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Chapter-1           Introduction and Literature review 

[1] INTRODUCTION 

[1.1] General Overview 

In the recent era, rapid urbanization occurred due to industrial and service based economic 

developments along with a corresponding increase in population. Urbanization is a process in 

which massive alterations take place in natural environment (atmosphere, lithosphere, and 

hydrosphere) at local and regional scale. During urbanization, the most remarkable 

transformation has occurred in natural land-use and land covers (LULC) such as vegetation cover 

land, agricultural land and natural habitat to impervious surfaces according to the human needs 

(Dewan and Yamaguchi, 2009; Balcik, 2013; Ward et al., 2016). These LULC changes have 

enormous influences on the net productivity, biodiversity and meteorological parameters 

(temperature, humidity, etc.) at the local, regional and global level (Liu et al., 2006; Han and Xu 

2013; Zhang et al., 2013; Wang et al., 2016).  

Less than 3% of total earth’s land surface is covered by cities which are home to more 

than half (54%) of the global human population (Liu et al., 2014; United Nation. 2014). They 

produce 78% of the total anthropogenic carbon emissions and an enormous amount of airborne 

toxin and pollutants (O’Meara et al., 1999).  These emissions significantly influence the global 

climate (Grimm et al., 2008) and also adversely affect air quality at local and regional scales. The 

production and emissions of air pollutants such as ozone, fine particulate matter, NOx, carbon 

monoxide and oxides of sulfur affect human health and wellbeing of biotic community. The 

exposure of outdoor air pollution was responsible for more than two-and-a-half million deaths 

each year (470,000 people died as a result of ozone, and 2.1 million deaths were linked to fine 

particulate matter) (Silva et al., 2013). The anthropogenic emissions of CO2 and other greenhouse 

gases (GHG) are a major contributor to climate change resulting rise in the rise in global and 

regional temperatures and sea level (Dasgupta et al., 2007). An increase in atmospheric 
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temperature might also exacerbate the effects of air pollution, a modest 1ºC rise in global average 

temperature could result in 21,600 air pollution-related deaths worldwide (Jacobson et al., 2008). 

Urban Pollution Island (UPI) and Urban Heat Island (UHI) are recent phenomena created 

by the human activities interfering with the natural environment. Superstructures and high-rise 

buildings are parts of a new urban landscape, where their morphology influences the air 

temperature distribution that induces upwards and downwards thermal convection flow. The 

convection flow in turn affects the air pollution dispersion in an urban location (Bereitschaft et 

al., 2013). Location specific concentration of different pollutants in air interferes with the 

radiation budget on the land surface which governs the land surface temperature. In the recent 

past several studies inside various cities have been carried out to measure pollutant concentration 

and its exposure on human population using data from spatially dense monitoring network and 

land use regression models.(Jerrett et al., 2005; Beelen et al., 2013; Zhan et al., 2013). 

[1.2] LULC studies 

Urban growth or expansion particularly the expansion of residential and commercial land use to 

adjacent agricultural, forest and other naturally pristine land has been considered a symbol of 

economic prosperity. But, it has a darker side, in term of the impact on the local environment 

such as deterioration of air and water quality, loss of agricultural, forest and coastal land, and 

creates socioeconomic disparity or social fragmentation (Squires et al., 2002). A goal of LULC 

studies is to understand the spatio-temporal patterns of land surface characteristics and the 

processes governing them (Lambin et al., 2003; Turner et al., 2007). Satellite based data is 

affordable and most suitable for analyzing changes in LULC in certain time duration. Various 

methods are employed for the studies LULC changes in an urban environment using satellite 

images (Yuan et al., 1998). LULC change detection is perceived through classification of satellite 

images with a different classifier use in GIS software with change detection model. Different 

approaches of classification and categorization techniques (algorithms) are used for satellite 

obtained data in LULC studies. There is no single most suitable or ideal classification technique 
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developed, so for which can be applied as a universal mode of classification of LULC. Recently, 

an attempt has been towards developing a classification system in which provides a certain 

guideline for the evaluation and a framework to satisfy the majority of the user (Anderson et al., 

1976). Figure 1.1 explains the difficulty level at different stages for analyzing or processing 

satellite data or classification technique in LULC studies.  

  

(Source: P. C. Smits et al., 1999). 

Figure 1.1 The accumulation of error in remote-sensing data processing method. 

For LULC studies by remote sensing technique through GIS platform are needs 

awareness about accuracy and quality of classification algorithms. Generally, classification 

algorithms have been lacking two types of accuracy-awareness. First, the inefficiency may arise 

from choosing the ROI or it may be suited for certain task which creates an unnecessary omission 

and commission error. Second, no one algorithm is suited for all types of remote sensing image 

data set e.g. for example Maximum Likelihood Classifier (MLC) is suitable for Landsat dataset, 

but it may not perform with SAR (Synthetic Aperture Radar) data set (Smits et al., 1999). Table 

1.1 describes the common classifier algorithms embedded in GIS software with advantages and 

disadvantages of their applications. 

Mapping of LULC change at global and regional scale based on single algorithm, with 

medium-resolution satellite data set (Landsat data 30-meter spatial resolution), only provides 

limited information (particularly in forest dynamics) (Tropek et al., 2014). Landsat data has been 

useful for analyzing and quantifying effectively the information about LULC changes due to 
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human interference in the natural environment in the urban area (Kennedy et al., 2014; Wulder et 

al., 2015). 

Table 1.1 Different classifications of algorithms 

Classifier 
Advantage Disadvantage 

Parellelipiped Fast and simple; 

distribution free 

Due to corners, pixels may be classified from 

spectral mean 

Minimum 

Distance 

No unclassed pixels; fast Does not consider class covariance 

Mahalanobis Take the class covariance 

into account 

Over classification of signatures with large value 

in covariance matrix; parametric; assumes normal 

distribution 

ML/Bayesian Relatively accurate; 

variability of classes taking 

into account 

Computationally expensive; assumes normal 

distribution; over classification of signatures with 

large value in cov. matrix  

Neural network Distribution free; fast after 

training 

Slow training; no theoretical basis; stochastic 

convergence 

(Source: P. C. Smits et al., 1999) 

[1.3] Urban heat island (UHI) studies 

LULC change and Urban Heat Island (UHI) have a significant impact on energy consumption 

and outdoor air quality in the urban area. In recent years, various approaches such as 

observational and simulation techniques have been applied in studies of UHI formation and 

finding the mitigation strategy. 

[1.3.1] Simulation approaches- Advancement of computational technique in past two decades, 

has allowed the researchers to use mathematical models for large-scale problems. Among these 

models, such as energy balance and dynamical numerical approaches are form to be suitable for 

UHI studies (Parham et al., 2010). 
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[1.3.2] Observational approaches- This includes empirical studies of different geographical and 

meteorological parameters with UHI intensity e.g. - wind speed, cloud-cover, city size, 

population and day and night variation of temperature (Steinecke et al., 1999; Ripley et al., 

1996). In observational approach thermal remote sensing based studies are most efficient and 

more accurate in comparisons to other approaches.  

Thermal remote sensing has become an efficient tool for UHI studies. In thermal studies, 

surface temperature is retrieved from surface reflectivity and thermodynamic properties (such as 

surface moisture, surface emissivity, surface albedo, the irradiative input at the surface) (Becker 

et al., 1995). However, the surface temperature in UHI is different from the atmospheric UHI or 

ambient air temperature (Tair). It differs significantly from few degrees in night to 8-10 ºC in a 

day time (Sobrino et al., 2012). So developing a suitable algorithm employing LST for direct air 

temperature estimation is a major challenge in remote sensing studies of UHI.  

Solar zenith angle model has been used for estimation of air temperature from LST 

retrieved from satellite data.  Cresswell et al., (1999) established a statistical relationship between 

LST and Tair. Whereas, Sun et al., (2005) estimated instantaneous air temperature from land 

surface temperature derived from remote sensing data based on thermodynamic consideration. 

Most of the model and algorithms need vast knowledge of meteorological and environmental 

parameters to estimate Tair from LST. Many algorithms for Tair estimation use a regression model 

of the image derived LST against a series of air and surface temperature points collected in the 

field at the time of imaging for which an R
2
 of 0.74 and 0.82 were obtained for day and night 

time images respectively (Nicole et al., 2013). 

[1.4] LULC change influence on LST 

Many environmental and meteorological parameters are closely related to temporal changes of 

LULC.  Land surface temperature (LST) is one of them. In past 10- 15 years, too many studies 

have been done on the relation between the temporal change of LULC with LST (Chen et al., 
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2006; Hamdi et al., 2010; Haiyong et al., 2013; Zhang et al., 2013). Some important studies 

showed the relationship between intra-city LST with an urban area parameters such as LULC, 

vegetation abundance (NDVI) and soil moisture content (Weng et al., 2004) fraction of 

impervious surface (Yuan et al., 2007), built-up area, bare Land, water, and semi-bare land (Chen 

et al., 2006). Jusuf et al.,(2007) studied day night variation of LST with LULC. 

LST calculated from Landsat thermal infrared data is serves a valuable input for many 

climatic and ecological applications such as climate change, hydrological cycle modeling, and 

urban health, etc. (Han and Xu, 2013; Maimaitiyiming et al., 2014; Weng, 2009). Calculating 

LST from the thermal band of Landsat is very complicated, and it depends on regional 

meteorological conditions. At sensor, received radiance is a combination of earth surface and 

atmospheric emitted radiance. For accurate measurement of LST, emitted radiance by earth 

surface need to be isolated from atmospheric emitted radiance and corrected for land surface 

emissivity. In recent years three most appropriate LST retrieval algorithms have been used, 

namely radiative transfer equation (RTE), the mono-window algorithm (MWA) and generalized 

single channel algorithm (GSC). Each method required emissivity value as well as with different 

atmospheric parameters. For example, as RTE needed atmospheric transmittance, 

upwelling/downwelling radiance whereas MWA and GSC required transmittance with mean 

atmospheric temperature and precipitable water vapor (PWV) respectively (Windahl and Beurs, 

2016).  Reported accuracy of these methods depends on the present atmospheric parameters. If 

PWV present in atmosphere varied 0.5 to 2 g/cm
2
, the error lied in LST range between 1 and 2 

Kelvin in GSC method (Jimenez Munoz et al., 2009).  In RTE and MWA, the expected error 2 

and 1-1.5 Kelvin respectively, if the atmospheric transmittance is above 0.8 (Qin et al. 2001; 

Barsi et al., 2005). 

Land surface emissivity (LSE) is an important parameter for LST retrieval from thermal 

remote sensing and its relation with LULC (Voogt and Oke 2003). Accuracy in LSE estimation 

has an effect on LST value. A 1% inaccuracy in LSE causes up to 0.78 kelvins error in LST (Van 

de Griend and Owe, 1993). LSE is an intrinsic property of the surface; it depends on chemical 
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and physical characteristics of land surface such as water content, chemical composition, 

roughness, etc. (Snyder et al., 1998).  Quantification of LSE is made by the ratio of emittance 

between the land surface and a blackbody at the same temperature. Exact estimation of LSE is 

often complicated for natural land surface because the natural surface does not emit radiant 

energy like a black body at any temperature. Table 2.2 shows depicted a values of emissivity for 

different land surface materials(Lillesand et al., 2004). 

Table 1.2 Emissivity value of some common material used as land surface. 

Material Typical average 

emissivity (0ver 8-14 µm) 

Wet snow 0.98-0.99 

Healthy green vegetation 0.96-0.99 

Wet soil 0.95-0.98 

Brick 0.93-0.94 

Wood 0.93-0.94 

Dry vegetation 0.88-0.94 

Dry snow 0.85-0.90 

Glass 0.77-0.81 

Aluminum foil 0.03-0.07 

Sources: lillesand et al. 2004. 

For estimation of LSE, generally, three distinctive method, namely semi-empirical 

method (SEM), physical based method and multi-channel temperature/emissivity separation 

(TES) method are applied with varying degree of difficulty level (Dash et al., 2002; Li et al., 

2013b). NDVI based emissivity method (NBEM). NBEM is one of the most suitable techniques 

used for the estimation of LSE for heterogeneous land surface or landscapes (Dash et al., 2005; 

Li et al., 2013b).The NBEM technique is widely applied to estimate LSE for data of various 

sensors from visible, NIR and thermal infrared band (TIR) (Sobrino et al., 2008; Momeni and 

Saradjian, 2007). Some studies tried to establish empirical relationship between NDVI and 
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surface emissivity for mix pixel (combination of surface type) in satellite data set (Valor and 

Caselles, 1996; Van de Griend and owe, 1993). Van de Griend and Owe, (1993) reported a high 

correlation (R
2
=0.94) between emissivity and NDVI for advance very high resolution radiometer 

(AVHRR) data in savannah environment of Botswana. It is expressed by the following equation- 

                                    𝜀 = 𝑎 + 𝑏𝑙𝑛(𝑁𝐷𝑉𝐼)                                                       (1.1) 

                    where 𝑎 = 10094 𝑎𝑛𝑑 𝑏 = 0.047 derived by regression analysis. 

An operational model proposed by Sobrino et al., 2008 to establish a relationship between 

emissivity and NDVI for Landsat data. They considered the NDVI value less than 0.2 for bare 

soil and obtained emissivity by reflectance value in red (R) band in dataset. 

𝜀 = 𝑎 + 𝑏. 𝜌𝑟𝑒𝑑                                                                        (1.2) 

Where 𝑎 𝑎𝑛𝑑 𝑏 are coefficients obtained from laboratory measurements for soil, 𝜌𝑟𝑒𝑑 is 

reflectance of red region of spectral band. 

If NDVI values lie between 0.2 and 0.5, the pixels are considered as to mixture of 

vegetation and bare soil. The emissivity is calculated as follow- 

    𝜀 = 𝑚. 𝑃𝑉 + 𝑛                                                                   (1.3) 

                                          𝑚 = 𝜀𝑣 − 𝜀𝑠 − (1 − 𝜀𝑣)𝐹𝜀𝑣                                                  (1.4) 

                                              𝑛 = 𝜀𝑠 + (1 − 𝜀𝑠)𝐹𝜀𝑣                                                            (1.5)     

Where 𝜀𝑣 𝑎𝑛𝑑 𝜀𝑠are vegetation and soil emissivities respectively, 𝐹 is shape factor its 

mean value = 0.55 and  𝑃𝑉 vegetation proportion computed from NDVI using the following 

equation Carlson and Ripley, 1997: 

                        PV = [
(NDVI) − (NDVI)min

(NDVI)max − (NDVI)min
]

2

                                           (1.6) 
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When the NDVI value is larger than 0.5, the pixels are assumed as fully vegetated and emissivity 

value is considered as 0.99 (Mohamed et al., 2017). 

