√
N in

inset of Fig. 4.5, which shows a nice data collapse. Therefore, σE ∼
√
N , as

〈E〉 ∝ N , it yields a well-known relation:[
σE
〈E〉

]
∼ 1√

N
, (4.8)

which means that the energy fluctuations about the mean energy will vanish in

the thermodynamic limit, N →∞.

In an another plot in Fig. 4.6, we show an explicit q-dependence of the energy

spread at a fix ∆ and varying the q. Here, we can say that with increasing q,

the number of metastable states increase and the GC method is getting worse in

terms of the good quality energy minima. The inset of this figure again confirms

σE ∼
√
N . We also perform a similar analysis of energy spread in the d = 3

RFPM as shown in Fig. 4.7. Also, in this plot, the energy spread [σE] grows with

lattice size L as well as total number of labels q. Near the critical region, the

energy spread curves show a peak, meaning that the energy fluctuations becomes

more pronounced as the critical region is approached.
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Figure 4.5: Disorder averaged standard deviation of energies denoted as [σE ] for
the q = 3 (left) and q = 4 (right) RFPM. For a fixed {εαi }, σE =

√
(E − 〈E 〉)2

is calculated for a 1000 different initial {si} and then averaged over 100 disorder
samples. It clearly shows that the energy spread [σE ] grows with lattice size, L, and
also with number of labels q. The inset shows the scaling of energy spread σE . The
data collapse shows that σE ∼

√
N .
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Figure 4.6: σE for fix ∆ = 1.0 and varying q. This plot shows that the spread in
metastable energy states increase with q. Again, the inset shows σE ∼

√
N .
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Figure 4.7: [σE ] as a function of disorder strength ∆ for q = 3 (left) and q = 4
(right) RFPM in d = 3. For a fix {εαi }, σE =

√
(E − 〈E 〉)2 is calculated for a 100

different initial {si} and then averaged over 100 disorder samples.

4.3.2 Comparisons with the PT Method

Now, intuitively, one can ask how reliable are the ground states from the GC

method and how far are these from the exact ground states? In order to bench-

mark this, we compare the ground states from the GC method to the exact

ground states from the PT method for small system sizes. The system sizes

we choose are the square lattices of size L = 8, 16, 24, 32, 48. We study for

q = 2, 3, 4, 5, 6, 7, 8, 9, 10 RFPM. For each of these system sizes and q-values,

the ground states are determined from the PT for 1500 disorder realizations. For

the same sets of disorder realizations, the lowest energy states are determined

from a single run (one initial condition) of GC.

We define a parameter ε which quantifies how far a minimum energy state of

GC from its exact ground state is, i.e.,

ε =
E0 − Emin

E0

. (4.9)

Here, Emin is the energy of the lowest state from GC. In the best possible situation

when a minimum energy state is the actual GS, ε = 0. Fig. 4.8 shows a plot of
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Figure 4.8: Plot of ε defined from Eq. (4.9) against the number of labels q for fixed
L = 24 and is averaged over 1500 disorder realizations.
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Figure 4.9: Plot of overlap [O] defined from Eq. (4.10) against (a) the number of
labels q for fixed L = 24 (b) the lattice size L for fixed q = 3. The quantity is
averaged over 1500 disorder realizations.
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ε vs. the total number of spin states q. For q = 2, clearly, ε = 0 as the method

produces the exact ground states. With increasing q, ε increases, meaning that

the deviation from the exact ground states increases. Now, to check the reliability

of the ground states, we define an overlap parameter:

O =
1

N

∑
i

δsi,sGSi . (4.10)

Here, {sGSi } is the exact GS configuration from the PT and {si} is the lowest

energy-state configuration from the GC.

Fig. 4.9 shows the plots of overlap O vs the total number of spin states q and

lattice size L. Figure (a) shows that the overlap between the minimum energy

states and the exact ground states decreases with q while from (b), one can notice

that the overlap decreases and then saturates after L ≥ 24. This states that with

increase in L, the GC method is reliable for smaller q values.

4.3.3 Performance and Efficiency of the GC Method

Let us now discuss the performance and the efficiency of the GC method in finding

the minimum energy states of RFPM. We measure the CPU time r (in sec.) that

the α-expansion GC takes to find a minimum energy state. The simulations are

performed for ∆ = 1.0 and is averaged over 1000 disorder samples.

Fig. 4.10 is the plot of run-times r for q-state RFPM in d = 2. In Fig. 4.10(a),

we plot r as a function of system size N for q = 10, 50, 100. The solid lines are

the power-law fits with the exponents are specified in the figure, and a dashed

line denotes a linear behavior of r against N . Clearly, the plot shows that the

runtime is about linear in N and is independent of q. This shows the performance

of GC method that the r ∼ O(N). Further, the runtime is of the order of few

seconds which shows the efficiency of the GC. Fig. 4.10(b) is the run-time plot

of varying the number of labels q and fixing N . In this plot, with increasing the

system size, the runtime r grows faster in q and typically approaches the linear

behavior.

We perform a similar analysis in d = 3. In this case also, approximately a

linear behavior of run-time r is observed with the system size N . However, r
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Figure 4.10: Running time r (in sec.) of α-expansion GC in finding the lowest energy
state in d = 2 RFPM. It is the CPU time that the GC takes to find a minimum
energy state and averaged over 1000 disorder realizations. The left plot (a) shows
the running time for different q = 10, 50, 100 with varying the lattice size N and right
plot (b) shows the runtime with varying q for fixed lattices N = 1282 and 2562. The
solid lines are the power-law fits with the specified values of exponents and a dashed
line is drawn as a reference for linear behavior of r ∼ N . This plot clearly shows that
the runtime is about linear in N and also, approximately linear in q.
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Figure 4.11: Analogous to Fig. 4.10 but for d = 3 RFPM. (a) Plot of r as a function
of N for q = 10, 100. (b) Plot of r with varying q and keeping N fixed.
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is slight faster in N as compared to d = 2 (see Fig. 4.11). This confirms the

O(N) polynomial complexity of the GC which makes it more suitable to study

the disordered systems.

It is now clear that the GC is much efficient, but regarding the quality of

approximate ground states, the method works very well for typically very small

q. Considering the q = 3 case of the RFPM, next we use the GC method to study

the critical behavior.

4.4 Critical Behavior in the q = 3 RFPM

In this section, we study the critical behavior of the q = 3 RFPM in d = 3. The

simulations are performed on a 1283 lattices. We determine the physical quantities

such as Binder cumulant, magnetization and specific heat. We obtain the error

bars in each quantity from the standard deviation of data for different disorder

samples. These quantities predict the critical behavior of the system near the

transition. Using finite-size scaling techniques, we obtain the critical exponents.

The finite-size scaling is performed using a python program, namely, autoscale.py

developed by O. Melchert [35]. This program uses the minimization procedure to

optimize the scaling parameters via a downhill simplex algorithm [36].

We also determine the goodness-of-fit parameter Q which quantify the quality

of fit. This is defined as the incomplete gamma function of chi-square χ2 and the

degree of freedom f [37]:

Q = Γ

(
χ2

2
,
f

2

)
. (4.11)

Q determines the probability that the value of

χ2 =
N∑
i

(
yi − g(xi)

σi

)2

, (4.12)

with N data points (xi, yi±σi) fitted to the function g, is worse than the current

fit [37, 38]. If Q & 0.1, then the goodness-of-fit is believable. If Q & 0.001, then

the fit may be acceptable if the errors are nonnormal or have been moderately

underestimated. If Q < 0.001, then the fit is not acceptable (see, numerical
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Figure 4.12: The Binder cumulant U4 vs. ∆ for square lattices of size L = 16, 24, 32,
48,64,96. The appropriate error bars are shown. The maximum intersection of these
curves predict ∆c ' 1.64.

recipes in C, Ref. [37]).

4.4.1 Binder Cumulant

To get a nature and location of transition point, a very first quantity to be

determined is the Binder cumulant U4(∆,L), defined in Eq. (2.4). Here, the

magnetization parameter is the order parameter ψ defined as [39, 40]

ψ =
qρ− 1

q − 1
, (4.13)

where

ρ =
1

N

(∑
α

δsi,α

)
maxα

. (4.14)

In Fig 4.12, we plot Binder cumulant U4(∆,L) against the disorder strength
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∆. The data has been averaged over many disorder realizations; typically 105,5×
104, 4 × 104, 3 × 104, 2 × 104, 104, for L = 16, 24, 32, 48, 64, respectively. The

error bars are shown which are quite small as the data has been averaged over

large disorder samples. The maximum intersection of the Binder-cumulant curves

occurs around 1.64, which predicts ∆c. Here, we stress that we do not obtain

the exact GS with the GC method and near the critical region, there will be

large fluctuations in approximate ground states as seen earlier from Fig. 4.7.

This is also evident from the fact that the Binder-cumulant curves do not have a

unique intersection. The Binder-cumulant plot helps us to get a rough estimate

of ∆c ' 1.64. A more accurate value along with error bars is determined from a

non-linear fit of pseudo-critical point ∆∗(L) which we will see later.

4.4.2 Specific Heat

Next we determine a specific-heat like quantity C(∆) at T = 0. At T = 0, the

free energy and energy H are identical. The bond energy per spin eJ plays a role

of entropy. Therefore, the specific-heat is defined as a numerical derivative of the

bond energy per spin (see Ref. [38] for details), i.e.,

C(∆) =
∂[eJ(∆)]

∂∆
, (4.15)

where [· · · ] denotes the average over disorder realizations and eJ(∆) is the bond

energy per spin given by

eJ(∆) = − 1

N

∑
〈ij〉

δsi,sj . (4.16)

Numerically, the derivative of eJ(∆) is determined using first-order finite differ-

ence in which the derivative is taken at the midpoint of the interval instead of

either end points. With this approach, if ∆1 and ∆2 are the two nearby values

of ∆, then the specific-heat C(∆) is

C

(
∆1 + ∆2

2

)
=

[eJ(∆2)]− [eJ(∆1)]

∆2 −∆1

. (4.17)
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Figure 4.13: Specific-heat C (∆, L), calculated from Eq. 4.17, as a function of disor-
der strength ∆ for different system sizes L = 16, 24, 32, 48, 64, 96. The inset is an
enlargement of the peak region. The solid lines in the inset are the parabolic fits.

In Fig. 4.13, we plot C(∆) as a function of ∆. One can see a clear peak in the

specific heat, which moves towards lower ∆ with increasing system size and the

height of the peak grows until it saturates. The error bars are shown which are

much smaller than the symbol sizes. Near the peak, we perform simulations for

more ∆’s values, and the data has been averaged over more disorder realizations

since the sample to sample fluctuations are large in this region. This is shown in

the inset of Fig. 4.13. To get the locations of the peaks, the data for each L has

been fitted to a parabola (y = a+ bx+ cx2). The solid lines in the inset are the

parabolic fits. Form these parabolic fits, one can obtain the height of the peaks

Cmax(L) and the positions of the maxima ∆∗(L), which are the pseudo-critical
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Figure 4.14: A plot of ∆∗(L), where the specific-heat attains its maximum, as a
function of system size L. The solid line shows the best fit to the function ∆∗(L) ≈
∆c + a1L−1/ν with ∆c = 1.688, 1/ν = 0.862, and a1 = 1.78. The inset shows the
data as a function of L−1/ν and a solid line is the best-fitted straight line.

points.

In a finite-size system, the finite-size scaling of the singular part of the specific-

heat predicts that

Cs ∼ Lα/νC̃
[
(∆−∆c)L

1/ν
]

, (4.18)

where ν is the correlation-length exponent and α is the specific-heat exponent.

Now, at the peak, if the argument of the scaling function C̃ takes some value, say

b, then the peak position ∆∗(L) varies as (see Ref. [38])

∆∗(L) ≈ ∆c + a1L
−1/ν , (4.19)
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Figure 4.15: Plot of the maximum of the specific heat C max(L) as a function of
system size L. The solid line is the fitting function of the form of Eq. (4.22) with
C0 = 2.975, α/ν = −0.015, b = −6.58, and ω = −1.35.

and the maximum value of the singular part of the specific heat varies as

Cmax
s (L) ∼ Lα/ν . (4.20)

According to Eq. (4.19), the pseudo-critical points ∆∗(L), determined in

Fig. 4.13, can be used to estimate the infinite-size critical disorder ∆c (see Fig. 4.14).

In the main frame of Fig. 4.14, we show ∆∗(L) as a function of L. The solid line

denotes the power-law fit of the form of Eq. (4.19). The best fit gives

∆c = 1.648± 0.003 and 1/ν = 0.862± 0.001, (4.21)

with the quality of fit Q = 0.2, which is fair. In the inset of Fig. 4.14, we plot

∆∗(L) vs L−1/ν , using the value of ν in Eq. (4.21). The solid line is the best linear

fit.
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4.4. Critical Behavior in the q = 3 RFPM

We now turn to determine the specific-heat exponent α. Fig. 4.15 shows the

plot of the peak heights of the specific heat Cmax(L) as a function of L. Notice

that the L-axis is plotted on a log scale. This plot clearly shows a curvature,

suggesting that the specific heat converge to a finite value as L increase. When

we try fitting this data to the form Cmax
s (L) = C0L

α/ν , it yields a strong negative

value of α, which seems unphysical. Further, the quality of the fit is bad. Then,

we try a fit including the scaling corrections of the form

Cmax(L) = C0L
α/ν(1 + bL−ω), (4.22)

where ω is the leading correction to the scaling exponent and b is some constant.

This fit yields

c0 = 2.975± 0.357, α/ν = −0.015± 0.024, (4.23)

and ω = −1.35± 0.39 with the quality of fit Q = 0.77, which is very good.

4.4.3 Magnetization or the Order Parameter

Next, we focus on the critical behavior of the order-parameter ψ , which is defined

in Eq. (4.13). Fig. 4.16 shows the plot of ψ as a function of disorder ∆ for

various lattice sizes L = 16,24,32,48,64,96. The error bars are extremely small

(∼ O(10−5)) as the data has been averaged over a large number of disorder

realizations.