[1.5] Studies of Urban Pollution and relation with LST and LULC changes 

In early stages of urban pollution island studies, there was a focus on the comparison of 

concentrations of air pollutants between the cities(Dockery et al., 1993; Pope et al., 2002; Gotchi 

et al., 2005) and rural areas, but recently focus has shifted to intra-urban spatial contrast (Beelen 

et al., 2007). Two most suitable approaches of intra-urban air quality studies are land use 

regression model (Beleen et al., 2013) and computational fluid dynamic model (based on Renolds 

average Navier- Stock equation (RANS-CF)) (Santiago et al., 2013). Urban roughness or high-

rise buildings decrease wind speed by 0.5-4.0 m/s and increase temperature and turbulent kinetic 

energy by 1ºC and 1.2 J/m
3
 respectively. They increase the nitric oxide concentration by 2-5% in 

Lujiazui Central Business District (CBD) of Shanghai (Zhan et al., 2013). Urban air pollutant 

concentrations also depend on configuration of urban setting such as urban street configuration 

and sky view factor (Eftens et al., 2013). Vegetation setting and form of vegetation (leaf surface 

area index) along the urban canyon and its seasonal variation (with leaf and leaf shedding season) 

influence the vertical and horizontal distribution of air pollutant in urban location (Salmond et al., 

2013). Air pollution in ambient atmosphere interferes with surface radiation budget, which might 

influence the LST within an urban location. A study showed a strong correlation between air 

pollutant concentration (PM10) and LST with intra-city variation (Feizizadeh et al., 2013) at 

Tabriz city in Iran.  

[1.6] PM2.5 exposure to human population  

Many epidemiology studies have found a statistically significant relationship between 

concentration of particulate matter (PM) in an ambient environment with acute and chronic 

diseases in the human population (Dockery and Pope, 1994; Schwartz, 1994; Pope et al., 1995; 

Samet et al., 1995). In most of above studies typically employed PM concentration data from 
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stationary air monitoring stations within a region of the interested community as personal 

exposure of the human population. The population-based studies are expensive in terms of spatial 

and temporal data of population and air pollutant in an ambient environment. Therefore exposure 

modeling is one of the most suitable tools for understanding exposures of air pollutant to the 

human population. In population exposure model a probabilistic approach is applied to randomly 

sampled data to predict exposure distribution to population (Ott et al., 1988; McCurdy, 1995; 

MacIntosh et al., 1995; Law et al., 1997; Zartarian et al., 2000). Population exposure model has 

limitations particularly if sufficient data are not available for identifying variability in exposure 

factor. 

Chronic effect studies focus on the comparison across cities or cohort and between cities 

and rural area for exposure assessment (Pope et al., 1995).  These studies did not assess the intra-

city geographic exposure gradient at a micro level. Land use regression model based on 

stationary air monitoring station data with land use term estimate of air pollutant exposure to 

population at intra-city locations (Miller et al., 2007; Puett et al., 2009). Recently, a new hybrid 

method was proposed for assessing exposure to PM2.5 to human population based on satellite-

retrieved data with LULC term, and meteorological variable interaction (Kloog et al., 2014a; Shi 

et al., 2016). 

[1.7] UHI and urban air pollution in relation to LULC studies over Delhi-NCR 

Very few studies have been carried out  on the assessment of UHI over Delhi and its relationship 

with environmental parameters such as particulate matter during winter month (Pandey et al., 

2012), retrieval of  LST from ETM
+
 Landsat imagery (Mallick et al., 2008), relationship between 

surface temperature, vegetation density and LULC with ASTER image (Kant et al., 

2009),retrieved surface emissivity from Landsat TM images and its relation with NDMI  

(normalized difference moisture index) of different landforms (Mallick. et al., 2012), correlation 

with UHI and impervious surface in night time using ASTER satellite data (Mallick et al., 2013), 

and relation between heat flux,  LST with Landsat TM images (Chakraborty et al., 2013) and 
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intra-city UHI variation studies based on in situ measurement and MODIS data derived 

LST(Mohan et al., 2013). Recently some modelling has attempted intra-city air pollution contrast 

and exposure to population in Delhi (Saraswat et al., 2013, 2016; Aslam et al., 2017). Till date, 

to our knowledge, no study has been performed examine direct association between the urban 

land use/land cover or urban form and emitted concentration of air pollutants. This prompted the 

reasoned work undertake in the present study with the following objectives: 

Objectives: The four major objectives aimed at establishing relation among LULC, LST, air 

pollutant (PM2.5) and pollutant exposure to human are as follows. 

(1) To analyze the Population Induced Spatial and Temporal change of Land use/Land 

cover (LULC) Delhi NCR. 

(2) Land Surface Temperature (LST) Retrieval from Satellite data and its relation with 

LULC change. 

(3) Estimation of Urban Pollution Island (UPI) and spatio- temporal change within Delhi 

NCR area with LULC change. 

(4) To analyze the relation between temperature and air pollutants concentration in 

ambient atmosphere with LULC changes and pollution exposure on human population. 

The thesis is organized in the following manner. Chapter 2 contains basic concepts, study 

area and methodology.  

In Chapter 3, an attempt has been made to examine the relation between population growth and 

spatio-temporal change in LULC during 2003-2014, using satellite data of the NCR in India. In 

this chapter, the spatio-temporal changes of five LULC types which occurred during 2003 to 

2014 are quantified using multispectral band data of Landsat images. For analysis of spatial and 

temporal distribution of population and its relation to LULC,GIS-based modeling approach has 

been employed for satellite derived population data. 
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In Chapter 4, the results of examination of the influence of LULC compositional changes on 

spatio-temporal LST pattern in National Capital Region (NCR) of India are given. Firstly, spatio-

temporal changes in LST retrieved from the thermal infrared band of Landsat L_1 images data 

during 2003- 2014 period are presented. Secondly, the spatio-temporal dynamics of LST due to 

LULC pattern changes due to urbanization has been studied. 

Chapter 5 deals with the spatial and temporal trend of satellite derived PM2.5 concentration and 

its relation with LULC pattern in the NCR of India. In addition, the results of the exposure of 

PM2.5 to human population residing in intra-urban area in one of the fastest expand NCR area in 

recent years are presented. 

Lastly, Conclusions are discussed in Chapter 6. 
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Chapter-2            Basic concepts, study area and Methodology 

[2.1] Basic Concepts  

[2.1.1] Land-use and Land-cover (LULC) changes  

Land-use is defined as, "land-use is the way in which land and its resources are employed for the 

purpose of human well-being such as farming, mining, lumbering, etc." Land-cover is the 

physical form of the land surface as cropland, mountain, forest etc. In a broader sense in recent 

usages such as impervious surface (including building, pavement or road), natural environmental 

aspect (soil type and biodiversity) and surface or ground water are distinct Land covers. Human 

beings are described as a ‘keystone predator’ species because of their diversity ability through 

selective predation upon a competitive dominance. Keystone species are defined as “species 

which alter the natural ecosystem by modifying the ambient area of habitat suited more for their 

occupant”. It changes the community structure without interfering with direct trophic level of 

other species. At this moment human beings act as keystone species because they alter not only 

their own environment but also change the structure of ecosystem for all other organisms directly 

or indirectly. Some researchers have called current geological epoch as “Anthropocene” because 

of the impact of human beings on regional and global scale ecosystem (Crutzen, 2002; Jarnagin, 

2004). 

LULC changes impact global processes, such as climate change, resource depletion and 

bio-geological (nutrient/hydrological) cycle, biodiversity and carrying capacity of the earth 

(Cohen, 1995; Peskin, 1990; Nobre et al., 1991; Daily, 1997; Houghton et al., 1999; Hurtt et al., 

2002; Wilson, 2002). However, the exact quantification of the consequences of LULC changes at 

the global scale are difficult. LULC changes also impact deforestation, agricultural practices, and 

carbon cycle at a local and regional scale of an environment (Couzin, 1999; Caspersen et al., 

2000; Schimel et al., 2000). Urbanization induced LULC change is deemed to be responsible for 

an anomaly in local and regional temperature range in recent half century (Kalnay and Cai, 



Page | 14  
 

2003). According to World Energy Outlook-2008 estimate, the urban areas contributed a major 

fraction (67%) of energy consumption, and energy-related CO2 emission (71%). Many of 

consequences, such as infectious diseases, invasive species, metal and pesticide in ground and 

surface water, increased air pollution at local or regional scale and surface temperature anomaly 

of land and water are attributes to direct and indirect effect of urbanization-induced LULC 

changes (Daily, 1997; Wilcove et al., 1998; Binder et al., 1999). 

Remote Sensing and Geographic Information Systems (GIS) are most suitable and cost-

effective tools for assessing the Spatio-temporal dynamics of LULC changes on regional and 

global scales (Herold et al., 2003; Serrea et al., 2008; Ding et ai., 2013). Satellite-based remote 

sensing provides valuable multi-temporal data at local, regional and global scale for assessing 

LULC changes. GIS is a useful tool for analyzing spatial pattern of LULC change from multi-

temporal data set (Blodget et al., 1991; Zhang et al., 2002).  USGS (United State Geological 

Survey), NASA (National Aeronautics and Space Administration), NRSC (National Remote 

Sensing Center) are agencies which provide remotely sensed data through digital archives. This is 

useful for the study of spatio-temporal pattern changes in the LULC and its relation to other 

environmental components. Landsat project is a joint initiative between USGS and NASA, which 

provides calibrated high spatial resolution data to the scientific community, national security 

agencies and academia. Many earth surface phenomena such as LULC changes and its 

corresponding Land Surface Temperature (LST) are derived from Landsat level 1 image dataset 

which is processed according to information provided in the metadata file and Landsat data user 

Handbook. 

The earth observation satellite, Landsat has been providing multispectral data of Earth 

land surface since 1972. Landsat is the only source which provides calibrated, excellent spatial 

resolution data of earth’s surface through thenational archive at free of cost to the public. The 

data obtained from Landsat satellite constitutes the longest record of unmatched quality in detail 

and coverage of the earth surface as seen from space. The Landsat platform is embedded with 



Page | 15  
 

multiple remote sensor systems and data relay system along the orbit-adjusted system. It also has 

a receiver for ground station instruction and the transmitter for sending data to ground station. 

First Landsat was launched in 1972 with two earth viewing sensor, a return beam 

Videocon and an 80m MSS (Multispectral Scanner). Next series Landsat 2 & 3 launched in the 

year 1975 and 1978 respectively have a similar configuration as Landsat 1. Landsat 4 and 5 (5 as 

a duplicate of 4) have launched in 1984 with new configuration as MSS and new instruments 

Thematic Mapper (TM). Due to instrument up-gradation, it improves the ground spatial 

resolution up to 30 meter and has three new bands. Landsat 5 is still returning useful data even 

today after 32 years of its launch. Landsat 6 equipped with a 15-meter panchromatic band was 

lost immediately after a launch in 1993. Landsat 7 with ETM
+
 and scan line corrector (SLC) was 

launched in 1999, but SLC failed after four years of launch in May 2003. Landsat 8 equipped 

with two payloads: OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) was 

launched in 2013. OLI and TIRS are designed for taking image simultaneously of every scene but 

are also capable of independent use in case problem arises with either sensor (Landsat data user 

handbook 7 and 8). 

.  

Figure.2.1 GIS working concept (Source:  http://www.westminster.edu/staff/athrock/GIS/GIS) 

 

http://www.westminster.edu/staff/athrock/GIS/GIS
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GIS sofware as ArcGIS {Environmental Systems Research Institute (ESRI), 380 New 

York Street, Redlands, CA} and Environment for Visualizing Image Software (ENVI) { Exelis 

Visual Information Solution Inc, Boulder CO, USA} are efficient tools to visualize, analyze and 

for data interpretation to establish relationship, pattern and trend of satellite dataset (Dewan and 

Yamaguchi, 2009). GIS is a computer-based tool for the storage, retrieval, manipulation, 

analyzing and displaying as a map of the geographical data set. It has capabilities for 

geographical analysis such as explaining the event, predicting outcomes and future planning. GIS 

integrates five key components: data, hardware, software, method and people (Figure 2.1). 

Many change detection methods have been developed for assessing LULC from satellite 

data such as digital change detection method (Singh, 1989; Coppin et al ., 2004), Image 

regression, Vegetation index differencing, Post classification comparison, etc. (Lu et al., 2004). 

In recent years post-classification method has been extensively used for LULC studies, mainly in 

supervised spectral signature extraction or supervised classification of satellite retrieved image 

data (Landsat images) through Classifier algorithm employed in GIS software. Classification 

technique involves labeling the pixel as belonging to a particular spectral signature (class) using 

spectral data. For classification of remote sensing image data two procedures are used, namely: 

unsupervised and supervised classification.  

In unsupervised classification procedure pixels in an image are assigned to spectral 

classes without the user having a name of those classes also called clustering of spectral signature 

or class. Unsupervised classification is useful for determination of spectral class composition for 

applying supervised classification methods. In supervised classification methods use is made of 

suitable algorithms in GIS software for the labelling the pixels having a distinct spectral signature 

in an image as user defined ground cover type or class. A variety of algorithms are available for 

supervised classification, which is based on probability distribution model for multispectral space 

partitioned into defined class. The parametric supervised method is based on the assumption that 

a statistical probability distribution can model class and parameters of those distributions 

describing the data. In the other supervised classification, called a non-parametric method, 
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neither distribution models nor parameters are relevant. A well-known non-parametric method is 

Maximum Likelihood Classification (MLC) method used for supervised spectral signature 

extraction from remote sensing image data. In MLC classification method, a pixel at position x in 

multispectral space is assigned a set of computed probabilities that give the relative likelihood 

that the pixel belongs to each available class. MLC is based on Bayes classification of spectral 

classes of image as represented by 

                                                            𝑤𝑖 = 1, … … 𝑀                                            (2.1)                  

Where, M is total number of classes. To determine the class of particular pixel vector x, the 

conditional probability is 

                                                          𝑝(𝑤𝑖│x) , i = 1, … . 𝑀                                     (2.2) 

where measurement of vector x is column brightness value of the pixel. The probability 

𝑝(𝑤𝑖│x) gives the likelihood of the correct classes,𝑤𝑖, for a pixel at position x.  