The finite-size scaling of order parameter predicts

ψ(∆,L) = L−β/νM̃
[
(∆−∆c)L

1/ν
]

, (4.24)

which means that if we plot ψLβ/ν against (∆−∆c)L
1/ν with the correct values

of parameters ∆c, ν and β/ν, then the data for different system sizes should

collapse onto a single master curve near the critical region ∆ ≈ ∆c. This is

shown in Fig. 4.17. The finite-size scaling is performed using the python program

autoscale.py [35] with the initial choices of parameters ∆c = 0.64, 1/ν = 0.85,

β/ν = 0.1. The best scaling is obtained with the following values of scaling
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Figure 4.16: Plot of the order-parameter ψ as a function of ∆ for various system
sizes L = 16,24,32,48,64,96. Error bars are shown, which are much smaller than the
symbol sizes.
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Figure 4.17: Scaling plot of ψLβ/ν as a function of (∆−∆c)L1/ν with ∆c = 1.64532,
1/ν = 0.87324, β/ν = 0.05036 (see text).
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References ν α β
Previous studies Ref. [38] 1.32 ± 0.07 −0.63± 0.07 -

for Ref. [41] 1.19± 0.08 - 0.02± 0.01
d = 3 RFIM Ref. [42] 1.37± 0.09 −0.01± 0.09 0.017± 0.005

at T = 0 Ref. [43] 1.25± 0.02 −0.05± 0.02 -
Ref. [44] 1.1± 0.1 0.1± 0.1 -
Ref. [45] 1.38± 0.02 −0.09± 0.05 0.018± 0.002
Ref. [46] 1.2± 0.15 - 0.031± 0.015

q = 3, d = 3 This 1.145± 0.001 −0.017± 0.027 0.0577± 0.0002
RFPM at T = 0 work

Table 4.2: A summary of critical exponents of this study for q = 3, d = 3 RFPM
and previous studies for d = 3 RFIM.

parameters.

∆c = 1.64532± 0.00002, 1/ν = 0.87324± 0.00001, β/ν = 0.05036± 0.00007.

(4.25)

The resulting plot for the best data collapse is shown in Fig. 4.17. In Table 4.2,

we compare these determined exponents to the corresponding exponents of d = 3

RFIM, obtained in the previous studies for zero-temperature ground states.

4.5 Summary and Discussion

We have undertaken a comprehensive numerical study of the q-state RFPM us-

ing the α-expansion GC method and the PT method. Using GC method, we

obtain approximate ground states. While the PT is asymptotically exact, the

required run time increases exponentially with the system size. Therefore, using

PT method, we obtained exact ground states for small system sizes and com-

pared them to the corresponding lowest energy states from the GC method. We

found that the GC method produces reliable ground states for typically small q.

With increase in q, the quality of the ground states decreases. Then, we have

confirmed a polynomial complexity of O(N) of the GC method in the both, d = 2

and d = 3, that is, the run time is linear in the system size N .

Next, with the advantage of GC method for typically small q, we have studied
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4.5. Summary and Discussion

the critical behavior in q = 3 and d = 3 RFPM. We have determined the physical

quantities such as magnetization, Binder-cumulant, bond-energy, specific-heat.

Using the finite-size scaling ansatz, we have obtained the critical exponents. The

scaling has been performed using the python program, “autoscale.py”. Finally,

we have summarize these exponents in the Table 4.2 and also provide the corre-

sponding exponents for the d = 3 RFIM, determined in the previous studies.
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Part II

Ordering Kinetics in Disordered

Spin Systems



Chapter 5

Domain Growth in Random Field

Ising Model with Conserved

Kinetics

5.1 Introduction

As we know, the RFIM is the simplest and most investigated system to study

the effects of disorder and complexity. Quenched disorder is inherent in materials

in the form of defects, impurities, and structural imperfections. The RFIM has

provided a framework for understanding the properties of many such systems.

Some prototypical examples are dilute anti-ferromagnets (DAFs) in a uniform

field [1, 2]; insulating dipolar magnets LiHoxY1−xF4 in a transverse field; colossal

magnetoresistance oxides [3]; binary mixtures (AB) in a porous medium where A

and B could be oil and water, colloids and polymers [4–6], random binary alloys

[7], Immiscible fluids flowing through porous media [8, 9], etc.

As the Ising variables si in the RFIM do not have an intrinsic dynamics,

they are placed in contact with a heat bath which generates stochastic spin-flips

[10]. The resultant kinetic Ising model is the spin-flip or the Glauber model

that describes non-conserved kinetics. The Glauber kinetics is appropriate for

describing the dynamical properties of DAFs or LiHoxY1−xF4, for instance. On

the other hand, the microscopic kinetics for a binary mixture involves A ↔ B
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5.1. Introduction

interchanges, and the resultant model is the spin-exchange or the Kawasaki model

with conserved kinetics. The conserved kinetics of Kawasaki spin-exchange is

appropriate for describing, e.g., binary mixtures, binary alloys, Immiscible fluids,

etc. With this kinetics, the composition of each species or component of a system

remains preserved. It should be emphasized that the transition probabilities

in both Glauber and Kawasaki models satisfy the detailed balance condition

(Eq. (1.15)). Consequently, although the two models describe different time-

dependent behavior, the equilibrium state is unique.

The problem of domain growth or phase ordering in the RFIM after a deep

quench is a problem of long-standing interest for theorists, experimentalists and

technologists [11–18]. More generally, the subject of domain growth in disordered

systems has attracted much attention [11]. For studies on the random-bond

Ising model (RBIM), see Puri et al. [19], Paul et al. [20, 21], Lippiello et al.

[22, 23], Henkel and Pleimling [24, 25], Park and Pleimling [26]. For studies on

the random-site or site diluted Ising model (DIM), see, for example, Corberi et

al. [27], Park and Pleimling et al. [28], Paul et al. [29].

The quenched randomness causes pinning and roughening of interfaces, which

are characterized by a fractal dimension. This pinning has deep implications

for the ordering process due to the presence of a multitude of length scales,

energy barriers and relaxation times [30]. The presence of energy barriers leads

to the anomalous relaxation in these systems [31, 32]. Therefore, domain growth

with disorder is complicated and not completely understood. Some questions of

interest in this area are:

(i) What is the growth law obeyed by the correlated regions or domains as they

grow in size? Are there crossovers in the growth law with time?

(ii) Do the correlation and response functions exhibit super-universality (SU),

i.e., are the corresponding scaling functions independent of disorder?

(iii) How do interfacial characteristics affect the evolution after a quench?

For the RFIM with non-conserved kinetics (NC-RFIM), some of these ques-

tions have satisfactory answers. Domain growth in the pure system (∆ = 0) obeys

the well-known Lifshitz-Allen-Cahn (LAC) growth law, L(t) ∼ t1/2 [10]. Early
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studies by Oguz et al. [13] considered a continuum version of the d = 2 RFIM with

Langevin dynamics, i.e., the time-dependent Ginzburg-Landau (TDGL) equation.

They predicted logarithmic growth at large times and a breakdown of SU. Puri-

Parekh [33] and Rao-Chakrabarti [34] also had similar observations for the TDGL

model in d = 2, 3. They reported an algebraic domain growth law L(t) ∼ (ln t)1/ϕ

with a disorder-dependent exponent ϕ. Recently, Corberi et al. [35] performed

comprehensive MC simulations for the Glauber-RFIM in d = 2, 3. They demon-

strated that there is a cross-over from a pre-asymptotic power law growth with a

disorder-dependent exponent [L(t) ∼ t1/z̄(∆)] to an asymptotic regime with log-

arithmic growth [L(t) ∼ (ln t)1/ϕ with ϕ ' 1.5]. Further, Corberi et al. also

showed that the two-time autocorrelation function does not exhibit SU.

Let us next consider the conserved RFIM (C-RFIM or Kawasaki-RFIM).

There are very few studies of this problem. Domain growth in the pure sys-

tem exhibits the Lifshitz-Slyozov (LS) law, L(t) ∼ t1/3 [36, 37]. Puri and Parekh

studied the coarse-grained equivalent (i.e., the Cahn-Hilliard or CH equation) of

the C-RFIM in d = 2 [33]. They demonstrated that the scaled structure factor

(SF) does not exhibit SU, and the growth law shows an asymptotic logarithmic

behavior. A similar study has been done by Rao and Chakrabarti [38]. Their

observations were consistent with those of Puri and Parekh [33].

In this chapter, we present the first lattice-model study of the d = 2, 3 RFIM

with conserved kinetics. We perform comprehensive MC simulations of ordering

kinetics in C-RFIM in d = 2, 3. As mentioned in chapter 2 (Sec. 2.1), there is

a fundamental difference between the RFIM in d = 2 and d = 3. For d = 2,

the RFIM does not show long-range order (LRO) for any non-zero ∆. Therefore,

the ordering kinetics can only proceed up to the equilibrium correlation length

ξ(∆) → ∞ as ∆ → 0+. On the other hand, for the d = 3 RFIM, there is a FM

phase and therefore, it is possible to study domain growth up to infinite length

scales.

The major observations from our MC study are as follows:

(a) The correlation function C(r, t; ∆) and its Fourier transform, the structure

factor S(k, t; ∆), exhibit dynamical scaling. The growth process is isotropic

and characterized by a unique length scale L(t, ∆).
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(b) SU is violated by C(r, t; ∆). The disorder ∆ modifies the scaling function.

Therefore, the scaling function is not robust with respect to disorder.

(c) At early times, the domains follow algebraic growth L(t, ∆) ∼ t1/z̄ with

a disorder-dependent exponent z̄(∆). At late times, there is a cross-over

to logarithmic domain growth L(t, ∆) ∼ (ln t)1/ϕ, where ϕ is a disorder-

independent exponent. We find that ϕ ' 3.3 for d = 2, and ϕ ' 5.6 for

d = 3.

(d) The small-r behavior of C(r, ∆) exhibits a cusp singularity: 1 − C(r) ∼
rζ(∆), where the disorder-dependent cusp exponent ζ(∆) signifies rough in-

terfaces with a fractal dimension df = d− ζ.

(e) Consequently, the SF exhibits non-Porod decay S(k, t; ∆) ∼ k−(d+ζ), and

obeys a generalized Tomita sum rule [10]:∫ ∞
0

dp p1−ζ [pd+ζf(p)− C
]

= 0, (5.1)

where f(p) is the scaling function, and C is a constant.

This chapter is organized as follows. In Sec. 5.2, we discuss the details of our

numerical simulations. In Sec. 5.3, we present the detailed numerical results in

d = 2, 3 C-RFIM. Finally, in Sec. 5.4, we conclude this chapter with a summary

of our main results.

5.2 Simulation Details

The Hamiltonian of the model is described in Eq. 1.2. We choose the Gaussian

distribution of RF (Eq. 1.3, where ∆ is the amount of disorder). In d = 2,

the model does not show LRO for any non-zero value of ∆, i.e., ∆c = 0. In

d = 3, there is a small region of (T , ∆)-values where the equilibrium phase is

ferromagnetic A phase boundary separates the ferro-phase from the para-phase

(see Sec. 2.1). This boundary intersects the T -axis (∆ = 0) at Tc ' 4.51 [39] and

the ∆-axis (T = 0) at ∆c ' 2.28 (Sec. 2.3.2).
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The details of our numerical simulations are as follows. To study phase order-

ing kinetics, we rapidly quench the system at time t = 0 from high-temperature

[T > Tc(∆)] to a lower temperature [T < Tc(∆) in d = 3]. The high-temperature

state is mimicked by a random initial configuration {si = ±1}. The system is

then let to evolve via MC procedure of Metropolis algorithm. The Kawasaki

spin-exchange kinetics [10] proceeds as follows. A randomly selected spin si is

exchanged with a randomly chosen neighbor sj. The exchange is accepted with

the Metropolis transition probability [Eq. (1.18)]

W = min[1, exp(−β∆H)], (5.2)

where β = (kBT )−1 and ∆H is the change in energy resulting from the spin

exchange si ↔ sj, which depends only on the energy contribution arising from

spins si and sj. Thus, the initial and final value —upon spin-exchange si ↔ sj—of

energy in term of contributions due to spins si and sj are

Hinitial = −Jsi
∑
Ni 6=j

sNi − Jsj
∑
Nj 6=i

sNj − Jsisj − hisi − hjsj +

contribution due to other terms, (5.3)

and

Hfinal = −Jsj
∑
Ni 6=j

sNi − Jsi
∑
Nj 6=i

sNj − Jsjsi − hisj − hjsi +

contribution due to other terms. (5.4)

Here, Ni refers to the nearest-neighbors of the lattice site i. Therefore, the change

in energy

∆H = Hfinal −Hinitial

= (si − sj)

J ∑
Ni 6=j

sNi − J
∑
Nj 6=i

sNj + hi − hj

 . (5.5)

A single Monte Carlo step (MCS) corresponds to attempted updates of N spins.
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Then evolution time t is measured in the unit of MCS. The Kawasaki spin-

exchange kinetics preserve the overall magnetization of the RFIM during the

evolution process.

The evolution morphology at time t is characterized by the CF of the spin

configuration {si} averaged over several independent runs. As we know that if

the ordering system is isotropic and characterized by a single length scale L(t),

then the CF has a dynamical scaling form: C(r, t; ∆) = g (r/L), where g(x) is

a scaling function [10], and the corresponding dynamical-scaling form for SF is

S(k, t; ∆) = Ldf (kL), where f(p) is the Fourier transform of g(x) [10].

5.3 Numerical Results

We now present our numerical results on ordering morphologies after a deep

temperature quench. In d = 2, all simulations are done for square lattices of

size N = 5122 with periodic boundary conditions. The system is quenched from

a disordered phase to T = 1 (in units of J) and allowed to evolve up to 108

MCS. In d = 3, all simulations are done for cubic lattices of size N = 1283. The

system was cooled from the disordered phase to T = 2 < Tc(∆), and evolved up

to 107 MC time steps. All data (d = 2, 3) have been averaged over at least 10

(sometimes more) independent runs with distinct field configurations {hi} and

initial spin configurations {si(0)}.

5.3.1 Domain Growth Morphologies

In Fig. 5.1, we show the typical morphologies of the C-RFIM in d = 3 for (a)

∆ = 1.0, t = 105 MCS; (b) ∆ = 1.0, t = 107 MCS; and (c) ∆ = 2.0, t = 107

MCS. The snapshots (a) and (b) in Fig. 5.1 are correspond to same disorder and

different time, which shows that that the domains of up and down spins grow

in size as time evolves. The snapshots (b) and (c) in Fig. 5.1 are correspond

to same time and different disorder, which reveal that (i) the correlated regions

are smaller for larger ∆, and (ii) the interfaces become rougher with increasing

disorder. The effect of disorder can be seen clearly in Fig. 5.2 for d = 2 C-RFIM,

which shows the pinning and roughening of the interfaces with increasing ∆.
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5.3. Numerical Results

Figure 5.1: Domain growth in d = 3 C-RFIM for (a) ∆ = 1.0, t = 105 MCS; (b)
∆ = 1.0, t = 107 MCS; and (c) ∆ = 2.0, t = 107 MCS. The lattice size is 1283 and
the temperature T = 2 < Tc(∆). The green and blue regions correspond to si = 1
and si = −1, respectively.

Figure 5.2: Typical morphologies in d = 2 C-RFIM at t = 108 MCS for ∆ = 0,
∆ = 0.5, and ∆ = 1.0 . The lattice size is 5122 and the quench temperature is
T = 1. The black and white regions correspond to si = 1 and si = −1, respectively.
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Figure 5.3: Scaled correlation functions, C (r , t) vs. r/L, for d = 3 C-RFIM. The
length scale L(t) is the first zero-crossing of C (r , t). (a) C (r , t) vs. r/L for disorder
∆ = 1.0 and time t = 104, 105, 106, 107 MCS. The data collapse is a signature of
dynamical scaling. (b) C (r , t) vs. r/L for t = 107 MCS and ∆ = 0, 1.0, 2.0. The
distinct scaling form of correlation functions for different ∆ shows the violation of
SU.

∆ = 0 corresponds to the pure Ising model.

5.3.2 Superuniversality Violation

In Fig. 5.3(a), we plot correlation functions C(r, t; ∆) vs. r/L for ∆ = 1.0 and

four different times: t = 104, 105, 106 and 107. The data collapse for different

times is excellent, confirming that C(r, t; ∆) exhibits dynamical scaling and the

morphologies are scale-invariant. In Fig. 5.3(b), we plot C(r, t; ∆) vs. r/L at

t = 107 for three different values of disorder: ∆ = 0, 1.0 and 2.0. The scaling

functions are seen to be distinct, clearly demonstrating the violation of SU in the

C-RFIM [33, 38]. The disorder breaks up the bicontinuous morphology of the

pure case, as seen from the snapshots in Fig. 5.1 and Fig. 5.2. This bicontinuous

structure is responsible for the oscillations in the CF, seen clearly for ∆ = 0 in

Fig. 5.3(b). Fig. 5.3 corresponds to d = 3. An analogous picture for d = 2 is

shown in Fig. 5.4.
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Figure 5.4: Scaled correlation functions, C (r , t) vs. r/L, for d = 2 C-RFIM. (a)
C (r , t) vs. r/L for ∆ = 0.5 and time t = 106, 107, 108 MCS. Again, the data
collapse is a signature of dynamical scaling. (b) C (r , t) vs. r/L for t = 108 MCS and
∆ = 0, 0.5, 1.0, which clearly shows a violation of SU.

5.3.3 Domain Growth Law

Next, we focus on the time-dependence of the typical domain size L(t). We define

it as the distance at which the CF decays to zero. Fig. 5.5 shows the plot of L(t)

vs t on a log-log scale for ∆ = 0, 0.5, 1.0, 1.5, 2.0. Similarly, the Fig. 5.6 shows the

plot of L(t) vs t for d = 2 C-RFIM. In both the Figs. 5.5 and 5.6, a deviation from

the power law for the pure case (L ∼ t1/z with z = 3) is observed at large times

in the presence of disorder. To analyze this cross-over, we use the framework

introduced in Corberi et al. [35]. They propose the following scaling form for the

growth law:

L(t, ∆) ∼ t1/zeff = t1/zF (∆/tφ). (5.6)

Here, zeff is the effective growth exponent, and φ is the crossover exponent. The

scaling function behaves as (x = ∆/tφ)

F (x) ∼
{

const., for x→ 0,

x1/φz `
(
x−1/φ

)
, for x→∞.

(5.7)
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Figure 5.5: Plot of the characteristic length scale, L(t) vs. t on a log-log scale, for
different values of ∆ in the d = 3 C-RFIM. The dashed line indicates the Lifshitz-
Slyozov (LS) law: L(t) ∼ t1/3, which applies for pure systems (∆ = 0). Notice the
slowing down of domain growth at late times for higher disorder strengths.
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Figure 5.6: Analogous to Fig. 5.5 but for d = 2 C-RFIM.
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For φ < 0, Eq. (5.6) describes a crossover from the power-law form L ∼ t1/z

to an asymptotic behavior L ∼ `(t∆1/|φ|). The evaluation of the effective growth

exponent zeff is easier using the inverted form:

t = LzG(L/λ). (5.8)

Here, the crossover length scale λ = ∆1/φz, and G(y) = [F (x)]−z with y = L/λ.

The effective exponent as a function of y is then

zeff(y) ≡ ∂ ln t

∂ lnL
= z +

∂ lnG(y)

∂ ln y
. (5.9)

In Fig. 5.7(a), we show the time-dependence of zeff(t, ∆) for d = 3. For

∆ = 0, we expect zeff to saturate to z̄ = 3 at late times to yield the LS growth

law. For non-zero ∆, the plots show a power-law regime where zeff ' z̄, a

disorder-dependent constant. This is followed by a late regime where zeff is time-

dependent, corresponding to logarithmic growth. This appears to be a universal

scenario for domain growth in disordered systems, as stressed by Corberi et al.

[35]. We generalize Eqs. (5.6)-(5.9) by replacing z → z̄.

Next, let us examine the variation of zeff with L. From Eq. (5.9), we expect

zeff − z̄ to depend only on y = L/λ. In Fig. 5.7(b), we plot zeff − z̄ vs. L/λ for

different ∆-values. The values of λ are chosen to ensure data collapse, which is

seen to be good. The corresponding values of λ are provided in Table 5.1. The

disorder-dependent values of z̄ [seen clearly for ∆ = 1.0, 1.5, 2.0 in Fig. 5.7(a)]

are also listed in Table 5.1. The solid curve in Fig. 5.7(b) is the best power-law

fit of the form

zeff − z = byϕ, (5.10)

with b ' 0.022 and ϕ ' 5.6. The ∆-dependence of λ is shown in Fig. 5.7(c) and

is well-fitted by λ ∼ ∆−0.95, suggesting λ ∼ 1/∆. The negative exponent implies

that disorder is indeed a relevant scaling field.

It is easy to confirm that Eq. (5.10) implies logarithmic domain growth. The
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Figure 5.7: (a) Plot of effective exponent, zeff = [d(ln L)/d(ln t)]−1 vs. t on a
semi-log scale. The dashed lines indicate the disorder-dependent exponents z(∆).
(b) Scaling collapse of zeff − z vs. L/λ. The solid line is the best power-law fit:
zeff − z ' 0.022(L/λ)5.6. (c) Plot of ∆-dependence of λ (= ∆1/φz̄). The solid line is
a power-law fit: λ ∼ ∆−0.95.
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Figure 5.8: Analogous to Fig. 5.7 but for d = 2 C-RFIM. (a) Plot of effective exponent
zeff vs. t on a semi-log scale. (b) Scaling collapse of zeff − z vs L/λ. The solid line
is the best power-law fit: zeff − z ' 0.093(L/λ)3.3. (c) Plot of ∆-dependence of λ.
The solid line is a power-law fit: λ ∼ ∆−0.94.
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d = 2 ∆ 0 0.25 0.50 0.75 1.00
z 3.0 3.38 3.84 4.38 4.59
λ ∞ 46.71 24.03 16.94 12.25

d = 3 ∆ 0 0.5 1.0 1.5 2.0
z 3.0 3.57 3.78 4.05 4.40
λ ∞ 42.1 22.5 16.5 11.0

Table 5.1: Parameters z and λ for the C-RFIM with different ∆-values.

scaling function G(y) can be evaluated from Eq. (5.9) and Eq. (5.10), i.e.,

∂ lnG(y)

∂ ln y
= byϕ,

⇒ G(y) ∼ exp

(
b

ϕ
yϕ
)

. (5.11)

Substituting for G(y) in Eq. (5.8) results in the asymptotic logarithmic growth

form:
L

λ
'
[ϕ
b

ln(t/λz̄)
]1/ϕ

. (5.12)

It is important to note that the exponent ϕ has great physical significance. Ac-

cording to the study of Huse and Henley (HH) [30] and Lai et al. (LMV) [40],

domain growth in disordered systems of class 4 proceeds via activation over bar-

riers of energy EB ∼ E0L
ϕ (see Sec. 1.6.2). Then, the asymptotic growth law is

logarithmic: L(t) ∼ (T/E0)1/ϕ (ln t)1/ϕ, as in Eq. (5.12).

We have also performed a similar analysis for the d = 2 C-RFIM as shown

in Fig 5.8. Recall that, there is no LRO in the system for T 6= 0, i.e., ordering

kinetics is saturated by the correlation length. For T = 0, the thermal correlation

length ξ diverges as ∆→ 0: ξ(∆,T = 0) ∼ exp(a/∆) (see Sec. 2.3.1). We believe

that L(t) � ξ(∆,T ) in our simulations as we do not see any signs of saturation

in the growth process. As discussed earlier, there have been preliminary studies

[33, 38] of the coarse-grained version of this model. However, these were not

sufficiently accurate to fix the value of the logarithmic exponent ϕ. The frames

in Fig. 5.8 show (a) the effective exponent zeff vs. t; (b) the variation of zeff − z̄
as a function of L/λ for different disorder values; and (c) the ∆-dependence of
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λ. The corresponding values of z̄ and λ are provided in Table 5.1. The best-fit

function, zeff − z̄ = byϕ, in Fig. 5.8(b) yields b ' 0.093 and ϕ ' 3.3. Thus, the

logarithmic growth is faster for the d = 2 C-RFIM than the d = 3 C-RFIM.

5.3.4 Interfacial Properties of the Domain Morphologies

Finally, we analyze the properties of interfaces separating domains or correlated

regions of up and down spins. These are known to be fractal in the ground state

of the RFIM as shown in chapter 2 (Sec. 2.3).

Recall that an important signature of rough interfaces is the small-r behavior

of the CF, which exhibits a cusp singularity [41]:

C (r, t; ∆) ≡ g(x) = 1− Axζ +O(x2+ζ), (5.13)

where, x = r/L, A is a constant, and ζ is the cusp exponent. For smooth

interfaces, ζ = 1. For fractal interfaces, 0 < ζ < 1 and the fractal dimension

df = d− ζ.

The corresponding scaled SF f(p) [p = kL] has an important implication:

f(p) ∼ p−(d+ζ) (Sec. 1.5.2). This can be obtained as

g(x) =

∫
dp

(2π)d
e−ip·xf(p). (5.14)

We use the following identity:

xθ =

∫
dp

(2π)d
e−ip·x Ad

pd+θ
, (5.15)

where Ad is a d-dependent constant. From Eqs. (5.14) and (5.15), the cusp-like

behavior in Eq. (5.13) yields a power-law decay:

f(p) ∼ 1

pd+ζ
. (5.16)

For sharp interfaces, ζ = 1 and we recover the well-known Porod law: f(p) ∼
p−(d+1) [42].

In Fig. 5.9(a), we plot 1−C (r, t) vs. r/L on a log-log scale for ∆ = 0, 1.0 and
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Figure 5.9: (a) Plot of 1 − C (r , t) vs r/L on a log-log scale for C-RFIM in d = 3
with ∆ = 0, 1.0, 2.0 and t = 106, 107 MCS. Notice that the data collapses for fixed
∆ and different values of t, but not for different values of ∆, as the system exhibits
dynamical scaling but not SU. The slope of the solid lines yields the disorder-dependent
roughness exponent ζ(∆) ' 1.0, 0.8, 0.5 for ∆ = 0, 1.0, 2.0, respectively. (b) Plot of
scaled SF, L(t)−d S (k , t; ∆) vs. kL(t), for t = 107 MCS and ∆ = 0, 1.0, 2.0. The
solid lines denote relevant Porod and non-Porod tails.

2.0 at t = 106 and 107. The solid lines are the best linear fits in the small-r/L

regime with the indicated power-law exponents. The corresponding scaled SF,

L−3S(k, t) vs. kL at t = 107 MCS, is shown alongside in Fig. 5.9(b). Notice that

the cusp exponent ζ is disorder-dependent and is unaffected by the coarsening

process. This is consistent with our earlier observations that the scaling functions

do not show SU for the C-RFIM.

5.3.5 Generalized Tomita Sum Rule

Let us consider ∇2g in the limit x→ 0:

lim
x→0
∇2g(x) = lim

x→0

(
d2g

dx2
+
d− 1

x

dg

dx

)
' lim

x→0
−Aζ(d+ ζ − 2)xζ−2. (5.17)
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Figure 5.10: Plot of p(d+ζ)f (p) vs. p to demonstrate the generalized Tomita sum
rule for (a) ∆ = 0, (b) ∆ = 1.0, and (c) ∆ = 2.0. The solid line in each plot
indicates the value of the constant C in Eq. (5.21). The values of C and the Tomita
sum ΣT , obtained using numerical integration, are also specified in each frame.

From Eq. (5.14), we also have

∇2g(x) = −
∫

dp

(2π)d
e−ip·xp2f(p). (5.18)

We use Eq. (5.15) with θ = ζ − 2 to obtain (when x→ 0)∫
dp

(2π)d
p2f(p) = Aζ(d+ ζ − 2)

∫
dp

(2π)d
Ad

pd+ζ−2
, (5.19)

or ∫
dp

(2π)d

[
p2f(p)− Aζ(d+ ζ − 2)Ad

pd+ζ−2

]
= 0. (5.20)

This yields ∫ ∞
0

dp p1−ζ [pd+ζf(p)− C
]

= 0, (5.21)

where C is a constant. The result in Eq. (5.21) with ζ = 1 (case with sharp

interfaces) is referred to as Tomita’s sum rule [10, 43]. Eq. (5.21) constitutes

a generalization to the case with rough interfaces. To date, there is no theory

available for the complete scaling function in the case with conserved kinetics [10].

The Tomita sum rule sets a useful constraint on reasonable functional forms for

the CF or SF.

In Fig. 5.10, we demonstrate the generalized Tomita sum rule in Eq. (5.21)

for the SF data in Fig. 5.9(b). We plot p(d+ζ)f(p) vs. p (where p = kL) for (a)
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∆ = 0, (b) ∆ = 1.0, and (c) ∆ = 2.0. The horizontal solid line corresponds to

the value of the constant C. The integral in Eq. (5.21) is denoted as ΣT , and is

specified in each frame. For all the three cases, ΣT ' 0, verifying the generalized

Tomita sum rule for fractal interfaces.

5.4 Summary and Conclusion

To summarize, we have undertaken a comprehensive MC study of domain growth

in the RFIM with conserved dynamics (C-RFIM) in d = 2, 3. To the best of our

knowledge, we present the first such study. There have been some earlier studies

in d = 2 of a coarse-grained counterpart of the C-RFIM. However, they did not

yield conclusive answers regarding asymptotic growth laws. Our present work is

an important step towards a complete understanding of domain growth laws.

The details of our study are as follows. After a deep temperature quench, the

d = 2 system was evolved up to t = 108 MCS, and the d = 3 system up to t = 107

MCS. This significant computational effort enabled us to observe clean cross-overs

from a disorder-dependent power-law growth to a disorder-independent logarith-

mic growth in d = 2, 3. A summary of our results is as follows:

(a) For a fixed ∆, there is dynamical scaling, signifying the presence of a unique

length-scale. However, super-universality (SU) is violated in the d = 2, 3

C-RFIM indicating that the systems are not robust to disorder.

(b) At intermediate times, domain growth obeys a power law with disorder-

dependent exponent: L(t) ∼ t1/z(∆). In the asymptotic regime, there is

a cross-over to logarithmic growth with a disorder-independent exponent:

L(t) ∼ (ln t)1/ϕ. The logarithmic exponent ϕ ' 3.3 in d = 2, and ϕ ' 5.6

in d = 3.