Classification is done as 

𝑥 ∈ 𝑤𝑖,      𝐼𝑓   𝑝(𝑤𝑖│x)   > 𝑝(𝑤𝑗│x)        for all    j ≠ i                    (2.3)   

The pixel at x belongs to class 𝑤𝑖 if 𝑝(𝑤𝑖│x) is maximum (Richards and Jia, 2005). 

[2.1.2] Land Surface Temperature   

Land Surface Temperature (LST) is defined as “measurement of hotness and coldness of the 

surface in a particular location.” The surfaces include ice and snow, grass on the lawn, the roof of 

a building, forest, deserts, etc. whatever the satellite views through the atmosphere to the ground. 

Thus LST and air temperature which is included in daily weather report, are not the same at a 

particular location. LST is one of the key parameters which influence the physics of land surface 

processes such as evaporation, transpiration, hydrological cycle, urban climate and environment, 
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climate change, etc. at local and global scale (Li et al., 2013). Spatial and temporal changes in 

LST pattern have been found to occur due to heterogeneity of land surface characteristics such as 

topography; vegetation cover, urban area, and soil cover or LULC types (Prata et al., 1995; 

Neteler, 2010). The changes in LULC influence the LST due to the partitioning of sensible and 

latent heat fluxes of different landforms (Dubreuil et al., 2011). For adequate characterization of 

spatiotemporal pattern of LST detailed spatial and temporal sampling is required at local, 

regional and global scale. Ground measurement of LST cannot practically provide values on 

large scale due to complexity and heterogeneity of land surface. Remote sensing from space or 

satellite data with high temporal and fine spatial resolution offer a most suitable technique for 

measuring LST over a regional and global scale. Satellite-based thermal infrared (TIR) band 

dataare used for retrieving LST through radiative transfer model in GIS software. Remotely 

sensed images data, such as Landsat TM/ETM
+
 (Thematic Mapper/Enhanced Thematic Mapper) 

and OLI (Operational Land Imager),with spatial resolution 60 m, MODIS (Moderate Resolution 

Imaging Spectro-radiometer) having spatial resolution 1 km and ASTER (Advanced Spaceborne. 

Thermal Emission and Reflection) at spatial resolution of 90 m are employed for retrieving LST 

(Brabyn et al., 2013; Ding et al., 2013; Jimenej-Munoz et al., 2003; Kloog et al., 2012; Liu et al., 

2006; Sobrino et al., 2004; Tomlinson et al., 2012). Landsat data set is one of the best data 

available to study the association between landform composition and LST because it has fine 

spatial resolution and delivers multiple spectral range band data simultaneously (Ding et al., 

2013; Feng et al., 2014; Sobrino et al., 2004). 

The mono-window algorithm has been used to retrieve LST map from the thermal band of 

Landsat level 1 data. The mono-window algorithm is based on two functions, thermal radiance 

transfer function, and other Planck’s radiance function. There were three critical parameters; 

emissivity, transmittance and mean atmospheric temperature included in the algorithm (Z. Qin, 

A. Karnieli and P. Berliner, 2001). Planck’s law states that all objects, which have the 

temperature greater than absolute zero, emit radiation which can be expressed by the following 

equation: 
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                            𝑩𝜆(𝑇) =
𝐶1

𝜆5 [exp (
𝐶2

𝜆𝑇
) − 1]

                                      (2.4) 

𝑩𝜆(𝑇) = 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎 𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑑𝑦 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇 𝑖𝑛 𝑊𝑚−2𝜇𝑚−1𝑠𝑟−1 

𝐶1 𝑎𝑛𝑑 𝐶2 𝑎𝑟𝑒 𝑃𝑦𝑠𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑛𝑠𝑡𝑎𝑛𝑡𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 1.191 × 108𝑊𝜇𝑚4𝑠𝑟−1𝑚−2  𝑎𝑛𝑑 1.439

× 104𝜇𝑚. 𝐾, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑙𝑦      

𝜆 = 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 µ𝑚                                                                                                                       

Onboard Infrared sensor of a satellite viewing earth’s surface measures radiation emitted by the 

earth and its atmosphere along the line of sight. According to Figure 2.2 (Li et al., 2013), 

radiance transfer equation can be written as 

𝐼𝑖(Ø, 𝜑) = 𝑅𝑖(Ø, 𝜑)𝜏𝑖(Ø, 𝜑) +  𝑅𝑎𝑡𝑖
(Ø, 𝜑) + 𝑅𝑠𝑙(Ø, 𝜑)                             (2.5) 

𝐼𝑖(Ø, 𝜑) = 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑏𝑦 𝑠𝑒𝑛𝑠𝑜𝑟 𝑎𝑡 𝑇𝑂𝐴                                       

𝑅𝑖(Ø, 𝜑)𝜏𝑖(Ø, 𝜑) = 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑒𝑑 𝑏𝑦 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒 

𝑅𝑎𝑡𝑖
(Ø, 𝜑) = 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛                                                                           

𝑅𝑠𝑙(Ø, 𝜑) = 𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔                                                                            

𝑅𝑖(Ø, 𝜑) = ԑ𝑖(Ø, 𝜑)𝐵𝑖(𝑇𝑠) + [1 − ԑ𝑖(Ø, 𝜑)]𝑅𝑎𝑡𝑖
+ 1 − ԑ𝑖(Ø, 𝜑)𝑅𝑠𝑙𝑖

+ 𝜌𝑏𝑖
((Ø, 𝜑, Ø𝑠, 𝜑𝑠)𝐸𝑖 cos(Ø𝑠) 𝜏𝑖(Ø𝑠, 𝜑𝑠)                           (2.6) 

ԑ𝑖(Ø, 𝜑)𝐵𝑖(𝑇𝑠) = 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 

[1 − ԑ𝑖(Ø, 𝜑)]𝑅𝑎𝑡𝑖
= 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑤𝑒𝑙𝑖𝑛𝑔 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛                       

[1 − ԑ𝑖(Ø, 𝜑)]𝑅𝑠𝑙𝑖
= 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔               

𝜌𝑏𝑖
((Ø, 𝜑, Ø𝑠, 𝜑𝑠)𝐸𝑖 cos(Ø𝑠) 𝜏𝑖(Ø𝑠, 𝜑𝑠) = 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑑𝑜𝑤𝑛𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑠𝑜𝑙𝑎𝑟 𝑏𝑒𝑎𝑚 
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Figure 2.2 Illustration of radiative transfer equation in infrared regions (Source:  Li et al., 2013) 

[2.1.3] Urban Air Pollution with LULC change 

Air pollution is defined as contamination in the ambient environment (outdoor and the indoor 

environment by any physical, chemical and biological agent which altered the natural properties 

of the atmosphere. Urban pollution includes all forms of pollution which arises due to 

disproportionate use of natural resources during urbanization process. In recent times urban air 

quality has come to be recognized as a major public health concern because the majority of the 

population lives in urban areas of the world. Air pollutants such as particulate matter, ozone, 
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oxidized form of carbon, sulfur, and nitrogen are identified as of major public health concern and 

are considered as criteria pollutants determining air quality of an area. LULC effects the ambient 

air quality by influencing local and regional meteorological parameter such as LST, humidity, 

wind pattern, etc.  

Early studies on air pollution primarily focused at macro level on the comparison of 

concentration in air pollutants between the urban and rural area situated at far location (Dockery 

et al., 1993; Pope et al., 2002; Gao et al., 2012). Ambient air pollutants are not evenly distributed 

in the whole urban area and it is creating intra-city hot spots depending on LULC (Kandlikar, 

2007). Nowadays, macro level research  has shifted to micro-level studies such as intra-urban 

spatial contrast of air pollution and its exposure to the human population (Hoek et al., 2002; 

Beelen et al., 2008; Saraswat et al., 2013; Lee et al., 2016). Long-term exposure to ambient 

pollutants such as fine particulate matter, NOx and ozone has been associated with morbidity and 

premature mortality in the human population (Dockery et al., 1993; Pope et al., 2009; Brauer et 

al., 2012). Assessment of the health effects, due to long-term exposure to the pollutants, depends 

on the accurate representation of the spatial and temporal distribution of pollutant concentration. 

A long-term trend of pollutants concentration provides information about appropriate 

mitigationsteps. Mapping of long-term pollution is faced with many problems because of 

complex geography of emission sources and complex dispersion processes in an urban 

environment. Thus, the level of air pollution varies in very short distance, often few meters and 

kilometers (Hewitt, 1991). Sparsely situated ground-based monitoring stations data are not 

appropriate for comprehensive assessment of long-term exposure to an air pollutant. Satellite-

based observatory data of air pollution are most suitable for long-term exposure assessment of 

pollutant in an urban environment. Satellite based data minimize the effect, that might arise due 

to regional differences (biased monitoring station) in data obtained by ground level observatory 

network. The satellite data facilitates studies aimed at long-term pollutant concentration exposure 

on regional and global scales.  
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In recent years, PM2.5 has been identified as one of the leading factors for premature 

death. A study shows 3.2 millions premature mortality per year due to ambient PM2.5 exposure 

(Lim et al., 2012). For the derivation of PM2.5 concentration, Donkelaar et al. (2015) used GEOS-

Chem chemical transport model for converting AOD to near-ground level PM2.5 (µg/m
3
). Aerosol 

Optical Depth (AOD) is defined as “the amount light extinction by atmospheric column due to 

the aerosol presence in the atmosphere.” Different design characteristics of satellite and their 

retrieval methodology are beneficial for the specific application of data set. MODIS instrument 

aboard on Tera (EOS AM-1) and Aqua (EOS PM-1) satellite provide accurate daily global AOD 

data (Levy et al., 2007). MISR (Multi-angle Imaging Spectroradiometer) is new type of 

instrument on board Tera satellite designed to view the Earth with nine different angles. It 

provides more accurate AOD data and trend, but it has at emporal resolution of six days (required 

around six-day for global coverage) (Diner et al., 2005; Martonchik et al., 2009).  Sea Star 

Spacecraft carried SeaWiFS (Sea-viewing Wide Field-of-view Sensor) applicable for more 

desirable temporal trend (Eplee et al. 2011), but its AOD data is less accurate on land as 

compared with MODIS and MISR (Petrenko and Ichoku 2013).  The global annual PM2.5 data in 

the three-year running grid form is derived from AOD data obtained from the combination of 

three satellites MODIS, MISR and SeaWiFS(http://sedac.ciesin.columbia.edu/data/set/sdei-

global-annual-avg-pm2-5-modis-misr-seawifs-aod-1998-2012/data-download). 

Mann-Kendell-Trend-Model (MKTM) is a widely used non-parametric statistical test for 

assessment of environmental time series data. MKTM statistically assesses a monotonic temporal 

trend (either upward or downward trend) of the variable. A monotonic upward and downward 

trend means that the variable increases and decreases respectively over time but the trend might 

be linear or otherwise. MK test is nonparametric (distribution-free) test, more suitable as 

compared to parametric linear regression analysis which requires normally distributed residual 

(Mann, 1945; Helsel, 2002; Yu et al., 2002). The details and mathematical equations of MKTM 

model are discussed in the methodology section in Chapter 5. 

http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-modis-misr-seawifs-aod-1998-2012/data-download
http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-modis-misr-seawifs-aod-1998-2012/data-download
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The interpolation method has been used for generating continuous surface (raster floating 

point format) of pollutant concentration in desired spatial resolution over a region of interest from 

point data set. Kriging model (Interpolation method) is a geo-statistical method of auto-

correlation, which measures the geo-statistical association amongst the points and predicts 

missing value with high accuracy at high confidence level (Zhou et al., 2007). Kriging is based 

on the probability model, in which the weights are chosen for the nearby sample on the basis of 

bias and error variance. Kriging equation is given as follows (Chun and Griffith, 2013): 

                                  𝑌𝑚 = 𝑋𝑚. 𝛽 + ∑ ∑ (𝑌0 − 𝑋0𝛽)
−1

𝑜𝑜
𝑚𝑜

                                         (2.7) 

             where,               𝑌𝑚 = 𝑀𝑖𝑠𝑠𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

𝑌0 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒    

𝑋 = 1 𝑓𝑜𝑟 𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝐾𝑟𝑖𝑔𝑖𝑛𝑔 𝑎𝑛𝑑 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑓𝑜𝑟 𝑐𝑜 − 𝐾𝑟𝑖𝑔𝑖𝑛𝑔𝛽

= 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑚𝑒𝑎𝑛  

[2.1.4] Exposure to air pollutant to the human population 

According to WHO estimates (2012), outdoor air pollution is a major environmental hazard 

irrespective of developed and developing world. Pollution specific diseases are distributed in a 

disproportionate manner all over the world, as low and middle-income countries experience the 

87% premature death (WHO) estimates 3 million premature deaths per year in 2012). It has been 

observed that 72% of premature death due to pollutants exposure in human beings occurs because 

of Ischemic heart disease and strokes. Deaths by chronic obstructive pulmonary diseases 

(COPD)and acute lower respiratory or lung cancer are 14% of the total pollution related death. 

Particulate matter is a major component of air pollution which has been most closely associated 

with lung cancer in both urban and rural area. Mortality due exposure to fine particulate matter 

(diameter << 10µm) which are responsible for severe diseases such as cardiovascular, respiratory 

disorder and cancer in the population living in the area. As per WHO, Air Quality Guidelines 
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(AQG), long-term exposure of annual average concentration of PM2.5 ≤ 10 µg/m
3
, was chosen 

safe to the human population. Beside AQG value, three interim target (IT) values are defined by 

long-term risk assessment relative to the AQG value for PM2.5. In IT1, an annual average 

concentration of PM2.5 35 µg/m
3
 is associated with 15% higher long-term risk of mortality as 

compared with the AQG value. IT2 and IT3 values, 25 µg/m
3
 and 15 µg/m

3 
annual average 

concentration of PM2.5, respectively, have a lower long-term risk of premature mortality as 

compared to IT1. The exposures of IT2 value level have the lower risk of premature mortality 

rate by 6% as compared with IT1 value level.  The long-term exposure of PM2.5 at equal to IT3 

value level reduces the premature mortality rate by approximately 6% relative to IT2 value level. 