(c) The small-r behavior of the CF exhibits a cusp singularity: 1 − C (r) '
A (r/L)ζ(∆), where ζ is disorder-dependent cusp exponent. The cusp expo-

nent ζ yields the interfacial fractal dimension as df = d − ζ. The corre-

sponding SF exhibits a non-Porod decay: S (k, t, ∆) ∼ k−(d+ζ), signifying

scattering off fractal interfaces. Further, the scaling function for the SF

obeys a generalized Tomita sum rule.
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In conclusion, the C-RFIM is a generic model for a wide range of experi-

mental systems. We hope that the novel results presented in this chapter will

motivate further interest in this fascinating problem. We now have a reason-

able understanding of nonconserved domain growth in disordered systems. This

is an appropriate time to undertake an exhaustive study of the corresponding

conserved models.
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Chapter 6

Equilibrium Structure and

Off-equilibrium Kinetics in a

Tunable Frustrated Magnet

6.1 Introduction

So far we have studied the disordered systems with random-field (RF) types of

disorder, e.g., RFIM. In chapter 5, we have understood the phase-ordering in the

conserved case of RFIM. Phase-ordering also occur in disordered systems with

random-bond (RB) types of disorder, e.g., random coupling-constant, random

dilution, or quenched vacancies [1, 2]. Concerning the domain growth law in these

systems, either logarithmic [3–9] or temperature dependent power-laws [10–13]

growth have been found. A number of experiments on these systems also report

logarithmic [14, 15] or the power-law growth [16, 17]. Thus, there is yet no clear

understanding of growth kinetics in these systems—e.g., on the basis of different

dynamical universality classes or on the basis of some simple classification of

different disordered magnetic models.

Further, as a rule of thumb that the more disorder in a system is responsible

for more pinning, and due to which the simple fact that the slower the growth

will be, has been recently found to be incorrect in quite a number of cases [6–

8]. Considering, for instance, the Ising model with random dilution (namely a
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fraction d of sites or bonds on the lattice are missing), it was shown that, although

for sufficiently small values of d, the kinetics is slowed down upon increasing d, as

naively expected, after a certain threshold, increasing d produces a faster growth.

As it is explained in Refs. [6, 7], this happens because adding more disorder—in

this case parametrized by d—not only introduces more pinning sources but, more

importantly, the topological properties of the system are also changed. Indeed,

when d gets close to the value dc, where the set of non-diluted sites (or bonds)

is at the percolation threshold, the fractal properties of the percolating network

play an important role in speeding up the evolution because the pinning barriers

are softened. This very effect, the nonmonotonous behavior of the growth with

the amount of disorder is observed not only in diluted systems but also for Ising

model with random ferromagnetic (FM) couplings [6].

All these systems—described insofar—are the disordered ferromagnetic, i.e.,

non-frustrated. The objective of this chapter is to generalize the nonmonotonous

behavior of the growth in these systems with the addition of frustration. The

frustration arises when it is impossible to simultaneously satisfy all the inter-

actions between the microscopic constituents, e.g., an antiferromagnetic (AFM)

Ising model on a triangular lattice. The slow evolution of disordered frustrated

systems is by far a much more complicated problem. This is because even the

basic structure of the low-temperature equilibrium states in finite-dimensional

systems are still debated. The absence of a clear-cut indication on the static

properties hinders the interpretation of what is dynamically observed [18].

Our aim is to study the kinetics of disordered systems with the gradual ad-

dition of frustration from the side of non-frustrated ones, where a better under-

standing has been to some extent achieved. In order to do that we consider an

Ising model with a fraction a of negative coupling constants (Jij), and the re-

maining ones are positive. We study the model numerically in d = 2 and vary

the value of a in the interval [0, 1]. Clearly, by changing the parameter a, one

can gradually tune the amount of frustration present in the system. Not enough,

in order to avoid high frustration and to have a better understanding from a

situation without frustration to one where it is relevant, we consider the case

where the FM interactions (positive Jij) are much stronger than the AFM ones

(negative Jij).
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6.1. Introduction

In the low-temperature equilibrium phase-diagram of the model, as a is pro-

gressively increased, one moves from a FM phase, where frustration plays a minor

role, to a strongly frustrated paramagnetic (PM) phase which, right at T = 0,

is expected to exhibit a spin-glass order [19, 20]. For even larger values of a, an

AFM region is entered. Therefore, considering the evolution of the present model

after a deep quench to a small finite temperature Tf > 0, we have the oppor-

tunity to study how different amounts of frustration—tuned by a—influence the

off-equilibrium kinetics.

In doing that we observe a usual coarsening in the magnetic phases—either

FM or AFM—which is characterized by a logarithmic growth, in agreement with

previous studies on related Ising models with random bonds [3]. On increasing

frustration via a, we find that the speed of phase-ordering changes in a non-

monotonous way. This behavior is analogous to the one discussed above for

non-frustrated systems and can be interpreted from similar arguments based on

topology. Indeed, the geometry of the growing domains becomes fractal as a is

increased and the transition to the PM region is approached, similar to what

happens in the nonfrustrated diluted systems previously considered when the

percolation threshold is approached. Also in this case, the fractal topology speeds

up the evolution.

This shows that an off-equilibrium evolution getting faster and more efficient

with the addition of the disorder is of a quite general nature, and occurs both

in systems with and without frustration. At variance with the logarithmically

slow evolution observed in the FM or AFM phases, a faster kinetics characterized

by algebraic behaviors is found along the whole PM region, where frustration

plays a prominent role. The faster evolution observed in this phase (as compared

to the logarithmic one in the FM and AFM regions) can be perhaps because

of the proximity to the spin-glass structure (at T = 0), which has many quasi-

isoenergetic levels that soften the energy barriers.

This chapter is organized as follows: In Sec. 6.2 we introduce the model and

discuss the structure of the bond network in Sec. 6.2.1. Section 6.3 is devoted

to the study of the low-temperature phase-diagram, where we present the equi-

librium structure of the system in different phases. In Sec. 6.4, we study the

off-equilibrium growth kinetics of the model after deep quenches to various final
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temperatures and present the numerical results. Finally, in Sec. 6.5, we conclude

and summarize our main results of this chapter.

6.2 The Model

Let us recall the Hamiltonian for the RBIM as defined in Eq. (1.7), i.e.,

H = −
∑
〈ij〉

Jijsisj. (6.1)

We consider the bimodal distribution of coupling-constants {Jij} as given in

Eq. (1.9):

Pb(Jij) = a [δ(Jij − (J0 − ε))] + (1− a) [δ(Jij − (J0 + ε))] . (6.2)

ε ≤ J0 corresponds to the non-frustrated case, which has been previously studied

in Ref. [6]. Here, instead, we set

ε > J0, (6.3)

meaning that the fraction a of bonds are AFM with Jij < 0 and the remaining

ones are FM with Jij > 0 . We will also denote negative bonds with J− = J0 − ε
and positive ones with J+ = J0 + ε.

6.2.1 The Geometry of the Bond Network

It is useful to discuss the geometrical properties of the network of bonds of the

model, which is pictorially illustrated in the upper stripe of Fig. 6.1. With a = 0

the system is a pure Ising ferromagnet, since all the coupling constants are the

J+. Moving to a finite value of a introduces the AFM bonds. If a is small, these

will be separated apart by a typical distance

λa ∼ a−1/d, (6.4)
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Figure 6.1: In the upper stripe, four typical bond configurations are pictorially shown,
corresponding to 0 < a < a∗, a∗ < a . ap, ap . a < 1 − a∗ and 1 − a∗ < a < 1,
from left to right, respectively. FM bonds are drawn in blue, AFM ones in red.
The bar below the configuration stripe describes the physical phases of the systems
as a is varied, e.g., if FM, PM, etc. The graph in the lower part of the figure is
a schematic representation of the behavior of the typical lengths characterizing the
bond configuration and the physical properties (see text).

where d is the dimension of the system. This situation is schematically repre-

sented in the leftmost box on the upper stripe of the Fig. 6.1. Here the blue color

corresponds to regions where the bonds are FM while AFM ones are drawn in

red. The behavior of λa is shown by a dashed blue line in the lower graph of

Fig. 6.1. It decreases as a increases, meaning that at some point it becomes of

the order of the lattice spacing and then groups of AFM bonds start to coalesce.

Indeed, we know that at the bond percolation threshold ap ≡ a = 1/2, such

bonds form a percolating cluster. Due to this, right at ap the size Λa of the

regions of clustered AFM bonds is Λa = ∞ and, for a smaller but not too far
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6.3. The Structure of the Equilibrium States

from a = ap one has the well-known percolative behavior,

Λa = (ap − a)−ν , (6.5)

with ν = 4/3, which is shown by a dotted-dashed blue line in the lower part of

Fig. 6.1. A pictorial representation of the bond configuration in the region a . ap

is shown in the second (from the left) box in the upper part of the figure. The

transition between the region with isolated and clustered AFM bonds occur at a

value a = a∗, which can be roughly identified as the point where λa ' Λa. The

actual value of a∗ is located [6] between a = 0.2 and a = 0.3.

Clearly, as we move in the region a > ap the situation mirrors that for a < ap

upon exchanging the roles of FM and AFM bonds and replacing a to 1 − a,

and substituting the lengths λa and Λa with the corresponding ones λf and Λf ,

respectively, then one has

λf = (1− a)−1/d, (6.6)

and

Λf = (a− ap)−ν . (6.7)

6.3 The Structure of the Equilibrium States

As ε > J0, we consider the simple case with

J0 < ε <
q

q − 2
J0, (6.8)

where q is the coordination number of the lattice. Eq. (6.8) corresponds to a

ferromagnetic-always-wins condition as the FM strengths J+ is more stronger

than the AFM ones J−. When this condition holds, a spin to which at least a

FM bond is attached will always lower its energy by pointing along the direction of

the majority (if a majority exists) of spins to which it is connected by FM bonds.

Notice also that the spin-glass systems do not obey Eq. (6.8) (since J0 = 0).

We choose ε = 1.25J0 and J0 = 1, which obviously satisfies Eq. (6.8). Then,

J+ = J0 + ε = 2.25 and J− = J0 − ε = −0.25, the FM bonds J+ are 9 times

stronger than AFM ones, i.e., J+ = 9|J−|. All the numerical data are presented
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6.3. The Structure of the Equilibrium States

for square lattices of size 5122 with periodic boundary conditions applied on both

sides. Let us now discuss the structure of the low-temperature equilibrium states

of the model as a is changed.

6.3.1 Ground States

In the following, we will focus on the ground states, namely the equilibrium

configurations at T = 0. The GS problem is based on the generalization of solving

the graph-theoretic problem on planer graph [21] (without periodic boundary

conditions) to the toroidal lattice (i.e., periodic boundary conditions). We found

ground states using the minimum-weight–perfect-matching (MWPM) algorithm

as introduced in [22, 23]. With this technique, the GS can be found in polynomial

time.

To classify the ground states and the low-temperature equilibrium states of

the model, it is useful to consider the two global order parameters, viz., the

spontaneous magnetization m and the staggered magnetization M , defined as

m =
1

N

∑
i

si, (6.9)

M =
1

N

∑
i

σi. (6.10)

Here, σi is the staggered spin,

σi = (−1)isi. (6.11)

In Eq. (6.11), it is stipulated that the index i runs over the lattice sites in such a

way that two nearest neighbors (NNs) always have an opposite value of (−1)i.

The computed values of m and M in the ground states of the model for

different values of a, are plotted in Fig. 6.2. We will classify the ground states

according to m and M in the different regions of the parameter a in the following

sections. This classification is reported in the upper bar of Fig. 6.1 and, similarly,

in the lower bar of Fig. 6.2. Let us discuss the different magnetic phases of

the model in this classification, viz., ferro-, defective ferro-, para-, and defective
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Figure 6.2: |m| and |M | in the ground states at T = 0 for different values of a. The
ground states are obtained on a 5122 lattice with the periodic boundary condition.

antiferromagnetic.

6.3.1.1 Ferromagnetic phase (0 ≤ a < af)

The ferromagnetic phase can be split into the two sectors with 0 ≤ a < a∗ and

a∗ ≤ a < af , which will be considered separately below.

Sector 0 < a < a∗

As discussed above in Sec. 6.2.1, in this region, there are basically only isolated

AFM links in a sea of FM ones. At T = 0 spins in this sea necessarily align in

a FM state. Eq. (6.8) implies that also the spins attached to the AFM bonds

must be aligned with those in the sea. Hence, the GS is akin to a usual FM

system. Of course, as a increases, there is a finite probability to find some AFM

bonds nearby and this can cause some spin reversal with respect to a completely

ordered configuration, but for a < a∗ these are quite a few. Since the presence of

AFM bonds is largely irrelevant in this parameter region, we expect |m| ' 1 and

M = 0. We can see in Fig. 6.2 that this is indeed the case.

A representation of a real GS for a = 0.2 < a∗ (let us recall that a∗ is expected
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to be located between a = 0.2 and a = 0.3) is shown in the upper left panel of

Fig. 6.3, which confirms the above description.

Sector a∗ ≤ a < af

Fig. 6.2 shows that FM order extends up to a certain a = af (with af & 0.4),

which is well beyond a∗. FM ordering occurring beyond a∗ can be expected, as in

the whole region a < ap the number of FM bonds is larger than that of the AFM

ones and also because of the ferromagnetic-always-wins condition in Eq. (6.8).

Notice, however, this does not guarantee that the FM order is sustained up to

a = ap or beyond, for the reasons that will be explained in Sec. 6.3.1.2, but only

up to a lower value a = af < ap.

In the region a∗ < a < af , there is still a prevalence of FM order, namely the

fraction of up spins (say) prevails over the reversed ones, but since AFM bonds

can coalesce, regions with down spins may be found locally, as it can be seen in

Fig. 6.3 for a = 0.3 and a = 0.4 (upper central and right panel). This is why

we call this situation defective ferromagnet. Clearly, the islands where spins are

reversed increase upon raising a, as it can be checked in Fig. 6.3. Here one sees

that the size ξf of these regions grows dramatically as a gets close to af , a fact

that is pictorially sketched in Fig. 6.1. The presence of extended regions opposite

to the dominant FM order depletes the magnetization of the system, so when

a∗ < a < af one has 0 < |m| < 1 (decreasing upon raising a) and M = 0, as

it can be observed in Fig. 6.2. The magnetization m vanishes at the transition

point a = af .

6.3.1.2 Paramagnetic phase (af ≤ a ≤ aa)

Also in this phase, we consider separately the two subregions with af < a < ap

and ap < a < aa, as discussed below.

Sector af < a < ap

In this sector, the FM bonds still prevail and form a sea that spans the system.

The difference with the FM region is that AFM bonds, besides being grouped

together, can form sufficiently connected paths so as to destroy the FM state.