Figure 2.3 explains the mechanism and effect of PM2.5 on our body. It is absorbed into target cell 

altering the cellular physiological and biochemical process by inducing oxidative stress, 

genotoxicity, inflammation etc.   

         

                               Source: (Feng et al., 2016) 

Figure 2.3 The effect and mechanism of PM2.5 on human health 

Exposure of air pollutant to population is defined as any contact between the surface of a 

human being either outer (skin) or inner (respiratory tract epithelium) with airborne pollutant in 

an ambient environment. Exposure is determined by the two simultaneous occurred parameters 

pollutant concentration in particular region, population residing in that area and duration of 

contact with the population (Duan 1982; Ott 1985). 
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The development of a model for exposure assessment in micro-environment (intra-urban 

area) needed geographic data with pollutant concentration at a particular time. GIS-based model 

is one of the best suitable models for assessing exposure because it is capable of combining both 

information (geographic data and monitored data of air pollutant at a particular time 

simultaneously). Many models have been applied in the past for assessing intra-urban exposure 

of air contaminants to population such as proximity-based assessment (Venn et al., 2000), 

statistical interpolation (Jerrett et al., 2001a), land-use regression model (Briggs, 2000; Hoek et 

al., 2001), line dispersion model (Bellander et al., 2001) integrated emission meteorological 

models (AMD and NOAA-EPA, 2003) and hybrid model (Hoek et al., 2001; Zmirou et al., 

2002). Models by need suitability requirement and implementation cost are arranged in Table 2.1. 

Proximity models provide crude and quick evaluation of the effect pollution has on population, 

but it lacks of physicochemical characteristics of pollutants. Statistical interpolation models need 

well-distributed dense monitoring network data and spatial statistic software. Land-use regression 

models provide a reliable estimation of pollution if land is used as independent variable and 

pollution monitoring data is treated as a dependent variable. Dispersion and integrated 

meteorological emission models need a substantial amount of meteorological data and more 

sophisticated integrated specialized software with improved expertise. A drawback of above-

discussed models is that their results predict exposure of pollutant at a coarse spatial resolution 

and expensive in terms of data requirement and computing power. Personal monitoring is most 

accurate and direct way for measuring the exposure of air pollutant, but its implementation is 

biased (spatial and temporal biased) due to a number of sample observations (Jarrett et al., 2005). 

Satellite-based observatory pollutant data are more suitable for measuring exposure because an 

absence of spatio-temporal biasness and fine spatial resolution in data set. So, here a satellite-

based observatory data has been employed for assessment of exposure to air pollutant on the 

human population. 
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Table 2.1 Details of different air pollutant exposure models 

Model 

 

Theory 

concept 

match 

Limitation 

to health 

studies 

Data requirement Need for 

Updated 

data 

Software 

expertise 

Overall 

implementation  

cost 

Marginal 

benefit 

Transferabilit

y 

Proximity based Low Crude 

exposure 

estimate 

Traffic volume 

Distance from line source  

Questionnaire 

Low GIS 

statistics 

Experiment: low 

Software: low 

Personnel: medium 

Base case Low 

Geostatical Medium Depends on 

the density of 

monitoring 

network 

Monitoring measurements Low GIS 

Spatial Statistics  

Experiment: 

medium 

Software: medium 

Personnel: low 

Transferability 

Error  structure 

of estimate 

Low 

Land use 

regression 

Medium Depends on 

density of 

observations 

Traffic volume 

Monitoring measurements 

Land use 

Meteorology 

Medium GIS 

statistics 

Monitor experts 

Experiment: 

medium 

Software: medium 

Personnel: medium 

Transferability 

Error  structure 

of estimate 

Medium 

Dispersion Medium Extensive 

inputs 

Unrealistic 

assumption 

about 

pollutant 

transport  

Traffic volume 

Meteorology 

Monitoring measurements 

Topography 

Emission of point sources  

 

Medium GIS 

statistics 

Monitor experts, 

dispersion 

software 

Experiment: high 

Software: High 

Personnel: medium 

Emphasis on 

process 

High 

Integrated 

meteorological 

emission 

Medium Course 

resolution 

Traffic volume 

Meteorology 

Monitoring measurements 

Topography 

Emission of point sources  

 

High GIS 

statistics 

Monitor experts 

Experiment: high 

Software: high 

Personnel: high 

Emphasis on 

process 

Medium 

Hybrid (personal 

monitoring and 

one of 

the preceding 

method. 

High Small and 

Biased 

sample 

Depends on 

combination 

Questionnaire 

Depends on combination 

Depends on 

consideratio

n 

Personal monitor 

experts 

Survey Design 

Depends on 

combination 

 

Experiment: high 

Software: depends 

on combination 

Personnel: depends 

on combination 

Depends 

on combination 

Low 

 

Source :(Jarrett et al., 2005) 
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[2.2] Study Area 

The study area, National Capital Region (NCR) of India is located between latitude 28
0
 10

’
 00

”
N 

to 29
0
 00

’
 00

”
 N and longitude between 76

0
 50

’
 00

” 
E to77

0
 35

’
 34

”
 E (Figure 2.4) and altitude lies 

between 213 and 305 m above msl. NCR is surrounded by Indo-Gangetic alluvial plain in east 

and north, Thar Desert in west and by Aravalli hill range in south. 

 

Figure 2.4 FCC image of Delhi-NCR (Landsat 8) 

It lies in composite climatic zone with annual rainfall of 714 mm, of which 3/4
th

rainfall 

mostly occurs in July to September months. During the summer months, temperature ranges 

between 40-45 °C whereas winter temperature falling to 4-5 °C in months of December-January. 

Average Monthly rainfall and temperature are shown in Table 2.2. Prevailing wind direction in 

the region is northwesterly, except during July – mid-September when it is southeasterly. NCR is 

a one of the fastest growing region in India in terms of economic and population growth. As per 
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the 2014-15 economic survey, GDP (Gross Domestic Product) registered a growth up to 78% as 

compared to the 2009-10. According to census-2011, the decadal growth of population has been 

21.2% during 2001 to 2011. 

Despite rapid expansion of infrastructure due to ever increasing population and economic 

growth, the forest cover has increased in substantial amount in last 30 years in this region. In 

Delhi region the forest cover has increased from 0.76% of total area in 1980 to 20.22% in 2015 

(state profile Delhi &Forest Survey of India).Sand and stone is primarily the mineral present in 

NCR which is useful for construction activities. After 1984 stone quarries have been shut down 

in ecological sensitive ridge area. A variety of soils are present in NCR region because its 

geographical location and geomorphological characteristics. These soils have entirely different 

properties compared to soils present in the alluvial plains. 

Table 2.2 Annual (monthly average) temperature and rainfall in Delhi-NCR 

Months 
Temperature 

(Max) in ºC 

Temperature 

(Min) in ºC  

Rainfall  

(mm) 

January 21 07 25 

February 24 10 22 

March 30 15 17 

April 36 21 07 

May 41 27 08 

June 40 29 65 

July 35 27 211 

August 34 26 173 

September 34 25 150 

October 35 19 31 

November 29 12 01 

December 23 08 05 

Source: State Profile. http://delhi.gov.in/DoIT/DOIT_DM/state%20profile.pdf 

http://delhi.gov.in/DoIT/DOIT_DM/state%20profile.pdf
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[2.3] Methodology 

For population estimate, gridded 1 km (30 arc-second) spatial resolution population estimate data 

from SEDAC has been used (Socioeconomic Data and Applications Center, 2016) 

http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count/data-download.Three different 

Landsat L_1T cloud cover free data of Landsat 5 (TM), 7 (ETM
+
), and 8 OLI have been taken 

from USGS online archived GLOVIS (http://glovis.usgs.gov/) for NCR of India. Data pre-

processing has been done with ENVI software on the information provided in metadata file of 

Landsat image. For LULC classification, a well-known parametric MLC algorithm has been 

employed for supervised spectral signature extraction of all Landsat images in Arc-GIS software. 

The thermal Infrared band (10.4-12.4 µm) data of Landsat images have been used for retrieval of 

LST. The extraction of LST has been carried out using mono-window algorithm. For PM2.5 

concentration, data set contain floating point value of three-year running mean grids from 1998 to 

2012 has been obtained from http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-

pm2-5-modis-misr-seawifs-aod-1998-2012/data-download.  

Mann-Kendell trend test at 95% confidence level employed for statistical significance and 

trend analysis of PM2.5 concentration at 42 points located in different LULC types. The PM2.5 

point data has been converted to a raster floating point data format in 30 m spatial resolution by 

an ordinary Kriging model (Interpolation method) run in Arc-GIS software. Overlaying technique 

is employed between population and PM2.5 concentration raster map for exposure assessment to 

human population. Data sources and methodologies have been discussed in detail in subsequent 

chapters 3 to 5.   

 

http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count/data-download
http://glovis.usgs.gov/
http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-modis-misr-seawifs-aod-1998-2012/data-download
http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-modis-misr-seawifs-aod-1998-2012/data-download
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Chapter-3         Population Induced LULC changes 

 

[3.1] Introduction 

In the recent decades, industrial and service based economic developments along with 

corresponding increase of population have rapidly changed the Land-use and Land-cover 

(LULC) composition in the urban areas. Urbanization process has picked up momentum since 

last decade (Balcik 2013). This phenomenon is often associated with increased levels of 

residential, commercial, industrial and transportation activities concentrated within a relatively 

small geographical areawhich alters the Land-use and Land-cover (LULC) composition of that 

area.  Urbanization leads to the loss of vegetation cover and agricultural area in order to fulfill 

human needs (Balcik 2013; Dewan and Yamaguchi 2009; Ward et al. 2016). 

National Capital Region (NCR), situated in the north-western Indo-Gangetic plains, is one 

of the fastest growing regions in India in terms of economic and population growth. As per the 

2014-15 economic survey, NCR’s Gross Domestic Product (GDP) grew up by 78% as compared 

to the 2009-10. According to census-2011, the NCR recorded a decadal growth of 21.2% in its 

population from 2001 to 2011.The fast growing economy and population has induced significant 

alteration in the Land-use and Land cover (LULC) of entire NCR.  

In the present study (Chapter 3), an attempt to find out the population induced spatio-

temporal changes in LULC of NCR during 2003-2014 has been made using satellite data 

(Landsat). In this chapter, two objectives were identified and fulfilled: 1) Quantification of 

spatio-temporal changes in LULC pattern during 2003 to 2014. 2) Applying GIS-based modeling 

approach for evaluating spatial and temporal changes of satellite derived population in studied 

area during 2000-2015. 
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[3.2] Data processing and Methodology 

[3.2.1] Data Sources 

Three different Landsat L_1T datasets [(Path146/Row040) (Landsat 7 ETM
+ 

(10 May 2003), 5 

TM (18 May 2009) and 8 OLI (16 May 2014)] have been taken from USGS online archived 

GLOVIS (http://glovis.usgs.gov/) portal for NCR of India. Landsat 5 TM data consists of six 

bands in the Visible Region (VR) and Near Infrared Region (NIR) with 30 m spatial resolution 

and one band in the Thermal Infrared Region (TIR) with 120 m (resampled 30 m) spatial 

resolution. Landsat 7 provides eight bands, i.e. three each in the VR and NIR with 30 m spatial 

resolution, one in TIR with 60 m (resampled 30 m) spatial resolution and one panchromatic band 

with 15 m spatial resolution (http://LANDSAT. usgs.gov/band_ designations_ LANDSAT_ 

satellites.php). The OLI sensor gathers image in eight VR, NIR and short wave infra-red (SWIR) 

with a 30 m spatial resolution, one 15 m panchromatic and two 100 m (30m resampled) TIR 

bands (data users’ handbook of Landsat 8). Landsat images are one of the most suitable data for 

LST analysis and LULC changes over time because of the fine spatial resolution in VR, NIR, 

SWIR and TIR spectral bands.  

The toposheets of Delhi-NCR region, having 1:50000 m scale, were taken from Survey of 

India (SOI) outlet for image to image registration of Landsat images. Gridded population 

estimates having spatial resolution of approx. 1 km x 1 km (30 arc-second) were also obtained 

from Socioeconomic Data and Applications Center (SEDAC) website 

http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count/data-download. The data product 

GPWv4 (Gridded Population of the World Version 4) consists of human population count 

estimate based on national censuses and population registers worldwide. The population count 

grids contain total number of persons per grid cell allocated by gridding algorithm utilizing 12.5 

million sub-national and national administrative units 

(http://sedac.ciesin.columbia.edu/data/collection/gpw-v4). 

 

http://glovis.usgs.gov/
http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count/data-download
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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[3.2.2] Data preprocessing 

For the present study, data free from cloud cover has been procured. Spatial registration has been 

done in ENVI tool (GCP image to image registration) with digitized toposheet (resampled 30 m 

spatial resolution) of NCR by choosing 15 control points. The selection of 15 control points has 

been carried out based on unchanged structures for long time such as road intersection and old 

buildings. 

Landsat images are processed as absolute radiance using 32-bit unit floating point which 

were further converted to 16-bit integer (Digital Number unit) value in level 1 product (data 

users’  handbook of 8.The conversion of integer value to original 32-bit unit floating point 

spectral reflectance  has been done by scaling factor allocated in metadata file of each band data 

in ENVI (Band Math tool) software using following equations discussed below: 

 

                     PP =
MP. Qcal + AP

sin (Θ)
                                                  (3.1)                         

MP is reflectance multiplicative scaling factor for the band; AP is reflectance additive scaling 

factor for the band and Θ is solar elevation angle (Landsat 8 Handbook). 

[3.2.3] Image classification and accuracy assessment 

A well-known parametric Maximum Likelihood Classifier algorithms (MLC) was employed for 

supervised spectral signature extraction of all images. In each composite bands, image 100 ROI 

(Region of Interest) were chosen to establish each LULC type having all spectral signature 

adequately represented in the training statistics. Different band combination (R.G.B) was 

employed for distinct LULC for ROI selection in Arc-GIS image classification tool (training 

sample manager) as per detail given in Table 3.1. (https://esri.com/esri/arcgis/2013/07/24/band-

combinations-for-landsat-8) 
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Table 3.1 RGB bands combination for ROI selection 

Landform R.G.B bands combination 

for TM & ETM
+
 Image 

R.G.B bands combination 

for OLI Image 

Built-up Area 7.5.3 7.6.4 

Water Bodies 4.5.3 5.6.4 

Green Vegetation 4.5.1 5.6.2 

Rocky Area 5.4.3 6.5.4 

Bare Land 4.5.3 5.6.4 

 

Five distinct LULC types (Built-up area, Water body, Green vegetation, Rocky area and 

Bare land) were identified in all three images acquired (Table 3.2). The rocky area situated at 

south to central ridge covered by sparse scrub vegetation showed distinct spectral signature 

identified in individual landform. The urban areas are composed of asphalt and concrete covered 

road, buildings and all types of impervious surfaces. The Bare land included dry land, 

agricultural land without crops, landfill site etc. 

Table 3.2 LULC types for classification 

LULC Type 
Abbreviations Descriptions 

Built-up Area BA Road, Building and Residential area 

Water Bodies WB River, Ponds and Drainage system 

Green Vegetation GV Forest, Farmland tree, Roadside tree 

and Vegetation around water bodies. 

Rocky Area RA Rocky area and Sparse scrub 

vegetation 

Bare Land BL Dry desert land, Open un-vegetated 

land, Bare soil and Sandy area 

 

Assessment of classification accuracy is indispensable for accurate estimation of change 

detection in each classified images. Accuracy assessment procedure has been carried out with 
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assigned ancillary data such as digitized toposheet of NCR and Google earth image as reference. 

Firstly, 200 random points were created from subset image of study area and then assigned each 

random point a value from digitized toposheet (for TM and ETM
+
) and Google earth image for 

OLI data. Extract the value of each LULC type for each 200 assigned random points from 

classified image. Accuracy assessment was done to create confusion matrix between assigned 

point and extracted value of each LULC type. It was observed that the overall accuracy with 

Kappa coefficient for corresponding three classified images ETM
+
, TM and OLI are 0.89, 0.93 

and 0.95, respectively. The detection of LULC changes over the studied time period has been 

carried out using a post-classification differentiation method by randomly selecting 10000 points 

in each classified image. Gridded population estimate at 1km spatial resolution is resampled onto 

30 m for overlaying with LULC map created in Arc-GIS software. We have adopted overlaying 

technique between population map and LULC map for analyzing population induced spatio-

temporal changes of LULC in NCR region. 

[3.3] Results and Discussion 

[3.3.1] Spatial and temporal pattern of human population 

Gridded population estimate at 1 km spatial resolution is manually classified into five classes on 

the basis of number of person per grid cell. These five classes are classified as Sparse, Lower, 

Moderate, Higher and Highest density which comprise of <500, 500-1500, 1500-2500, 2500-

3500 and >3500 persons per grid cell respectively. The spatial and temporal patterns of human 

population in the period 2000-2015 have been shown in Figure 3.1(a-c). It can be observed from 

Figure 3.1(a) that Highest density class of population dominated a major part of Delhi in the year 

2000.Only the northern part of Delhi shows Moderate population density class and the south-

western part shows the High population density class. An examination of Figure 3.1(b) reveals 

that the south-western part of Delhi which was in the High Population density class in the year 

2000, predominantly changed to the Highest population density class in the year 2010, while the 

northern part of Delhi still remained in the Moderate Population density class. In the year 2015 
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(Figure 3.1(c)), the entire south-western part of Delhi came under the Highest population density 

class, while the northern part came under the High population density class. It is also seen that by 

the year 2015, almost entire Delhi except its northern part was under the Highest population 

density class.  Spatial and temporal change in population can be observed from the Figure 3.1 (d-

e). It is seen that almost entire Delhi-NCR witnessed increase in the population from 2000 to 

2015, but this increase was more pronounced along the west-central-eastern parts of Delhi. 

Figure 3.1(f) shows the percentage of total area covered by different population density classes in 

the years 2000, 2010 and 2015. It can be observed that percentage of total area in the Highest 

population density class has undergone significant increases both in 2010 and 2015 over the 

previous years. On the contrary, percentage of total area in the Sparse population density class 

has undergone significant decrease during this period. A decrease in the percentage of total area 

under the other classes of population density is also noticed from 2000 to 2015. These trends are 

witnessed because more and more areas under other classes changed to the Highest class of 

population density during this period. 

 

Figure 3.1 (a) Spatial distribution of population in 2000 
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Figure 3.1(b) Spatial distribution of population in 2010 

 

 

Figure 3.1(c) Spatial distribution of population in 2015 
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Figure 3.1(d) Spatial and temporal changes of population in 2000-2010 

 
 

 

Figure 3.1(e) Spatial and temporal changes of population in 2010-2015 
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Figure 3.1(f) Area cover by different population density class during 2000-2015 

 

[3.3.2] Spatial and temporal change of different LULC 

Spatial pattern of distinct LULC over Delhi- NCR for three different years for the month of May 

are shown in Figure 3.2 (a-c). Area retrievals from the LULC maps show that during the period 

2003 and 2009, built-up area expanded from 5.84% to 10.26% (almost double). Further, it can be 

seen that the green vegetation area has grown from 8.72 to 11.05 % primarily in central and south 

ridge area during the period 2003 to 2009. Rocky area has decreased from 12.99 to 8.41 % from 

year 2003 to 2009 because of rapid expansion of urban built-up area and conversion of sparse 

scrub vegetation into green vegetation due to artificial plantation and natural processes. Further, 

it can be observed that Bare land and water body which contributed 72.04 % and 0.39 % 

respectively during the year 2003 got changed to 69.35 % and 0.91% respectively during 2009. 

Bare land has been converted into built-up area in Delhi’s surroundings mainly in east and north-

east direction which is mostly agricultural land and fallow land. In south, south-west and west 

direction, built-up area has developed at cost of rocky area (ridge area) and dry non-arable land 
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(desert land). Also, a slight increase in water body area has been observed in year 2009 due to 

increase in average rainfall from 6 mm in May 2003 to 65.8 mm rainfall occurred in 2009 

(Statistical Abstract Delhi 2012). Due to this rainfall most of the pits and dried ponds were full 

with water in 2009 which is detected as water body area rather than Bareland detected in 2003. 

Further, it can be observed in year 2014 that the contribution of built-up area, water body, 

green vegetation, rocky area andBareland were found to be 11.78%, 0.51%, 14.83%, 4.19% and 

68.67 %, respectively. It was found that built-up area expansion rate in period between 2009 and 

2014 reduced in comparison to 2003-2009 period. This was due to slow and stagnant economic 

growth and strict enforcement of government rules and regulations related to construction 

activities in these ecological sensitive zones such as ridge area in the foothills of Aravalli hill 

(Statistical Abstract Delhi, 2012 &2014). Green vegetation zone has expanded in rocky area due 

to conversion of scrub into green vegetation in central and southern ridge area in NCR.Overall, 

significant increase in built-up area (84.58%), green vegetation (58.60%) and water body 

(30.76%) has been observed from the year 2003 to 2014. The rocky area and Bareland decreased 

by 75% and 0.5%, respectively during this period. Summary of the composition of major LULC 

changes that occurred over past 11 years is depicted in Figure 3.3 and 3.4. 

Overlaying technique has used in Arc-GIS software to establishes a relation between 

population density and LULC types.We observed that similar spatial patterns follow theHighest 

density class and built-up area changes in between 2003 to 2014.  
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Figure 3.2 (a) Spatial distribution of LULC types in May 2003 in Delhi-NCR 

 

Figure 3.2 (b) Spatial distribution of LULC types in May 2009 in Delhi-NCR 
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Figure 3.2 (c) Spatial distribution of LULC types in May 2014 in Delhi-NCR 

 

Figure 3.3 LULC area covers in percentage during 2003-2014 
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Figure 3.4 Change in different LULC in %age in during 2003-2014 

[3.4] Summary 

In the present study, it is found that enormous changes have occurred in the spatial pattern of 

human population in NCR during the period 2000-2015. Percentage of total area covered by 

different population density classes decreased by 21.8%, 11.95%, 49.50% and 33.67% 

respectively for Sparse, Lower, moderate and high population density classes.  On the other hand, 

the Highest population density class is found to increase by 118.05% during 2000-2015. Further, 

significant changes in spatio-temporal patterns of land use and land cover are observed over the 

study area during the period 2003 to 2014. It is found that there is a noticeable increase in Built-

up area by 101% and Green vegetation cover area by 70% at the cost of ridge area (rocky area) 

and Bare land area which decreased by 67% and 4% respectively. In addition, similar spatial and 

temporal patterns are seen in the built-up area and highest density population classes as both 

shows a significant increase over the 10-15 year period. 
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Chapter-4  LST and its relation with LULC changes 

[4.1] Introduction 

The increasing pace of global urbanization influences the net productivity, biodiversity, weather 

and climate at local, regional and global arena (Han and Xu 2013; Lasanta et al. 2012; Mohan 

and Kandya 2015; Vorovencii 2015; Yin et al. 2010). The conversion of one type of LULC to 

another type affects the process of energy exchange between the terrestrial land and the 

atmosphere (Wang et al. 2016). 

A LULC composition has changed due to rapid expansion of urban area at the cost of 

natural LULC and has influenced the local meteorological and climatological parameters such as 

Land Surface Temperature (LST) and air temperature (Ding et al. 2013; Feizhang et al. 2016; 

Jones et al. 1990; Wang et al. 2016; Weber et al. 2014; Zhang et al. 2013).  LST is one of the key 

tool to study climatic variability and other environmental parameters (Ayanlade 2016; Feng et al. 

2014; Nguyen et al. 2015; Pichierri et al. 2014).The changes in LULC influences the LST due to 

the partitioning of sensible and latent heat flux of different LULC’s (Dubreuil et al. 2011). 

The enhancement in scientific development of remote sensing techniques by different 

national and international agencies provides an approach for precise spatio-temporal assessment 

of land surface phenomenon. Many studies have been done to retrieve LST from remotely sensed 

images such as Landsat TM/ETM
+
 (Thematic Mapper and Enhanced Thematic Mapper), MODIS 

(Moderate Resolution Imaging Spectro-radiometer) spatial resolution 1 km and ASTER 

(Advanced Space borne Thermal Emission and Reflection) spatial resolution 90 m (Brabyn et al. 

2013; Ding et al. 2013; Jimenej-Munoz et al. 2003; Kloog et al. 2012; Liu et al. 2006; Sobrino et 

al. 2004; Tomlinson et al. 2012). Numerous studies have reported that TM/ETM
+
 data set is one 

of the best data available to study the association between LULC composition and LST because 

its fine spatial resolution and it delivers multiple spectral range band data simultaneously (Ding et 

al. 2013; Feng et al. 2014; Sobrino et al. 2004). 
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The present study focusses on influence of LULC composition changes on spatio-

temporal pattern of LST during the period of 2003 to 2014 in National Capital Region (NCR) of 

India. In present chapter, it is an attempt to achieve two prime objectives i.e. 1) Spatio-temporal 

changes of LST retrieved from Thermal infra-red band of Landsat L_1 images data over NCR 

region during 2003- 2014 period. 2) To study relationship between spatio-temporal LULC pattern 

changes due to urbanization (discussed in chapter 3) and LST class over the study region. 

[4.2] Data processing and Methodology  

[4.2.1] Retrieval of land surface temperature 

For retrieving land surface temperature, the thermal Infrared band number 6 (low gain) (10.4-

12.4 µm) was used for TM and ETM
+
 data and band 10 was used for OLI data. The extraction of 

LST has been carried out using mono-window algorithm (Qin et al., 2001) and pre-processing of 

data has described in Handbook of Landsat 7 and 5. For derivation of spectral radiance, Eq. 3.1 

(discussed in chapter 3) has been used for TM and ETM
+
 band whereas, for OLI b and DN values 

were converted to spectral radiance by using following equation (Eq. 4.1): 

      Lλ = ML. Qcal + AL                                         (4.1) 

where Lλ is Spectral radiance in W/m
2
.sr.µm, Qcal is level 1 pixel value in DN, ML and AL 

are multiplicative and additive scaling factor for the band 10
th

 of OLI. 

Further, the Brightness Temperature (BT) has been retrieved (in Kelvin) at top of the 

atmosphere from spectral radiance using Eq. 4.2 under assumption of one unit emissivity. 

         BT =
K2

ln (
K1

Lλ
+ 1)

                                          (4.2) 

where K1 and K2 are thermal conversion constant consisting of metadata file whose 

values are 660.76 and 1260.56 for TM band, 666.09 and 1282.71 for ETM
+
 band, and 774.89 and 

1321.08 for OLI band in Wm
−2

 sr
−1

 µm
−1

, respectively. The above derived BT does not reflect the 

LST value because each LULC has distinct emissivity. Therefore, the BT of black body should 

be translated into emissivity corrected LST by the following equation 4.3 (Ding et.al. 2013). 
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LST =
(BT)

1 +
λ(BT)

ρ
. ln 𝜀

                                              (4.3) 

where ԑ is the Land Surface Emissivity (LSE), λ is wavelength of emitted radiance, 

ρ =
hc

κ
 = (1.438 × 10−2 mK), 𝜅 is Stefan-Boltzmann constant, ℎ is Planck’s constant and 𝑐 is 

the velocity of light. LSE with corresponding LULC type were estimated through relationship 

between emissivity and Normalized Difference Vegetation Index (NDVI). Empirical approaches 

applied to established relationship between NDVI and LSE reported by Eq. 4.4(Ding et.al. 2013). 

ε = 0.004PV + 0.986                                               (4.4) 

 

where ԑ is surface emissivity and PV is the vegetation proportion. PV was computed from 

NDVI using following Eq.4.5 (Carlson et al., 1997). 