This we will discuss in Appendix B.
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Figure 6.3: Configurations of the GS for a 5122 lattice for different values of a. Spins
up are marked in black and spins down are in white.

A real configuration of the system in this region looks like the one for a = 0.5

in Fig. 6.3 (bottom row, left). By comparing this configuration with the one at

a = 0.7, one can notice that the size ξf of the locally magnetized regions increases

as a decreases toward af , suggesting that ξf diverges also on this side of af , as it

is sketched in Fig. 6.1. Therefore, with the given structure of the GS as discussed

above, one has m = 0. Clearly, it is also M = 0, since negative bonds are a

minority because of which the AFM ordering cannot occur in this sector. This is

confirmed in Fig. 6.2. Due to the fact that m = 0 as well as M = 0, we generically

call the region with af ≤ a ≤ aa as paramagnetic. Let us anticipate, however,

that right at T = 0 some spin-glass order is expected, as we will further discuss

in Sec. 6.4.2.2.

Sector ap < a < aa
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In this region, there is a sea of AFM bonds. If a is larger but sufficiently close

to ap there are also FM islands inside which spins are aligned. However, these

islands are disconnected and hence they order incoherently. Therefore, we expect

m = 0 throughout the region a > ap. This is observed in Fig. 6.2. Further, the

presence of a spanning sea of AFM bonds is not sufficient to establish a global

AFM order even when the a is so large that FM bonds are isolated, which happens

for a > 1− a∗ (we recall that the a∗ lies between 0.2 and 0.3). This is obviously

due to the fact that AFM interactions are weak as compared to FM ones (due to

the condition in Eq. (6.8)). Indeed, we see in Fig. 6.2 that the property M = 0

extends up to a = aa, where aa is located around a & 0.95. We will discuss it in

Appendix C.

The development of AFM order cannot be easily observed by simply plotting

the spins, as can be noticed in Fig. 6.3 that on a large scale one gets a uniform

black plot. On the other hand, it can be clearly seen by plotting the staggered

spin σi instead of si, as it is done in Fig. 6.4. In this figure, local AFM order

results in black or white regions, and |M | > 0 corresponds to a majority of one of

the two colors. Beyond aa the AFM order sets in. This region will be discussed

as below.

6.3.1.3 Defective antiferromagnet (aa ≤ a ≤ 1)

In the region with a > aa, there are very few and far apart FM bonds. As

these bonds are more stronger than AFM ones, the pairs of spins attached to FM

bonds will be aligned. This represents a defect in the otherwise perfectly ordered

AFM state. Therefore, in this region, the system is an antiferromagnet with a

fraction 1− a of isolated defects and that’s why we name this region as defective

antiferromagnet. Then, one has in this region, the m = 0 and M 6= 0, as it can

be seen in Fig. 6.2. We can see from Fig. 6.4 that the local AFM order parameter

σi organizes in large regions as the critical point aa is approached, similarly to

what si does as in FM phase on reducing a below af . This suggests that the size

ξa of such regions diverges at a = aa, as it is sketched in Fig. 6.1.
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Figure 6.4: Configurations of the GS for a 5122 lattice for different values of a. We
plot the staggered spin σi defined in Eq. (6.11). {σi} = 1 are marked in black and
{σi} = −1 are in white.

6.3.2 Equilibrium States at a Finite Temperature

Since we will study the evolution of a system quenched to Tf > 0, it is worth

to discuss briefly the modifications to the above equilibrium picture at T = 0

introduced by a finite temperature. Let us recall that J+ = 2.25 and J− = −0.25.

Consider the region with a < af , where FM order prevails. In this region

the critical temperature Tc is expected to drop from the Ising value Tc(a = 0) '
2.269J+ ' 5.105, to Tc(a = af ) = 0 upon raising a (the temperature is in the

units of J0/kB, kB is the Boltzmann constant). Similarly, on the AFM side,

a > aa, the corresponding Tc will drop from Tc(a = 1) ' 2.269|J−| ' 0.567 to

Tc(aa) = 0 upon decreasing a.

In the PM region, the spin-glass phase is expected to be destroyed by thermal

fluctuations, no matter how small. Hence, Tc = 0 in this phase. However, as we
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will discuss further below, the existence of spin-glass order at T = 0 may strongly

influence the dynamical properties at finite temperatures.

6.4 Off-equilibrium Study of Growth Kinetics

6.4.1 Simulation Details

To study the off-equilibrium growth kinetics, we prepare the system in a fully

disordered initial state with uncorrelated spins pointing randomly up or down,

corresponding to an equilibrium configuration at T = ∞, and then quench to a

low temperature Tf at time t = 0. Let us say a few words on the role of the final

temperature Tf . Here we are interested in a situation where Tf is very small. This

is because usually the kinetics of magnetic systems is more easily interpreted in

this limit, and also because low temperatures guarantees Tf < Tc(a) in a wider

range of a [see previous discussion about Tc(a) in Sec. 6.3.2]. However, setting Tf

to very small values has the undesirable consequence that the kinetics becomes

so sluggish that no appreciable growth of L(t) can be detected in the range of

simulated times.

In the following we will consider, out of many values Tf used in the simulations,

the two choices Tf = 0.4 and Tf = 0.75, which were found to represent a good

compromise between the two contrasting issues discussed above. Notice that both

these temperatures are much below the critical temperature Tc(a = 0) ' 5.105 of

the clean ferromagnet. On the other hand, while the former (Tf = 0.4) is smaller

than of the clean antiferromagnet Tc(a = 1) ' 0.567, the latter (Tf = 0.75) is

above. Let us stress that, in any case, since Tc(af ≤ a ≤ aa) = 0, for some

values of a the quench is necessarily made above the critical temperature. We

will postpone the discussion on this matter in Sec. 6.4.2.2.

After quenching the system at time t = 0 to a low final temperature Tf , we

evolve the model using non-conserved dynamics [24, 25] of single spin flip via the

Glauber transition rates [Eq. (1.17)]:

W (si → −si) =
1

2

[
1− tanh

(
β∆E

2

)]
. (6.12)
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Here, ∆E is the change in energy resulting due to single spin-flip (si → −si).
This can be obtained from the Hamiltonian in Eq. (6.1), i.e.,

∆E = 2si
∑
j∈Ni

Jijsj, (6.13)

Ni refers to the set of NNs of site i. With this algorithm, we evolve the system as

function of time upto 107 MCS and one MCS corresponds to attempted updates

of N(= 5122) spins in the lattice.

The main observable that we are interested is in the typical size of domains

which grow as a function of time, i.e., L(t). We define it as the inverse of the

excess energy

L(t) = N [〈E(t)〉 − E∞]−1 , (6.14)

where 〈E(t)〉 is the average value of energy as a function of time t and E∞ is

the average energy of the equilibrium state at T = Tf . The equilibrium state at

T = Tf is obtained from the corresponding GS by evolving it at T = Tf until

stationarity is achieved. For comparison, we have also found the equilibrium state

directly by means of parallel tempering techniques. The values of E∞ found with

the two methods are consistent.

When the system has a simple FM or AFM order, as in pure or weakly dis-

ordered systems, the quantity in Eq. (6.14) can be straightforwardly identified

with the size of the growing ordered regions or the domains. This is because

in a coarsening process the interior of domains is in equilibrium and the excess

energy is stored on the interface of domains, i.e., the domain walls, whose density

scales as the inverse of typical domain size L(t) [24]. This can be derived from

the simple arguments that the excess energy E(t)−E(∞) is proportional to the

total length of domains walls, which is given by the length of a single domain’s

boundary times the number of such domains. Now, the length of a single do-

main’s boundary is ∝ L(t)d−1 and the number of domains is ∝ L−d. This in turn

yields that E(t)− E(∞) ∝ L(t)−1, which therefore proves Eq. (6.14).

Of course, as we know that the most common method to measure the typical

domain size is from the decay of the equal time real space spin-spin correlation

function 〈si(t)si+r(t)〉, where i and i+r are two sites at distance r. However, this
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definition can only be used in the FM phase. Analogously, in spin-glass phase,

one might use the equal time overlap correlator 〈qi(t)qi+r(t)〉, where

qi = si(t)s
GS
i (6.15)

is the overlap with the GS (sGSi is the spin at site i in the GS). However, the

result need not to be the same using different methods as explained below.

Consider a FM situation like the one of the GS at a = 0.4 (upper right

panel of Fig. 6.3) in which there are many islands with a finite extension. Then

upon extracting a typical length from the correlation function at late times, one

weights these many small islands, which at long times are already equilibrated

(hence coarsening is interrupted in their interiors) together with a comparatively

smaller number of large islands. The latter are the only non-equilibrated regions

within which phase-ordering is still active. Instead, using Eq. (6.14) one only

focuses on those parts of the system where coarsening is still active, since inside

the small equilibrated islands E(t) ≡ E∞ by definition. Hence, Eq. (6.14) is more

suited to qualify how phase-ordering proceeds in the regions where it is still at

work, while from the CF one obtains the average size of domains, irrespective

of their state, weather in equilibrium or not. Since in this chapter we are more

interested to address the dynamical mechanisms driving the kinetics, we focus on

the definition in Eq. (6.14).

The difference between the value of L obtained from the definition of excess

energy density in Eq. (6.14) or from the spin-spin CF can be appreciated by

looking to the inset of the lower panel of Fig. 6.5. Here, for a quench to Tf = 0.75,

the typical length-scale L(t) computed from Eq. (6.14) is plotted for several values

of a in the main frame, while the one obtained from the spin-spin correlation

is reported in the inset (only for values of a in the FM region). The latter

determination grows much slowly than the former at a = 0.4, precisely because

the ground states contains many small islands.

6.4.2 Numerical Results

We now present our numerical simulations on the growth kinetics for the tem-

perature quench at Tf = 0.4 and Tf = 0.75. The general behavior of L(t), in
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the whole range of values of a, is shown in Figs. 6.5(a) and (b), for Tf = 0.4 and

Tf = 0.75, respectively. Notice that we plot L(t)/L(t = 4) to better compare

different L(t)-curves for different a.

As a general remark, we notice that at low temperature, such as for Tf = 0.4 in

Fig 6.5(a), L(t) exhibit an oscillating behavior on top of the neat growth (namely

the kind of growth that one would have if such oscillations were smoothed out

in some way). This is quite commonly observed in disordered or inhomogeneous

systems at low Tf [6, 8, 26] and is usually interpreted as due to the stop and go

mechanism due to the pinning of interfaces. As the final temperature of quench

is raised, the stop and go mechanism, although still present, is less coherent, and

the oscillations are smeared out. This can be observed in Fig 6.5(b) at Tf = 0.75.

Moreover, the speed of ordering increases upon raising Tf , as it is expected in the

presence of activated dynamics.

Let us check a rough estimate of the time taken by the system to escape from

these pinning state of interfaces. Consider, e.g., the smallest energetic barrier EB

encountered by a piece of interface when it crosses from a single AFM bond to

FM ones. This situation is likely to be observed when there are few AFM bonds

around, namely for small a. In this case, EB = J+ − J− = 2ε. The associated

Arrhenius time to escape the pinned state is τ ' exp (EB/kBT ). With the value

ε = 1.25 in our simulations, one has τ ' 518 for Tf = 0.4 and τ ' 28 for

Tf = 0.75. One can see in Fig. 6.5 that, for Tf = 0.4, this value is very well

compatible with the time where L(t), after becoming very slow, starts growing

faster again (a rough agreement is found also for Tf = 0.75, although in this case

the oscillatory phenomenon is only hinted).

We now discuss separately the growth mechanism for quenches in the FM,

PM, and AFM region, in sections 6.4.2.1, 6.4.2.2, and 6.4.2.3, respectively. Before

discussing these, it is useful to define the effective growth exponent zeff , used to

interpret the behavior of growth, i.e.,

1

zeff(t)
=
d[lnL(t)]

d[ln t]
. (6.16)
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Figure 6.5: Log-log plot of L(t) vs t for the specified values of a for the temperature
quench at (a) Tf = 0.4 (upper panel) and (b) T = 0.75 (lower panel). The dashed
line denote the t1/2 power-law, which correspond to pure ferro- or antiferromagnets.
The inset of the lower panel shows the behavior of the characteristic length extracted
from the spin correlation function for the values of a restricted in the FM region (see
text).
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6.4.2.1 Ferromagnetic region 0 ≤ a ≤ af

Fig. 6.6 shows the snapshots of the system’s evolving morphologies at different

times and for three different choices of a after a temperature quench to Tf = 0.4.

For any value of a, one clearly observes a coarsening phenomenon with domains of

the two phases growing in a self-similar way in time. Upon increasing a, domains

look more jagged and indented, presumably due to the nearing of the critical

point at a = af where a fractal structure is expected to appear.

Fig. 6.5 shows the general behavior of the growth mechanism. For a = 0

(pure case), the growth is consistent with the expected behavior L(t) ∝ t1/2. As

we introduce a, it slows down, but with increasing a, this occurs only up to a

certain value, which we interpret as a = a∗ and is located around a = 0.2. Upon

increasing a beyond a∗, the phase-ordering process speeds up again, up to af .

This is very well observed both for Tf = 0.4 and Tf = 0.75. The value of a∗, at

these two temperatures, is comparable, as it is expected since this quantity was

previously defined in a purely geometrical way on the basis of bond-networks of

the model.

This non-monotonous behavior of growth is consistent with the previous stud-

ies for the non-frustrated case [6–8], as we mentioned in the introduction. Specif-

ically, these studies are for random-diluted models where d is the amount of dis-

order, meaning that a fraction d of lattice sites or bonds are randomly removed.

It has been shown in these studies that as d increases from the pure case (d = 0),

the growth slows down logarithmically till a moderate value d∗. Then increasing

d above d∗, the growth starts increasing again up to the largest possible value of

d, namely the percolation threshold at d = dc. For d > dc, the fractal structure

of the network becomes disconnected and the magnetic properties are lost, and

hence, there will be no phase-ordering.

The interpretation of this non-monotonic behavior, given in Refs. [6–8], is the

following: besides the pure case, where the speed of growth is at its maximum, the

other network where L(t) grows relatively fast typically in an algebraic manner

(but slower than in the pure case) is the percolation fractal at d = dc. This is

argued to be due to the critical properties of such network, which in turn are

responsible for the fact that, right at d = dc, the transition temperature of the
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Figure 6.6: Evolution in the FM region for a quench to Tf = 0.4. These are {si}-
configurations on a 5122 lattice and shown for a = 0.2 (upper row), a = 0.3 (central
row), and a = 0.4 (lower row) at time t = 104 (left column), t = 106 (central
column), and t = 107 (right column). {si} = 1 (up-spins) are marked in black and
{si} = −1 (down-spins) are marked in white.
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model Tc(d = dc) vanishes. Then, indeed, the fractal properties of the structure

at d = dc soften the energetic barriers, making in this way the evolution faster.