              PV = [
(NDVI)−(NDVI)min

(NDVI)max−(NDVI)min
]

2

                                     (4.5) 

 

where NDVI, NDVImax[(ETM
+
=0.54) (TM= 0.60) and (OLI= 0.52)] and 

NDVImin[(ETM
+
= -0.05) (TM= -0.15) and (OLI= -0.12)] computed from spectral reflectance of 

band 4 (NIR) and 3 (red) in ETM
+
 and TM image. In OLI image, band 5 (NIR) and 4 (red) 

reflectance have been used for NDVI calculation using following equation: 

 

                    NDVI =
Γ(NIR)−Γ(R)

Γ(NIR)+Γ(R)
                                               (4.6)       

NDVI maps were generated using this equation for the month of May for the years 

2003,2009 and 2014 which are shown in Figure 4.1(a), 4.1(b) and 4.1(c), respectively. It was 

observed from the maps that NDVI was found very low in the surroundings of Delhi for the 

month of May in all these three years except in the region lying north-east to the Delhi’s 

surroundings. This is due to the reason that in the month of May, Rabi crop has been cut from the 

surroundings of Delhi. Further, in the north-east region NDVI was found to be somewhat higher 

in all the years which isdue to the reason that the sugarcane farming is dominant in this region 

almost in every season of the year.  
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Figure 4.1(a) NDVI during May 2003 in Delhi-NCR 

 

 

Figure 4.1 (b) NDVI during May 2009 in Delhi-NCR 
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Figure 4.1 (c) NDVI during May 2014 in Delhi-NCR 

NDVI maps generated above were then used to estimate emissivity using equations 4.5 

and 4.4, which was then used to convert the brightness temperatures into land surface 

temperatures using equation 4.3.  

[4.3] Results and Discussion 

[4.3.1] Spatial and temporal pattern of LST 

The Spatial and temporal pattern of LST over Delhi-NCR for the months of May 2003, 2009 and 

2014 respectively are shown in Figure 4.2 (a-c). It is observed that during May 2003, the LST 

ranged from 26.36 to 49.36
o
C with mean value of 39.65

o
C. While the corresponding LST ranges 

were observed to be 18.22 to 40.93
o
C (mean 31.44

o
C) and 24.30 to 44.58

o
C (mean 33.66

o
C) in 

the months of May 2009 and 2014 respectively. From the statistical parameters, it is observed 

that the month of May, 2009is found to be cooler with minimum temperature of 18.22
o
Cas 

compared to those for the months of May, 2014 and May, 2003 for which the minimum 

temperatures were found to be 24.30
o
C and 26.36

o
C respectively. It is mainly due to the change 
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in LULC pattern over the Delhi-NCR. The calculation of LST statistics for Delhi-NCR for the 

months of May 2003, 2009 and 2014 are shown below (Table 4.1): 

Table 4.1Statistics of LST classification during 2003-2014  

Classification statistics 
10 May 2003 18 May 2009 16 May 2014  

Max Temp (
o
C) 49.36 40.93 44.58 

Min Temp (
o
C) 26.36 18.22 24.30 

Mean±SD 39.65±3.79 31.44±3.18 33.66±1.87 

 

 

Figure 4.2 (a) LST during May 2003 in Delhi-NCR 
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Figure 4.2 (b) LST during May 2009 in Delhi-NCR 

 

 

Figure 4.2 (c) LST during May 2014 in Delhi-NCR 
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Spatial pattern of LST was determined by classifying above derived LST in four classes on the 

basis of standard deviation (Low, Moderate, High and Extreme) as shown below (Table 4.2). The 

results of LST have been classified by adding and subtracting the standard deviation from the 

mean LST value using GIS software.  

The LST classification (namely, Lower, Moderate, High and Extreme) of the study area 

are shown in Table 4.2. In the month of May 2003, it is observed that LST ranged in various 

classes i.e. Lower (26.00-36.00
o
C), Moderate (36.00-40.00

o
C), High (40.00-45.00

o
C) and 

Extreme (>> 45.00
o
C). Further, in the month of May 2009, the corresponding values of LST 

ranged from 18.00-28.00
o
C for Lower, 28.00-32.00

o
C for Moderate, 32.00-37.00

o
C for High and 

for Extreme >> 37
o
C. In addition, in the month of May 2014, the LST values observed in 

different classes were found to be Lower (24.00-32.00
o
C), Moderate (32.00-35.00

o
C), High 

(35.00-38.00
o
C) and Extreme (>> 38

o
C) respectively. 

Table 4.2 Different class range of LST in May month in year 2003, 2009 and 2014 

Class 
10 May 2003 (

o
C) 18 May 2009 (

o
C) 16 May 2014 (

o
C) 

Lower 26.00-36.00 18.00-28.00 24.00-32.00 

Moderate 36.00-40.00 28.00-32.00 33.00-35.00 

High 40.00-45.00 32.00-37.00 35.00-38.00 

Extreme >> 45.00 >> 37.00 >> 38.00 

 

The spatio-temporal maps of LST are shown in Figure 4.3 (a-c) which describes the 

distribution patterns of different LST classes over the national capital region of India. Distinct 

temperature ramp was observed among LULC types perceived on the LST maps. It can be seen 

from the LST maps that the moderate to high scale LST expanded from center to periphery 

during the years 2009 and 2014 as compared to that of year 2003 because of increased built-up 

area at that region. Extreme LST range was shrinking gradually in western and southern part of 
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the study area in stipulated time period because of the conversion of sparse scrub vegetation land 

(rocky area and desert area) into either green vegetation covers or built-up area. Lower and 

Moderate LST range cover was expanded from the central part of Delhi and north-eastern region 

lying to Delhi’s surroundings (along the bank of Yamuna River) to the north region in the 

surroundings of Delhi from May 2003 to May 2009. While in the month of May 2014, Lower and 

Moderate LST range cover were found to be further expanded towards south-west region in 

Delhi’s surroundings. 

 

 

Figure 4.3 (a) LST Class during May 2003 in Delhi-NCR 
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Figure 4.3 (b) LST Class in during May2009 in Delhi-NCR 

 

 

Figure 4.3 (c) LST Class during May 2014 in Delhi-NCR 
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[4.3.2] Association of LST with LULC 

In this section, association of LST with different LULC has been evaluated. Many studies have 

reported that LST is closely associated with different LULC types such as built-up area, 

vegetation area, moist soil (agricultural land) and dry land (desert and rocky area) (Jones et al. 

1990; Pichierri et al. 2012; Zhang et al. 2013). Therefore, it is important to investigate the 

relationship between different LULC and LST distribution pattern in the rapidly expanding NCR 

region of India. The spatial distribution of LST closely associated with LULC in the present 

study. This association was established through overlay (intersect tool) technique in Arc-GIS 

software by randomly selected 10000 points in each images (LULC type and LST images). 

Average LST of different LULCs and corresponding classes of LST are shown in Table 4.3 and 

Table 4.4, respectively.  

Table 4.3 Mean LST of different LULC types in May month in year 2003, 2009 and 2014 

Landform types 
10 May 2003 (

o
C) 18 May 2009 (

o
C) 16 May 2014 (

o
C) 

Built-up area 37.37 29.93 34.85 

VWMA area 35.07 27.95 31.69 

Rocky area with scrub vegetation 40.10 32.84 35.12 

Dry Bare land  45.14 35.56 38.83 

 

Table 4.4 LST class with different LULC types in May month in year 2003, 2009 and 2014. 

LST Class 10 May 2003 18 May 2009 16 May 2014 

Lower VWMA area VWMA area VWMA area 

Moderate Built-up area Built-up area Built-up area 

High Rocky area with scrub 

vegetation 

Rocky area with scrub 

vegetation 

Rocky area with scrub 

vegetation 

Extreme  Dry Bare land  Dry Bare land  Dry Bare land  
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In the month of May 2003, the mean LST were found to be 37.37
o
C, 35.07

o
C, 40.10

o
C 

and 45.14
o
C for built-up area, Green vegetation area including water bodies and Moist 

Agricultural land (VWMA area), Rocky area and dry Bare land respectively, which suggested 

that Built-up area, VWMA area, Rocky area and dry Bare land comes under Moderate, Lower, 

High and Extreme LST Class range respectively. 

The results were found to be similar for the month of May 2009 as compared to those of 

May 2003. The Built-up area belong to moderate LST Class with mean temperature 29.93
o
C and 

other LULC types VWMA area belonged to lower (mean LST 27.95
o
C), rocky area belonged to 

high (average LST 32.84
o
C) and desert area belonged to high (average LST 35.56

o
C) LST Class 

respectively.  Further, it can be observed during 2014, built-up area (mean LST 34.85
o
C) LST 

belonged to Moderate class, Rocky area belonged to high class (mean LST 35.12
o
C), VWMA 

area belonged to lower class (mean LST 31.69
o
C) and dry Bare land (mean LST 38.83

o
C) 

belonged to extreme LST Class respectively. 

The percentage of area cover by different LST class is shown in Figure 4.4  In 2003, the 

percentage of area cover for different LST class cover comprise Lower (14.08%), Moderate 

(33.64%), High (40.50%) and Extreme (11.77%) over the study area. In the year 2009, dynamic 

changes were observed in the area cover of different LST class i.e. Lower (15.16%), Moderate 

(44.54%), High (33.67%) and Extreme (6.62%) respectively. In the year 2014, total 70.83% area 

lied under two LST class i.e. Lower (19.33%) and Moderate, (50.80%), as compared to other two 

class i.e. High (28.01%) and Extreme (1.86%). It is observed (Figure 4.4 ) that during the study 

period, area cover by Lower and Moderate class of LST is expanding while area cover by High to 

Extreme class decreases during this period (2003, 2009 and 2014). 
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Figure 4.4 LST area covers in percentage during 2003, 2009 and 2014. 

As discussed in chapter 3, it is clearly observed (Figure 3.2 a-c) that the built-up area 

expanding the region lying north of Delhi and in eastern region of Delhi’s surroundings which is 

dominated by agricultural land that leads to rise in average LST. Further, built-up expansion also 

occurred in south-west part of the city which was primarily covered by ridge and dry Bare land 

that leads to decrease in average LST over this region. Overall the mean LST for the entire NCR 

follow decreasing LST trend because of increased level of green vegetation cover during the 

months of May 2003, 2009 and 2014. 

Overlaying (intersection) technique has been adopted to estimate the pattern of LST with 

LULC type’s i.e. Built-up area, Green vegetation and Rocky area changes using ArcGIS software 

over the study area. From Figure 4.5 (a, b and c), it is clearly observed that the Moderate LST 

class pattern during 2003, 2009 and 2014 is closely associated with Built-up area pattern. The 

area by Moderate LST class was changed from 33.64% to 50.80%, which is followed by similar 

trend as of urban Built-up area that changed from 5.84% to 11.78% in between 2003 to 2014. It 

can be observed that urban area expansion highly influences the local LST dynamics.  
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Figure 4.5 (a) Percentage of LST class with built-up area 

 

Figure 4.5 (b) Percentage of LST class with Green vegetation area 
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Figure 4.5 (c) Percentage of LST class with Rocky area  

Green vegetation area cover expands from 8.72% to 14.83% followed by similar 

increasing trends with Lower LST class from 14.08% to 19.33% between the years 2003 to 2014. 

The area cover by High LST class shrinks from 40.50% to 28.01% followed by similar 

decreasing trend to that of Rocky area which decreased from 12.99% to 4.19% in Delhi-NCR 

during 2003-2014. 

[4.4] Summary 

In recent decade, due to fast expansion of Built-up area in peripheral areas of NCR, LULC 

composition change had influenced the spatio-temporal pattern of local meteorological 

components. It has also been observed that LULC composition changes are predominant factor in 

LST anomaly in stipulated time period. Built-up area has expanded more in northern and eastern 

part of the city which leads to shifting of LST from lower to higher class. The total area cover by 
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different LST class change occurred during study period in found to be: Lower (37.28%), 

Moderate (51.01%), High (30.83%) and Extreme (84.19%). Further, it is clearly observed that the 

Moderate LST class pattern is closely associated with Built-up area pattern. The area by 

Moderate LST class was changed from 33.64% to 50.80%, which is followed by similar trends 

for urban Built-up area that changed from 5.84% to 11.78% in between 2003 to 2014. It shows 

that urban area expansion highly influences the local LST dynamics. In addition, it can be seen 

that green vegetation area cover expanded from 8.72% to 14.83% followed by similar increasing 

trends with Lower LST class (~14.08% to 19.33%) between the years 2003 to 2014. Further, the 

area cover by High LST class decreases from 40.50% to 28.01% followed by similar decreasing 

trend to that of Rocky area (~12.99% to 4.19%) over Delhi-NCR between the time periods 2003 

to 2014. The results of present chapter can provide better understanding of urbanization 

phenomenon with corresponding change in LULC composition and LST to the policy makers and 

urban planners. For future studies, there is need for the availability of long term data with higher 

resolution for LULC composition and LST analysis for better understanding of urbanization 

process and its impact on environment. 
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Chapter-5  Urban air pollution exposure and its relation to LULC 

[5.1] Introduction 

In the early stage of urban air pollution, studies were primarily focused on a macro level and the 

comparison of concentration in air pollutants between the urban and rural area situated at far 

location (Dockery et al., 1993; Pope et al., 2002). Nowadays, macro level research arena has been 

shifted to micro-level studies such as intra-urban spatial contrast of air pollution and its exposure 

to the human population (Hoek et al., 2002; Beelen et al., 2008 & 2013; Saraswat et al., 2013). 

Long-term exposure to ambient fine particulate matter such as PM2.5 (aerodynamic diameter ≤ 

2.5 µm) has been associated with morbidity and premature mortality in the human population 

(Dockery et al., 1993; Pope et al., 2009; Brauer et al., 2012). In recent years, PM2.5 has been 

identified as one of the most important factors responsible for premature deaths. Lim et al. (2012) 

reported 3.2 million deaths per year worldwide due to premature mortality caused by ambient 

PM2.5 exposure. In the last decade, India was recognized as a regional pollution hotspot, 

(particularly in high-burden aerosol) with more than 1.2 billion population (Dey and Di 

Girolamo, 2011).  

In recent years, the air quality of NCR of India has become one of the most debatable 

issues in air pollution studies. Therefore, many researchers have focused their efforts towards the 

study of spatial and temporal distribution of particulate matter and its exposure to the human 

population in NCR (Goel et al., 2015; Saraswat et al., 2016; Maji et al 2017). Most of the 

previous studies used particulate matter data from air quality monitoring stations, which were 

situated in limited areas, mostly in the city centers and a few in rural or semi-urban areas. They 

used different modeling approaches for pollution exposure assessment based on population data 

obtained from the census of India. Satellite-derived spatio-temporal concentration of air 

pollutants (such as PM2.5) is more suitable for the studies of long-term exposure assessment 

because data availability is uniformly distributed over entire study area (Donkelaar et al., 2015; 

Chowdhury and Dey, 2016). GIS-based modeling approaches provide a fair approximation of 
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long-term exposure to averaged pollutant concentration range to the human population 

(Morgenstern et al., 2008).  

In the present Chapter, the spatio-temporal trends during 2000-2012 have been estimated 

using satellite derived PM2.5 concentration and its exposure to human population residing in 

different locations in the NCR of India. We aimed three primary objectives for this study (1). To 

examine the trend of PM2.5 concentration followed in stipulated period at each sampling point (42 

points) lied in different LULC using Mann-Kendall trend model. (2). Applying GIS-based 

modeling approach for evaluating spatial and temporal changes of PM2.5 occurred in the study 

period. (3). Estimation of long-term exposure of PM2.5 to the human population living at different 

locations in the study area via spatial analyst tool of Arc-GIS.  

[5.2] Data processing and Methodology 

[5.2.1] Data Sources 

For the present study, we have used PM2.5 concentration data set containing floating point value 

of three-year running mean grids from 1998 to 2012 obtained from SEDAC. 

(http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-modis-misr-seawifs-

aod-1998-2012/data-download). The spatial resolution of this product is 10km x 10km 

(0.1
o
x0.1

o
) at the equator which covers 70

o
 north to 55

o
 south of global land surface. It is derived 

from AOD (Aerosol optical depth) retrieved from the combination of three earth observatories 

satellite namely as MODIS (Moderate Resolution Imaging Spectroradiometer), MISR Multi-

angle Imaging Spectro Radiometer) and SeaWIFS (Sea-Viewing Wide Field-of-View Sensor). 

For the derivation of PM2.5 concentration, GEOS-Chem chemical transport model is used for 

converting AOD to near-ground level PM2.5 in µg/m3 (Donkelaar et al. 2015). Monthly average 

data of Respirable Suspended Particulate Matter (RSPM), NO2, SO2 and CO concentration for 

May 2009 was obtained from DPCC.  (https://www.dpcc.delhigovt.nic.in/Air40.html)  

 

http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-modis-misr-seawifs-aod-1998-2012/data-download
http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-modis-misr-seawifs-aod-1998-2012/data-download
https://www.dpcc.delhigovt.nic.in/Air40.html
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[5.2.2] Methodology 

Satellite-derived PM2.5 concentration has low biased measurements as compared to the direct 

measurements (Dey et al., 2012). We have extracted the value of PM2.5 concentration to randomly 

selected 42 points from 10 km x 10km gridded raster dataset for each year from 1998 to 2012 

using Arc-GIS software. For statistical significance and trend analysis we have applied Mann-

Kendell trend test at 95% confidence level for each 42 points located in different LULC type in 

the study period. Mann-Kendell trend test is a widely applicable non-parametric test for 

assessment of environmental time series data (Mann, 1945; Helsel, 2002; yu et a., 2002) Mann-

kendell trend statistic (S) is derived by: 
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Air pollutants RSPM, NO2, SO2, CO and PM2.5   data were converted to a raster floating 

point data format in 30 m spatial resolution by an ordinary Kriging model (Interpolation method) 

technique using spatial analyst tool of Arc-GIS software. Geographic interpolation and 

extrapolation are the tools which are used in order to complete the maps with incomplete data 

either absence of value in the dataset or missing data for a location in the region of interest. 

Kriging model is a geo-statistical method of interpolation, which measure the geo-statistical 

association amongst the points and predicts the missing value with high accuracy at high 

confidence level (Zhou et al., 2007). Kriging is the most common and statistically sound method 

used in interpolation technique for spatial analysis with missing data at a location between known 

data values. Ordinary Kriging is linear because it estimates weighted linear combination of 

known data and unbiased since it tries to maintain mean residual (MR) or error tends to zero 

(Chun and Griffith, 2013). 

[5.3] Results and Discussion 

[5.3.1] Trend analysis of PM2.5 for the studied period (2000-2012) using Mann-Kendall 

trend model (MKTM) 

The annually average PM2.5 concentration at all 42 points for the entire NCR region have shown 

increasing trend during the study period as shown in Figure 5.1. For the classification of LULC 

pattern for NCR, image data from GLOVIS for the month of May 2014 have been used (already 

discussed in Methodology section of Chapter 3). The month of May has been selected because of 

its clean atmosphere (cloud free data) and high air temperature (i.e. no fog formation) which is 

suitable for study related to surface phenomenon via satellite observation. For the purpose of  
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Figure 5.1 Annually averaged PM2.5of all 42 locations with trend line during 2000-2012 

 

Figure 5.2 LULC types showing selected 42 points of entire study area 
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analysis, a buffer area of radius 1 km was created around each of the 42 points shown in Figure 

5.2 was created. This buffer area was classified as Dense Urban Area (UA), developing Rural and 

Semi-urban Area (RSA), Ridge Area (RA) and Bare Agricultural Land (BAL) according to the 

dominant LULC in the buffer area. 

Results showed that there is a significant increasing trend at all the points with different 

positive z-value. It showed that probability p-value was very less than the confidence level of 

alpha value (α= 0.05), which clearly indicated that there is a increasing trend at all points, 

irrespective of points under which canopy layer exists during the study period. The significance 

of trend is measured by the statistic z-value. If z-value is larger than zα/2 (z0.025=1.96), where α= 

0.05, the null hypothesis are rejected, or trend is significant.  

The Z-values in table 5.1 indicate the significance of observed results of MKTM test at 

each point for PM2.5 trends. It is seen that z-values for the sites Sehanikhurd (SH), Gaur City 

(GC), Jeevan Nagar (JN), GTB Staff colony (GT), Jaitpur Village (JV) and Balmiki Basti (BB) 

are on the higher side among the urban area (UA) sites. This indicates the presence of a strong 

increasing trend at these sites. On the other hand, the z-values of the sites Mukharjee Nagar 

(MN), Mayapuri Industrial area (MI), Nirvana country (NC), and Ballabhgarh (BL) are on the 

lower side among the urban area sites (UA) which suggests a comparatively weaker trend at these 

sites.  

Among the rural and semi- urban points, the sites which are situated in western to 

northern region of study area i.e. Jori (JO), Mitraon (MT), Bwana Village (BV) and Alipur 

Village (AV) experienced more significant trend as compared to sites lying in the eastern region 

i.e. Yakubpur (YK), Ghitora (GH) and Chakmajai(CH).  

In ridge area, Zakopur (ZA), Faridabad Ridge Area (FA), Bandhwari (BW), Gratpur Bas 

(GB), Kheria (KH) and Manesar (MA) lying towards southern region of study area have also 

shown significant increasing trend due to a rapid expansion of Extended Urban Agglomeration 

(EUA) in the vicinity of that region.  
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Points lying under bare land and agricultural land such as Patala Dehat (PD), Mukari 

(MU), Baraka Arifpur (BA) and Khorajpur (KH) in eastern and north eastern region have shown 

more significant trend as compared to sites located in western region Budhera (BU), in northern 

MalhaMajra (MM) and in southern region Kurali (KU).  

Table 5.1 MKTM model results for PM2.5 concentration trend in different subclass 

SN Site Name ID Sub-types s-value z-value p-value  Trend  

1 Ballabhgarh BL UA 41 2.44 1.47E-02 [+Ve] 

2 Mayapuri Industrial area MI UA 44 2.62 8.71E-03 [+Ve] 

3 Mukharjee Nagar MN UA 52 3.11 1.86E-03 [+Ve] 

4 Nirvana country NC UA 54 3.23 1.22E-03 [+Ve] 

5 Aya Nagar AN UA 56 3.36 7.92E-04 [+Ve] 

6 Rohini RO UA 56 3.36 7.92E-04 [+Ve] 

7 New Ashok Nagar AN UA 58 3.48 5.06E-04 [+Ve] 

8 Palam PA UA 60 3.60 3.19E-04 [+Ve] 

9 Kakrola KA UA 62 3.72 1.98E-04 [+Ve] 

10 India Gate IG UA 62 3.72 1.98E-04 [+Ve] 

11 South Sainik Farm SF UA 62 3.72 1.98E-04 [+Ve] 

12 BalmikiBasti BB UA 64 3.84 1.21E-04 [+Ve] 

13 Jaitpur Village JV UA 64 3.84 1.21E-04 [+Ve] 

14 GTB Staff colony GT UA 64 3.84 1.21E-04 [+Ve] 

15 Jeevan Nagar JN UA 66 3.97 7.30E-05 [+Ve] 

16 Gaur City GC UA 70 4.21 2.60E-05 [+Ve] 

17 SehaniKhurd SH UA 72 4.33 1.50E-05 [+Ve] 

18 Chakmajai CH RSA 41 2.44 1.47E-02 [+Ve] 

19 Ghitora GH RSA 48 2.87 4.14E-03 [+Ve] 

20 Yakubpur YK RSA 53 3.17 1.51E-03 [+Ve] 

21 Greenopolis GR RSA 58 3.48 5.06E-04 [+Ve] 
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22 Nathupur NP RSA 60 3.60 3.19E-04 [+Ve] 

23 TehariDawlatpur TW RSA 62 3.72 1.98E-04 [+Ve] 

24 Alipur Village AV RSA 64 3.84 1.21E-04 [+Ve] 

25 Jori JO RSA 66 3.97 7.30E-05 [+Ve] 

26 Mitraon MT RSA 72 4.33 1.50E-05 [+Ve] 

27 Bwana Village BV RSA 72 4.33 1.50E-05 [+Ve] 

28 Manesar MA RA 58 3.48 5.06E-04 [+Ve] 

29 Kheria KH RA 61 3.66 2.52E-04 [+Ve] 

30 Gratpur Bas GB RA 62 3.72 1.98E-04 [+Ve] 

31 Bandhwari BW RA 64 3.84 1.21E-04 [+Ve] 

32 Faridabad Ridge Area FA RA 66 3.97 7.30E-05 [+Ve] 

33 Zakopur ZA RA 71 4.27 1.90E-05 [+Ve] 

34 Kurali KU BAL 37 2.20 2.81E-02 [+Ve] 

35 MalhaMajra MM BAL 48 2.87 4.14E-03 [+Ve] 

36 Budhera BU BAL 50 2.99 2.79E-03 [+Ve] 

37 Baghpat BG BAL 60 3.60 3.19E-04 [+Ve] 

38 Harchandipur HA BAL 60 3.60 3.19E-04 [+Ve] 

39 Khorajpur KH BAL 64 3.84 1.21E-04 [+Ve] 

40 Baraka Arifpur BA BAL 72 4.33 1.50E-05 [+Ve] 

41 Mukari MU BAL 73 4.39 1.10E-05 [+Ve] 

42 PatalaDehat PD BAL 75 4.51 6.00E-06 [+Ve] 
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[5.3.2] Spatial and temporal pattern of PM2.5 concentration in NCR the Interpolation of 

PM2.5 

Spatial distribution of PM2.5 concentration in raster data file at 30 m spatial resolution have been 

created for four year interval from 2000 to 2012 (Figure 5.3 a-d). Overlaying of the LULC map 

(five class map) of Landsat 8 data have been created by supervised classification (Figure 5.2) 

over the study region with the corresponding PM2.5 concentration map. It was observed that urban 

agglomeration mainly consist of built-up area which was found to be dominated in eastern and 

central region have higher PM2.5 concentration in contrast to prevailing ridge area in southern and 

bare land in western part of studied area. 

  

  

Figure 5.3 (a) Range of PM2.5 concentration across Delhi-NCR during 2000 
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Figure 5.3 (b) Range of PM2.5 concentration across Delhi-NCR during 2004 

 

 Figure 5.3 (c) Range of PM2.5 concentration across Delhi-NCR during 2008 
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Figure 5.3 (d) Range of PM2.5 concentration across Delhi-NCR during 2012 

The changes occurred in PM2.5 concentration levels during 2000 to 2004, 2008 and 2012 

have been displayed in Figure. 5.4 (a-c). A significant change was observed during 2000 and 

2004 towards eastern and central-southern part of study area which further gets a wider range of 

changes in the later year of 2008 and 2012. It can be due to both anthropogenic such as rampant 

construction carried out in the region and meteorological parameters as prevailing wind were 

northwesterly. This wind carries a huge amount of particulate matter from bare land in the 

western and northern region (desert in the western region and agricultural land in northern 

region) to Delhi-NCR (Statistical Abstract 2014.).   
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Figure 5.4 (a) PM2.5 concentration anomaly across Delhi-NCR for 2004 with reference of 2000 

 

Figure 5.4 (b) PM2.5 concentration anomaly across Delhi-NCR for 2008 with reference 2000 
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Figure 5.4 (c) PM2.5 concentration anomaly across Delhi-NCR for 2012 with reference 2000 

PM2.5 concentration range was manually classified in 11 vulnerability classes i.e. from 

Class 1 to Class 11 in increasing concentration order using Arc-GIS. As per Table 5.3 (b), we 

have observed that there was prominent variation in the different class range of PM2.5 (%) of the 

total study area. In 2000, we can see that most of the area (62.60%) lied in two classes that 

ranged from Class 1 (31.49%) to Class 2 (31.11%) and rest of the area covered by another three 

classes as Class 3 (13.7%), Class 4 (20.61%) and Class 5 (3.07%). Further, a shift in PM2.5 

concentration was observed in 2004, 63.64% of the total area covered by three classes namely 

Class 4 (15.64%), Class 5 (18.98%), and Class 6 (26.93%) and remaining area covered by Class 

7 (14.07%), Class 8 (11.86%) and Class 9 (12.39%). In 2008, major fraction (70.02%) of the 

study area covered by three classes such as Class 5 (24.45 %), Class 6 (27.73) and Class 7 

(17.84) and other minor fraction 30.08% covered by Class 4 (1.82%), Class 6 (6.15%), Class 9 

(9.71%), and Class 10 (12.68%). Dynamics further shifted to higher range in 2012, area covered 

by following classes as class 5 (2.93 %), Class 6 (34.66 %), Class 7 (22.44 %), Class 8 (11.66 

%), Class 9 (7.89 %), Class 10 (14.82 %) and Class 11 (5.56 %). 
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Table 5.2 Area covered by different PM2.5 class during 2000-2012 

SN Range (µg/m
3
) Class Area (% age)  

   2000 2004 2008 2012 

1 34-40 Class 1 31.49      -      -      - 

2 40-46 Class 2 31.11      -      -      - 

3 46-52 Class 3 13.7      -      -      - 

4 52-58 Class 4 20.61 15.73 1.82      - 

5 58-64 Class 5 3.07 18.98 24.45 2.93 

6 64-70 Class 6     - 26.93 27.73 34.66 

7 70-76 Class 7     - 14.07 17.84 22.44 

8 76-82 Class 8     - 11.86 6.15 11.66 

9 82-88 Class 9     - 12.39 9.71 7.89 

10 88-92 Class 10     -     - 12.68 14.82 

11 92-98 Class 11     -     -      - 5.56 

 

[5.3.3] Spatial and temporal pattern of human population and exposure of PM2.5 

For assessment of spatial population distribution in the different part of the study area has been 

exposing divergent range of PM2.5 concentration through overlaying PM2.5 map (Figure 5.3 a, b, c 

and d) and population map Figure 3.1 (in Chapter 3). We have seen here that population residing 

in north-east and eastern part of Delhi-NCR exposing higher PM2.5 concentration range as 

compare to the southern and southwest region in the year 2000. In the later stage of study period 

(2012) population that is living in the southern and south-western part of an area is getting 

exposure of a higher range of PM2.5.   