Since the growth is globally and relatively maximum at d = 0 and d = dc,

respectively, there must be a minimum somewhere in between. This value is d∗

which is reported roughly in the middle of d = 0 and d = dc. This explains the

non-monotonic behavior of growth.

Also in the present model the geometric properties of the system are such

that there is a point, namely a = af , where Tc(a = af ) vanishes1. Therefore,

upon repeating the argument above (with the obvious replacements d → a and

dc → af ), one could expect the growth to be at its global maximum at a = 0, to

decreases as a increases up to a value a∗ located in between a = 0 and a = af ,

and then to rise again up to a = af . This is precisely what we see in Fig. 6.5.

The non-monotonic dependence of the speed of growth on the disorder, therefore,

qualifies as a rather general property of ferromagnetic systems, and a common

interpretation for different models can be provided.

Let us also mention a quantitative conjecture that Refs. [6–8] put forth: the

asymptotic growth law is of the logarithmic type in the whole disordered region

0 < d < dc, while it ought to be algebraic L(t) ∝ t1/z both in the clean case

d = 0 (with z = 2) and at d = dc (with z > 2 and Tf -dependent). As our present

model also shows the non-monotonous behavior, one would expect an asymptotic

logarithmic behavior (after a—possibly slow—crossover) in the range 0 < a < af ,

and a power-law behavior of L(t) right at a = af . To test this conjecture, we

compute the effective exponent zeff as defined in Eq. (6.16). At Tf = 0.4, the

oscillating nature of the curves shadow the genuine growth law, and it is therefore

almost impossible to come up with any quantitative statement about the neat

growth, e.g., if it consistent with a power-law or a logarithm or else. We check

this conjecture for Tf = 0.75.

Fig. 6.7 shows the plot of zeff for Tf = 0.75. For a = 0, it approaches the

expected asymptotic value 1/zeff = 1/2 starting from relatively early times t '
103. Focus the zeff at late time, as a is progressively increased from a = 0 to

a = 0.4 ' af , the effective exponent becomes initially smaller (in the range

0 ≤ a ≤ a∗ ' 0.2) and then rises again (moving a in the range a∗ ≤ a ≤ af ).

1Analogously the same occurs on AFM side at a = aa which will be discussed later.
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Figure 6.7: Log-linear plot of effective exponent 1/zeff (t) as a function of time for a
quench at T = 0.75, for specified values of a.

Concerning the time dependence 1/zeff , our data clearly show that it keeps

steadily decreasing in the late regime with t & 104 for all the values of a in

the range 0 < a ≤ 0.3. The decrease is rather slow but reliable. This implies

that the growth law of L(t) is slower than algebraic. Although the curves for

L(t) span a vertical range that is too limited to allow a precise determination of

such law (furthermore, a weak oscillation is present up to times of order 104), we

can at least conclude that the decrease of 1/zeff agrees with the expectation of a

logarithmic behavior. Data for a = 0.4 ' af , on the other hand, are quite well

consistent with a constant behavior of 1/zeff ' 0.19 at late times, and this also

agrees with the conjecture discussed above. Finally, the effective exponent looks

rather constant also for a = 0.37. This can be ascribed to the pre-asymptotic

algebraic behavior induced by the proximity of the percolation point a = af . We

expect, therefore, that a decrease of 1/zeff would also be observed for a = 0.37 if

sufficiently long times could be accessed in the simulations.

Notice that an algebraic law is also observed in the whole PM region. There-
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fore, the different asymptotic behavior—i.e., algebraic versus logarithm—observed

at a = af with respect to the rest of the FM region 0 < a < af can also be in-

terpreted upon thinking af as the lower limit of the PM region, where algebraic

behaviors are observed. We will comment further on this point below.

6.4.2.2 Paramagnetic region af < a < aa

In this region, we expect a kind of spin-glass order at Tf = 0. This can be

appreciated at a qualitative level in Fig. 6.8 in which we plot the local overlap

[qi = si(t)s
GS
i , as defined in Eq. (6.15)] between the actual dynamical spin con-

figurations and the GS, for different times after a quench to Tf = 0.4, and for

three different choices of a. Interestingly, also in this PM phase, for any value of

a, one clearly observes a coarsening phenomenon with domains of the two phases

growing in a self-similar way in time, although quite slowly. This agrees with

what was observed in Ref. [27]. Moreover, there is no signal of equilibration at

any time, nor does the growth seems to be interrupted. As a further comment,

we notice that configurations appear much more rugged for larger values of a.

In two-dimensional spin glasses (corresponding to J0 = 0 in our model) it

was shown [27–29], that the existence of a spin-glass phase at T = 0 rules the

kinetic in a long lasting pre-asymptotic regime. It is found that as long as the pre-

asymptotic stage is considered, a growing length can be identified which exhibits

an algebraic behavior [27]. Clearly, from Fig. 6.5(b) for Tf = 0.75, one sees that

data are consistent with an algebraic growth L(t) ∝ t1/z, with an a-dependent ex-

ponent, in agreement with the Ref. [27]. Data for a ≥ 0.7 clearly bend downwards

at late times, indicating that equilibration is starting to be achieved.

The algebraic increase of L(t) can also be confirmed from inspection of the

effective exponent zeff in Fig. 6.7. This quantity stays basically constant, besides

some noisy behavior, in the late time regime t & 103-104. Notice also that

1/zeff raises as a is increased. This can be ascribed, at least partly, to the fact

that the largest barriers encountered are associated to the positive couplings (as

J+ � |J−|), and the number of the latter is reduced upon increasing a.

A power-law for L(t) in this PM region, as opposed to the logarithmic one

in most disordered FM models, including the one at hand for 0 < a < af , can
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Figure 6.8: Evolution in the PM region in terms of overlap with the GS, i.e., qi =
si (t)sGS

i as defined in Eq. (6.15), for a quench to Tf = 0.4. Thus, these are the
{qi}-configurations on a 5122 lattice and shown for a = 0.5 (upper row), a = 0.8
(central row), and a = 0.95 (lower row) at time t = 104 (left column), t = 106

(central column), and t = 107 (right column). {qi} = 1 are marked in black and
{qi} = −1 are marked in white.
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Figure 6.9: Evolution in the AFM region in terms of staggered spins, as defined in
Eq. (6.11), for a quench to Tf = 0.4. Thus, these are the {σi}-configurations on a
5122 lattice and shown for a = 0.97 at time t = 104 (left column), t = 106 (central
column), and t = 107 (right column). {σi} = 1 are marked in black and {σi} = −1
are marked in white.

perhaps be read into the spin-glass structure, which has many quasi-equivalent

low-energy states. Taking advantage of entropic effects, the system can move

among these states lowering in this way the free-energy barriers. This could

speed up the evolution from logarithmic to algebraic.

6.4.2.3 Antiferromagnetic region a ≥ aa

In Fig. 6.9, we plot the configurations of the staggered spin σi [see Eq. (6.11] at

different times, which clearly show the coarsening phenomenon. In this region

with AFM order we expect a situation mirroring the one discussed in the FM

region, with the obvious correspondences a = 0↔ a = 1, and a = af ↔ a = aa.

In this case Tc(a = 1) ' 0.567, as already discussed. Since Tf = 0.75 >

Tc(a = 1), there is no room left to observe coarsening for Tf = 0.75 for any

value of a < 1 (indeed, in Fig. 6.5(b), L(t) flattens very soon, saturating to the

equilibrium value). Let us then focus only the data for Tf = 0.4 as shown in

Fig. 6.5(a). Here, one observes the non-monotonic behavior of growth, like in

the FM phase. Upon decreasing a from the pure antiferromagnet value a = 1,

the growth kinetics quickly becomes much slower in going to a = 0.97, and then

increases again until the upper limit of the PM phase is achieved at a = aa & 0.95.
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6.5 Summary and Conclusion

Let us conclude this chapter with a summary and brief discussion of our results.

We have studied numerically a frustrated case of two-dimensional RBIM where

a fraction a of bonds are negative and the remaining ones are positive. Further,

we made a choice that positive bonds J+ are stronger than the negative ones J−.

We have classified the low-temperature equilibrium states in different phases of

the model as a is varied in the interval in the interval [0, 1]. This classification

is presented on the basis of the values taken by the magnetization m and the

staggered magnetization M . We have shown the existence of a FM and an AFM

phase for a < af and a > aa, respectively. In between, for af < a < aa, there is a

PM phase at any temperature T , presumably with a spin-glass order at T = 0.

Then, our main focus was on the off-equilibrium evolution of the model after

a quench from an infinite temperature disordered state to low temperatures. We

quenched the system at two different temperature Tf = 0.4 and Tf = 0.75, and

studied the coarsening phenomena on 5122 lattices. The kinetics of growth is

characterized by the typical domain’s size L(t). We have determined L(t) from

the inverse of excess energy. The main results of this off-equilibrium study of

evolution may be summarized as below.

(a) The speed of growth varies in a non-monotonic way as the amount of disor-

der a is increased, similar to what was observed in other disordered ferro-

magnets [6–8]. Specifically, there exists a value a∗ ∼ 0.2 where the kinetics

is slower than for any other value of a.

(b) We have been able to show that the growth law of L(t) is slower than

algebraic, i.e., of a logarithmic type, in the whole FM region 0 < a < af

and AFM region aa < a < 1. Interestingly enough, this is true both for

0 ≤ a < a∗ and for a∗ ≤ a < af , though the FM structure of the equilibrium

state at T = 0 is different in these two sectors, as the system is a perfect

ferromagnet (i.e., m2 = 1 at T = 0) in the former range while it contains a

number of defects due to AFM inclusions in the latter (so that m2 < 1 at

T = 0).

(c) In the PM region af < a < aa, we find that L(t) grows algebraically in the
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whole phase, irrespective of the fact that the geometrical properties of the

bond network greatly changes as a is varied in [af , aa].

In conclusion, the non-monotonic dependence of the growth on disorder, which

was already found in models of disordered magnets without frustration [6–8],

extends its validity to the realm of frustrated systems. Therefore, it qualifies as a

rather general property of FM systems, and a common interpretation of different

models can be provided. The results of this chapter are pointing toward a general

robustness.

143



Appendix B

Suppression of Ferromagnetic

Order for a & af

For a & af , the amount of negative bonds is sufficient to spoil the FM order.

This may happen, for instance, when the spanning sea of FM bonds have a thin

part, like the horizontal path within the two dashed orange lines in the schematic

Fig. B.1(a) on left side, along which spins cannot keep the same orientation

without increasing the total energy. In the situation sketched, it is easy to check

that the represented configuration, minimizes the energy.

This picture has been presented to easily grasp the properties of the GS, but

it is not appropriate to describe the situation with a < ap. Indeed, for such

values of a there cannot be a spanning path of AFM bonds, while it is present

in Fig. B.1(a) (along the dashed orange lines). However, one can easily check

that the GS does not change if a certain fraction f ≤ 1/q (in this case q = 4)

of the AFM bonds crossing the dashed orange lines are turned into FM ones. In

this new situation there are no spanning clusters of AFM bonds, but the GS is

still split into four pieces of different magnetization as schematically presented in

Fig. B.1(a).

A computation of af looks very difficult, since this amount to evaluate the

smallest probability a such that a spanning path formed by a fraction 1 − f

of AFM bonds exists. A rough estimation is the following. We know that at

a = ap, a spanning path of AFM bonds exists. If the probability is decreased to
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(a) (b)

Figure B.1: Schematic representations of the ground states of the system in the
regions (a) af < a < ap (left) and (b) ap < a < aa (right). AFM and FM bonds
are drawn in red and black, respectively. Spins up and down are colored in green and
blue, respectively. In the left panel, the two dashed orange lines indicate paths of
AFM bonds. In the right panel, the dashed magenta line is an interface in the AFM
order.

(1− f)ap when a fraction f of such AFM bonds convert into FM ones, then this

gives af ' (1 − f)ap. In our d = 2 case, using f = 1/4 and ap = 0.5, it yields

af ' 3/8 = 0.375, which can be compared with the observed value af & 0.4.
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Appendix C

Suppression of Antiferromagnetic

Order for a . aa

The reason why AFM order cannot establish up to fractions of negative bonds

as large as aa ' 0.95 can be easily understood by looking at the schematic GS

situation in Fig. B.1(b) on the right side. In this picture, it is seen that even a

small amount of FM bonds can induce an interface (of the AFM type—marked

by a dashed magenta line) in the system. Indeed, because the FM bonds are

very strong, the removal of such an interface cost an higher energy. Clearly, the

formation of the interface in Fig. B.1(b) becomes energetically unfavorable if the

density of FM bonds (basically the distance between black bonds in Fig. B.1(b))

becomes too small. A rough estimation of the value of a where this occurs is the

following.

The average distance between FM bonds is λf . It means that along an inter-

face, such as the one plotted in Fig. B.1(b), there is a FM bond of strength J+ in

every λf AFM ones (of strength J−). Hence, the interface cannot be sustained if

λf |J−| > J+, namely for

(1− a)−d >
J+

|J−|
, (C.1)

where we have used Eq. (6.6). With our choice of J+ = 2.25 and J− = −0.25, it

predict the interface instability at a = aa = 0.7. This is only a lower bound to

the value of aa, since it is clear that besides having condition (C.1) obeyed, other

conditions must apply. For instance, an AFM bond must be guaranteed next to
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the FM ones. Indeed, we see in Fig. 6.2 that the PM phase extends much beyond

a = 0.7, at least up to aa ∼ 0.95.
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Chapter 7

Ordering Kinetics in the Random

Bond XY Model

7.1 Introduction

In the previous chapters of the thesis, we have studied the systems in which spins

are scalar variables. This chapter, instead, deals with vector spins. Particularly,

we will study phase-ordering kinetics in disordered XY model. Considering the

spins are the n-component vector quantities and d the dimensionality of the

system, the topological defects are of dimension d − n [1]. Thus, their physical

existence requires that n ≤ d. For the case with scaler order-parameter, e.g.,

Ising spins, the topological defects are the domains walls, which are of dimension

d− 1. For n = 2, e.g., XY model, these defects lies on the surface of dimension

d− 2. For d = 2, these are point defects known as vortices and anti-vortices. In

d = 3, these defects become vortex and anti-vortex lines. For n = 3 and d = 3,

the topological defects are monopoles [1].

The XY model has been widely studied in the literature. Experimentally, a

large number of physical systems have been described by the XY model. For

dimensionality d = 2, typical realizations of the XY model includes magnetic

films with planar anisotropy [2], thin-film superfluids or superconductors [3],

Josephson-junction arrays [4, 5], hexatic liquid crystals [6], melting of two-dimensional

solids [7], etc. In d = 3, physical systems such as superfluid 4He and planar spin
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magnets have been described by the XY model. The critical behavior studies

on 3D XY model [8–11] have shown that the λ transition in liquid 4He is in the

same universality class with d = 3 XY model.