Exposure of 11 vulnerability categories of the PM2.5 concentrations to human population 

density class has been examined through spatial analyst tool embedded in ArcGIS software. 

Figure 5.5 (a-b) illustrates the exposure of PM2.5 on population density class during the year 2000 

and 2012. In the year 2000, Class 1 to Class 5 PM2.5 concentration range are predominantly 
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exposed to Highest and High class population density range, respectively. However, Moderate to 

Lower population density classes are exposed to Class 4 and Class 5 of PM2.5 concentration range 

and sparse population density class predominantly exposed to Class 1 of PM2.5 concentration 

range. During 2012, Highest to High density population have been exposed from Class 7 to Class 

11 range of PM2.5. Further, Class 6 to Class 10 PM2.5 concentration range is exposed from 

Moderate to Lower population density. While, sparse population either predominantly exposed 

from Class 5 or Class 11 concentration range of PM2.5.  

The various air quality standards for PM2.5 exposure threshold to human population are 

given by United States Environment Protection Agency, (12.5 µg/m
3
), WHO interim target (IT) 

iii (15 µg/m
3
), IT ii (25 µg/m

3
), IT i (35 µg/m

3
), and Indian standard (40 µg/m

3
) (Chowdhury et 

al., 2016; Donkelaar et al., 2015). It was observed that Class 1 to Class 2 PM2.5 concentration 

range near to IT (i) and Indian standard exposed to Sparse and Highest density population in the 

study area during 2000. Further, in the year 2012, it is observed that almost 100% population 

living in studied area is exposed to above any standard threshold value.  

According to WHO report (2013), life expectancy of human population has been reduced 

by average of 8.6 months with high exposure of PM2.5 in countries of European Union. When 

daily exposure of PM2.5 increased by10 µg/m
3
 accordingly hospitalization rate raised by 8 % and 

prevalence rate of respiratory diseases increased by 2.07 % (Dominici et al 2006; Zanobetti et al., 

2009). A study conducted in United States for 7 years (during 2000-2007) showed that average 

life expectancy was extended by 0.35 years for every 10 µg/m
3
 decreases of PM2.5 exposure to 

population (Correia et al., 2013). After comparing our results with the previous studies, it is 

estimated that the levels of PM2.5 is largely increased by approximately 77 % in the present study 

area during 2000 to 2012 (Figure 5.3a). It is also concluded that the range between 34-64 µg/m
3
 

of PM2.5 were dominant during year 2000 while this range significantly increased up to the range 

of 64-98 µg/m
3
 during 2012 (Table 5.3b). This clearly indicates that the exposure due to PM2.5 is 

largely increased in total covering area of NCR and to high population density group.   
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Figure 5.5 (a) PM2.5 exposure to population density class during 2000 

 

Figure 5.5 (b) PM2.5 exposure to population density class during 2012  
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[5.4] Spatial pattern of Air pollutants and it’s relation to LST and LULC in Delhi region 

In this section, the influence of LULC changes on spatial air pollutants concentration distribution 

pattern in Delhi region is examined. Further, different pollutant concentration relation with LST 

is also estimated. Figure 5.6 (a) explained the LULC spatial distribution in region of interest area 

.Green Vegetation and Built-up area dominated as 38% and 25% respectively. Bare land, Water 

bodies and Rocky land have composition of 30%, 4% and 3% respectively of the total Delhi area 

{Figure 5.6 (b)}. Built-up area has dominated in eastern to north-western region and Green 

vegetation has primarily situated in south to central region of Delhi. LST spatial distribution has 

seen in Figure 5.7. LST pattern clearly indicated as western region have higher LST range in 

compare with center to eastern region. 

 

Figure 5.6 (a) Spatial distribution LULC types in May 2009 in Delhi region 



Page | 76  
 

 

Figure 5.6 (b) Composition of LULC types in May 2009 

 

Figure 5.7 Spatial distribution LST in May 2009 in Delhi region 
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Air pollutants concentration has manually been classified into five classes from low to high i.e. 

Lower, Moderate, High, Very High and Extreme concentration range using Arc-GIS software. 

Figure 5.8 to 5.11 shows the spatial pattern of air pollutants concentration in Delhi region in the 

month of May 2009. Very High to Extreme class of RSPM concentration has distributed over 

east to south-east region. Moderate to High class of RSPM has covered west to central region and 

Lower class is primarily located at central region of Delhi Figure 5.8. Spatial distribution of NO2 

has seen in Figure 5.9. Very High to Extreme concentration of NO2 has lied over eastern region 

and Lower to Moderate class has distributed central to western region of Delhi. Wide distribution 

of SO2 has seen over Delhi region in the month of May 2009 (Figure 5.10). Very-High and 

Extreme class are sparsely distributed in south-east to central region and High class has 

distributed in patchy form in all the regions. Lower and Moderate class has primarily cover in 

central to western region of studied area. Spatial distribution in CO concentration has shown in 

Figure 5.11. There was no distinct class cover found while most widely Moderate class is evenly 

distributed in the entire area. High and Extreme class is lying in patchy form in east to central 

region of Delhi. 

 

Figure 5.8 Spatial pattern of RSPM concentration class in May 2009 over Delhi region 
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Figure 5.9 Spatial pattern of NO2 concentration class in May 2009 over Delhi region 

 

Figure 5.10 Spatial pattern of SO2 concentration class in May 2009 over Delhi region 
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Figure 5.11 Spatial pattern of SO2 concentration class in May 2009 over Delhi region 
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Figure 5.12 Correlation coefficient between pollutants concentration and LST in May 2009   
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All discussed air pollutants (RSPM, NO2, SO2, CO) are negatively co-related with LST. 

The relation between NO2 and RSPM concentrations with LST is significant in comparison to 

SO2 and CO. The co-relation coefficient of NO2, RSPM, SO2 and CO are found to be -0.43, -

0.12, -0.02, and -0.04 respectively Figure 5.12. 

Most of the studied area has lied under Moderate to High pollutants concentration class in 

the month of May 2009. Moderate and High class of RSPM cover 62% of total area and rest lies 

under Extreme, Very High and Lower classes which covered 10%, 10% and 18% of the total area 

respectively. Different classes of NO2 namely; Lower, Moderate, High, Very-High and Extreme 

has covered 8%, 43%, 17%, 16% and 16% of the total area of Delhi respectively.  Extreme, 

Very-High,  High,  Moderate and Lower class of SO2 has covered 4%, 9%, 13%, 55% and 19% 

of total area respectively in Delhi region Figure 5.13.  

 

Figure 5.13 Percentage area covers by different air pollutants concentration class in May 2009  

The relation between different classes of air pollutants concentration and LULC types are 

shown in Figure 5.14 (a-e). Lower class of all air pollutants (RSPM, NO2 and SO2) were found 

over green vegetation area in Delhi region during May 2009. Bare Land cover in Delhi region has 

been found to be dominated by Moderate pollutants concentration class in May 2009. Most part 

of the Very-High to Extreme pollutants concentration class existed over the Built-up Area of 
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Delhi region in May 2009. In other words, Built-up area has lied under Extreme and Very-High 

pollutants class in May 2009 at Delhi region Figure 5.15. Extreme and Very-High pollutants class 

has primarily lied over Built-up area situated in east region in Delhi. Population residing in east 

zone of Delhi region has been exposed to higher pollution class as compared to population 

residing in central and south zone in May 2009. 

 

Figure 5.14 (a) Percentage area covers by Lower pollutants class in different LULC in May 2009  

 

Figure 5.14 (b) Percentage area covers by Moderate pollutants class in different LULC in May 

2009 
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Figure 5.14 (c) Percentage area covers by Moderate pollutants class in different LULC in May 

2009 

 

Figure 5.14 (d) Percentage area covers by Very-High pollutants class in different LULC in May 

2009 
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Figure 5.14 (e) Percentage area covers by Extreme pollutants class in different LULC in May 

2009 

 

Figure 5.15 Percentage of pollutants concentration class covered over Built-up area in May 2009   

[5.4] Summary 

In the present study, we analyzed the location wise statistics of a satellite-derived annual average 
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human population in National Capital Region, India. Our results showed the micro level spatial 

and temporal continuous heterogeneity of PM2.5 concentration over the study area. Major 

conclusions of our study are as follows: 

1. MKTM revealed that overall increasing trend of PM2.5 concentration is noticed in last 

decade at all 42 points of the study area. Significant increasing trend was found in 

extended urban agglomeration and developing area (RSA, BAL, and RA) as compared to 

already developed urban area. Therefore, it is concluded that LULC change influences the 

location specific concentration of PM2.5. 

2. The dynamics of the spatio-temporal distribution of PM2.5 concentration range 

significantly changed during the study period (2000-2012). In the year 2000, most of the 

area covers 62.60 % by Class 1 to Class 2 range of PM2.5 and it changes to 62.37% cover 

by Class 7 to Class 11 concentration range in the year 2012.  A dense urban area in the 

eastern and central region have higher PM2.5 concentration range as compared to 

prevailing ridge area in the southern and blank land in western zone of studied area. 

3. In 2000, Class 1 to Class 2 PM2.5 concentration range is predominantly exposed to 

Highest to High population density area. However, in 2012 Highest to High population 

density area are exposed Class 7 to Class 11 concentration range of PM2.5. 

4. After examining the exposure assessment, it is indicated that Highest density population 

area exposed to the annual average of PM2.5 concentration ≤ 40 µg/m
3
 (Indian standard 

thresholds) during 2000. Further, it changes to Higher and Highest population density 

during 2012 which exposed to ≥ 70 µg/m
3 

annual concentration of PM2.5. 

5.  RSPM, NO2, SO2, and CO concentration are negatively co-related with LST 

6. Most part of the Very-High to Extreme pollutants concentration class existed over the 

Built-up Area of Delhi region in May 2009. 

7. Population residing in east zone of Delhi region has been exposed to higher pollution 

class as compared to population residing in central and south zone in May 2009. 
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Chapter 6                  Conclusions 

In the present study, it is found that enormous changes have been occurred in spatial pattern of 

human population changes in NCR during the period 2000-2015. Percentage of total area cover 

by different population density class is decreased by 21.8%, 11.95%, 49.50% and 33.67% for 

Sparse, Lower, moderate and high density class respectively.  Highest density class is found to 

increase by 118.05% during 2000-2015. Further, extreme changes in spatio-temporal pattern of 

land use and land cover is observed over the study area during period 2003 to 2014. It is found 

that there is coherent increase in Built-up area by 101% and Green vegetation cover area by 70% 

at the cost of ridge area (rocky area) and Blank land area decreases by 67% and 4% of total area 

cover.  

It has also been observed that LULC composition changes are predominant factor in LST 

anomaly in stipulated time period. Built-up area has expanded more in northern and eastern part 

of the city which leads to shifting of LST from lower to higher class. The total area cover by 

different LST class change occurred during study period in found to be: Lower and Moderate 

increased by 37.28% and 51.01% respectively.  High and Extreme class decreases by 30.83% and 

84.19%.  It is clearly observed that the Moderate LST class pattern is closely associated with 

Built-up area pattern. The area by Moderate LST class was changed from 33.64% to 50.80%, is 

follow similar trend as urban Built-up area changed 5.84% to 11.78% in between 2003 to 2014. It 

shows that urban area expansion highly influences the local LST dynamics. Lower LST class 

corresponding to Green vegetation is concentrated in the central to northeast area of NCR during 

the year 2003 which gradually expanded to southern direction in later years due to conversion of 

scrub vegetation cover to ridge area into Green vegetation. 

Our results showed that micro level spatial and temporal continuous heterogeneity of air 

pollutants as RSPM, NO2, SO2 CO and PM2.5 concentration in the studied area. MKTM revealed 

that overall increasing trend of PM2.5 concentration is noticed in last decade at all 42 points of the 

studied area. Significant increasing trend was found in extended urban agglomeration and 
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developing area (RSA, BAL, and RA) as compared to already developed urban area. Therefore, it 

is concluded that LULC change influences the location specific concentration of PM2.5. The 

dynamics of the spatio-temporal distribution of PM2.5 concentration range significantly changed 

during the study period (2000-2012). In the year 2000, most of the area covers 62.60 % by Class 

1 to Class 2 range of PM2.5 and it changes to 62.37% cover by Class 7 to Class 11 concentration 

range in the year 2012.  A dense urban area in the eastern and central region have higher PM2.5 

concentration range as compared to prevailing ridge area in the southern and blank land in 

western zone of studied area. In 2000, Class 1 to Class 2 PM2.5 concentration range is pre 

dominantly exposed to Highest to High population density area. However, in 2012 Highest to 

High population density area are exposed Class 7 to Class 11 concentration range of PM2.5. 

RSPM, NO2, SO2, and CO concentration is negatively co-related with LST in May 2009 in Delhi 

region. Most part of the Very-High to Extreme pollutants concentration class existed over the 

Built-up Area of Delhi region in May 2009. Population residing in east zone of Delhi region has 

been exposed to higher pollution class as compared to population residing in central and south 

zone in May 2009.     
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