The XY model in d = 2 exhibits the well-known Berenziskii-Kosterlitz-

Thouless (BKT) transition at temperature TKT [12–14]. At temperature T < TKT,

the model shows quasi-long-range order (QLRO), where the correlation-function

decays as a power-law with temperature-dependent exponent η(T ). In this state,

the morphology consists of bound states of vortex-antivortex pairs. At tempera-

ture TKT, the vortex-antivortex pairs unbind and the correlation-function decays

exponentially. The presence of quenched disorder has a strong effect on the BKT

phase transition. For instance, various numerical studies [15–20] of the XY model

with dilution (e.g., site-vacancies, bond-vacancies) have shown that TKT decreases

with increasing disorder. It becomes zero at a critical value of dilution, which is

referred to as the percolation threshold. In d = 3, the XY model exhibits true

long-range order (LRO) for T < Tc [21].

In this chapter, we are interested in the non equilibrium ordering kinetics of

the disordered XY model subsequent to a quench from high T . When a pure XY

system is quenched from high-temperature to low-temperature phase (T < TKT)

or T < Tc, the coarsening process is characterized by the annihilation of vortex-

antivortex pairs [22, 23]. The characteristic length scale R(t) typically grows as

t1/2 for non-conserved vector fields in d ≥ 3 [24]. For d = 2, Yurke et al. [25]

predicted a logarithmic correction to the diffusive growth as R(t) ∼ (t/ ln t)1/2,

consistent with the previous works [26–28].

In recent years, there has been intense interest in the subject of domain growth

in disordered systems. However, as we know, domain growth in disordered sys-

tems in not a trivial problem. In general, the domain boundaries become trapped

at late times due to energy barriers introduced by the disorder, thereby slowing

down the asymptotic domain growth-law [24]. Earlier studies on domain-growth

in disordered Ising models (e.g., RFIM and RBIM) show a crossover from power-

law growth to disorder-dominated logarithmic growth [29–36]. For RFIM, the

crossover behavior has been clearly observed [29–35]. For RBIM, Corberi et

al. [36] have performed a comprehensive numerical study in d = 2 and observed

a crossover from power-law growth in an intermediate-time regime to the log-
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arithmic growth in late time regime, but they were not able to determine the

logarithmic growth-exponent.

However, the previous studies [37–39] does not even access the late-time log-

arithmic regime of domain growth. For instance, the RBIM study by Paul, Puri

and Rieger [37] assumes that the energy barriers scale logarithmically with the

domain size and they obtained an algebraic growth of domains with a disorder-

dependent exponent, consistent with the other studies [38, 39]. Indeed, the power-

law or algebraic growth has been found in an early study of a two-dimensional

ferromagnetic system with random coupling [40]. Therefore, a clear understand-

ing of domain-growth still requires more work regarding the existence of power

law in the intermediate time regime.

In this chapter, we undertake the first study of a vector model with quenched

disorder. Though, there have been many studies on phase-ordering kinetics in

the pure XY model including its continuum version, i.e., the time-dependent

Ginzburg-Landau (TDGL) model [1, 25, 26, 41–55], the ordering kinetics in dis-

ordered XY model still remains an open problem. Our aim is to study the

random-bond XY model (RBXYM) where the quenched disorder is in the form

of random coupling.

We perform an extensive, large-scale MC simulation of the RBXYM in d =

2, 3. Our study covers two important aspects. First, we study the effect of

disorder on the transition temperature by using the Wolff cluster updating algo-

rithm [56]. Second, we study ordering kinetics via the Metropolis algorithm [57]

by quenching the system to a temperature below the transition temperature for

all disorder values.

The main observations of our study are as follows:

(a) The critical temperature is found to decrease with increasing disorder.

(b) The correlation function shows dynamical scaling in d = 2 and d = 3.

Also, the scaling function is independent of disorder, and therefore shows a

universal behavior. However, the superuniversality is found to be violated.

(c) In d = 2, the growth law is power-law or algebraic with a disorder-dependent

exponent.
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(d) In d = 3, the growth is slower than the power-law. But, our data is insuffi-

cient to further analyze the type of growth behavior.

This chapter is organized as follows. In Sec. 7.2, we introduce the model and

present details of our numerical simulations. In Sec. 7.3, we present comprehen-

sive numerical results from our simulations of the d = 2, 3 RBXYM. Finally, in

Sec. 7.4, we conclude this chapter with a summary and discussion of the results.

7.2 Modeling and Simulation Details

Recall the Hamiltonian for the RBXYM from Eq. (1.10), i.e.,

H = −
∑
〈ij〉

Jij cos(θi − θj). (7.1)

The quenched random-bond variables {Jij} are drawn uniformly in the interval

[1 − ε/2, 1 + ε/2], where ε quantifies the degree of disorder. The limit ε = 0

corresponds to the pure case (Jij = 1). Here, we focus on the ferromagnetic case

where Jij > 0. Therefore, ε = 2 corresponds to the maximum value of disorder.

7.2.1 Simulation Details for the Study of Critical Tem-

perature

Before, we discuss nonequilibrium studies, it is important to understand the equi-

librium properties of the RBXYM. In this context, let us discuss the simulation

details for determining the critical temperature Tc (or TKT) in the presence of

disorder (ε). For the pure XY model, the critical temperature is TKT ' 0.89 in

d = 2 [58–61] and and Tc = 2.203 in d = 3 [8–10] .

A standard tool to determine the transition temperature Tc(ε) is the fourth-

order Binder cumulant U4(T ,L) [20, 62–65], defined as1

U4(T ,L) = 1− [〈m4〉]
3[〈m2〉2]

. (7.2)

1In our earlier definition in Eq. (2.4), we have denoted the Binder-cumulant as U4(∆,L)
because there the critical point to be determined was the critical disorder ∆c. Presently, the
critical point is Tc.
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Here, m is the magnetization, 〈· · · 〉 and [· · · ] denote the thermal and disorder

averaging, respectively. The Binder cumulants U4(T ,L) are plotted against tem-

perature T for different lattice sizes L. Then, in the scaling region near Tc, the

Binder cumulant curves for different L have a unique intersection point [63], which

is identified as Tc.

The magnetization m for the XY model is defined as

m =
1

N

√√√√( N∑
i=1

cos θi

)2

+

(
N∑
i=1

sin θi

)2

, (7.3)

where N is the total number of sites, i.e., N = Ld. The magnetization m is

measured when the system has reached thermal equilibrium. To equilibrate the

system at temperature T , we use the canonical sampling MC method with the

Wolff cluster algorithm [56].

Wollf cluster algorithm

A single MC update in the Wolff cluster algorithm can be described as follows:

(i) Choose a random reflection r = (cosφ, sinφ) and a random spin Si =

(cos θi, sin θi) as the starting point for a cluster C to be built.

(ii) Flip Si → R(r)Si = Si − 2(Si · r)r, i.e., θi → θ′i = π − θi + 2φ.

(iii) Visit all neighboring spins Sj of Si, and add them to the cluster C with the

probability [56]

P (Si,Sj) = 1− exp(min[0, 2βJij(r · Si)(r · Sj)]), (7.4)

where β = (kBT )−1. In terms of the angle variables, the corresponding

expression for the probability is

P (θi, θj) = 1− exp(min[0, 2βJij cos(θi − φ) cos(θj − φ)]). (7.5)

Then, flip Sj, i.e., θj.
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(iv) Keep visiting all NNs of newly-added spins, add them to the cluster C with

probability P and flip them. Continue this process until no spin is left to

add to C.

7.2.2 Simulation Details for Study of Ordering Kinetics

Next, we study the ordering kinetics in the RBXYM by assigning a random

initial orientation to each spin θi ∈ (−π, π), and rapidly quenching the system

to T < Tc (or TKT) at time t = 0. The random initial condition mimics the

high-temperature disordered state. We let the system evolve upto 106 MCS with

the help of the Metropolis algorithm [57].

Metropolis algorithm

For the XY system, the Metropolis algorithm can be described as follows:

(i) Select a random spin θi and give it a small rotation δ ∈ (−0.1, 0.1), i.e.,

θi → θ′i = θi + δ.

(ii) The new spin θ′i is accepted with the probability

P = min [1, exp (−β∆H)] . (7.6)

Here, ∆H is the change in energy resulting from the spin change θi → θ′i

given by

∆H =
∑
j∈Ni

Jij {cos(θi − θj)− cos(θ′i − θj)} . (7.7)

Here, Ni refers to the NNs of site i.

156



7.2. Modeling and Simulation Details

Characterization of phase ordering

As we know, a useful quantity to characterize phase ordering kinetics is the cor-

relation function, defined as

C(r, t) =
1

N

N∑
i=1

[
〈Si(t) · Si+r(t)〉 − 〈Si(t)〉 · 〈Si+r(t)〉

]
, (7.8)

=
1

N

N∑
i=1

〈cos
{
θi(t)− θi+r(t)

}
〉, (7.9)

where 〈· · · 〉 indicates the averaging over different realizations of bond randomness.

Also we know from Sec. 1.5.1, the correlation function possess a dynamical scaling

form: C(r, t) = f(r/R), when the system is isotropic and characterized by a

single length scale R(t). The corresponding dynamical scaling form for structure

factor is S(k, t) = R(t)dg(kR(t)). Bray and Puri [24], and Toyoki [66] have

independently proposed that for a n-component vector field without disorder,

the scaling function g(x) has the large-x behavior: g(x) ∼ x−(d+n) for x → ∞.

This is usually referred to as the generalized Porod tail.

The characteristic length scale R(t), we define, as the distance at which the

correlation function decays to (say) 0.2 of its maximum value, i.e., C(R, t) = 0.2.

In the XY model, typical length-scale can also be determined from the density of

topological defects [42, 43], ρdef(t) = 1/Lv(t)
2, where Lv is the vortex-length or

a measure of typical length-scale. However in the scaling regime, this definition

will differ from the former one only by a prefactor and asymptotically both yield

the same growth-law. We use the R(t) determined from the decay of correlation-

function C(r, t) as this definition gives the much better scaling of C(r, t) [42, 43].

Before we present the numerical results of our simulations, let us review the

physical arguments for the growth law in the pure XY model.

7.2.3 Growth Law for Pure XY Model

In d = 2

Consider a single vortex-antivortex (defect) pair separated by a distance r with

a as the dimension of the vortex-core. For a n-component vector model in d
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dimensions, the topological defects are lying on a surface of dimension d− n and

therefore, the volume of the defect-core scales as rd−n [1, 67]. For the XY model

(as n = 2), in d = 2 the core-volume is a dimensionless constant. The defect

pair energy Ep(r) ∼ ln(r/a) [1, 67, 68] and hence, the driving force per unit core-

volume, which is responsible for the annihilation of the vortex-antivortex pair,

is

F (r) = −dEp
dr
∼ −1

r
. (7.10)

The annihilation time of the defect pair is governed by the vortex mobility µ,

which depends logarithmically on the pair separation, i.e., µ ∼ [ln(r/a)]−1 [1, 67,

68]. As the mobility is related to the velocity via v = µF , we have

dr

dt
∼ − 1

r ln(r/a)
. (7.11)

For a pair separated by a large distance r0 � a, integrating this equation gives

the annihilation time t ∼ r2
0 ln(r0/a). This can be inverted to obtain

r0 ∼
[

t

ln(t/a2)

]1/2

. (7.12)

If one considers a characteristic length scale as R(t) in many vortex system,

Eq. (7.12) yields the growth law R(t) ∼ (t/ ln t)1/2 for pure XY model in d = 2.

In d = 3

The topological defects are of dimension 1, i.e., strings. Thus, the defect pair

energy Ep(r) ∼ r ln(r/a), where we have included a factor of r for the defect-core

volume. Then, the vortex force per unit defect-core volume typically scales as

− ln(r/a)/r. The relation v = µF gives

dr

dt
∼ −1

r
, (7.13)

so that r(t) ∼ t1/2. Again, if one considers a characteristic length scale as R(t)

in many vortex system, it yields the growth law R(t) ∼ t1/2.
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7.3 Numerical Results

Now, we will present numerical results from our simulations of the d = 2, 3

RBXYM. We consider the disorder values ε = 0, 0.5, 1.0, 1.5 and 2.0—ε = 0 is

the pure case, and ε = 2 corresponds to the case with maximum disorder. First,

we determine the transition temperature Tc(ε) (or TKT). Then, we study ordering

kinetics by quenching the system below Tc(ε).

7.3.1 Numerical Results for d = 2 RBXYM

7.3.1.1 Estimation of transition temperatures

Let us first consider the d = 2 RBXYM. We study this system on a square lattice

(L2) of linear sizes L = 96, 128, and 256. Starting from a random initial config-

uration, we let the system equilibrate using the Wolff cluster update algorithm.

After equilibration, we measure m2 and m4 upto 6×105 MCS, and do the disorder

averaging over 200 independent runs of random-bond configurations. Then, one

can determine the Binder cumulant U4(T ,L) from Eq. (7.2).

Figure 7.1 is a plot of U4 vs. T for ε = 1.0. (We have zoomed in of the

plot in the vicinity of TKT.) The transitions temperature (TKT) is estimated from

the intersection of Binder cumulant curves for different L. The TKT-values for

various ε are plotted in the inset of Fig. 7.1, and tabulated in Table 7.1. For the

pure case (ε = 0), we found TKT = 0.902 ± 0.002, which is consistent with the

expected value TKT ' 0.893 in the literature [13, 14, 58, 59]. With increasing ε,

TKT decreases from TKT ' 0.902 to TKT(ε = 2) = 0.729± 0.007.

7.3.1.2 Ordering kinetics

Next, we present numerical results for coarsening and domain growth-law in the

d = 2 RBXYM. The simulations are performed on a square lattice of size 10242

with periodic boundary conditions applied on both sides. After assigning a ran-

dom initial orientation to each spin mimicking the high-temperature phase, the

system is quenched at temperature T = 0.5 and evolved upto t = 106 MCS with

the help of the Metropolis algorithm. Clearly, the quench temperature T = 0.5 is
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Figure 7.1: Plot of fourth-order Binder cumulant (U4) vs. temperature (T ) for d = 2
RBXYM for ε = 1.0 and lattice-size L = 96,128,256. The critical temperature TKT

is determined from the intersection of different L curves. The inset shows the plot of
TKT with disorder ε.

below the critical temperature TKT for all ε. All statistical results presented here

are averaged over 20 independent runs (sometimes more) of {Jij}-configurations.

In Fig. 7.2, we show the typical evolution snapshots for a temperature quench1

at T = 0.2. The snapshots correspond to t = 106 MCS and disorder amplitudes

ε = 0,1,2. We show the colormap plots of morphologies, where different shades

in the colorbar correspond to the spins θi’s. These colormap plots clearly show

an increase in defect density with disorder, corresponding to slowing down of

domain growth. In Fig. 7.3, we show vector plots in which we draw a unit vector

1Notice that, here, we show the evolution morphologies for a low temperature quench at
T = 0.2, to realize better visualization of the morphological structures and the topological
defects.
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Figure 7.2: Evolution snapshots of RBXYM at time t = 106 MCS after a quench
from T = ∞ to T = 0.2 for ε = 0,1,2. The lattice size is 5122 lattice. These are
the colormap plot of the spin configuration {θi}, where the different shades in the
colorbar correspond to the spins θi ∈ (0, 360◦).

Figure 7.3: Vector plots for {θi}-configurations in Fig. 7.2. At each lattice site, we
draw a vector corresponding to S i = (cos θi , sin θi ). For a better view, we show only a
642 corner of the 10242 lattice. Red-circles denote vortices and green-triangles denote
antivortices, respectively.

for each spin Si = (cos θi, sin θi). For a better visualization of vectors, we have

shown only a 642 portion of 5122 lattice in Fig. 7.2. Vortices and anti-vortices are

marked by red circles and green triangles, respectively. These are characterized

by calculating the net change in spin direction on a square plaquette. A vortex

is identified if a spin rotates through 2π, and an anti-vortex is identified if a spin

rotates through −2π.

In Figs. 7.4(a) and (b), we plot the scaled forms of (a) the correlation function,

C(r, t) vs. r/R; and (b) the structure factor, S(k, t)R−3 vs. kR, respectively. We

have confirmed (not shown here) that the data sets for a fixed value of ε and

different times show a good data collapse. Thus, dynamical scaling holds for each
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Figure 7.4: (a) Scaled correlation functions, C (r , t) vs r/R(t), for the evolution of
RBXYM after a quench at T = 0.5. We plot the data at a fix t = 106 MCS for
ε = 0,1,2. (b) The corresponding scaled structure factors, S(k , t)R(t)−2 vs kR .
The solid curves in (a) and (b) is the Bray-Puri-Toyoki (BPT) function in Eq. 7.14
for n = 2 and its Fourier transform, respectively. A line of slope −4 denotes the
generalized Porod law: S(k , t) ∼ k−(d+n) for d = n = 2.

value of ε. In Fig. 7.4, we check for the robustness of this scaling function by

plotting scaled data at t = 106 MCS for ε = 0, 1, 2. The solid curve in Fig. 7.4(a)

is a plot of the Bray-Puri-Toyoki (BPT) function [24, 66] for n = 2, which is an

analytical result for ordering dynamics of the O(n) model, i.e.,

fBPT (r/R) =
nγ

2π

[
B

(
n+ 1

2
,
1

2

)]2

F

(
1

2
,
1

2
;
n+ 2

2
; γ2

)
, (7.14)

where γ = exp(−r2/R2). In Eq. (7.14), B(x, y) ≡ Γ(x)Γ(y)/Γ(x + y) is the

beta function, and F (a, b; c; z) is the hypergeometric function. In Fig. 7.4(b), the

solid curve is the Fourier transform of the BPT function, and the line of slope

−4 denotes the generalized Porod law: S(k, t) ∼ k−(d+n) for d = 2,n = 2. The

data collapse confirms that the scaling function is independent of the disorder

amplitudes. Therefore, this shows the universality of the scaling function, which

is also found in earlier studies on the RBIM [37] and other system with quenched

disorder such as binary alloys [69] or spinodal decomposition [70].

In order to check the validity of superuniversality (SU), we calculate two-time
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Figure 7.5: Plot of the auto-correlation function A(t, tw ) vs. R(t)/R(tw ) for (a)
ε = 0, (b) ε = 1.0, and (c) ε = 2. We plot data for the specified value of waiting
time tw = 5 × 103,104,105. Clearly, the data for ε = 2 is not collapsing, showing a
violation of superuniversality.

autocorrelation function C(t, tw) defined as

A(t, tw, ε) = 〈Si(t, ε) · Si(tw, ε)〉
= 〈cos(θi(t, ε)− θi(tw, ε))〉, (7.15)

where tw ≤ t is the waiting time and and 〈...〉 denotes ensemble averaging. Ac-

cording to the SU hypothesis [71], A(t, tw, ε) should obey

A(t, tw, ε) = G

[
R(t, ε)

R(tw, ε)

]
, (7.16)

where G is a scaling function. Fig. 7.5 shows the plot of autocorrelation function,

A(t, tw) vs R(t)/R(tw), for ε = 0,1,2, for different values of waiting times tw =

5 × 103, 104,105 MCS. Clearly, the data for ε = 2 in Fig. 7.5(c) shows the effect

of disorder, which depicts that two-time autocorrelation function has an explicit

disorder dependence. Hence, the system doesn’t obey SU in agreement with the

SU violation behavior observed in the RBIM [36] and the RFIM [35].

The most important characteristic of a domain growth process is the growth

law of the characteristic length scale R(t). We define it as the distance at which

the correlation function C(r, t) falls to 0.2 of its maximum value. Fig. 7.6(a)

shows the plot of R(t) vs. t/ ln t on a log-log scale for different ε-values. This

163



7.3. Numerical Results

10
3

10
4

10
5

t/ln t

8

16

32

64

R
(t

)

ε= 0

ε= 1.0

ε= 1.5

ε= 2.0

0 10 20 30 40 50 60 70
R

1.5

2

2.5

z
e
ff

ε= 0 

ε= 0.5

ε= 1.0

ε= 1.5

ε= 2.0

(b)(a)
(t/ln t)

1/2

Figure 7.6: (a) Plot for domain growth R(t) vs. t/ ln t on a log-log scale for the
specified values of ε. The dashed line is of slope 0.5, which indicates the growth
law for pure case R(t) ∼ (t/ ln t)1/2. (b) Plot of the effective exponents, zeff =
[d(ln R)/d(ln[t/ ln t])]−1 vs. R(t) for various ε = 0,0.5,1.0,1.5,2.0. The dashed-lines
to each curves indicates the disorder-dependent growth-exponent z(ε).

plot is motivated by the logarithmic correction in the domain growth-law for

the pure case. The dashed line denotes the power-law growth for the pure-case:

R(t) ∼ (t/ ln t)1/2 [26, 42, 67]. One can observe a slower growth at large time in

the presence of disorder. The data sets in Fig. 7.6(a) suggest a power-law (over

three decades of t) with a disorder dependent exponent:

R(t) ∼
(

t

ln t

)ϑ(ε)

'
(

t

ln t

)1/z(ε)

. (7.17)

[Before proceeding, we should stress that the log-log plot of R(t) vs. t in the same

time-window is also consistent with a power-law behavior. The only difference

from Fig. 7.6(a) is that the effective exponent ϑ(ε) is reduced by the logarithmic

correction. We need at least five decades of data to differentiate the growth law

between tϑ and (t/ ln t)ϑ.]

For a qualitative study of the growth law, we determine the effective growth-
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Figure 7.7: Plot of the disorder-dependent growth-exponent z(ε) vs ε. The solid line
is the best fit: z = 2.03 + 0.13ε1.16.

exponent, defined as
1

zeff

=
d [lnR(t)]

d
[
ln
(
t

ln t

)] . (7.18)

In Fig. 7.6(b), we plot zeff vs R(t) for the data in Fig. 7.6(a). This plot

clearly shows an extended flat regime upto the time-scale (106 MCS) of our sim-

ulation. This shows the algebraic-growth with disorder-dependent exponent, i.e.,

R(t) ∼ (t/ ln t)1/z(ε), which is in agreement with earlier studies on disordered Ising

models [37–39]. The straight horizontal dashed-lines correspond to the disorder-

dependent growth exponent z(ε), which we tabulate in Table 7.1 and plot in

Fig. 7.7. The solid line in Fig. 7.7 denotes the best fit: z = 2.03 + 0.13ε1.16.

7.3.2 Numerical Results for d = 3 RBXYM

Now, we briefly present results for the d = 3 RBXYM. As in the d = 2 case,

first we determine the transition temperature Tc(ε). Then, we study the phase

ordering kinetics after quenching the system below Tc(ε).
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ε TKT z
0.0 0.902 ± 0.002 2.04 ± 0.01
0.5 0.893 ± 0.003 2.09 ± 0.01
1.0 0.865 ± 0.003 2.16 ± 0.02
1.5 0.806 ± 0.008 2.29 ± 0.04
2.0 0.729 ± 0.007 2.43 ± 0.03

Table 7.1: Critical temperature TKT and growth-exponent z for d = 2 RBXYM.

ε Tc
0.0 2.202 ± 0.001
0.5 2.198 ± 0.004
1.0 2.181 ± 0.001
1.5 2.151 ± 0.005
2.0 2.114 ± 0.006

Table 7.2: Transition temperature Tc for d = 3 RBXYM.

7.3.2.1 Estimation of transition temperatures

To determine Tc(ε), we perform simulations on a simple cubic lattice of linear sizes

L = 16, 24 and 32. After equilibration, data for m2 and m4 are thermally averaged

over 106 MCS, and then averaged over 100 ensembles of {Jij}-configurations.

Fig. 7.8 shows the plot of U4 vs. T for ε = 1.0. As before, Tc is determined

from the intersection of Binder-cumulant curves for different L. The Tc-values

for various ε are given in Table 7.2, and plotted in the inset of Fig. 7.8. For the

pure case (ε = 0), we obtain Tc ' 2.202, which agrees with the values reported

in the literature [8, 9, 11]. With increasing ε, Tc decreases to Tc(ε = 2) ' 2.114.

For d = 3, Tc does not change significantly with ε, in contrast to the d = 2 case.

7.3.2.2 Ordering kinetics

Next, let us briefly discuss numerical results for domain growth in the d = 3

RBXYM. The simulations are performed on cubic lattices of size 1283. The

system is quenched at temperature T = 1.0 < Tc(ε) [in the unit of J/kB] and

evolved upto t = 106 MCS. The statistical data presented here is averaged over
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Figure 7.8: Plot of U4 vs T for d = 3 RBXYM on a cubic lattices of L = 16,24,32.
We show data for ε = 1. In inset, we plot Tc vs ε. For each ε, Tc is estimated from
the intersection for different L curves.

10 independent realizations of disorder configurations.

Fig. 7.9(a) shows the typical evolution of the d = 3 RBXYM system via

topological defects for a temperature quench at T = 0.5. Here, the topological

defects are of dimension 1, which are ‘strings’ or ‘vortex lines’ [24]. Fig. 7.9 shows

the defect configuration of vortex-antivortex strings at t = 106 for ε = 0, 1, 2. The

defect density reduces as the system evolves. In Fig. 7.9, we see that the defect

density is higher for larger ε., i.e., the growth is slower for larger values of ε.

Fig. 7.10 shows the scaled correlation function, C(r, t) vs r/R(t); and the

scaled structure factor, S(k, t)R(t)−3 vs. kR, for the evolution of the d = 3

RBXYM after a quench at temperature T = 1.0. The data is shown for t = 105

MCS and for ε = 0,1,2. The solid lines in Fig. 7.10(a) and (b) denote the BPT

function for n = 2, and the corresponding Fourier transform in d = 3, respectively.

In Fig. 7.10(b), a dashed line of slope −5 denotes the generalized Porod law:

S(k, t) ∼ k−(d+n) for d = 3 and n = 2. The data collapse is excellent, confirming
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Figure 7.9: Typical defect-configurations of d = 3 RBXYM for a temperature quench
at T = 0.5. The lattice size is 1283 and the configurations are shown at time t =
106 and ε = 0,1,2. These are the defect-configurations where we have shown only
the topological defects of vortex and antivortex strings. Red-circles are marked for
the vortices and green-triangles are the antivortices.
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3D RBXYM after a quench at T = 1.0. We plot the data at a fix t = 105 MCS for
ε = 0,1,2. (b) The corresponding scaled structure factor, S(k , t)R(t)−3 vs kR . The
solid curves in (a) and (b) is the Bray-Puri-Toyoki (BPT) function [Eq. (7.14)] for
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Figure 7.11: (a) Plot of R(t) vs t (on a log-log scale) for 3D random-bond X Y model.
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of zeff vs R for the data in (a). Notice the slowing-down of growth at late times for
higher ε.

the universal behavior of the scaling function in d = 3, similar to the d = 2 case.

Next in Fig. 7.11(a), we show the plot of typical length scale R(t) for ε = 0,1,2.

The solid line denotes the asymptotic growth law for the pure case: R(t) ∼ t1/2,

which is found in many non-conserved systems [26]. To analyze the type of the

growth behavior, here we define the effective exponent as

1

zeff

=
d [lnR(t)]

d [ln t]
. (7.19)

The corresponding plot for effective exponents, zeff vsR, is shown in Fig.7.11(b).

For the pure case, asymptotic growth-exponent zeff is ' 2.05, which agrees with

the expected value. Here, one can notice the deviation of zeff from the pure case

to the disordered case at late times, which predict the slowing-down of growth

at late times. However, this deviation is very small which also observed at very

late time t > 105 MCS. Therefore, the data is not sufficient to further analyze

the type of the growth behavior, and we leave this issue open.
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7.4 Summary and Discussion

Let us now conclude this chapter with a summary and a brief discussion of our

results. We have undertaken a comprehensive numerical study of the random-

bond XY model in d = 2 and d = 3. First, we have determined the transition

temperatures using the Binder-cumulant method. The system is equilibrated

and the measurements for Binder-cumulant are performed using the Wolff single

cluster updating algorithm. We observe a systematic decrease in the transition

temperatures as the disorder amplitude ε increases, which however doesn’t alter

the nature of transition—the QLRO in d = 2 and LRO in d = 3. Then, we have

studied the phase-ordering kinetics by the quenching the system below TKT or

Tc and evolving it upto 106 MCS with the help of the Metropolis algorithm. A

summary of our results is as follow:

(a) The quantitative change in the TKT (or Tc) with ε in d = 2 is more striking

than in d = 3. In d = 2, TKT decreases from TKT(ε = 0) ' 0.902 to TKT(ε =

2) ' 0.729. Whereas in d = 3, the Tc decreases from Tc(ε = 0) ' 2.202 to

Tc(ε = 2) ' 2.114.

(b) For ordering kinetics, the correlation function exhibits a dynamical scal-

ing in d = 2, 3, and the scaling function shows the universal behavior (ε-

independent). However, the SU is found to be violated.

(c) In d = 2, the domain growth-law shows the power-law behavior with the

disorder-dependent growth-exponent, R(t) ∼ (t/ ln t)1/z(ε), in agreement

with the RBIM study [37, 38].

(d) In d = 3, the growth for disordered case is slower than the power-law of

pure case at late times. But, our data is inadequate to further analyze the

type of the growth-behavior.

Though we did a large-scale numerical study, we do not observe any logarithmic-

growth upto the time-scale (106 MCS) in our simulations. However, we don’t

exclude this possibility (atleast for high-ε), if we further extend our simulation

to a very long-time and probe the growth of the system in the late-time regime,

but this will require a huge numerical effort.
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In conclusion, our result is the detailed analysis of the coarsening behavior in

the random-bond XY model (in d = 2, 3) and provides a general framework for

understanding the domain-growth in the random-bond systems.
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